1,098 research outputs found

    Joint-SRVDNet: Joint Super Resolution and Vehicle Detection Network

    Get PDF
    In many domestic and military applications, aerial vehicle detection and super-resolutionalgorithms are frequently developed and applied independently. However, aerial vehicle detection on super-resolved images remains a challenging task due to the lack of discriminative information in the super-resolved images. To address this problem, we propose a Joint Super-Resolution and Vehicle DetectionNetwork (Joint-SRVDNet) that tries to generate discriminative, high-resolution images of vehicles fromlow-resolution aerial images. First, aerial images are up-scaled by a factor of 4x using a Multi-scaleGenerative Adversarial Network (MsGAN), which has multiple intermediate outputs with increasingresolutions. Second, a detector is trained on super-resolved images that are upscaled by factor 4x usingMsGAN architecture and finally, the detection loss is minimized jointly with the super-resolution loss toencourage the target detector to be sensitive to the subsequent super-resolution training. The network jointlylearns hierarchical and discriminative features of targets and produces optimal super-resolution results. Weperform both quantitative and qualitative evaluation of our proposed network on VEDAI, xView and DOTAdatasets. The experimental results show that our proposed framework achieves better visual quality than thestate-of-the-art methods for aerial super-resolution with 4x up-scaling factor and improves the accuracy ofaerial vehicle detection

    A Routine and Post-disaster Road Corridor Monitoring Framework for the Increased Resilience of Road Infrastructures

    Get PDF

    Object Detection in 20 Years: A Survey

    Full text link
    Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.Comment: This work has been submitted to the IEEE TPAMI for possible publicatio

    Understanding cities with machine eyes: A review of deep computer vision in urban analytics

    Get PDF
    Modelling urban systems has interested planners and modellers for decades. Different models have been achieved relying on mathematics, cellular automation, complexity, and scaling. While most of these models tend to be a simplification of reality, today within the paradigm shifts of artificial intelligence across the different fields of science, the applications of computer vision show promising potential in understanding the realistic dynamics of cities. While cities are complex by nature, computer vision shows progress in tackling a variety of complex physical and non-physical visual tasks. In this article, we review the tasks and algorithms of computer vision and their applications in understanding cities. We attempt to subdivide computer vision algorithms into tasks, and cities into layers to show evidence of where computer vision is intensively applied and where further research is needed. We focus on highlighting the potential role of computer vision in understanding urban systems related to the built environment, natural environment, human interaction, transportation, and infrastructure. After showing the diversity of computer vision algorithms and applications, the challenges that remain in understanding the integration between these different layers of cities and their interactions with one another relying on deep learning and computer vision. We also show recommendations for practice and policy-making towards reaching AI-generated urban policies

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Generative Adversarial Network and Its Application in Aerial Vehicle Detection and Biometric Identification System

    Get PDF
    In recent years, generative adversarial networks (GANs) have shown great potential in advancing the state-of-the-art in many areas of computer vision, most notably in image synthesis and manipulation tasks. GAN is a generative model which simultaneously trains a generator and a discriminator in an adversarial manner to produce real-looking synthetic data by capturing the underlying data distribution. Due to its powerful ability to generate high-quality and visually pleasingresults, we apply it to super-resolution and image-to-image translation techniques to address vehicle detection in low-resolution aerial images and cross-spectral cross-resolution iris recognition. First, we develop a Multi-scale GAN (MsGAN) with multiple intermediate outputs, which progressively learns the details and features of the high-resolution aerial images at different scales. Then the upscaled super-resolved aerial images are fed to a You Only Look Once-version 3 (YOLO-v3) object detector and the detection loss is jointly optimized along with a super-resolution loss to emphasize target vehicles sensitive to the super-resolution process. There is another problem that remains unsolved when detection takes place at night or in a dark environment, which requires an IR detector. Training such a detector needs a lot of infrared (IR) images. To address these challenges, we develop a GAN-based joint cross-modal super-resolution framework where low-resolution (LR) IR images are translated and super-resolved to high-resolution (HR) visible (VIS) images before applying detection. This approach significantly improves the accuracy of aerial vehicle detection by leveraging the benefits of super-resolution techniques in a cross-modal domain. Second, to increase the performance and reliability of deep learning-based biometric identification systems, we focus on developing conditional GAN (cGAN) based cross-spectral cross-resolution iris recognition and offer two different frameworks. The first approach trains a cGAN to jointly translate and super-resolve LR near-infrared (NIR) iris images to HR VIS iris images to perform cross-spectral cross-resolution iris matching to the same resolution and within the same spectrum. In the second approach, we design a coupled GAN (cpGAN) architecture to project both VIS and NIR iris images into a low-dimensional embedding domain. The goal of this architecture is to ensure maximum pairwise similarity between the feature vectors from the two iris modalities of the same subject. We have also proposed a pose attention-guided coupled profile-to-frontal face recognition network to learn discriminative and pose-invariant features in an embedding subspace. To show that the feature vectors learned by this deep subspace can be used for other tasks beyond recognition, we implement a GAN architecture which is able to reconstruct a frontal face from its corresponding profile face. This capability can be used in various face analysis tasks, such as emotion detection and expression tracking, where having a frontal face image can improve accuracy and reliability. Overall, our research works have shown its efficacy by achieving new state-of-the-art results through extensive experiments on publicly available datasets reported in the literature

    Implementation of Super Resolution Techniques in Geospatial Satellite Imagery

    Get PDF
    The potential for more precise land cover classifications and pattern analysis is provided by technological advancements and the growing accessibility of high-resolution satellite images, which might significantly improve the detection and quantification of land cover change for conservation.  A group of methods known as "super-resolution imaging" use generative modelling to increase the resolution of an imaging system. Super-Resolution Imaging, which falls under the category of sophisticated computer vision and image processing, has a variety of practical uses, including astronomical imaging, surveillance and security, medical imaging, and satellite imaging. As computer vision is where deep learning algorithms for super-resolution first appeared, they were mostly created on RGB images in 8-bit colour depth, where the sensor and camera are separated by a few meters. But no evaluation of these methods has been done

    A Comparison of Deep Learning Algorithms on Image Data for Detecting Floodwater on Roadways

    Get PDF
    Object detection and segmentation algorithms evolved significantly in the last decade. Simultaneous object detection and segmentation paved the way for real-time applications such as autonomous driving. Detection and segmentation of (partially) flooded roadways are essential inputs for vehicle routing and traffic management systems. This paper proposes an automatic floodwater detection and segmentation method utilizing the Mask Region-Based Convolutional Neural Networks (Mask-R-CNN) and Generative Adversarial Networks (GAN) algorithms. To train the model, manually labeled images with urban, suburban, and natural settings are used. The performances of the algorithms are assessed in accurately detecting the floodwater captured in images. The results show that the proposed Mask-R-CNN-based floodwater detection and segmentation outperform previous studies, whereas the GAN-based model has a straightforward implementation compared to other models

    Pal-GAN: Palette-conditioned Generative Adversarial Networks

    Get PDF
    Recent advances in Generative Adversarial Networks (GANs) have shown great progress on a large variety of tasks. A common technique used to yield greater diversity of samples is conditioning on class labels. Conditioning on high-dimensional structured or unstructured information has also been shown to improve generation results, e.g. Image-to-Image translation. The conditioning information is provided in the form of human annotations, which can be expensive and difficult to obtain in cases where domain knowledge experts are needed. In this paper, we present an alternative: conditioning on low-dimensional structured information that can be automatically extracted from the input without the need for human annotators. Specifically, we propose a Palette-conditioned Generative Adversarial Network (Pal-GAN), an architecture-agnostic model that conditions on both a colour palette and a segmentation mask for high quality image synthesis. We show improvements on conditional consistency, intersection-over-union, and Fréchet inception distance scores. Additionally, we show that sampling colour palettes significantly changes the style of the generated images
    • …
    corecore