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Abstract

Recent advances in Generative Adversarial Networks (GANs) have
shown great progress on a large variety of tasks. A common tech-
nique used to yield greater diversity of samples is conditioning on
class labels. Conditioning on high-dimensional structured or un-
structured information has also been shown to improve generation
results, e.g. Image-to-Image translation. The conditioning infor-
mation is provided in the form of human annotations, which can
be expensive and difficult to obtain in cases where domain knowl-
edge experts are needed. In this paper, we present an alternative:
conditioning on low-dimensional structured information that can be
automatically extracted from the input without the need for human
annotators. Specifically, we propose a Palette-conditioned Genera-
tive Adversarial Network (Pal-GAN), an architecture-agnostic model
that conditions on both a colour palette and a segmentation mask
for high quality image synthesis. We show improvements on con-
ditional consistency, intersection-over-union, and Fréchet inception
distance scores. Additionally, we show that sampling colour palettes
significantly changes the style of the generated images.

1 Introduction

The past several years have seen an explosion of deep learning
brought on by an increase in freely available datasets with many
examples and high quality labels. The availability of such datasets
enables deep neural networks to solve many problems, especially
those involving visual reasoning. Deep Neural Networks have been
able to solve classification and detection tasks to super-human
levels[1], and have shown potential in image generation and image
translation tasks [2–5].

The performance of deep learning models is generally contin-
gent on having access to a large amount of high quality labelled
data for training. As a result, some industries have not been able
to take full advantage of state of the art research. For example, the
medical and remote sensing industries require expert knowledge in
the field and a large workforce to generate labels for existing data.
Along with other concerns, such as privacy, it is difficult to obtain
the quantity of labelled data needed to train deep learning models.

A promising approach to solving data sparsity is dataset aug-
mentation. Classical dataset augmentation applies common geo-
metric and photometric distortions that can be modelled by a set
of simple operations [6–9]. More advanced dataset augmentation
techniques involve modelling the data generating distribution and
sampling new data from the model [10, 11]. Generative adversarial
networks have shown some effectiveness in data-scarce domains,
such as the medical field [12, 13] and remote sensing images [14]
in conditional settings. Conditioning on information-dense labels
improves the quality of image generation [15]. Even though high
specificity information-dense labels allow the network to focus on
modelling relationships not contained in the labels, generating these
labels comes at the cost of expensive human-labelled annotations.

In this paper, we explore other sources of information for con-
ditioning GANs that can be automatically extracted from the input
without any human annotation. Implicit information sources exist in
the form of low-dimensional, structured information. Motivated by
the desire to increase colour richness of generated images, as well
as the ability to decrease the complexity of spatial conditions, we
investigate conditioning on a colour palette.

Here, we only consider the setting where the annotation-free
conditioning system complements the existing annotated informa-
tion, specifically binary building masks. We believe this approach
is general enough to assist in the unconditional setting. We apply
our image generation technique to the dataset augmentation task
and explore the effects of introducing varying amounts of generated
data into a dataset to train a variety of segmentation networks.

In experiments conducted on the Amazon SpaceNet dataset,
the Palette-conditioned GAN (Pal-GAN) architecture produces

higher quality results when compared to both classical encoder-
decoder and U-Net based GAN architectures. We assess the gen-
erated images quantitatively through three key metrics: Fréchet in-
ception distance, conditional consistency IOU, and Learned Per-
ceptual Image Patch Similarity. We then briefly explore Pal-GAN
for dataset augmentation on a segmentation task through the IOU
metric.

2 Related Work

2.1 Generative Adversarial Networks

Generative adversarial networks (GANs) form a family of genera-
tive models trained using two models that compete against each
other to implicitly learn data distribution [16]. GANs have been ap-
plied to in-painting [5, 17, 18], image translation [2, 4], and image
generation [16, 18]. The GAN network architecture consists of a
generator G(z) and a discriminator D(x). The generator is typically
a feed-forward neural network that aims to convert a random noise
vector z into a target image x. The discriminator is a neural network
that distinguishes between samples produced by the generator and
those that are obtained from the dataset. The generator network is
trained exclusively through feedback from the classification made by
the discriminator. The discriminator learns to differentiate between
real and generated examples through sampling both the generator
and the dataset. The two components compete in a minimax game
where the generator attempts to maximize D(G(z)) and the discrim-
inator attempts to maximize D(x) while minimizing D(G(z)). GANs
implicitly learn data distributions without specifying any prior. As a
result, GANs are susceptible to mode collapse; a state in which the
generator learns to model a small subset of modes contained in the
data distribution well enough to fool the generator. Subsequently,
the generated data does not capture the entirety of the data distri-
bution. To help counteract mode collapse, conditional variants of
GANs are often used [2, 4, 15].

2.2 Conditional Generative Adversarial Networks

Conditional GANs are a modification of the basic GAN architecture
that allow for more control over the generated images based on
some additional context. We use the notation G(z,c) for a generator
conditioned on context c. It is common practice to condition on class
labels [15]. However, it is also possible to incorporate more struc-
tured conditions such as segmentation masks or pose co-ordinates.
Structured conditions allow GANs to generate entities based on a
strict spatial mapping [4, 19], while text based conditioning guides
generation in a more subtle way [20]. Another consideration for con-
ditioning information is the expense at which it is obtained. In this
paper, we focus on structured information obtained at no additional
cost.

2.3 Remote Sensing

The field of remote sensing has increasingly adopted machine
learning techniques to analyze data for industrial and governmen-
tal purposes. Some works from the machine learning community
aim to detect roads and buildings [4], or classify crops [21]. Most
machine learning techniques in the remote sensing field focus on
classification[22, 23], detection[24, 25], and segmentation[21, 26]
tasks. Some work has been conducted on dataset augmentation
using GANs [27] in multi-sensor settings, converting between RGB,
semantic segmentation, LIDAR, and 2d multi-class box labels. Us-
ing a CycleGAN architecture for dataset augmentation, a modest
improvement in accuracy was achieved. Although the network im-
proved performance on large objects, such as soccer fields and
swimming pools, it had difficulty generating small objects and com-
plex objects such as boats and planes. Our work directly addresses
this limitation of the CycleGAN approach.



Training Validation Test Total
Rio 4,441 1,111 1,388 6,940

Las Vegas 2,464 616 771 3,851
Paris 733 184 230 1,147

Shanghai 2,932 733 917 4,582
Khartoum 647 162 203 1,012

Total 11,217 2,806 3,509 17,532

Table 1: Areas of interest and data splits of the SpaceNet dataset.

2.4 Colour Palette Based Image Generation

The use of colour palettes for an artistic image-to-image translation
task has been shown to work in a well controlled environment with
high-information conditions. For instance, PaletteNet [28] uses a
set of 1611 curated image-palette pairs. The set is augmented in
a three-stage augmentation process to produce images containing
the same content, but displaying different colour palettes. The aug-
mentation technique is applied manually to each image to generate
a set of visually appealing results along with their palettes. The
architecture is trained in two stages: first using a pixel-wise loss be-
tween the generated and the expected image, followed by an adver-
sarially trained refinement step. The PaletteNet approach has the
ability to produce visually appealing results, with the drawback of
a slow manual dataset generation process. Pal-GAN improves the
process by automatically extracting colour palettes and modifying
the training method to better suit a one-to-many image generation
task.

3 Methodology

3.1 Dataset

We train and evaluate our model on the Amazon SpaceNet dataset
[29]. SpaceNet consists of over 17,000 remote sensing images,
along with road and building information covering five geographi-
cal areas of interest: Rio, Las Vegas, Paris, Shanghai, and Khar-
toum. For our purposes, we only utilize the building footprint la-
bels to produce binary masks of building locations. In addition to
the RGB images and building footprint masks, we create a binary
mask to indicate the region of interest by setting all non-black pix-
els to white. The region of interest mask is created because the
SpaceNet dataset contains images where portions of the image ex-
tend beyond the city limits and are set to black pixels. Generating a
region of interest binary mask allows for the penalization of only the
areas that are within city limits. This allows the generator to produce
realistic images of the city space without needing to also model the
artificially black regions from the SpaceNet dataset.

For image generation, we divided the dataset into three com-
ponents. The test set is 20% of the entire dataset proportionally
divided among the different areas of interest. The remaining 80%
of the data is then split into a training and validation set at a ratio of
4:1 (Table 1).

3.2 Colour Palette Extraction

There are many ways to extract colour palettes from a given image.
For instance, an averaging approach is a relatively simple calcu-
lation but it may lead to loss of colour information. On the other
hand, the k-means approach may better capture outlier colours, but
at a cost of decreased performance and non-determinism. To avoid
both problems, we propose a deterministic colour palette extraction
technique that does not average values, rather it selects represen-
tative colours based on the distribution of colours within the image.
Our palette extraction method first converts the image to HSV. Next,
the hue and saturation are converted into an 8-bit binary number.
Finally, the hue and saturation are concatenated and sorted. The
array is then split into k buckets where k is the size of the colour
palette, and the middle value of each bucket is selected. The se-
lected colour is converted back into RGB and stored. This colour
palette extraction technique allows for variable-sized palettes with
limited impact on performance.

Colour Palette Extractor

Condition Image

Encoder Decoder

Target Image

Generated Image

Fig. 1: Configuration style of the Pal-GAN model along with the
flow of data during the pre-processing and training steps. The red
lines correspond to connections that only exist in the U-Net style
architecture. The discriminator is not shown.

3.3 Network Configuration

To start, we establish three baseline GAN results: unconditional,
conditional encoder-decoder, and conditional U-Net. For both con-
ditional models, building footprint binary masks were provided.
Next, we perform experiments with a colour palette conditioned
variant of the encoder-decoder and U-Net architectures (Figure
1). Each experiment was run for 500 epochs with the FID score
recorded every fifth epoch to reduce computation time. All images
were resized to 128×128 pixels. All networks were trained using the
Adam optimizer with a learning rate of 1e-3. Each experiment was
run 5 times recording the observed means and standard deviations
throughout the 5 runs (Table 2).

We explored the use of the generated baselines for dataset ex-
pansion. However, due to space restrictions, only a brief summary
is presented at the end of the paper.

3.4 Model Evaluation

The Pal-GAN architecture was evaluated using three different
evaluation metrics: Fréchet inception distance (FID), intersection-
over-union (IOU), and Learned Perceptual Image Patch Similarity
(LPIPS).

The Fréchet inception distance (FID) [30] was calculated over
the testing set to quantitatively evaluate the quality of the gener-
ated images. The FID metric compares the statistics of generated
samples to the statistics of real samples using the Fréchet distance
between two multivariate Gaussians. It is defined as:

FID = ||µr−µg||2 +Tr(Σr +Σg−2(ΣrΣg)
1
2 ) (1)

where r and g represent the Inception-V3 [31] activations obtained
from an intermediate layer for the real and generated images re-
spectively. The mean and the covariance of the activations are rep-
resented by µ and Σ respectively. A lower FID score suggests that
the activations between the real and the generated images are sim-
ilar. This corresponds to an improvement in generated images both
in terms of quality and variety.

Conditional consistency IOU is an explicit way of measuring how
closely the generated image follows the given context. To evaluate
the IOU score, we segment our generated image using our best
segmentation baseline network and calculate the IOU between the
results of the segmentation and the provided condition. Our best
segmentation network trained on the full dataset provided an IOU
of 0.5561 and will be used as the target IOU score.

LPIPS measures the diversity of generative models. LPIPS is
calculated by generating multiple images using the same condi-
tion and calculating the average embedding distance between each
generated image. Higher average distances correspond to more
diversity in the generated images [32].

3.5 Experiments

Beginning with image generation experiments, we first establish
baseline results by testing simple unconditional and mask condi-
tioned GAN models. Our goal is to improve the textures and rep-



Model FID (↓) LPIPS (↑) Conditional Consistency (↑)
Unconditional 202.3188 ± 53.4466 - -

Encoder-Decoder 198.9274 ± 9.6079 0.0943 ± 0.0101 0.0479 ± 0.0014
U-Net 202.1443 ± 11.7878 0.0866 ± 0.0123 0.2065 ± 0.0296

Pal-GAN Encoder-Decoder 175.4146 ± 9.4739 0.1199 ± 0.0205 0.0497 ± 0.0058
Pal-GAN U-Net 111.3036 ± 5.6897 0.1165 ± 0.0057 0.2996 ± 0.0639

Table 2: Baseline FID, LPIPS, and conditional consistency IOU results for the unconditional model and both conditional models.

Fig. 2: Generated examples from the unconditional GAN

Expansion(%) \ Model U-Net SegNet
Baseline 0.4507 ± 0.0042 0.4468 ± 0.0052

10 0.4565 ± 0.0040 0.4502 ± 0.0075
30 0.4607 ± 0.0045 0.4455 ± 0.0031
50 0.4669 ± 0.0019 0.4511 ± 0.0072

100 0.4771 ± 0.0034 0.4401 ± 0.0031

Table 3: IOU performance on the small dataset with different expan-
sion factors. Higher IOU corresponds to better results.

resentational capability of these architectures by injecting colour in-
formation into the latent space to guide the image generation. To
test if injecting colour information improves the quality of generated
images, we add a colour palette of size 8 to both conditional archi-
tectures.

We conduct additional visual experiments to test edge cases
and explore other properties that the Pal-GAN architecture may
have. These tests include transferring palettes between areas of
interest, brightening and darkening colour palettes, and shifting the
hues of the colour palette.

Finally, we test the effectiveness of our image generation in
a downstream building segmentation task. In this set of experi-
ments, we first begin by re-establishing a Pal-GAN baseline, and
baselines on the U-Net and SegNet architectures using half of the
available training data to simulate a low data environment. We
continue by generating data using Pal-GAN and creating datasets
10%, 30%, 50% and 100% larger than the small dataset, where
100% expansion corresponds to a dataset of the same size as the
original SpaceNet dataset. We expect the 100% expanded small
SpaceNet dataset to produce similar results to the baseline seg-
mentation models trained on the full dataset. The generation was
only done once before training to increase training speed. However,
a more robust generation during training method may also be used.

4 Results

We evaluate the images generated by our model and compare them
to baseline GAN architectures. Next, we conduct exploratory exper-
iments to assess the behaviour of different palette configurations
imposed during image generation. Finally, we discuss dataset ex-
pansion results.

4.1 Image Generation

For traditional GAN architectures, image generation using low-
information conditions can be a challenging problem to solve. In
the case of the SpaceNet dataset, binary building masks only pro-
vide information on building shape, size, and location, along with
spatial relationships between different buildings. Compared to other
possible conditions, e.g. a map, there are many other missing but
relevant features. For instance, maps provide a layout of roads,
location of parks and other large objects. Maps may also con-
tain fine-grained information such as the location of sidewalks, type
of vegetation, and bodies of water. The outlined fine-grained fea-
tures greatly improve the simplicity of the problem as the network
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Fig. 3: Generated test examples from encoder-decoder and U-Net
conditional baseline models.

no longer needs to model complex relationships between objects
implicitly. To establish a comparable baseline, we first train tra-
ditional models conditioned on the building footprint mask exclu-
sively. Our baselines are an unconditional GAN, a simple encoder-
decoder based GAN, and a U-Net based GAN. The unconditional
GAN model produces repeating patterns rather than realistic satel-
lite images (Figure 2). It is also more likely to exhibit mode collapse.

The conditional baseline models show an improvement in per-
ceived image quality observed through more building-shaped and
building-coloured generations. The encoder-decoder style architec-
ture maintains a similar texture generation property as the uncon-
ditional GAN (Figure 3a). Note, however, that there are portions of
the image that demonstrate more structured outputs in the form of
shrubbery and square reddish boxes. The U-Net baseline shows
a strong improvement in the representation of the buildings, though
much of the texture detail is lost (Figure 3b). The ability of the U-Net
architecture to represent buildings is apparent in the 5× improve-
ment in the conditional consistency IOU score when compared to
the encoder-decoder architecture (Table 2, top).

The addition of colour information in the generation step greatly
improves the FID results (Table 2, bottom). For the U-Net archi-
tecture, a large conditional consistency increase is also seen. Fi-
nally, a small diversity increase can also be observed. The encoder-
decoder model maintains a similar quality to the mask conditioned
model. However, the colours contained in the image more closely
resemble the colours expected (Figure 5a). The Pal-GAN U-Net
model shows a large improvement compared to the mask condi-
tioned U-Net model, as evidenced by i) the more realistic colours of
the buildings, ii) the reduction of artifacts, and iii) the presence of
elements such as roads (Figure 5b).



Fig. 4: Image generation as the brightness is decreased or increased. The middle column, in red, contains the generation with the true
colour palette.

Conditioning Generated Target
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Fig. 5: Generated test examples from both the 8 colour Pal-GAN
models.

4.2 Colour Experiments

Now that it has been shown that colour palettes improve the qual-
ity of image generation, we experiment with how much control the
palette provides.

4.2.1 Palette Transfer

In the palette transfer experiment, we tested the effects of using a
mask from one area of interest and a colour palette from a different
area of interest. We found that several areas of interest have similar
colour palettes. When a mask is paired with a similar palette from
a different area of interest, the quality of the generated image is
significantly better than those from an area of interest with a differ-
ent palette distribution. Furthermore, the fewer buildings the mask
tends to contain, the closer the palette colours are followed.

4.2.2 Brightening and Darkening

To test how the network behaves when out-of-distribution palettes
are provided, we modulate the brightness. Brightening and darken-
ing greatly influences the generated image (Figure 4). The gener-
ator tends to produce more foliage as the palette is lightened. The

palette is more precisely followed when there are fewer buildings in
the mask.

4.2.3 Hue Shifting

Next, we tested out-of-distribution hues. Hue shifting to the left cor-
responds to a counter-clockwise rotation of the hue in HSL space
while shifting to the right corresponds to a clockwise rotation. Shift-
ing the hue left towards more within-distribution palettes increased
the quality of the generated images. Alternatively, a shift right pro-
vided more out-of-distribution palettes resulting in degraded image
generation. However, when the mask contains many buildings, out-
of-distribution detection style behaviours can be seen. Once the
colour palette is out-of-distribution, the generator defaults to the
most common palette and produces a more realistic image without
following the palette. When the network is provided with random
colour palettes, this same out-of-distribution behaviour occurs.

4.3 Dataset Expansion

We found that U-Net had a small improvement over the small base-
line results, reducing the gap between the small and original net-
work by 25%. The SegNet architecture did not see an improvement
(Table 3). We interpret these results as showing potential for use in
dataset expansion. Commissioning cheaper annotation labels and
converting them into usable data is a power factor. Taken further,
learning to generate the simpler mask conditions and generating
completely new data from scratch in a two-stage data generation
process is also possible. However, more research is needed to ex-
plore these ideas.

5 Conclusion and Future Work

This paper introduces a new variant of GANs that explicitly uses
factored out colour information and provides it to the generator.
Pal-GAN allows for the production of realistic remote sensing im-
ages, lowering the cost of creating large scale datasets. The Pal-
GAN approach is architecture agnostic and does not require any
additional information to be explicitly labelled or gathered. We test
our approach on both a classical encoder-decoder model and a U-
Net style architecture. In both cases, additionally conditioning on
a colour palette significantly improved FID scores and the visual
quality of the images. Colour palette conditioning also improves the
diversity of generated samples. Furthermore, the U-Net style archi-
tecture showed significant improvement in conditional consistency.
Pal-GAN contains out-of-distribution detection behaviours and may
default to more appropriate colour palettes if enough information is
contained in the binary mask.

Further exploration of various colour palette organization tech-
niques may provide more structured information to the generator.
Currently, only one palette may be specified per image. Thus, ex-
ploring more versatile colour conditioning to allow for more nuanced
palette control is also needed. More experiments are required to
explore the limits of the out-of-distribution detection. The current ar-
chitecture does not explicitly penalize deviations from the provided
palette. Stricter ways of enforcing colour palettes within the gener-
ated image also warrant further investigation.
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