5 research outputs found

    Automated Segmentation of Cells with IHC Membrane Staining

    Get PDF
    This study presents a fully automated membrane segmentation technique for immunohistochemical tissue images with membrane staining, which is a critical task in computerized immunohistochemistry (IHC). Membrane segmentation is particularly tricky in immunohistochemical tissue images because the cellular membranes are visible only in the stained tracts of the cell, while the unstained tracts are not visible. Our automated method provides accurate segmentation of the cellular membranes in the stained tracts and reconstructs the approximate location of the unstained tracts using nuclear membranes as a spatial reference. Accurate cell-by-cell membrane segmentation allows per cell morphological analysis and quantification of the target membrane proteins that is fundamental in several medical applications such as cancer characterization and classification, personalized therapy design, and for any other applications requiring cell morphology characterization. Experimental results on real datasets from different anatomical locations demonstrate the wide applicability and high accuracy of our approach in the context of IHC analysi

    Joint co-clustering: co-clustering of genomic and clinical bioimaging data

    Get PDF
    AbstractFor better understanding the genetic mechanisms underlying clinical observations, and better defining a group of potential candidates for protein-family-inhibiting therapy, it is interesting to determine the correlations between genomic, clinical data and data coming from high resolution and fluorescent microscopy. We introduce a computational method, called joint co-clustering, that can find co-clusters or groups of genes, bioimaging parameters and clinical traits that are believed to be closely related to each other based on the given empirical information. As bioimaging parameters, we quantify the expression of growth factor receptor EGFR/erb-B family in non-small cell lung carcinoma (NSCLC) through a fully-automated computer-aided analysis approach. This immunohistochemical analysis is usually performed by pathologists via visual inspection of tissue samples images. Our fully-automated techniques streamlines this error-prone and time-consuming process, thereby facilitating analysis and diagnosis. Experimental results for several real-life datasets demonstrate the high quantitative precision of our approach. The joint co-clustering method was tested with the receptor EGFR/erb-B family data on non-small cell lung carcinoma (NSCLC) tissue and identified statistically significant co-clusters of genes, receptor protein expression and clinical traits. The validation of our results with the literature suggest that the proposed method can provide biologically meaningful co-clusters of genes and traits and that it is a very promising approach to analyse large-scale biological data and to study multi-factorial genetic pathologies through their genetic alterations

    Automatic Morphometry of Nerve Histological Sections

    Get PDF
    A method for the automatic segmentation, recognition and measurement of neuronal myelinated fibers in nerve histological sections is presented. In this method, the fiber parameters i.e. perimeter, area, position of the fiber and myelin sheath thickness are automatically computed. Obliquity of the sections may be taken into account. First, the image is thresholded to provide a coarse classification between myelin and non-myelin pixels. Next, the resulting binary image is further simplified using connected morphological operators. By applying semantic rules to the zonal graph axon candidates are identified. Those are either isolated or still connected. Then, separation of connected fibers is performed by evaluating myelin sheath thickness around each candidate area with an Euclidean distance transformation. Finally, properties of each detected fiber are computed and false positives are removed. The accuracy of the method is assessed by evaluating missed detection, false positive ratio and comparing the results to the manual procedure with sampling. In the evaluated nerve surface, a 0.9% of false positives was found, along with 6.36% of missed detections. The resulting histograms show strong correlation with those obtained by manual measure. The noise introduced by this method is significantly lower than the intrinsic sampling variability. This automatic method constitutes an original tool for morphometrical analysis
    corecore