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Abstract

A method for the automatic segmentation, recognition and measurement of neuronal myelinated fibers in nerve histological
sections is presented. In this method, the fiber parameters i.e. perimeter, area, position of the fiber and myelin sheath thickness
are automatically computed. Obliquity of the sections may be taken into account. First, the image is thresholded to provide a
coarse classification between myelin and non-myelin pixels. Next, the resulting binary image is further simplified using connected
morphological operators. By applying semantic rules to the zonal graph axon candidates are identified. Those are either isolated
or still connected. Then, separation of connected fibers is performed by evaluating myelin sheath thickness around each candidate
area with an Euclidean distance transformation. Finally, properties of each detected fiber are computed and false positives are
removed. The accuracy of the method is assessed by evaluating missed detection, false positive ratio and comparing the results
to the manual procedure with sampling. In the evaluated nerve surface, a 0.9% of false positives was found, along with 6.36% of
missed detections. The resulting histograms show strong correlation with those obtained by manual measure. The noise introduced
by this method is significantly lower than the intrinsic sampling variability. This automatic method constitutes an original tool for
morphometrical analysis. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Morphometry; Nerve histology; Axon parameters; Axon recognition; Mathematical morphology; Connected operators

1. Introduction kind of approach was greatly dependent on the nerve
cross surface and fiber size population. In consequence,
Morphometric studies on nerve trunks are valuable in large experimental studies too few nerve profiles can
tools in detecting development or pathological abnor- be measured. Also, there is an unavoidable bias intro-
malities (Gutmann and Sanders, 1942; Cragg and duced by the profile selection the experimenter made
Thomas, 1961; Ohnishi et al., 1977; Dyck et al., 1984; from the entire population.
Jacobs and Love, 1985). They have also been broadly Attempts to increase the number of measurements
used in experimental nerve research (Pick, 1956; Buch- led investigators to employ semi-automatic systems
nal and Behse, 1978). Usually, these studies are focused (Dunn et al., 1975) resulting in significant computation
on myelinated fiber size and number, although fiber time reduction, but still unsuitable for study nerves with
perimeter and myelin thickness sheaths are also consid- a large fiber population i.e. optic nerves (Kupfer et al.,
ered as useful parameters. Many investigators (Duncan, 1967; Treff et al., 1972). Even though adequate sam-
1934; Fernand and Young, 1951; Wendell-Smith and pling schemes have permitted to attack this problem at
Williams, 1959; Donovan, 1967) have used manual a reasonable effort-time cost, much of the measure-
methods, for instance at measuring two different fiber ments keep to be performed by the experimenter. Many
diameters and taking their mean as a fiber size estima- different sampling schemes are described in the litera-

tor. Clearly, the amount of work demanded by this ture (Mathieu et al., 1981; Miiller et al., 1981; Mayhew
and Sharma, 1984a,b; Torch et al., 1989) for estimating

* Corresponding author. Tel: -+ 32-2-7645446; fax: + 32-2- parameters as fiber diameter, fiber surface or perimeter,
7649422, in either homogeneous or heterogeneous fiber distribu-
E-mail address: veraart@gren.ucl.ac.be (C. Veraart) tions. The amount of work needed to achieve these
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estimations is variable according to different investiga-
tors. Some authors (Mayhew and Sharma, 1984a) find
a good estimation of fiber diameter with only 185
fibers among some 2900 as in the rat tibial nerve,
whereas others claim that a minimum of 50% of the
entire fiber population (Torch et al., 1989) is needed
for fiber area and perimeter estimations. In the former
case (Mayhew and Sharma, 1984a), a fair estimate of
the fiber diameter distribution takes 16 min. In the
latter case (Torch et al., 1989), e.g. the optic nerve it
may mean half a million measurements.

Lately, stereological techniques as the fractionator
(Gundersen, 1986) have been successfully used for
calculating the number of myelinated fibers (Mayhew,
1988), reducing considerably the task. These sampling
procedures are based on unbiased estimation of a par-
ticular parameter, whereby all nerve fibers have the
same probability of being examined. Larsen (1998)
has extended its application to other nerve parameters
such as the area, the perimeter and myelin thickness.
Although, it deals well with a precise estimation
of these parameters and is far less time consuming
than complete tracing of fibers, it remains still an
important work for an operator in very inhomoge-
neous nerves, where larger number of samples (‘count-
ing frames’) are needed, or in studies where many
nerves have to be used, as it is frequent the case in a
experiment design conceived to unmask a particular
condition.

As a consequence, an automatic image analysis sys-
tem deserves to be considered. Combination with any
adequate sampling scheme should optimize its effi-
ciency and reduce the experimenter work. Automatic
approaches have been used in several histological
applications. Morphological recognition algorithms
have been introduced to isolate regions of interest in
certain images (Garbay, 1986). Such segmentation al-
gorithms usually proceed in two steps. First, the image
is analyzed with a local operator, which classifies pix-
els according to the various tissue characteristics ex-
pected to be found. Next, the image is analyzed at the
structural level using a variety of tools such as region
growing segmentation (Jain et al., 1980), grouping of
edge elements (Garbay, 1986), or mathematical mor-
phology (Thiran and Macq, 1996). Unfortunately,
none of these methods can handle multi-part objects
such as axons surrounded by a myelin sheath. Lately,
several authors have relied on active contour models,
or snakes (Amini et al.,, 1990; Fok et al., 1996; El-
moataz et al., 1998), to handle both local and struc-
tural analysis in one step. After detecting candidates
through a global tool such as the Hough transform,
each region of interest is processed individually with
an explicit active contour model evolving towards the
real contours of the structure. Unfortunately, such
method may be too computationally expensive. Fur-
thermore, it is unclear whether any of these models

could handle the large size variability encountered in
some fibers.

The present study proposes and evaluates an origi-
nal automatic method for segmentation, recognition,
and measurement of nerve fibers based on connected
morphological operators to identify candidate areas,
and on the Euclidean distance transformation to sepa-
rate fiber aggregates. This procedure results in a reli-
able estimation of the total number of myelinated
axons, the distribution of the myelin sheath thickness
and area, as well as the fiber diameter, area and
perimeter. The method also reconstructs the position
of each measured fiber in nerve co-ordinates and cor-
rects for section obliquity.

2. Methods
2.1. Animal and tissue preparation

The sciatic nerve used in this study was obtained
from a female cat (3250 g) used as control in an
unrelated experiment. The cat was anaesthetised with
sodium pentobarbital (30 mg/kg I.M.). A 14G catheter
was inserted in the abdominal aorta, between the renal
branches and iliac bifurcation. A solution of 10000
units of heparin and dextran 3.5% in a PBS phosphate
buffer was given for 1 min as a prewash at a constant
flow rate of 250 ml/min, followed by 2 | of phosphate-
buffered para-formaldehyde solution. The sciatic nerve
was then dissected and a short sample was excised at
about 4 cm proximal to the bifurcation into the tibial
and peroneal branches. The nerve sample was pre-
served in Karnovsky fixative for 24 h, then post fixed
in 1% osmium tetroxide during 4 h and embedded in
epon Ladd LX-112 (Ladd Research Industries Inc.,
Burlington, Vermont). Semi-thin nerve cross sections
(1 pm) were cut on a Reichter Ultracut microtome
(Reichter, Wien, Austria) and stained with toluidine
blue.

2.2. Image acquisition

Photomicrographs were taken using a color filter
system in a Zeiss microscope with an 40 x PLANAPO
oil immersion objective at a magnification of x 1650.
A total of 95 photomicrographs (referred to here
below as images) were taken, representing a 209 x 140
um? tissue area. A slight overlap between adjacent
microscopic frames was adjusted manually to take
care of partial fibers lying on the edge of each photo-
micrograph. Images were then digitized by a Nikon
25-1000 software system with an 1850 x 1234 pixel
resolution. A microscale (0.01 mm, Wild, Switzerland)
was processed in the same way so as to obtain the
scaling factor. The pixel size corresponded to 0.11 pm.
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Fig. 1. Typical image illustrating fiber irregularities. Left, illustration of fiber diameter variability (subset size of 22.5 x 20.5 pum). Center,
connection between densely packed fibers (subset size of 24.7 x 21.8 um). Right, bright rings in the myelin sheath due to clefts of Schmidt—Lanter-

mann (image subset size of 25 x 23.1 pm).

2.3. Basic morphological principles

A normal mixed nerve such as the sciatic consists of
different kind of fibers with different shapes, diameters
and distributions. It contains also structures such as
capillaries and connective tissue including endoneurial
fibroblasts. In this paper, any structure different from
nerve fibers will be considered as an artifact. In a
correctly preserved, fixed and stained nerve section, the
myelin appears as a dark annulus (see Fig. 1). Nerve
fibers can be considered as objects with a clear region
surrounded by a dark annulus of approximately con-
stant thickness. These objects exhibit a rather round or
elliptical shape, but important distortions are frequently
observed. Therefore, global recognition criteria such as
circularity are not robust. Some decision rules can
nevertheless be used on these objects in order to improve
object segmentation. A useful parameter is the ratio
P?/A, where P is the object perimeter and A its area.
This can be computed for the axon and the fiber (i.e. the
axon surrounded by its myelin sheath). Another useful
criterion is the ratio d/D, where D and d are the fiber and
axon diameter, respectively. It must also be stressed that
some deformations may result from the tissue processing
technique itself such as the selected fixative or the buffer
molarity (Robertson, 1958; Schultz and Karlsson, 1965)
or coloration artifacts (see Fig. 1). For this reason, the
P?/A ratios have to be adjusted accordingly.

The d/D ratio varies between 0.36 and 0.95 according
to Suderland (1968), but for this work only
0.6 value was considered according to Rushton (1951).
Unfortunately, fibers also present a number of highly
variable features that may hinder the efficiency of
detection algorithms. For instance, in a mixed nerve
such as the sciatic, fiber diameter varies between about
1 and 30 pm (Suderland, 1968). Also, fibers can
be either neatly separated or densely packed together.
For all these reasons, no additional criterion can
be defined regarding fiber size or distribution topology.

2.4. Image processing

The image processing is divided in five steps. First,
pixels are classified as myelin (black) or non-myelin
(white) pixels according to their gray level values. Next,
the resulting binary image is simplified using connected
morphological operators according to rules derived
from the basic morphological principles described
above. Third, adjacent fibers are separated using a
distance criterion. Fourth, additional morphological
criteria are used to detect and discard false fibers.
Finally, oblique slices are detected and a geometrical
correction is performed, if needed.

2.4.1. Pixel classification

Pixel classification aims at classifying the pixels as
belonging to a myelin sheath (black) or not (white).
Unfortunately, histological sections contain tissue struc-
tures with inhomogeneous staining densities. This leads
to smooth variations of the average luminance in some
regions of the image. Therefore, for every pixel in the
image, the threshold level should be computed locally,
i.e. based on the analysis of the histogram of a small
image subset around it. The size of this subset is set
slightly larger than the maximum feature size one ex-
pects to find in the image, typically 15 x 15 pm. In nerve
sections, myelin is darker than the endoneurium and the
axoplasm. Thus, a typical image subset histogram has
two peaks, sometimes three when the gray level of
endoneurium and axoplasm differ.

The threshold level is set to correspond to the mini-
mum between the first two peaks of the smoothed
histogram (i.e. the Gaussian filtered histogram with a 65
kernel size). The gray levels for which 15% (L,5) and 50%
(Lso) of the histogram integral is darker are first com-
puted. L5 is a typical value of gray levels within the
‘myelin peak’. Ls, is typical of the ‘non-myelin peak’.
The average between L5 and Ls, is used as an initial
estimation for a local minimum search, which is con-
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Fig. 2. (A) Original gray level image. (B) Threshold levels, resulting from the analysis of local histograms. (C) Undistorted image, i.e. difference
between the original image and the threshold image (C= A4 — B+ 128). (D) Binary image resulting from the threshold (D = (4 > B)).

Recoloring

Fig. 3. On top of the three figures are illustrated the zonal graphs (solid lines) associated to each binary image P(X) (dashed lines represent each
vertex association to any particular feature in the image). Small spot is a useless feature and thus is removed with the area operator, which flips
the binary value of zones with an area of less than 0.5 um?>. In the zonal graph, its representation corresponds to a black leave, which is re-colored
in white and merged with the root vertex (background). For the larger feature, the annulus within the myelin produced by a cleft of
Schmidt—Lantermann, corresponds in the zonal graph to a white region surrounded by two black regions and thus the area is re-colored in black
and the three vertices are merged together. The third features stands for an actual axon and is left unchanged (adapted from Heijmans, 1999).

ducted on the smoothed histogram'. Pixel classification
typically resulting from this thresholding procedure are
shown in Fig. 2.

In practice, a complete local analysis histogram can
not be performed for every image pixel, provided that it
is necessary to maintain a low computational cost.
Instead, it is only performed on pixels belonging to a
square lattice in which the points are 10 pm apart. For
points not belonging to the lattice, the threshold level is
found by bilinear interpolation of the threshold values
at the four nearest lattice points.

'If necessary, the L;s and Ls, values can be adjusted by the
experimenter on a single image and extended to all the images of the
studied nerve section.

2.4.2. Connected operators filtering

After the pixel classification step the resulting binary
image still contains artifacts, which are easily expressed
and handled in terms of regions and their properties. A
partition is a subdivision of the image into disjoint
zones. The binary image is considered as a partition P
(X) of X, the set of pixels, into black and white zones.

The zonal graph (examples of which are illustrated on
top of the three representations of Fig. 3) is composed
of arcs (solid straight lines) connecting vertices (Small
black and white disks). Each vertex is associated to
disjoint zones of the binary image P(X). A black
(white) zone is represented by a black (white) vertex.
The zonal graph in binary images is always a tree (no
cycles are present). Terminal vertices of a tree are called
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leaves i.e. the regions with only one neighbor. Given two
partitions P and P’ of the image, we say that P is coarser
than P’ if P’ = P. A morphological operator ¥ is called
connected if the resulting partition P (¥/(X)) is coarser
than P (X), for any set X, or in other words, connected
zones are either left untouched or changed altogether. In
the common case where connectivity is based on adja-
cency, connected operators can be described and imple-
mented by re-coloring and merging vertices of the
corresponding zonal graph (Fig. 3). The formalism used
here, known as connected morphological operators

(Heijmans, 1999), operates on the zonal graph (see Fig.

3) of the image rather than at the pixel level. Connected

operators only allow certain zones in the image to

change color, but zones can not be shifted or broken and
no new boundaries can appear, assuring thereby that
artifacts disappear without introducing new problems.

The best known connected morphological operator is
the morphological opening by reconstruction (Serra,
1982), where objects which are too small to contain the
structural element of the original erosion are deleted
while large objects are left unchanged. More complex
criteria can of course be defined, either considering each
zone separately (it is then called a grain operator) or
considering the relationships between zones and their
neighbors. We will use both hereafter.

Different connectivities yield different zonal graphs. In
our case, we used 8-adjancency (a pixel is compared with
its eight direct neighbors) for foreground pixels and
4-adjacency for background pixels. This defines a topol-
ogy similar to the continuous case, and ensures that the
zonal graph is actually a zonal tree. A number of
connected operators are then applied successively in
order to remove the artifacts described in Section 2.3 and
to identify fiber candidates.

o Noise in the original image may lead to small misla-
beled areas in the binary image. Those are removed
by applying the area operator (Fig. 3), that switches
the color of all zones whose areas are smaller than a
given value. Unfortunately, the area operator is not
stable. Applied iteratively it can fail to converge and
then oscillates between two solutions. Therefore, we
restrict its action to the leaves of the zonal graph. We
apply this ‘leave area operator’ until we reach idem-
potence (> = y). The surface value for which areas
are re-colored is chosen smaller than the smallest
axons, for instance 0.5 um? or 40 pixels.

e Fibers always have a bright center surrounded by a
black ring i.e. a black region with two neighboring
white ones. Therefore, black leaves in the zonal graph
do not represent a useful feature and are removed.
The ‘black leave operator’ is applied once.

e Clefts of Schmidt—Lantermann can split the myelin
sheath in two parts, as illustrated in Fig. 1 (right
panel). In the binary image, this appears as a white
ring surrounded by two black rings. White rings are

detected by computing the gravity center of all white
areas. If the center of a ring is located outside the area
itself, two cases can appear, either the ring is open and
corresponds to a leaf of the zonal graph or the ring is
closed and has two neighbors in the zonal graph. In
the former case, the ring is merged with its only
neighbor; in the latter, the three vertices of the graph
are merged together as a black area, i.e. the ring is
re-colored in black.

Finally, according to the range of fiber diameters
(Suderland, 1968) and the ratio d/D of 0.6 (Rushton,
1951), axon candidates are identified as white leaves in
the zonal graph satisfying a size criterion (1.2 <d <18
pm). Moreover, to guarantee the compactness and ap-
proximate circularity of the center of the axon, the ratio
P?/A4 is kept below a certain level to be adjusted by the
experimenter (typically 12).

2.4.3. Separation of connected fibers

Unless fibers are very sparse in the binary image, some
of them will appear connected in the resulting image. In
the zonal graph, this means that several white leaves that
are axon candidates share the same black vertex neigh-
bor. This section deals with the division of the corre-
sponding black zone into subregions that are either
myelin sheaths surrounding axon candidates or artifacts
to be merged with the background.

Consider first a single white area. The thickness of the
myelin sheath around it is evaluated as follows, X, is
defined as the set of pixels at a distance d of a set X of
pixels

X;=(XDS, )N (XDS,) (1

with S, being a circular structural element of size d and
@ being the Minkowski addition. The typical thickness
of the myelin sheath around a white area X is then
defined as the smallest distance d for which there are
more white than black pixels in X, This can be very
efficiently implemented using the approximate Euclidean
distance transformation (EDT) by propagation (Ragnel-
man, 1992) or the exact EDT (Cuisenaire, 1999). These
algorithms compute distance maps, i.e. images where the
value of each pixel is the Euclidean distance from this
pixel to a set of pixels X, that is the shortest distance
from that pixel to a pixel of the set X, initially, the map
is set to 0 for pixels of X and to the maximum integer
for all others, and pixels of X are stored in a dynamic
list. Then, for each pixel of the list, the nearest pixel of
X is considered as the nearest pixel of X for its neighbors.
If this leads to a smaller distance value than that
currently in the map, this value is updated and the
neighbor is inserted in the list. In order to reduce
computational cost, pixels in the list must be treated by
increasing distance value order rather than in a simple
FIFO order. This is done by replacing the single list by
a number of buckets corresponding to each possible
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Fig. 4. Upper figure, zonal graphs of the region of interest before (left) and after (right) axon separation. Lower figure, axon separation by distance
transform (image subset size of 31.5 x 27.3 pm). From left to right, original image; result of the connected operators filtering (the black area is
a connected area that needs to be split into several fibers); distance map, fiber candidates are examined by size order from larger fibers to smaller
ones (Euclidean distance transformation is propagated from the axon toward the periphery up to the white/black pixel ratio is larger than 0.8);
resulting fibers (represented as white annuli) overlaid on the original image.

distance value, or even better, by the square of each
possible value, in order to consider only integers. Buckets
are then emptied by increasing distance value order. With
this algorithm, the set X, of pixels at a distance d of X
is the set of all pixels present in the buckets after bucket
d has been processed. The number of black and white
pixels in X, is dynamically computed for every distance
d and the propagation process stopped as soon as the
termination condition is reached. The pixels that were
reached by the propagation process — and only those
— are considered as belonging to the myelin sheath
around the axon candidate.

Consider now all the ‘less axon candidate’ areas, which
are leaves of the same black area in the zonal graph. The
previous procedure is applied to each candidate, in
decreasing size order. An illustrative example is given in
Fig. 4. Among the nine leaves of the graph, leaves x and
y have been discarded at the previous stage, because they
lack circularity to be proper fiber candidates. Among the
seven remaining candidates, areas 1 and 6 are true fibers
while area 7 is a cleft of Schmidt—Lantermann. In the
black area itself, some pixels correspond indeed to myelin
while others result from an artifact. The algorithm
efficiently separates fibers numbered from 1 to 5. For
area number 6, the propagation process reaches pixels
that were previously considered as belonging to the
myelin sheath around area 2. These pixels are relabeled
as belonging to the sheath around the axon they are
closest to. The resulting arc between the two fibers
corresponds either to the thickness of the smallest fiber,
or to the iso-distance between the two white areas. Area
number 7 is included inside the previously computed
myelin sheath around area 1 and therefore it is discarded.

2.4.4. False positive detection

The above procedure to detect fibers can lead to two
types of error, missed detection when a true fiber is not
found and false positive when an image feature is
wrongly considered to be a fiber. False positives are
considered a worse problem since they are most likely to
introduce a bias in the fiber distribution statistics, as most
false positives are small in size. Missed detection is only
detrimental if its rate is size dependent, and if their
number reaches a significant percentage of the total.

In order to minimize the number of false positives, two
measures are considered. These are an intrinsic reliability
measure for each fiber and a conflict measure that uses
information from the surrounding features. The reliabil-
ity measure depends mostly on a d/D ratio reasonably
close to 0.6 (Rushton, 1951). The combination of fascicle
edge and isolation criteria gives the conflict measure. For
densely packed fibers, false positives often occur in the
space between three neighboring axons. These are de-
tected by looking at the pixels on their edges. Most of
those pixels are considered as belonging to other axons,
while they really belong to the background. On the other
hand, in images including the edge of the fascicle, some
external features can be wrongly taken for fibers. Those
are detected since they are isolated from the rest of the
detected fibers.

2.4.5. Correction of obliquity

Even in expert hands a perfect transversal cut is
almost impossible, and a certain degree of obliquity
always remains. In that case, most fibers appear as ovals
instead of disks. Oblique transversal sections are de-
tected by inspecting the principal axis of fibers, when
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most of the fiber long axes are aligned (see Fig. 5).
Although, in these cases the myelin sheath is thicker at
the ends of the longer axis than at the shorter one, this
parameter is highly irregular and not stable enough to
be useful for obliquity correction. Fiber orientation
provides a better estimation of the section’s obliquity.
A general index of the image obliquity is obtained by
calculating the obliquity vector @, for the ith fiber,
which is defined as follows:

;= |Ui|ejgi 2
where 0, is the angle of the longest axis with the
horizontal and |v,] is

_longest fiber axis —shortest fiber axis

Uz‘l = 3

shortest fiber axis

A general measure over a number N of fibers is

70 mes
Umean = |vmean|e] mean (4)

where
N
|Umcan| ej29mean = Z wi|vi| ej29i (5)
i=1
and
»2
Joe’2 =25 (©)
|vi]

with weighting factors w,. In practice, we use w; as the
shortest fiber axis length. Thus, to correct the obliquity
of the cut, all fibers are contracted along the direction
Opmeans the mean long axis by a factor 1/(1+ |v

mean‘)'

3. Results

The assessment of the present method was structured
in four different ways.

Fig. 5. Correction of obliquity (image subset of 50 x 51 um). From left to right, fibers found on an oblique section, principal axes of fibers and

oblique-corrected fibers.
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Fig. 6. Illustration of fiber diameter and myelin thickness histograms constructed from available automatic data.
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Fig. 7. Detected fibers overlaid upon part of a typical image (image
subset of 68 x 88 um).

Fiber diameter distribution for manual and automatic measurements
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Fig. 8. Distribution comparison of automatic and manual measures
for equivalent fiber diameters (bin width, 0.5 pm).

3.1. Missed detection and false positives

Firstly, for the lattice configuration described in Sec-
tion 2.4.1, the total number of recognized fibers, missed
detection and false positives were evaluated in the
whole image set. The total number of fibers was found
to be 11 650. Fiber diameter and myelin thickness his-
tograms were constructed from these data and are
illustrated in Fig. 6.

The detected fibers can be visually evaluated by
superimposing on the original image the algorithm
estimation (Fig. 7). From the total image set, 783 fibers
were found to be missed detections, and from a total of

11650 fibers, 113 were considered as false positives. Of
the 783 missed detections, 427 corresponded to fibers
with a diameter below 7 um. Hence, estimating the real
number of fibers as 12320 (=11 650 + 783 — 113), over
the entire available surface, 0.92% of false positives and
6.36% of missed detections appeared. From these
missed detection 47.2% belonged to the smaller group
diameter. By comparison, among the 11 650 fibers auto-
matically detected, 39.7% (4628 fibers) had a diameter
below 7 pum. From the 427 small profiles, 273 (64%)
were detected in the first classification state, but were
ruled out by the geometrical relationships defined in
Section 2.3 and from the 356 large profiles, 245 (69%)
were also excluded in this state.

3.2. Comparison with manual measurements

Here, the accuracy of the measurements themselves
was evaluated. Twenty images (about 18% of the avail-
able nerve surface) from the same nerve section were
selected by lottery, but no image was selected more
than once (i.e. sampling without replacement). Using a
standard software (NIH image for MACINTOSH), con-
tour fibers were manually drawn and measured. A total
number of 3434 fibers were found manually compared
to 3256 obtained by the automatic method, from which
33 were considered as false positives and 211 as missed
detections. This amounts to a 6.14% error recognition
rate only on these selected images, which is typical of
the error rate found for the whole data set.

In Fig. 8 the corresponding manual and automatic
histograms are depicted. This figure shows a good fit
for both peaks. Histograms do not differ significantly
(7> = 18.89). Here, the null hypothesis is that both data
sets are drawn form the same population distribution
function at a «-significance level of 5%, and the P-value
is interpreted as answering this question, if the null
hypothesis is true, what is the chance of randomly
obtaining a larger discrepancy between both
distributions?

This slight difference between automatic and manual
measures can be better visualized in the myelin thick-
ness distribution, drawn as relative cumulative fre-
quency histograms. As illustrated in Fig. 9, the pattern
of both curves is similar with a slight right shift of the
manual curve for thickness larger than 2.5 pm.

3.3. Signal—-noise ratio analysis

Third, the noise introduced by the automatic proce-
dure is compared to the variability introduced by noise
sampling. The evaluation is always performed on the 20
image group. We proceed as follows, the set of 20
images is randomly split into an arbitrary number of
pairs of two subgroups of ten images, which in turn is
compared for manual and automatic measures. Fig. 10
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Relative cumulative histograms for manual and automatic measurements
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Fig. 9. Relative cumulative frequency histograms for myelin thick-

ness.

shows the fiber distributions found for two particular
subgroups with manual and automatic procedures.
The y>-test on these histograms reflect differences in
the data distributions. The procedure is repeated here
1000 times, splitting the data set into two arrays of ten
images each time. The y>-test is calculated for each
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distribution data pair (four in total). Three data groups
are plotted in Fig. 11 (logarithm scale). On the left
graph y2 values between manual measures for sub-
groups 1 and 2 appears drawn against y2 values be-
tween manual and automatic measures of subgroups 1
and 2. As it can be observed in the left graph, there
exists a clear trend of the manual-manual differences
(differences due to sampling) to be larger than the
manual—automatic differences. One might objects that
the lower y? values result from a smoothing effect of
the automatic procedure on the histograms. The right
graph answers this objection, we observe that auto-
matic—automatic differences are as large as manual—
manual differences.

3.4. Obliquity correction

Finally, the obliquity correction was carried out in
some images. Typical results are shown in Fig. 5. The
principal axis (central image), indicates the orientation
of each fiber. The correction is shown in the right
image. In this case, the computed mean long axis
appears to be 36% longer than the small axis, which
corresponds to a 42° obliquity. On the other hand, for
cuts that obviously appear to be nearly perfect, the
suggested correction ratio is usually close to 0.8%, i.e.
negligible.
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Fig. 10. Comparison of fiber distributions for a random arrangement of the 20 images into two data sets, 1 (left) and 2 (right) for manual (above)
and automatic (below) measurements. Histogram differences between the manual subsets 1 and 2 were found to be larger (73, — My = 114.04) than
histogram differences between the manual and automatic for the first data set (x3,, _ 4, =10.57) and than for the second data set 3y — 4, =
14.00). Automatic differences for data sets 1 and 2 were also important (3%, _ 4, = 108.93).
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Fig. 11. Sampling-measurement accuracy noise ratio. The data set of 20 images is shuffled and divided into two subsets of ten images. Histogram
distributions for manual and automatic data are computed for each subset and y2 values calculated for each different pair distribution (manual
and automatic). The left graph shows y2 values for manual-manual distributions depicted against y 2 values for manual-automatic distributions.
In right graph manual-manual y? histogram values are drawn against automatic—automatic y? histogram values.

4. Discussion

This study describes an efficient automatic method to
measure various fiber parameters such as the total
number of fibers, fiber diameter, fiber perimeter and
myelin thickness distributions within a nerve trunk. As
it was pointed out before, morphometrical analysis has
evolved from purely manual methods in which a com-
plete tracing was needed with all side errors introduced
by the experimenter and by the few profiles able to
examine, to more intelligent sampling schemes which
have reduced considerably the manual work. In this
context an automatic method is of course the best
choice to maximize efficiency and minimize work time,
provided its accuracy is proven. The method presented
here is fully automatic once the various parameters have
been set to appropriate values. These values are con-
stant for a given fixation, coloration and acquisition
procedure. In practice, the experimenter selects the
appropriate settings for a single image and applies them
to the full image set of the same nerve. One advantage
with this automatic image analysis approach is that no
particular definitions of the staining intensity of the fiber
are included, but it is the local histogram properties that
defines them. In addition, this threshold election permits
to conserve the original axon shape and to recognize
any fiber contour. Also, this method incorporates classi-
cal rules such as diameter ratio between the axon and
the fiber, or axon perimeter bounds, and allows them to
be expressed as simple morpho-mathematical criteria.

Although, some fiber axons were missed and a few
artifacts were taken as actual fibers, comparison of
manual and automatic methods in about 18% of the
available nerve surface, with a standard y2-test did not
show any significant difference. In this sample, slight
difference were found in large fiber measures. This can
be attributed to the fact that a manual operator follows
intuitively the exact fiber boundary while the program
follows a constant myelin thickness hypothesis (which
one of these two hypothesis is the most correct is open
to discussion). Besides, it must be stressed that manual
measures are subjected to many error sources such as
subjective decisions, time of measure, or inter-observer
variability, etc. In other words, manual measures always
keep an error margin that can contribute to these slight
differences.

A very important feature of the method is the choice
of the local threshold levels. For instance, a previous
version of the software in which the image subset was
set to 25 x 25 um size led to a higher missed detection
ratio for small fibers (4.09% instead of 3.47% of the
present version) because the local contrast was badly
evaluated. In that case, small profiles had a higher
probability to be missed. In general, there are two
possible error sources, the first is an inappropriate
choice of the local threshold and the second is the fiber
deformation which makes them different from our
model of fiber. Indeed, the small fibers tend to be missed
because their shape variability is higher than that of
larger ones. Unfortunately, relaxing shape criteria may



E. Romero et al. /Journal of Neuroscience Methods 97 (2000) 111-122 121

not be an appropriate response to this problem since it
might introduce new artifacts.

Whether or not a given method is useful in practice
depends on its ‘noise’ in comparison to the ‘signal’. A
well-designed experiment is one in which the signal is
greater than the noise. In our case, the noise is the
difference between manual and automatic measurements
for the same images. In most biomedical papers, the
relevant signal is the intrinsic variation between animals.
Mayhew and Sharma (1984a) has demonstrated that the
noise introduced by sampling was reasonably low for
practical purposes. In this paper, we show that the noise
introduced by the automatic method is well below the
variability introduced by a random sampling scheme. By
transitivity, the noise introduced by our method is likely
insignificant compared to the relevant signal.

As it can be observed in Fig. 11, x? values for the
manual distributions in the two random subgroups
systematically lead to larger values than the comparing
%? values for the manual—automatic distributions. In
the experiment of Section 3.3 each subgroup ranged
from 7.3% (all boundary images are in the same sub-
group) to 9.6% of the available nerve section, which is
usually considered (Mayhew and Sharma, 1984a) an
adequate representation of the total population. In these
conditions, it is valid to deduce that the noise introduced
by sampling is more important than the one introduced
by the method measurement. A fortiori, the noise intro-
duced by the automatic method is clearly within reason-
able bounds for practical studies.

A mixed nerve such as the sciatic is the proper
specimen to evaluate the method due to the wide vari-
ability in fiber sizes, shapes and distribution. Besides, the
number of problems found on these images are common
to any peripheral nerve, provided that good fixation and
staining protocols allow to obtain images with adequate
contrast. Of course, the staining intensity and contrast
can vary from nerve to nerve or even within different
regions of the same nerve section, but our method shows
sufficient robustness to these luminance changes. Thus,
a practical conclusion from this study is that despite the
available limited data, the accuracy of the method is
acceptable for morphometric studies.

Although, the missed detection rate represents about
6% of the number of fibers, this problem seems to be a
minor one since in our small ten image subgroups, we
did not find significant differences between manual—au-
tomatic measures. Indeed, if necessary, the missed detec-
tion ratio could be lowered by interactively pointing to
the missed detected fibers and forcing the corresponding
leaves in the zonal graph to become fiber candidates and
to be considered first in the fiber separation process. For
the 95 images of the present study, the missed detection
was 6.36%, which does not seem to represent hard work
for an experimenter. False positives, which originate
from some defects in endoneurium coloration or from

light spots inside myelin sheaths, were also present at a
negligible level (0.92%). Obviously, if necessary, the false
positive rate can be brought down to zero with an
operator pointing at those errors.

Obliquity introduces a bias in morphometrical mea-
sures. For instance, a tilt of 25° overestimates the areas
by 10%. The applied obliquity correction is an effective
means to overcome this bias. It equals the two principal
axes, taking the shortest one as the real diameter of the
fiber. Implicitly, we assume that all fibers should be
perfect disks. Practically, they display a variety of shapes
in a histological stained section, but most of them are
almost round. As the correction is averaged over the
entire section, the bias induced by a few non-round
fibers may be considered negligible. This type of opera-
tor interaction is much inferior to that of usual manual
methods.

The computational cost is a critical parameter, espe-
cially if one wants to introduce interactivity in the
process. With this method, most of the processing is
done on the zonal graph instead of the image. Because
the zonal graph is orders of magnitude smaller than the
image, the corresponding processing time is negligible.
The most costly stages of the process are then threshold-
ing, creation of the zonal graph and separation of the
axons by distance transformation. Graph creation re-
quires labeling of the image and linking of neighboring
areas, for which a couple of raster scans are needed. The
computation of dilations by Euclidean distance transfor-
mation requires one or two passes over each pixel in the
propagation area. In total, the whole processing has a
complexity linearly proportional to the number of pixels
in the image. On a Pentium II at 400 MHz, the
processing time for each 1850 x 1234 pixel image was 15
s, which means a complete nerve can be processed in less
than half an hour without operator intervention. In
contrast, manual measurements for the same image size,
took between 55 (165 fibers) and 90 min (252 fibers).

In conclusion, a method to detect automatically neu-
ronal fibers has been designed. Because those fibers are
defined from two objects — a white center surrounded
by a black ring — the zonal graph and the connected
morphological operators are appropriate tools to isolate
good axon candidates. The evaluation of the myelin
sheath thickness and the separation of aggregate fibers
are performed using distance propagation until a given
criterion on the propagation front is reached. The
experimental results show a good accuracy of the
method, at a reasonable computational cost.
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