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Abstract

Generative Adversarial Network and Its Application in Aerial Vehicle Detection and Biometric
Identification System

Moktari Mostofa

In recent years, generative adversarial networks (GANs) have shown great potential in advanc-
ing the state-of-the-art in many areas of computer vision, most notably in image synthesis and
manipulation tasks. GAN is a generative model which simultaneously trains a generator and a
discriminator in an adversarial manner to produce real-looking synthetic data by capturing the un-
derlying data distribution. Due to its powerful ability to generate high-quality and visually pleasing
results, we apply it to super-resolution and image-to-image translation techniques to address ve-
hicle detection in low-resolution aerial images and cross-spectral cross-resolution iris recognition.
First, we develop a Multi-scale GAN (MsGAN) with multiple intermediate outputs, which progres-
sively learns the details and features of the high-resolution aerial images at different scales. Then
the upscaled super-resolved aerial images are fed to a You Only Look Once-version 3 (YOLO-v3)
object detector and the detection loss is jointly optimized along with a super-resolution loss to
emphasize target vehicles sensitive to the super-resolution process. There is another problem that
remains unsolved when detection takes place at night or in a dark environment, which requires
an IR detector. Training such a detector needs a lot of infrared (IR) images. To address these
challenges, we develop a GAN-based joint cross-modal super-resolution framework where low-
resolution (LR) IR images are translated and super-resolved to high-resolution (HR) visible (VIS)
images before applying detection. This approach significantly improves the accuracy of aerial ve-
hicle detection by leveraging the benefits of super-resolution techniques in a cross-modal domain.
Second, to increase the performance and reliability of deep learning-based biometric identification
systems, we focus on developing conditional GAN (cGAN) based cross-spectral cross-resolution
iris recognition and offer two different frameworks. The first approach trains a cGAN to jointly
translate and super-resolve LR near-infrared (NIR) iris images to HR VIS iris images to perform
cross-spectral cross-resolution iris matching to the same resolution and within the same spectrum.
In the second approach, we design a coupled GAN (cpGAN) architecture to project both VIS and
NIR iris images into a low-dimensional embedding domain. The goal of this architecture is to
ensure maximum pairwise similarity between the feature vectors from the two iris modalities of
the same subject. We have also proposed a pose attention-guided coupled profile-to-frontal face
recognition network to learn discriminative and pose-invariant features in an embedding subspace.
To show that the feature vectors learned by this deep subspace can be used for other tasks be-
yond recognition, we implement a GAN architecture which is able to reconstruct a frontal face
from its corresponding profile face. This capability can be used in various face analysis tasks,
such as emotion detection and expression tracking, where having a frontal face image can improve
accuracy and reliability. Overall, our research works have shown its efficacy by achieving new
state-of-the-art results through extensive experiments on publicly available datasets reported in the
literature.
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Chapter 1

Introduction

1.1 Problem and Motivation

In recent years, deep learning (DL) has achieved a great deal of attention in a variety of application

domains of computer-vision. With its inception DL has revolutionary advanced different computer-

vision tasks such as object detection (e.g., [3, 4]), motion tracking (e.g., [5, 6]), action recognition

(e.g., [7, 8]), and human pose estimation (e.g., [9, 10]). It has also reported state-of-the-art results

ever since it adopted several Deep Neural Network (DNN) architectures. There are two major

resources that have contributed to the significant progress of DNN. First, advancements in hard-

ware technology have enabled the development of more powerful and efficient computing systems

that can process and analyze large amounts of data. More specifically, graphics processing units

(GPUs) with a large amount of memory and processing cores have allowed for the efficient opti-

mization of numerous training parameters via parallel processing. In addition to GPUs, recently

google’s tensor processing units (TPUs) have seen being adapted to train many DNN architec-

tures. These specialized chips are designed to perform matrix multiplication, a key operation in

deep learning, much more efficiently than general-purpose CPUs or GPUs. Second, the availabil-

ity of large datasets has been critical for training DNNs. The abundance of data has enabled the

creation of large training datasets, which can be used to enhance the generalization of the learning

process. Overall, the progress in DNNs has been driven by a combination of these resources and

the development of new techniques and approaches that leverage them. Despite significant contri-

butions of DNN in various directions of computer vision, there still remain challenges in domain
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adaptation and image synthesis techniques.

GAN [11] introduced by Ian GoodFellow can be an effective solution, which has dramatically

changed the direction of deep learning research. According to Yann LeCun, ”GAN is the best

concept proposed in the last ten years in the field of deep learning (neural networks)”. GAN

trains two networks simultaneously called generator and discriminator in an adversarial fashion and

forces both networks to achieve different objectives. The generator tries to fool the discriminator by

generating real-looking fake images from random latent vectors, while the discriminator learns to

evaluate the authenticity of the generated data by comparing it to the real training data. Eventually,

the generator learns which features make images real and starts generating more realistic images

that confuse the discriminator. Driven by this concept many computer vision applications have

been growing and experiencing tremendous success in different domains. In the following sections,

we provide our contribution in developing GAN-based cross-domain super-resolution techniques

to assist aerial vehicle detection and the sequence of this dissertation. We also briefly outline

our proposed conditional GAN-based iris-verifier and face frontalization framework to facilitate

biometric identification systems.

1.1.1 GAN-based Super-Resolution for Aerial Vehicle Detection

GAN has been extensively used in the field of super-resolution [12] to enhance the quality of low-

resolution images. It has created scope to boost the performance of deep learning-based small

vehicle detection on aerial imagery. In GANs, a generative model learns to recover high-resolution

super-resolved images with high perceptual quality from the low-resolution counterpart via a com-

petitive process between a generator and a discriminator. Conditional GAN (cGAN) [13], an

extension of generative model has been enormously applied to image translation, which again fu-

eled aerial vehicle detection at IR imaging environment. Here, the generator learns a mapping in a

conditional setting to generate IR images from the corresponding visible samples or vice versa so

that we can handle lack of training data for the detector. Given the contribution of GANs to various

demanding areas of computer vision, it is necessary to investigate these networks accurately.

In chapter 2, first we have analysed the performance of GAN architecture in preserving high-

frequency details while enhancing the resolution of the input aerial image where I contributed
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dedicatedly as a co-author. Afterward, we investigate the detection performance of one of the

state-of-the-art detectors on these super-resolved images at multiple resolutions.

Based on the results reported in chapter 2, we focus on improving the architecture of GAN

to ensure the potential contribution of super-resolution (SR) to vehicle detection in low-resolution

aerial and satellite images. Hence, in chapter 3, we propose and develop an end-to-end train-

able joint super-resolution and vehicle detection network, which offers multi-tasking paradigm by

leveraging complementary information from both tasks.

In chapter 4, we have attempted to solve a major shortcoming of RGB-based vehicle detector.

Inspired by the idea of cGAN based domain transformation technique, we design a deep CNN

which jointly learns domain specific features along with the super-resolution process to facilitate

the detection task in cross-domain.

1.1.2 Application of GAN in Biometric Identification System

Recent years have seen significant improvements in the accuracy of different biometric recognition

systems based on deep learning models including face recognition [14–21], fingerprint [22–27],

iris [28–35], and ear [36–38] recognition. Especially, face and iris have attracted the interest of the

biometric research community compared to other physiological traits due to their wide range of

applications in security and law enforcement, border control, and immigration, government offices

to identify and accurately authenticate one’s identity.

More specifically, the texture and patterns in the iris of the eye are highly unique and do not

change over time, making it a reliable biometric identifier. Most commercial iris recognition sys-

tems are designed to perform iris matching in the same domain. Therefore they suffer from cross-

domain challenges when the probe and gallery are in the same spectrum within the same resolution.

Hence, in chapter 5, we formulate two different novel approaches to alleviate this cross-domain

problem. One of them is designed to be a preprocessing module for cross-spectral iris matching

based on GAN, which integrates cross-resolution matching scenario into the cross-spectrum set-

ting and offer a join super-resolution and cross-spectral iris matching framework. In our second

approach, we analyze iris recognition performance in latent embedded domain. Therefore, we de-

vise a novel coupled GAN framework to effectively learn cross-domain iris features in the latent
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embedded feature subspace.

In addition, we have also focused on the profile-to-frontal face recognition task and generated

frontal faces from corresponding profile faces by developing a face frontal GAN. Face recognition

(FR) has become a challenging task due to the joint variations of pitch and yaw view angles of

the facial images captured in unconstrained environments. Moreover, these pose variations cause

appearance distortion, and semantic consistency missing in profile faces, which indicates a loss of

useful information for FR. Existing methods either perform ‘pose normalization (i.e., frontalization

[39–42])’ or disentangle poses for pose invariant face recognition [41, 43–46]. In chapter 6, first,

we design a novel coupled profile-to-frontal FR network utilizing pose as auxiliary information

via an attention mechanism and learn a compact embedding subspace. After that, we develop a

face frontal GAN to reconstruct the frontal face from the deep features learned in the embedding

domain for its corresponding profile face.
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Chapter 2

Super Resolution-Assisted Deep Aerial

Vehicle Detection

2.1 Introduction

Real-time vehicle detection in aerial imagery is extremely difficult. Predicting small vehicles from

these large images are even difficult for human eyes. The reason lies in the nature of data along with

computational constraints, low resolution and complex background of these imagery. Recently

research community has paid substantial attention in this area as the outcome of this research can

help better plan in transportation system, surveillance and reconnaissance. As these images are

taken from top view with varying altitude, the target objects can not contain much information.

Also, target objects in these images are very small relative to the entire image that makes it hard

to design a detector which distinguishes target from background. Using a deep learning technique;

super-resolution, we can accelerate the detection performance.

An extensive study has been conducted for object detection in aerial imagery; however it is still

an open problem demanding a high performance solution. Recent approaches have shown promis-

ing performances and most of them use convolutional neural network (CNN) based solution to

detect objects of interest from aerial imagery. In this work, we propose a new architecture utiliz-

ing deep neural network (DNN) that helps to locate vehicles in satellite images ensuring effective

performance. Our designed architecture can be divided into two stages. The first stage takes an

input image and creates super resolved version of the original image using Generative Adversarial
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Network (GAN) [11]. This network helps to augment image features improving image quality that

leads to a better object recognition. Also, it ensures to preserve high level features while trans-

ferring from low to high resolution domain.The second stage handles target prediction from these

super-resolved images using a trained SSD-based [47] vehicle detector. We further investigate the

detection performance on multi-resolution images with their super resolved counterpart.

Our proposed method demonstrates promising performance while tracking vehicles in aerial

imagery. This paper is organized as follows. Section 2 outlines the review of the previous works

related to ours. In Section 3, we discuss our proposed framework. Experimental details and results

are demonstrated in Section 4. Finally, in Section 5, we reach the conclusion.

2.2 Related Work

2.2.1 Single Image Super Resolution

Here, we will discuss the algorithms related to single image super-resolution (SISR). The algo-

rithms can be categorized into four groups–prediction based models, edge based methods, image

statistical models and example-based methods. Among them example-based methods [48–59] are

known as more powerful methods which aim at mapping between low and high resolution im-

ages. They rely on external datasets. Early method was proposed by Freeman et al. [51, 60]. In

the work of Glasner et al, they use patch redundancy across the scales within the image to model

the image super-resolution problem. In Huang et al. [61], self-similarity based super-resolution

(SR) algorithms are expanded by incorporating small transformations and geometric variations. A

convolutional sparse coding approach was proposed by Gu et al. [62]. In their work, they ignore

consistency of the pixels in overlapped patches by working on whole image that helps generate

more robust reconstruction of image local structures.

Tai et al. [63] combine the benefits of edge-directed SR with learning-based SR to reconstruct

more realistic texture details in super-resolved images. To recover high quality SR, Zhang et

al. [64] introduce a multi-scale dictionary method that simultaneously incorporates local and non-

local priors. The local prior removes artifacts from target image and the non-local prior helps

produce more perceptually satisfying image.
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The use of sparse learned dictionaries in combination with neighbor embedding methods obtain

improved quality and speed in the work of Timofte et al. [53, 65]. The authors propose anchored

neighborhood regression. Kernel ridge regression (KRR) is adopted to learn a map from input

LR images to target SR images in Kim and Kwon [66] works. This idea is based on example

pairs of input and output images. In Dai et al. [50] a joint learning of patch-specific regressors is

proposed during training. At testing phase, it selects the best regressor which yields the smallest

super-resolving error.

Convolutional neural network (CNN) based SR algorithms have attained superior performance.

Wang et al. [67] propose a sparse representation in combination with feed-forward network archi-

tecture . The underlying idea is based on the learned iterative shrinkage and thresholding algorithm

(LISTA) [68, 69]. Dong et al. [70, 71] trained a three layer deep convolutional neural network that

achieved state of the art SR performance.

To recover perceptually more convincing HR images, Johnson et al. [72] and Bruna et al. [73]

use a loss function closer to perceptual similarity. For our paper, we particularly follow the works

of Christian Ledig et al. [12], the authors use a perceptual loss function with MSE loss to generate

more realistic SR images.

2.2.2 Vehicle Detection in Aerial Imagery

Vehicle detection in aerial imagery has been studied a lot in the object detection literature. Apart

from the convolutional neural network, prior works employed other approaches to address this

problem. A model proposed in [74] utilized Bayesian Network with handcrafted parameters to

identify vehicles in aerial imagery. To find cars in satellite images, the method presented in [75]

applied Mean-shift algorithm utilizing shape information of the targets. The framework discussed

in [76, 77, 77] trains a Dynamic Bayesian Network (DBN) with features preserving region level

information.

With the progressive success of deep learning in object detection, many recent works use CNN

for vehicle detection in aerial imagery. A fast detector proposed by Carlet and Abayowa [78]

modifies YOLOv2 for locating vehicles in aerial imagery. Terrail et al. [79] apply a modified faster

R-CNN algorithm that achieves a breakthrough performance on aerial vehicle detection. In [80],
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Soleimani et al. propose a text-guided detection scheme that utilizes both the visual and textual

features for detection. Yang et al. [81]present a framework that uses skip connection to merge

lower and higher level features utilizing focal loss function. Li et al. [82–84] propose a framework

for multi-oriented vehicle detection. In this framework, a rotatable region proposal network is

utilized that learns the orientation of vehicles while performing classification on aerial images and

videos.

Though vehicle detection in aerial imagery has been a research focus in recent years, compre-

hensive study of detection performance on super resolved images has not yet been investigated in

most of them. The work presented in [85] gives an overview of detection performance on super

resolved images considering multiple resolutions. In this paper, a performance gain is reported for

different resolutions by applying super resolution technique on the original images. Liujuan Cao

et al. [86] proposed a framework that employs super resolution with coupled dictionary learning

on the satellite imagery and then a detection algorithm is applied on the generated images.

2.3 Proposed Model

In this section, we introduce our method in a detailed way. First, we super resolve an image from

its low resolution input image and then feed it to a detector. In this work, we have proposed a

two-stage framework that employs SRGAN [12] followed by an SSD (Single Shot Detector) [47]

for vehicle detection in aerial imagery.

2.3.1 Super-Resolution using GAN

Super-resolution aims at recovering a high resolution super resolved image from a low resolution

input image. In [51], the authors propose that there can be two ways to super resolve a low res-

olution input image: single image based SR and multiple images based SR. In multiple-image

super-resolution algorithms [87], a couple of low-resolution images of the same scene is used as

input and then a registration algorithm is employed to find the transformation between them. These

algorithms can recover higher resolution details, however, their performances are limited by im-

provement factors close to two [88]. Single-image super-resolution algorithms, like [70], usually

have a single input. They train a set of low-resolution images along with their high-resolution
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counterparts to learn a relationship between them. The underlying idea is to use this learned re-

lationship to predict the missing high-resolution details of the input low-resolution images. This

idea helps generate high-resolution images far better than their low-resolution inputs [88].

Recently, Super-resolution using the concept of GAN [11] has achieved the state-of-the art re-

sults. For our work, we use the super-resolution method of [12], which is based on the powerful

framework GAN. The algorithm encourages to generate photo-realistic images with high percep-

tual quality. Using this concept, our goal is to generate high resolution, super resolved image XSR

from its low resolution XLR input; however XLR is the low resolution counterpart of its original

high resolution XHR. The network use high resolution images during training. Here, we train a

feed-forward CNN which generates a function G, parametrized by θG. θG consists of weights and

biases of a deep neural network that is optimized using generative adversarial loss. θG is obtained

by the following equation:

θG = arg min
θG

1
N

N∑
n=1

lSR(GθG(XLR
n ), XHR

n ), (2.1)

where XLR
n with corresponding XHR

n are the training images for n = 1.........N. lSR is the perceptual

loss [12] designed as a weighted combination of several loss functions which is to be minimized

to recover the desired characteristics from the reconstructed super-resolved image.

Generative Adversarial Network Architecture(GAN)

We train and optimize both discriminator network DθD , along with GθG to solve the adversarial

min-max problem [11]:

min
θG

max
θD

EXHR∼ptrain(XHR)

[
log DθD

(
XHR

)]
+ EXLR∼pG(XLR)

[
log
(

1 – DθD

(
GθG

(
XLR

)))]
. (2.2)

The main idea is to train a generative model G so that it can learn to create solutions that are

highly similar to real images. Along with this, the discriminator is trained to distinguish the super-

resolved image from the real one. So both network is optimized in an alternating manner to find

the super-resolved image that looks like the original high resolution image.
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Figure 2.1: Architecture of Generator and Discriminator Network with corresponding kernel size
(k), number of feature maps(n) and stride (s) indicated for each convolutional layer.

Following Christian Ledig et al. [12], we use B residual blocks with identical layout in our

generator network shown in Figure 2.1. Each block contains two convolutional layers with 3x3

kernels and 64 feature maps followed by batch-normalization layers [89] and Parametric ReLU

[90] as the activation function. Here, the idea of sub-pixel fractional convolution layers is used to

increase the resolution of the input image as proposed by Shi et al. [91].

To train discriminator, we use eight convolutional layers with an increasing number of 3×3

filter kernels increased by a factor of 2 from 64 to 512 kernels as in the VGG network. Here,

we have followed the architecture summmarized by Radford et al. [92]. We also add two dense

layers and a sigmoid activation function at the end of the resulting 512 feature maps to obtain a

probability for classification.

Loss functions

In [12], the authors design a loss function that is assessed perceptually. The loss is calculated as

the weighted sum of a content loss (lSR
content) and an adversarial loss (lSR

Gen) component as:

lSR = lSR
cont + 10–3lSR

Gen. (2.3)

They design the content loss using a pre-trained 19 layer VGG network [93] and define VGG
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loss as the euclidean distance between the feature representations of a reconstructed image and its

corresponding original reference high resolution image that is closer to the perceptual similarity.

lSR
VGG/i.j =

1
Wi,jHi,j

Wi,j∑
x=1

Hi,j∑
y=1

(
φi,j

(
XHR

)
x,y

– φi,j

(
GθG

(
XHR

))
x,y

)2
, (2.4)

here, φi,j indicates feature map at j-th convolutional layer followed by i-th maxpooling layer. Wi,j

and Hi,j represent the dimensions of the respective feature maps within the VGG architecture.

In addition, they also add the GAN loss which encourages the network to obtain natural

looking images. It is based on the probability of discriminator, DθD

(
GθG

(
XLR

)
that the recon-

structed super-resolved image GθG

(
XLR

)
is an original high resolution image. Instead of log

(
1 –

DθD

(
GθG

(
XLR

)
in Equation2,we minimize the following equation:

lSR
Gen =

N∑
n=1

– log DθD

(
GθG

(
XLR

))
. (2.5)

Object Detection using SSD

Object detection is a computer vision problem which aims to determine the presence of objects in

an image or video mimicking human-brain. It also identifies the location as well as the type of

object. An extensive research has been conducted through decades to solve this problem. Before

the emergence of deep neural network, object detection was performed using feature extractors

like SIFT [94], HOG [95] and classifiers such as SVM [96], AdaBoost [97], DPM [98]. A notable

increase in performance was observed using deep learning based methods because of the robust

learning capability of these nets. The state of the art deep learning based methods can be broadly

classified into two categories. The first one is a region-proposal based and the second one is an end-

to-end detection based model. RCNN [99], Fast-RCNN [100], Faster-RCNN [101] are the pioneer

models with high performance of the first group while YOLO [102], SSD [47] can be considered

as significant ones for the second one. The problem with region-proposal based approaches is that

the detection is performed by combining multiple stages making the system incompatible for real-

time applications. End-to-end detection based methods alleviate this phenomena by eliminating

region proposal stage with a unified architecture for detection and classification.

In our approach, we use an SSD (Single Shot Detector) which locates vehicles in an image
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in real time. Like other object detection algorithms, SSD extracts features from an image for

generating the bounding boxes with class labels. In contrast to classical region based detectors, it

does not need region proposals to perform detection making the process extremely fast.

SSD needs input image and the corresponding annotations of objects for detection. The archi-

tecture uses the features extracted by VGG-16 [103] with six additional layers for object detection.

It predicts objects from multiple feature maps of different resolutions organized in a decreasing

fashion that ensures detection of variable size objects. For each position in feature map, SSD

generates default boxes of varying sizes using multiple scales and aspect ratios with computed

confidence score that designates the presence of objects in those boxes. Later, these boxes are

matched with the ground truth annotated boxes. Boxes that have high overlap with the ground

truth boxes provided by the annotations are considered as good matches. A threshold factor named

Intersection Over Union (IoU) is applied on the generated boxes. Afterwards, a non-maximum

suppression algorithm removes the duplicate bounding boxes for the same object.

By default, SSD considers generation of default boxes starting from the convolutional layer

4 3. In our method, we have also considered default boxes from convolutional layer 3 3 as the size

of our boxes are really tiny. While computing the loss, SSD uses both localization and confidence

loss. The loss is calculated using Equation (2):

LTotal =
1
N

(Lconf(x, c) + Lloc(x, l, g)), (2.6)

here, Localization loss (Lloc) measures the distance between ground-truth and predicted bound-

ing boxes while confidence loss (Lconf) indicates the presence of an object in the generated bound-

ing box.

Our proposed architecture is demonstrated in Figure 2.2. The generator network super resolves

the original low resolution image. Discriminator is designed in such a way that it can distinguish

between the real and fake images produced by the generator. These two networks benefit from

each other generating more realistic images similar to the original image. Our goal is to train

the detector with super resolved images and investigate the performance. Testing of our model is

performed using the SSD object detector.

Performance of the detector depends on the design of the default boxes from different feature
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Figure 2.2: Architecture of super resolution with aerial imagery detection

maps, training data and also on the parameters such as IoU, confidence threshold associated with

the detection algorithm.

2.4 Experiments

2.4.1 Dataset and Implementation Details

We perform our experiments on VEDAI (Vehicle Detection in Aerial Imagery) [104] aerial dataset.

VEDAI images are taken from Utah database. These images contain multi-oriented vehicles with

complex background which makes it to be considered as ideal dataset for any aerial image analysis

task. The VEDAI dataset contains around 1200 images. For training and testing, we split the

dataset into 1100 and 271 images, respectively. The number of samples in our dataset is small

enough to analyze the proposed network. To make the model more robust to different features,we

have used different augmentation techniques such as sharpening and flipping.

In our experiments, we use both the scale factor of 2x and 4x between low- and high-resolution

images. For training, network requires a low-resolution (LR) image as input. To obtain LR images,

the HR images are downsampled using bicubic kernel with downsampling factor of 2 and 4. During

implementation, we use the input image of size 128x128 and 256x256 to super-resolve to 256x256

and 512x512, respectively for the scale factor of 2. We further use the input resolution 128x128
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Table 2.1: Effects of Super-Resolution for upscale factor 2 on SSD performance

Input Resolution mAP(Input) SR(2x) mAP(SR
2x)

Original HR mAP(HR)

128x128 40.25 256x256 44.34 256x256 55.47
256x256 55.47 512x512 74.56 512x512 77.81

to super-resolve to 512x512 for the upscaling factor of 4. To perceive our detection performance

in more details, we have shown the detection result of the low, high and super resolved images in

Figure 2.3. More positive objects are detected in Figure 2.3(d), Figure 2.3(h) and Figure 2.3(l) than

Figure 2.3(c), Figure 2.3(g) and 2.3(k) indicating high resolution detection is more accurate than

the corresponding super resolved detection. Figure 2.3(b), Figure 2.3(f) and 2.3(j) demonstrate

poor detection performance with many false detections in low resolution.

As mentioned in section 2.3.1, the generator of our network uses 16 residual blocks. Each of

the blocks consists of two convolutional layer with the kernel size of 3x3, stride of 1 and 64 feature

maps followed by a batch-normalization and a parametric-relu activation function. There is no

max-pool layer throughout the network. To increase the resolution of the input image by 2 and 4

factor, the network adds one and two subpixel convolutional layer, respectively.

We set the network hyperparameters as follows: For super-resolution, we adopt Adam opti-

mizer with a momentum of 0.9 and a learning rate of 10–4. The model is trained for 2000 iterations

with a batch size of 4. For the detection model, we train the SSD architecture with initial learning

rate of 0.001 with batch size 16. We optimize the network by Stochastic Gradient Descent (SGD)

with a momentum of 0.02 and a weight decay of 0.9. We fine-tune our detection model by setting

IoU 0.48, confidence threshold 0.05 and nms with jaccard coefficient of 0.45 to achieve the best

performance. The entire network is implemented in tensorflow framework on two NVIDIA TI-

TAN XP GPUs. We follow object detection and GAN based solution on Github* for our network

implementation.

*https://github.com/tensorlayer/srgan, https://github.com/ljanyst/ssd-tensorflow
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((a)) Input(LR
128x128)

((b)) Detection(LR
128x128)

((c)) Detection(SR
256x256)

((d)) Detection(HR
256x256)

((e)) Input(LR
256x256)

((f)) Detection(LR
256x256)

((g)) Detection(SR
512x512)

((h)) Detection(HR
512x512)

((i)) Input(LR
256x256)

((j)) Detection(LR
256x256)

((k)) Detection(SR
512x512)

((l)) Detection (HR
512x512)

Figure 2.3: Images illustrating the detection performance on super-resolved images of the VEDAI
dataset.

Table 2.2: Effects of Super-Resolution for upscale factor 4 on SSD performance

Input Resolution mAP(Input) SR(4x) mAP(SR
4x)

Original HR mAP(HR)

128x128 40.25 512x512 67.41 512x512 77.81
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((a)) Detection performance on original HR aerial images
((b)) Detection performance of the model fine-tuned with
the SR aerial images

Figure 2.4: Precision-recall curves for high resolution and super-resolved aerial images.

2.5 Performance Evaluation of the network

We have performed our experiments for both upscale factor of 2 and 4 and reported our model’s

performance calculating the total Area Under the Curve (AUC), a metric which falls between 0

and 1, with a higher number indicating better classification performance. In addition, Mean Aver-

age Precision (mAP) is used as the metric of evaluation. we have tested our model on 128x128,

256x256 and 512x512 resolutions of the ground truth and their corresponding super-resolved im-

ages. The performance of our network for super resolution at upscale factor 2 and 4 is given in

Table 2.1 and Table 2.2, respectively.

We also include our experimental results on calculating AUC for detailed explanation. As

shown in Figure 2.4(a), the system performance trained with high resolution image degrades with

the decrease in resolution. In this Figure, we observe that performance of our proposed scheme

is 20% higher in 512x512 resolution than resolution of 256x256 and 30% higher than 128x128

resolution. We investigate the network fine tuned with super-resolved images which is already

trained on original high resolution images and report the results in Figure 2.4(b) which shows

a little increase in performance. We can compare the detection results in terms of resolution in

Figure 5. We observe that when we perform detection on 512x512 super-resolved images from

256x256 input resolution, the performance gain is close to original 512x512 high-resolution image.

But when we experiment on 256x256 super-resolved images from 128x128 input resolution, we
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((a)) Detection performance on 256x256 SR aerial images
compared to its HR and LR input images of size 128x128

((b)) Detection performance on 512x512 SR aerial images
compared to its HR and LR input images of size 256x256

Figure 2.5: Detection performance on super-resolved aerial images for the upscale factor 2

Figure 2.6: Detection performance on super-resolved aerial images for the upscale factor 4

don’t achieve similar performance gain though in both case the resolution is increased by two

factor. In order to see the effect of upscale factor 4 on the detection performance, we conduct our

experiment on 512x512 super resolved images where the input resolution is 128x128. During this

experiment, We notice a great improvement in detection performance illustrated in Figure 2.6. We

can summarize that super-resolution helps detection mostly in high-resolution.
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2.6 Conclusion

This paper presents a model for real-time vehicle detection in aerial image combining two deep

networks. The first model augments the features of the low resolution images by super-resolution.

During experiments of this stage, we have found that ResNet has a great impact in recovering finer

texture details; however it still has limitations to recover missing information from low resolution

aerial image. Then, to identify objects from aerial images, the second model utilizes these features

and performs detection in real time. Our proposed scheme gives faster object recognition with

competitive performance. We have also demonstrated our detection performance in a comparative

analysis of multiple resolutions.

In future, we intend to modify the existing architecture that helps to generate better prediction

results. Other aerial datasets like COWC [105], DOTA [106], X-VIEW [107] can also be explored

to get the comparable performances. Furthermore, we can extend our work for vehicle tracking

from aerial video. Our proposed system can be rebuilt in such a way that the optimization of the

entire network loss takes place in combination for increasing the performance of the detector.
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Chapter 3

Joint Super-Resolution and Vehicle

Detection Network

3.1 Introduction

Real-time vehicle detection in aerial imagery has been an active research area in recent years

[108–111]. Due to high altitudes in which aerial images are acquired, targets of interest (e.g.,

vehicles) contain fewer pixels than targets imaged at considerably lower elevations (e.g., build-

ing surveillance cameras, or traffic cameras), which significantly degrades detection performance.

Moreover, complex background and computational constraints further hinder detection perfor-

mance. Single image super-resolution (SISR) techniques are commonly used to alleviate poor

detection performance by generating a high-resolution counterpart to the original low-resolution

image. Recently, generative adversarial networks (GANs) [11] have demonstrated the ability to

synthesize high-quality images [12, 112] for many applications, including super-resolution. How-

ever, GANs have also been known to be somewhat unstable, frequently lacking discriminability

in synthesized imagery. Therefore, we aim to produce and simultaneously train both discrimina-

tive and super-resolved images by using multi-task learning to combine correlated tasks such as

super-resolution and object detection networks.

The inter-relationship between super-resolution techniques and object detection algorithms has

been previously studied to improve detection performance [109,113,114]. However, none of them

have tried to explore performance of super-resolution if the entire network is trained jointly. One
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might presume that the reason there are still misdetections and detection failures is because the

super-resolution algorithm is not optimized for target detection task.

In this paper, we propose a deep neural network (DNN) framework to simultaneously gener-

ate super-resolved aerial images and locate vehicles in the super-resolved images. Our proposed

framework is composed of (i) a Multi-scale Generative Adversarial Network (MsGAN) framework

to create super resolved versions of the original images. This network preserves high-level features

when mapping between low resolution to high resolution domains, and (ii) locate vehicles using

one of the variants of YOLO [102] introduced in [115] as YOLOv3 object detector. We jointly train

the entire network at each iteration such that target regions in the super-resolved images become

contextually more distinctive from the background. We refer to our proposed algorithm in this

paper as the Joint Super-Resolved Vehicle Detection Network (Joint-SRVDNet). Our proposed

framework has been evaluated on several extensively used aerial datasets. We train the model

on VEDAI, xView and DOTA datasets to evaluate both qualitative and quantitative performances.

Moreover, our network shows promising performances compared to a set of state-of-the-art meth-

ods. In summary, the key contributions of this paper are as follows:

• In this paper, we propose an end-to-end jointly trainable deep neural network what we named

Joint-SRVDNet, which offers a multi-tasking paradigm by handling both super-resolution

and vehicle detection for aerial and satellite imagery. To the best of our knowledge, our

proposed Joint-SRVDNet is the first multi-task model that leverages complementary infor-

mation of the two tasks to jointly learn Super-Resolution (SR) and vehicle detection in aerial

images. Such a novel framework allows for improved super-resolution reconstructions and

more accurate vehicle detection in aerial imagery.

• An MsGAN architecture is proposed for the first time for aerial and satellite image super-

resolution, which ensures progressive learning of the statistical distributions of images at

multi-scale and significantly improves the performance of SR reconstruction by producing

discriminative and high-quality super-resolved images.

• The proposed MsGAN architecture for super-resolution has potential contributions to vehicle

detection in low-resolution aerial and satellite images.
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• We show remarkable improvements for both super-resolution and vehicle detection for low-

resolution aerial imagery with comparable performance to the existing state-of-the-art meth-

ods when evaluated on the corresponding high-resolution aerial images.

The rest of this paper is organized in the following manner. Section 3.2 reviews related super-

resolution and detection algorithms. It also describes challenges when applied to aerial imagery.

We give details of our proposed method in section 3.3. Besides, we also discuss the training loss

functions of our network in section 3.4. Section 3.5 presents the datasets and experimental details

of our work. Section 3.6 shows comparative results and explains the performance. Finally, we

provide a conclusion and state some limitations of our algorithm in section 3.7.

3.2 Related Work

3.2.1 Deep Learning Based Single Image Super-Resolution

Single Image Super-Resolution (SISR) techniques have been studied extensively in the field of

computer vision. Recently, Convolutional Neural Network (CNN) architectures have been widely

used in image SR algorithms since they can extract representative features that are useful in recov-

ering high-frequency details in super-resolved images. A three-layer CNN was first proposed by

Dong et al. [116] and referred as SRCNN to learn a mapping between Low-Resolution (LR) and

High-Resolution (HR) image pairs, which was later modified in VDSR [117] and DRCN [118]. In

VDSR [117], Kim et al. implemented an efficient SSIR method, where they showed that increas-

ing the network depth trained by adjustable gradient clipping resulted in a significant improvement

in visual quality of super-resolved images. In DRCN [118], they increased recursion depth by

adding more weight layers with skip connection to improve the performance of SRCNN. How-

ever, all these methods apply interpolation to the LR inputs, which significantly loses some useful

information and thereby yields poor results with increased computational cost. Since then these

super-resolution architectures have been frequently modified by developing CNN-based architec-

tures like Residual Networks (ResNet) [119], Recurrent Neural Networks (RNNs) [120–122] to

extract features from the original LR inputs.

Recently, GANs [11] have replaced these SR algorithms. Ledig et al. [12] introduce ResNet
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as the base architecture for image super-resolution and utilize the idea of GAN to reconstruct fine

texture details in the super-resolved images. GAN architectures have successfully attained superior

performances in many applications of computer vision, such as style transfer, image reconstruction

and image SR. SRGAN [12] is the first attempt which utilizes GAN to produce photo-realistic

natural looking images close to the original high resolution images. They formulate a loss function

which is a combination of a perceptual similarity loss [72, 73, 123] in addition to an adversarial

loss [11] so that the network learns to preserve content of images during SR training.

Although SRGAN has shown remarkable performances, still it finds difficulty in generating

high-resolution (e.g., 256 × 256) images due to training instability and mode collapse. During up-

scaling the LR images to the desired HR counterparts, GAN suffers from the training instability due

to low chance of sharing hyper-parameters between image distribution and model distribution in a

high-dimensional space. To stabilize the training process, Zhang et al. proposed StackGAN [124].

The motivation came from the observation that image distributions are related at multiple scales.

StackGAN outperforms significantly other state-of-the-art methods in reconstructing real looking

super-resolved images. In StackGAN, they used multiple-generators along with discriminators at

each scale to share most of their parameters across the whole network. This structure pushes the

resulting solutions towards the original image distributions. For our work, we incorporate the idea

of using multiple discriminators at each different scale in addition to the work of Ledig et al. [12]

where the authors use a perceptual loss function with Mean Squared Error (MSE) loss to generate

more realistic SR images. Our network can be viewed as multi-scale GAN architecture since we

are using only one generator instead of multiple generators like StackGAN and stack discrimina-

tors at each intermediate outputs to improve the learning of image distributions at multiple scales.

As shown in Fig. 3.2, discriminators at intermediate outputs sequentially help generator produce

real-looking super-resolved images to the desired size. The prime goal is to approximate highly

related image distributions at different scales. So, stacking multiple discriminators helps the net-

work accomplish this goal by continuously giving feedback from image distributions at one scale

to another.
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3.2.2 Deep Learning Based Vehicle Detection Architectures

Vehicle detection recently has become a prominent research area with applications in civilian and

military surveillance, traffic monitoring and planning transportation systems. In [74], the authors

proposed a method which utilized Bayesian network to integrate the important features for car

detection. Choi et al. [75] applied the Mean-shift algorithm to extract car like shape for detecting

cars in satellite images. In the work of [76], they trained a Dynamic Bayesian Network (DBN) to

preserve region level features.

Carlet and Abayowa [78] proposed a modified YOLOv2 [125] for locating vehicles in aerial

imagery. A modified faster R-CNN was applied in the work of Terrail et al. [79] that showed

promising performances in aerial vehicle detection. In [80], Soleimani et al. proposed a text-guided

detection scheme using both visual and textual features for detection. Yang et al. [81] applied

skip connection in their framework to merge lower and higher level features and utilized a focal

loss function for vehicle detection. For multi-oriented vehicle detection, Li et al. [82] designed

a rotatable region proposal network which learned the orientation of vehicles while performing

classification on aerial images and videos.

Vehicle detection in overhead imagery remains a challenging issue due to the low resolution of

vehicles. To alleviate this shortcoming, researchers have focused on super-resolution techniques.

An overview of detection performance on super-resolved images is reported in [113] considering

multiple-resolutions. In this paper, we propose a joint training approach which learns to extract

discriminative features from low-resolution images such that it can produce super-resolved images

that are as visually similar to the corresponding high-resolution images as possible.

3.2.3 Joint Training of Super-Resolution and Detection

Improving object detection performance guided by learning based super-resolution has been a

recent research focus. In [113], the impact of super-resolution on object detection has been ex-

tensively studied. Haris et al. [126] adopt a task-driven super resolution approach employing a

novel compound loss based end-to-end training that enhances the image quality leading to a better

recognition. Cansizoglu et al. [127] design an identity preserving face super-resolution framework

and achieve outstanding performance for face verification in real time. In this work, the authors
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propose to use a two-stage loss minimization technique rather than end-to-end training. They hy-

pothesize that end-to-end training involves higher computational complexity respect to limited data

samples. On the other hand, another study in [128] propose a deep model that jointly optimizes

face hallucination and verification loss for low resolution face identification. In this study, face hal-

lucination loss is measured in terms of pixel difference between the ground truth HR images and

network-generated images and verification loss is estimated by the classification error and intra-

class distance. Most of the recent works focus on verification, which is easier from the detection

task. For example, verification confirms identity whereas detection involves recognition of desired

object (e.g., human face, vehicle, etc.). Again, during verification, the probe face has already been

detected, but detection has to minimize different constraints before detecting the target object.

Pang et al. [129] introduce JCS-Net that combines classification and super-resolution task as

one for small-scale pedestrian detection. However, these algorithms do not deal with vehicle

detection and super-resolution for aerial imagery that deals with more fundamental challenges.

For instance, the average height of pedestrians in the benchmark datasets (e.g., Caltech [130],

KITTI [131]) ranges from 60 pixels tall to 430 pixels tall, whereas the average resolution for

aerial vehicles is 10 × 15 pixels in the publicly available benchmark datasets (e.g., VEDAI [132],

xVIEW [106], DOTA [107]), which yields poor detection results.

These reviews strongly suggest to use super-resolution technique for developing a robust detec-

tion system, which helps to recover detailed information in the low-resolution space. In this paper,

we try to investigate the relationship between super-resolution and vehicle detection by proposing

a joint training approach so that they can be benefited from each other. We propose to integrate

both super-resolution and detection network together. Usually, the super-resolution technique re-

covers useful detailed information in the low-resolution image, but here it focuses especially on

the target regions as detector loss is integrated to SR training. The network gradually learns the

input image distributions in the high-resolution space and produce super-resolved version of low-

resolution image with distinctive properties of target objects, which also helps detector to achieve

better results.
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Figure 3.1: Architecture of SRGAN with corresponding kernel size (k), number of feature maps
(n) and stride (s) indicated for each convolutional layer.

Figure 3.2: Architecture of Multi-scale SRGAN (MsSRGAN) with corresponding kernel size (k),
number of feature maps (n) and stride (s) indicated for each convolutional layer.

3.3 Proposed Framework

In this section, we describe our proposed framework in detail. The proposed framework is an

end-to-end network that generates super-resolved aerial images using an MsGAN architecture and

jointly optimized YOLOv3 detector to perform vehicle detection in aerial super-resolved imagery.

3.3.1 Generative Adversarial Networks (GANs)

GANs are a special type of generative models which have shown remarkable performances in

representation learning and synthesized image generation. They have been widely used in image

super-resolution (first applied by Ledig et al. in [12]), image synthesis and image translation using

conditional GANs (cGANs) [13] and cyclic GANs (cycleGANs) [112]. Their goal is to learn

statistical distribution of the training data to train a mapping G : x → y such that image distribution

from G(x) is indistinguishable from image distribution of target y. Typically, the generator G is

a differentiable function which is trained to learn the distribution pdata over data y. To do so,

it takes input from the distribution px(x) and maps it to the target data space as G(x; θg) where
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θg defines the parameters of the generator model. In addition, the discriminator D acts like a

classifier which is trained to return probability distributions D(y) and D(G(x)) for both training

examples from the distribution pdata(y) and samples from G(x), respectively. Basically, D is trained

to maximize the probability of assigning the correct label to both training examples and samples

from G. Simultaneously G is trained to minimize log(1 – D(G(x))). In other words, D and G play

the following two-player minimax game with the adversarial loss lGAN(G, D):

min
G

max
D

lGAN(G, D) = min
G

max
D

[Ey∼pdata
[logD(y)] + Ex∼px

[log(1 – D(G(x)))]]. (3.1)

However, it is very difficult to achieve the desired output by training the network only with ad-

versarial loss. Adding a lL1 reconstruction loss in addition to adversarial loss may result in high

quality super-resolved images. Thus, the final objective function consists of two loss function as

follows:

G∗ = arg min
G

max
D

lGAN(G, D) + λlL1(G), (3.2)

where lL1(G) = 1
N

N∑
i=1

||yi – G(xi)||1, N defines the number of samples in the training set and λ is a

weighting factor.

3.3.2 Multi-scale GAN Architecture for Image Super-Resolution

One of the objectives of our work is to estimate a high resolution version with distinctive features

of its low resolution input aerial image. The network is trained to learn a generating function

G that aims to output photo-realistic images (according to a large distribution of images). Our

basic deep generator network is illustrated in Fig. 3.1 which consists of B(=16) serially connected

residual blocks with identical layout. Each residual block uses two convolution layers of 3x3 kernel

and 64 feature maps followed by batch-normalization layers [133] and ParametricReLU [90] as

the activation function. To increase the resolution of the input image, we employ two sub-pixel

convolutional layers [91] in our generator network.

Although this architecture achieved promising results in recovering high-frequency informa-

tion from low-resolution images; it cannot handle varying condition (sharpness, atmospheric tur-
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Figure 3.3: YOLOv3 architecture for vehicle detection at three scales showing residual block,
upsampling layer as feature extractor.

bulance, motion blur, etc.). Usually, the estimated super-resolved images suffer from image blur-

riness and shape distortions. Moreover, some details which are vital for producing natural looking

images are missing in the super-resolved images.

One application of aerial image super-resolution is vehicle detection, which requires enough

visual detail to distinguish vehicles from background (e.g., roads, buildings, trees, etc.) in super-

resolved images. Our previous detection results [109] showed that this network is not able to

produce a high-detection performance while performing on super-resolved images generated by

the classical SRGAN. We follow the framework of Kazemi et al. [134] and Wang et al. [135] to

build a progressive generator that learns to reconstruct a multi-stage network through a series of

multi-scale image reconstructions. We train our generator model to produce multiple outputs at

different resolutions as shown in Fig. 3.2. The main idea is to encourage the network to learn

the image distribution at different scales. We enforce constraints on our network at two different

image resolutions 256x256 and 512x512. When the network generates images of size 256x256,

the first discriminator, D1 is pushing the generator to learn the probability distribution at that scale.

Simultaneously, the second discriminator, D2 is contributing to help the generator to learn the

distribution of the training images of size 512x512.

Gradually, the network learns to remove blurriness and recover missing object parts as it is
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trained at multi scales. Following this approach, it assures information transfer between images of

different scales and generate more high-quality images.

We follow similar network structure for both discriminators D1 and D2. We adapt the archi-

tectural guidelines from Radford et al. [92] to design our discriminator. We utilize a LeakyReLU

activation (α = 0.2) and avoid max-pooling to ignore feature size reduction. Our discriminator has

eleven convolutional layers, which use 4x4 filter kernels. Network employs strided convolutions

to decrease image resolution while increasing the feature map size. At the end of the network,

one dense layer and a final sigmoid activation function is added to obtain a probability for sample

classification.

3.3.3 Aerial Vehicle Detection

Our goal is to perform vehicle detection on several aerial datasets. The datasets contain vehicles of

different sizes which require strong detection algorithm to extract contextual and semantic infor-

mation of those target objects. In our research work, we use YOLOv3 of the state-of-the-art object

detection algorithms to perform vehicle detection in real-time.

Architecture Details

The architecture of YOLOv3 shown in Fig. 3.3 is based on the idea of residual network which

employs Darknet-53 convolutional network for feature extraction. To retrieve fine-grained infor-

mation, it concatenates deeper layers with the earlier layers through up-sampling. YOLOv3 takes

an image and divides it into M × M (16 × 16, 32 × 32 and 64 × 64 as in Fig. 3.3) grids. Then it

applies classification and localization at each grid size. The grid cell is responsible for detecting

object, if the center of the ground truth object falls within a grid cell. For each grid cell, a number

of bounding boxes with their confidence scores and their associated class probabilities are gener-

ated using a fully convolutional network architecture. YOLOv3 performs multi-scale prediction

applying the feature pyramid network (FPN) [136] concept. It predicts objects at three different

scales of 16, 32 and 64 for large, medium and small object detection. YOLOv3 uses 9 anchor

boxes while predicting objects. Design of the anchor boxes greatly impacts the performance of the

detector. We have used k-means clustering to generate these anchors for each database. The final
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number of detection results by YOLOv3 is M×M× (B ∗ (4 + 1 + C)). Here, M×M is the number

of grid cells, B is predicted number of bounding boxes in a cell, 4 denotes the four coordinates of

the bounding boxes and 1 is for the objectness score, C is the number of classes ( C=1:’vehicle’

in our experiments). It uses multi-label classification. Softmax is replaced by a logistic regression

to compute objectness score. Instead of using mean squared error in calculating the classification

loss, it uses the binary cross-entropy loss for each label.

3.3.4 Our Proposed Joint Super-Resolution and Detection Network

In this paper, we propose an end-to-end multi-task model that jointly does super-resolution and ve-

hicle detection in aerial imagery. Super-Resolution and vehicle detection for low-resolution aerial

images have been considered as highly interrelated tasks. Usually, multi-task learning is adapted to

address such highly correlated tasks as they can leverage significant information from each other.

The vehicles in aerial scenes suffer from appearance ambiguity due to the low resolution charac-

teristics of the images. In addition, it becomes challenging to deal with different sizes of vehicles

with varying conditions such as blurry edges and lack of sharpness, etc. Moreover, the similarities

between target vehicles and complex background make it even more difficult during detection.

In our previous work [109], super-resolution and vehicle detection networks were developed

independently to help each other. We notice that the information extracted from the low-resolution

space is not maximized when only one task is performed without utilizing the advantages of the

other task (e.g., detection is performed on super-resolved images generated from already trained

SR module). In other words, if we apply super-resolution and vehicle detection successively, it

does not benefit from multi-tasking. Therefore, our goal is to create a bridge between these highly

interrelated tasks so that they can get the maximum benefit from the multi-task learning. Hence,

we propose the Joint-SRVDNet to generate distinctive super-resolved images with high perceptual

quality and simultaneously locate vehicles on these super-resolved images. We have developed

a MsGAN super-resolution module that explicitly incorporates the structural information (edges,

sharpness, perceptual features defined by visual deterministic properties of objects) about targets

into the super-resolution reconstruction process as well as jointly learns both the super-resolution

and object detection modules together as presented in Fig. 3.4. As shown in Fig. 3.4 super-
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Figure 3.4: Architecture of our proposed model Joint-SRVDNet during the training process where
the detector and super-resolution losses are back propagated to the generator.

resolution and detection modules are cascaded to execute the joint training in an end-to-end fash-

ion.

The joint loss optimization of our model is difficult to converge from scratch compared to the

training of each module independently. Therefore, we first train super-resolution module given

the paired high-resolution and corresponding low-resolution aerial training images. Then we train

detection module with high resolution images to obtain network parameters for further training.

Finally, we fine tune both modules together and integrate into one unified framework by optimiz-

ing (3.7) where super-resolution and detection losses are jointly trained together. Such a training

scheme leads to a better convergence. Our proposed network optimizes a combination of four dif-

ferent losses : adversarial loss, pixel-wise mean square error (MSE), perceptual loss, and detection

loss. The adversarial loss aims to help generator to create solutions that are close to real images

by differentiating between real and generated aerial images. The widely used pixel-wise MSE es-

timates an overly smoothed solution as it only measures pixel differences between super-resolved

images and ground truth high resolution images. A perceptual loss using the pretrained VGG-19

network recovers photo-realistic textures, and a detection loss that aims for locating the target of

interests with varying attributes such as lost edge details and structural features.

3.4 Loss Function

We combine multiple loss terms to train our proposed joint network. The ultimate final loss func-

tion includes pixel-wise MSE loss, perceptual loss, adversarial loss and detection loss.
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3.4.1 Pixel-Wise MSE Loss

State-of-the-art image SR methods [91, 116] mostly rely on pixel-wise MSE loss to optimize the

network. For the training images IHR
n with their corresponding low-resolution ILR

n , n = 1,....,N, we

can calculate the MSE loss also referred to as the content loss lcont using the following equation:

Lcont =
1
N

N∑
n=1

1
WH

W∑
x=1

H∑
y=1

((IHR
n )x,y – G(ILR

n )x,y)2, (3.3)

where W and H represent width and height of the image and G(ILR
n ) are the super-resolved images

for N training samples.

Although MSE loss is the widely used optimization method for super-resolution which achieves

high peak signal-to-noise ratios, the resulting estimates often lack fine texture details and are per-

ceptually not convincing because of overly blurry results. In addition, MSE doesn’t have ability

to capture spatially varying high frequency information, as it is based on pixel-wise image differ-

ences.

3.4.2 Perceptual Loss

Since optimizing the MSE loss is prone to overfitting when defined over the pixel-wise differences

between estimated super-resolved images and ground truth high resolution images, Ledig et al. [12]

propose the perceptual loss, which is defined as the MSE loss over high-level features extracted

from the corresponding images. These features, which are extracted using a pretrained 19 layer

VGG Network [137], map raw images to a lower dimensional and representative subspace. Thus,

optimizing the perceptual loss better preserves discriminative information and alleviate overfitting.

The perceptual loss can be considered as the L2 distance between the feature representations of the

generated super-resolved image and ground truth HR image. For N training samples we solve:

Lper =
1
N

N∑
n=1

1
CjWjHj

Cj∑
c=1

Wj∑
x=1

Hj∑
y=1

(φj(IHR
n )c,x,y – φj(G(ILR

n ))c,x,y)2, (3.4)

where φj stands for feature map of j-th convolutional layer and Cj, Wj and Hj define the dimensions

of the respective feature maps within the VGG19 network.



M. Mostofa Chapter 3. Joint Super-Resolution and Vehicle Detection Network 32

3.4.3 Adversarial Loss

Since the network cannot learn to recover all high-frequency information by optimizing only the

MSE or the perceptual losses, we also add the adversarial loss to the perceptual and the pixel-wise

MSE losses to train our proposed network. The adversarial loss described by (3.1) pushes the solu-

tions move towards the natural image manifold by training the generator to fool the discriminator

by generating photo-realistic images, and training the discriminator to accurately classify ”real”

images from the generated ones (i.e., fake images). Thus, the estimated solutions reside on the real

samples manifold. The adversarial loss ladv defines the probability of the discriminator D(G(ILR))

that the reconstructed image G(ILR) is a real HR image. Both discriminators as shown in Fig. 3.2,

use the following adversarial loss functions to optimize the network.

Ladv = min
G

max
D

[EIHR∼Ptrain(IHR)[logD(IHR)] + EILR∼PG(ILR)[log(1 – D(G(ILR)))]], (3.5)

where Ptrain(IHR) and PG(ILR) define the probability distribution of real high-resolution images and

corresponding low-resolution images, respectively.

3.4.4 Detection loss

YOLOv3 is the combination of three losses: localization, confidence and classification loss. Equa-

tion (6) defines this loss. 1obj
ij means the object is detected by jth boundary box of grid cell i. xi,yi,

wi,hi are the real ground truth bounding box coordinates whereas x̂i,ŷi, ŵi,ĥi are the predicted

bounding box coordinates. Ci is the box confidence score in cell i, Ĉi is the box confidence score

for the predicted object:

Ldetection = λcoord

S2∑
i=0

B∑
j=0

1obj
ij (xi – x̂i)2 + (yi – ŷi)

2 + λcoord

S2∑
i=0

B∑
j=0

1obj
ij (

√
wi –

√
ŵi)2 + (

√
hi –

√
ĥi)2

+
S2∑
i=0

B∑
j=0

1obj
ij l(Ci, Ĉi) + λnoobj

S2∑
i=0

B∑
j=0

1noobj
ij l(Ci, Ĉi) +

S2∑
i=0

1obj
i

∑
c∈classes

l(pi(c) – p̂i(c)).

(3.6)
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3.4.5 Joint Loss Optimization

Our proposed model can be viewed as a joint learning approach. The network is learning semantic

information about targets from the training distribution so that the appearance of the target looks

more clear and obvious in super-resolved images to help the detection module. In this section,

we show how we combine the detection loss along with the pixel-wise MSE loss, perceptual loss

and adversarial loss through an optimization to produce our desired output with full target details.

Therefore, to show the dependency of different loss functions, lets assume WSR, WVGG, Wdis and

Wd denote the parameter set for super-resolution model, pre-trained VGG 19 architecture, dis-

criminator model and detection model, respectively. The parameterized version of the final loss

function is as follows:

L = Lcont(ILR
n ; WSR) + αLper(ILR

n ; WSR, WVGG) + βLadv(ILR
n ; WSR, Wdis) + γLdetection(ILR

n ; WSR, Wd).

(3.7)

We apply gradient descent algorithm to find the local minimum, and update the network’s param-

eter by calculating the gradient ∇W = [∇WSR∇Wd] with a learning rate η.

Gradient with respect to Wd

We calculate ∂L
∂Wd

and use the standard back propagation algorithm as the following chain rule

holds:

∂L
∂Wd

=
N∑

n=1

∂L
∂on

∂on

∂Wd
, (3.8)

where on defines a vector representation of the bounding box coordinates and confidence score.

Again, ∂L
∂on

involves three terms according to the definition as below:

∂L
∂on

=
∂Lc

∂on
+

∂Lb

∂on
+

∂Lconf

∂on
, (3.9)

where Lc, Lb simply calculate the loss for bounding box coordinates (e.g., center, width and height)

and Lconf defines bounding box confidence score loss.
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Gradient with respect to WSR

To update the parameter set for SR model, we consider loss terms associated with the SR re-

construction process and apply gradient descent algorithm to find ∂L
∂WSR

. The chain rule holds as

follows:
∂L

∂WSR
=

N∑
n=1

∂L
∂G(ILR

n )
∂G(ILR

n )
∂WSR

. (3.10)

If we set the partial derivative of the loss function with respect to G(ILR
n ) and expand L, we get

∂L
∂G(ILR

n )
=

∂Lcont

∂G(ILR
n )

+ α
∂Lper

∂G(ILR
n )

+ β
∂Ladv

∂G(ILR
n )

+ γ(
∂Lc

∂G(ILR
n )

+
∂Lb

∂G(ILR
n )

+
∂Lconf

∂G(ILR
n )

). (3.11)

or, we can also express the above equation as follows:

∂L
∂G(ILR

n )
=

∂Lcont

∂G(ILR
n )

+ α
∂Lper

∂G(ILR
n )

+ β
∂Ladv

∂G(ILR
n )

+ γ
∂Ldetection

∂G(ILR
n )

. (3.12)

We can summarize the optimization steps in Algorithm 1.

Algorithm 1 Our proposed Joint-SRVDNet model training
Training samples, I = ¡ILR

n , IHR
n ¿ Model parameters set W = [WSR, Wd] while not converged do

t=t+1;
calculate the partial derivative ∂L

∂Wd
;

calculate the partial derivative ∂L
∂on

;
execute back propagation from top layer to the bottom layer of detection to obtain ∂L

∂Wd
;

calculate the partial derivative ∂L
∂G(ILR

n ) ;

add the ∂Lcont
∂G(ILR

n ) ,
∂Lper

∂G(ILR
n ) and ∂Ladv

∂G(ILR
n ) to the derivative ∂L

∂G(ILR
n ) obtained in step 6;

execute back propagation from the last layer to the first layer of SR to obtain ∂L
∂WSR

;
update the parameter W by Wt+1 = Wt + η∇W;

3.5 Training Details

3.5.1 Experimental Data

We evaluate the performance of our proposed method on three publicly available benchmark

datasets: Vehicle Detection in Aerial Imagery (VEDAI) dataset [132], xView dataset [107] and
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DOTA dataset [106]. In this section, detailed description of the training datasets are provided.

Then, we describe the implementation and experimental strategies.

Vehicle Detection in Aerial Imagery (VEDAI) Dataset

The VEDAI dataset is a publicly available benchmark for small target recognition especially vehi-

cle detection in aerial images. This dataset has around 1,210 images of two different resolutions

such as 1, 024 × 1, 024 pixels and 512 × 512 pixels. The images mostly contain small vehi-

cles having diverse backgrounds, multiple orientations, lighting/shadowing changes, specularities

or occlusions. In addition, it includes nine different classes of vehicles, namely the plane, boat,

camping car, car, pick-up, tractor, truck, van, and the other category. We consider all classes as a

single class namely ’vehicle’ for our task. For training and testing, we split the dataset into 1,100

and 271 images, respectively. The number of samples in our dataset is small for analyzing the

proposed network. Therefore, to make the model more robust to different features, we have used

different augmentation techniques such as image sharpening and flipping.

Dataset for Object detection in Aerial images (DOTA)

DOTA is a large-scale multi-sensor and multi-resolution aerial dataset. This dataset is challeng-

ing because of its immense number of object instances from various categories exhibiting a wide

variety of scales, orientations and shapes. The dataset contains 2,806 images of varying size rang-

ing from 800 × 800 to 4, 000 × 4, 000 pixels. We have created patches of size 512 × 512 from

the original images. The complex aerial scenes present in this dataset are collected from Google

Earth, satellite JL-1 and satellite GF-2. The dataset has fifteen categories of objects namely plane,

ship, storage tank, swimming pool, ground track field, harbor, bridge, large vehicle, small vehi-

cle, helicopter, roundabout, soccer ball field, basketball court, baseball diamond and tennis court.

We have omitted class swimming pool, ground track field, harbor, bridge, roundabout, soccer ball

field, basketball court, baseball diamond and tennis court and unified the remaining six classes as

one class ’vehicle’.



M. Mostofa Chapter 3. Joint Super-Resolution and Vehicle Detection Network 36

x-View Dataset

xView is currently the largest publicly available dataset collected from WorldView-3 satellites.

The dataset contains 60 highly imbalanced classes. To overcome the problem of poor detection

performance, we have generalized all the classes into one class ’vehicle’. It contains around 1

million objects covering 1,400 km2 of the earth surface. The dataset is cropped into smaller patches

of 512× 512. Each pixel corresponds to 0.3× 0.3 m2 area in the ground. The annotation provided

is in geoJSON format and contains information about the bounding boxes for objects present in an

image.

3.5.2 Implementation Strategies and Training Parameters

At the beginning, we separately train both sub-networks: super-resolution and detection modules to

obtain their network weights which have been used to initialized the joint network of our proposed

model. We perform all experiments using 4x upsampling factor between low- and high-resolution

images. To obtain LR images, bicubic kernel is used to downscale the HR images with a scale

factor of 4. During implementation, we use input images of size 128 × 128 to super-resolve to

512 × 512.

To train a deep neural network using a small dataset is troublesome due to the over-fitting prob-

lem. One approach to overcome this difficulty is to use data augmentation, specifically sharpening

and [horizontal, veritical] flipping.

For the super-resolution network, we adapt the Adam optimizer with a momentum of 0.9 and a

batch size of 4. We initially set the learning rate at 10–4 which decays by a factor of 0.1 after every

5 epochs. For YOLOv3 model, we optimize the network by Adam with a learning rate of 10–4

and 10–6 with batch size 16. For non-maximum suppression, the threshold is set to 0.5. Follow-

ing (3.6), the network calculates bounding box loss, coordinate loss, class confidence scores and

objectness score for each detection layer. These losses are offset to predict the object probability,

class probability and bounding box coordinates for each grid which together represents an object

at that grid. Usually the network generates several bounding boxes and selects the bounding box

with the highest Intersection over Union (IoU). For each aerial dataset, we train both networks for

10 epochs and achieve satisfactory results.
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Table 3.1: Comparison of super-resolution architectures for upscale factor 4x on aerial datasets.

Dataset VEDAI-VISIBLE VEDAI-IR XVIEW DOTA

Algorithm PSNR MSSIM UQI VIF PSNR MSSIM UQI VIF PSNR MSSIM UQI VIF PSNR MSSIM UQI VIF

Bicubic 22.060 0.912 0.945 0.560 22.513 0.920 0.980 0.597 15.856 0.419 0.663 0.416 24.617 0.936 0.963 0.349
SRGAN 25.856 0.918 0.981 0.607 25.876 0.928 0.988 0.627 17.799 0.517 0.783 0.515 24.893 0.941 0.959 0.514

MsSRGAN 26.899 0.927 0.991 0.653 27.890 0.939 0.995 0.683 18.838 0.541 0.794 0.550 28.474 0.975 0.971 0.623
DenseNet GAN 29.9 - - -

Joint-SRVDNet (Ours) 30.338 0.969 0.995 0.693 29.227 0.958 0.999 0.713 20.550 0.617 0.795 0.562 31.360 0.987 0.975 0.712

For joint-training, we consider the sub-networks together and train it as a unified network. To

initialize the overall network, we employ the weights from the independently pre-trained models.

We choose Adam as the optimizer by setting initial learning rate as 10–4. The learning rate decays

exponentially with moving average decay of 0.9991. After training for 4 epochs with a mini-batch

size 1, we observe significant improvement in results which verifies that our proposed method has

been successfully implemented. We implement the proposed network using tensorflow framework

and train it over two NVIDIA Titan XpGPU. Moreover, we explored the effect of varying the

hyperparameters (α, β and γ) adapted in (3.7) to further validate the results of our model. The

analysis of the hyperparameters has been made on the test dataset and their impact will be discussed

in the ablation study.

3.6 Experimental Results Analysis

In this section, we present comparative results for both image super-resolution and vehicle de-

tection on several aerial datasets to evaluate the performance of our proposed model. We com-

pare the reconstruction quality of the super-resolved images generated by our proposed network

to other methods including bicubic interpolation, SRGAN [12], MsSRGAN [134] and DenseNet

GAN [138] on overhead datasets which were described in the previous section. Then we investi-

gate vehicle detection performance of our network in terms of mean Average Precision (mAP) and

F1 score. For more comprehensive performance analysis, we provide precision-recall curve and

plot true positive rate (TPR) against false positive rate (FPR).
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Figure 3.5: Visual results using Bicubic, SRGAN, MsSRGAN and our proposed model Joint-
SRVDNet with scaling factor 4 over VEDAI, xView and DOTA datasets.

3.6.1 Super-Resolution Results

We have reported the super-resolution results of our experiments using several objective image

quality metrics such as Peak Signal-to-Noise ratio (PSNR), Multi-scale Structural Similarity (MSSIM)

[143], Universal image Quality Index (UQI) [144] and Visual Information Fidelity (VIF) [145] on

a validation subset of images for each dataset. Table 3.1 shows a comparative analysis of our ap-

proach with other GAN based state-of-the-art techniques. For comparison, first we include results

from bicubic interpolation method. Then we follow SRGAN architecture; one of the pioneering

works on super-resolution using GAN introduced by Ledig et al [12]. As expected, the perfor-

mance of this network is much better than the previous approaches due to addition of the percep-

tual loss which enables the network to produce images with sharper edges and features. After



M. Mostofa Chapter 3. Joint Super-Resolution and Vehicle Detection Network 39

Table 3.2: Comparative detection performance in terms of mean average precision (mAP) and
F1-score of the proposed network and existing state-of-the-art approaches. Red bold indicates
the optimal performance using actual HR imagery and blue bold indicates the second optimal
performance using SR images generated by our proposed network.

Dataset VEDAI-VISIBLE VEDAI-IR XVIEW DOTA
Architectures mAP@0.5 F1 score mAP@0.5 F1 score mAP@0.5 F1 score mAP@0.5 F1 score

Ren, et al. (Z&F) [101] 32.00 0.212 - - -
Girshik, et al. (VGG-16) [100] 37.30 0.224 - - -

Ren, et al. (VGG-16) [101] 40.90 0.225 - - -
Zhong, et al. [139] 50.20 0.305 - - -
Chen, et al. [140] 59.50 0.451 - - -

YOLOv3 SRGAN 512 62.45 0.591 70.10 0.687 53.47 0.479 86.18 0.837
YOLOv3 MsSRGAN 512 66.74 0.643 74.61 0.723 57.96 0.494 87.02 0.859

YOLOv3 SSSDet 512 [141] 45.97 - - 79.52
Ju, et al. [142] - - - 88.63

YOLOv3 Joint-SRVDNet 512 (Ours) 72.46 0.702 80.40 0.792 61.50 0.671 90.01 0.893
YOLOv3 HR 512 85.33 0.826 85.66 0.876 66.02 0.687 94.56 0.933

that, we notice, adding multiple intermediatory discriminators to the same generator architecture

as the SRGAN helps to generate even higher quality images with more perceptual similarity which

often lacks in the generated images from the SRGAN. We refer to this network as MsSRGAN

which is actually introduced in [134] to handle super-resolution for facial images. We utilize this

concept and conduct experimients on aerial datasets. We observe slight improvements in the re-

constructed SR results and report it for comparison. Moreover, we have also compared our results

with DenseNet GAN [138] for VEDAI dataset. All these GAN based methods use perceptual loss,

MSE loss along with adversarial loss even if they modify their architecture which shows gradual

improvement in their solutions. However, they cannot meet the demand of current situation. They

are often unable to extract fine texture details of the targets (vehicle) of interest. So, our aim is to

produce solutions which contain clear view of our targets with fine-grained details. We design a

loss function which incorporates detecton loss along with other losses (perceptual loss, adversarial

loss and MSE loss) which helps to reach our goal. Table 3.1 shows that our proposed algorithm

obtains the highest PSNR, MSSIM, UQI and VIF scores which proves the quantitative effective-

ness of our proposed network. To show the quality of the super-resolved images specifically for

the target regions produced by our network, we select a small area around the targets and show

the gradual progression of different SR results which are visible in Fig. 3.5. We have conducted

our experiments for 4x enhancement (128 × 128 to 512 × 512). We can see that in the super-

resolved image the selected area around the target and the target itself is getting more close to
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the original one as bicubic interpolation, SRGAN, MsSRGAN and our network have been applied

successively. Visual results are showing that recovering high frequency details in low-resolution

domain is extremely difficult but it is captured by using our proposed network. The ultimate goal

of our work is to recover target details which has a great effect on the detection performance.

3.6.2 Detection Performance Analysis

Table 3.2 summarizes a comparative performance measures of our proposed model and other lead-

ing state-of-the-art algorithms in terms of mAP and F1 score for aerial vehicle detection. The mAP

values and F1 scores are reported on VEDAI, xView and DOTA datsets for most of the algorithms

based on the availability. We calculate the mAP as the average of the maximum precisions at differ-

ent recall values in the range (0.0 ∼ 1.0). For each dataset, we show the precision-recall graphs at

different IoU thresholds (0.3 ∼ 0.7) for YOLOv3 performed on super-resolved images generated

from SRGAN, MsSRGAN and our proposed network as shown in Fig. 3.6. We have evaluated all

the methods over the same set of test data. we can conclude that our proposed technique is much

more stable and robust for aerial vehicle detection in comparison to the current state-of-the-art

detection techniques.

Besides, we include detection results of recent CNN-based detectors: Faster R-CNN [101]

with Z&F model, Faster R-CNN [101] with VGG-16 model and Fast R-CNN [100] with VGG-16

model for VEDAI dataset. Also, we have compared our detection performance with [139] and most

recently proposed detection algorithm [140]. It is easily noticeable from the results presented in

Table 3.2 that our proposed model demonstrates the best performance compared to these detection

methods and yields the 2nd best mAP (72.46%) and F1-Score (0.702) for VEDAI. For comparison

with the current DCNN based approaches, we include the results of SSSDet [141] reported in their

publications for VEDAI and DOTA as they claim to achieve the most competitive results on such

datasets. We observe that detection performance of our method on VEDAI and DOTA datasets is

extremely good compared to [141] in terms of mAP. As shown in Table 3.2, the performance of

our proposed scheme is 26.49% and 10.49% higher than [141] for VEDAI-VISIBLE and DOTA

datasets respectively.

Again, compared with the detection performance of super-resolved images generated from the
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((a)) ((b))

((c)) ((d))

Figure 3.6: Precision-recall graph of the state-of-the-art object detector YOLOv3 performed on
the original 512x512 high-resolution test images and the corresponding super-resolved images
generated from SRGAN, MsSRGAN and our proposed Joint-SRVDNet over (a) VEDAI-VISIBLE,
(b) VEDAI-IR, (c)xView and (d) DOTA.

existing most resent MsSRGAN based SR architecture, our method has achieved almost 5.75%

higher mAP and 7% better F1 score for both VEDAI-VISIBLE and VEDAI-IR images. Moreover,

for both dataset, we observe that the detection performance of our network (indicated by blue bold

in Table 3.2) is also close to the optimal performance of the detector using original HR imagery,

which is shown at the bottom row of Table 3.2. We also report mAP and F1 score for the xView

satellite images which is very challenging as it contains extremely small targets in the image. Due

to the low-resolution, targets do not contain detailed information which might help the detection

task. As a result we cannot achieve satisfactory performance like other two datasets. However,

still we have achieved 3.54% higher mAP and 2% better F1 score than the performance of super-

resolved images from MsSRGAN and it is also close to the detection performance of the original
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512x512 high resolution images. We also investigate our model’s performance on DOTA dataset.

During experiments, we notice a great improvement in detection performance for this dataset as

shown in Fig. 3.6 (d) and fourth column of Table 3.2. The targets in this dataset seem to have the

best appearance quality among two other datasets which has contributed to secure high detection

performance. Therefore, we obtain promising results compared to [146] as well as for all the

other algorithms. In addition, Fig. 6 helps to analysis the relationship between precision and

recall rate for all datasets. It is obvious from the precision-recall plots that, our proposed method

(YOLOv3 Joint-SRVDNet 512x512 in red curve) is significantly better than the other GAN based

methods (YOLOv3 MsSRGAN 512x512 in green curve and YOLOv3 SRGAN 512x512 in blue

curve) and more specifically, the performance gain is comparable to the detection performance of

the original 512x512 high resolution images.

However, some important information might be missing if we only depend on precision-recall

metric and F1 scores to determine the performance of our proposed method. For more robust anal-

ysis, we focus on plotting receiver operating characteristic curve (ROC) to study the characteristics

of detection results. ROC curve can be drawn by plotting TPR against FPR at different thresholds.

ROC curve reflects the relationship between TPR and FPR which may help to compare our method

to other detection approaches.

3.7 Ablation Study

To achieve the best version of our proposed model, we made several experiments through changing

the value of hyperparameters to see the impact of the hyperparameter changes on the original

version of our work. We have summarized the analysis in Table 3.3 and 3.4.

Table 3.3: Super-resolution results of our proposed model using different hyperparameter settings
for upscale factor 4x on the aerial test datasets. Magenta bold indicates the optimal SR results
generated by our proposed network.

Dataset VEDAI-VISIBLE VEDAI-IR XVIEW DOTA
Hyperparameter Settings PSNR MSSIM UQI VIF PSNR MSSIM UQI VIF PSNR MSSIM UQI VIF PSNR MSSIM UQI VIF

α = 2 × 10–6, β = 10–2, γ = 10–2 27.060 0.812 0.745 0.690 26.513 0.720 0.780 0.697 17.856 0.529 0.523 0.436 24.327 0.845 0.813 0.457
α = 2 × 10–6 , β = 10–3, γ = 10–3 30.338 0.969 0.995 0.693 29.227 0.958 0.999 0.713 20.550 0.617 0.795 0.562 31.360 0.987 0.975 0.712
α = 2 × 10–6 , β = 10–2, γ = 10–4 26.746 0.723 0.716 0.705 25.976 0.723 0.789 0.778 16.799 0.427 0.654 0.515 24.212 0.841 0.849 0.524
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Table 3.4: Vehicle detection results in terms of mean average precision (mAP) and F1-score of
our proposed model using different hyperparameter settings on the aerial test datasets. Cyan bold
indicates the second optimal performance using SR images generated by our proposed network.

Dataset VEDAI-VISIBLE VEDAI-IR XVIEW DOTA
Hyperparameters Settings mAP@0.5 F1 score mAP@0.5 F1 score mAP@0.5 F1 score mAP@0.5 F1 score

α = 2 × 10–6, β = 10–2, γ = 10–2 68.89 0.678 77.78 0.756 59.61 0.556 88.59 0.778
α = 2 × 10–6, β = 10–3, γ = 10–3 72.46 0.702 80.40 0.792 61.50 0.671 90.01 0.893
α = 2 × 10–6, β = 10–2, γ = 10–4 69.90 0.685 78.79 0.771 58.88 0.521 89.12 0.789

3.7.1 Hyperparameter analysis

We analyze the values of α, β and γ adapted in (3.7) in order to obtain better quantitative results

in aerial datasets. In (3.7), we have used α, β and γ as weight factors to numerically balance the

magnitude of different losses which accelerates the total loss convergence. The network can benefit

from the relative influence of different loss functions, which is somehow guided by the weight

factors. Since there is no rule of choosing the optimum parameters for the model, we conduct

a series of experiments to find out the optimal parameters of the proposed model. We observe

that the optimal values lead the training to generate real-looking images with full target details

(edges, sharpness, perceptual features, etc.), that has been already reported in the experimental

result analysis section. In Table 3.3 and 3.4, we show the average accuracy of our model varying

these hyperparameters on several aerial test datasets.

Among the above settings, we report the results for the second setting (indicated by bold Ma-

genta, Cyan) in Table 3.1, Table 3.2, and Fig 3.5, Fig 3.6, and Fig 3.7 as it provides the best results

that is almost comparable to the original HR.

3.8 Conclusion

To address the challenge of detecting small targets (vehicles) in aerial images, we propose an ap-

proach that jointly optimizes super-resolution and detection modules. The purpose of our algorithm

is to generate high quality super-resolved images from lower-resolution images, so that larger areas

can be surveilled with minimal degradation in detection performance. With extensive experiments

we demonstrated that our proposed joint network is able to learn and extract features from low-

resolution domain which reflects in the generated super-resolved images produced by the network
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and helps to improve detection performance. Most importantly, the proposed network has two

vital contributions: for super-resolution task, using multi-scale GAN approach instead of classical

SRGAN approach makes the detection task easier by adding more details in the super-resolved

images which is essential to locate objects in the aerial images. Second, network’s total loss inte-

grates detection loss during super-resolution training which helps the SR module to specially learn

the target area so that those specific area gets more obvious in the final super-resolution results. To

evaluate our model’s performance we conduct experiments on several publicly available datasets

and the results indicate that compared with the leading state-of-the-art super-resolution and detec-

tion approaches, our proposed network achieves impressive results and it may have great impact

on remote sensing community.
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Chapter 4

Joint Cross-Modal Super-Resolution for

Aerial Vehicle Detection

4.1 Introduction

Recently, vehicle detection in aerial imagery has become a well-studied problem in order to fa-

cilitate military and aerial surveillance based applications [141, 147]. Due to the proliferation of

deep learning techniques, a significant development has been noticed in the aerial vehicle detection

task. However, still the existing state-of-the art algorithms cannot achieve the expected high-level

of accuracy. There are several major factors which should be taken into consideration during mod-

eling the detection algorithm. Most of the aerial scenes comprises of a varieties of vehicle types

with extremely small in size. Moreover, they have variable shapes, multiple scales, orientations,

and with complex background which lead to interclass similarities between target and nontarget

objects. We have already addressed this problem in our previous works [109, 148] by adapting

Generative Adversarial Network (GAN) [11] based super-resolution technique, which aims to es-

timate a high-quality super-resolved versions of the low-resolution counterparts. Yet, the struggle

remains when the detection takes place in a dark environment since most of the algorithms focus

on the RGB-based detection due to the availability of the high resolution visible surveillance cam-

eras. However, for low lighting or dark environment surveillance applications, these RGB images

are not well suited. Therefore, infrared (IR) imaging becomes necessary which again necessitates

modality transformation to alleviate the detection problem in such environment.
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To address these challenges, we propose a joint cross-domain translation with super-resolution

framework based on the GAN for vehicle detection in aerial images. The contribution of our

work is three-fold: (1) We design a cross-modal & super-resolution network which jointly learns

image-to-image modality transformation and super-resolution across two different domains. (2)

We perform detection on these translated super-resolved images using one of the state-of-the-art

detectors, You Only Look Once-version 3 (YOLOv3) which provides significant performance gain

in vehicle detection for cross-domain framework. (3) In addition, we quantitatively prove that the

domain adaptation technique along with the super-resolution can certainly meet the demand of

training images for a detector.

The rest of the paper is organized as follows: Section 4.2 outlines the review of the previous

works related to our proposed method. In Section 4.3, we discuss our proposed framework. We

explain the loss-functions in Section 4.4, which have been optimized during training the network.

Experimental details and results are discussed in Section 4.5 and 4.6. Finally, we provide the

conclusion in Section 4.7.

4.2 Related Work

4.2.1 GAN Based Image Modality Transformation

In the last few years, GAN has been vigorously studied for modeling image-to-image translation

problems. In [149], Isola et al. proposed the pix2pix algorithm; a GAN based synthesized image

generation framework which investigated conditional adversarial network to learn a mapping from

the input image (”source domain”) to the output image (”target domain”). Their approach effec-

tively synthesized images from multiple domains. A Domain Transfer Network (DTN) is proposed

by Taigman et al. [150] which employed a compound loss function including multiclass GAN loss,

f-constancy and a regularizing component to learn a mapping from the source domain to the target

domain in an unsupervised manner. For multi-task learning, Choi et al. [151] proposed the Star-

GAN, which utilized a mask-vector to translate images in multiple domains. The DiscoGAN [152]

is another example of cross-domain learning approach, that successfully transfers style from one

domain to another while preserving attributes. Liu et al. presented high-quality image translation
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results in [153]. The authors hypothesized a shared-latent space between different domains and

proposed an unsupervised image-to-image translation framework based on a coupled GAN.

4.2.2 Aerial Vehicle Detection in Super-Resolved Imagery

With the advent of deep learning techniques, vehicle detection algorithms have been significantly

improved, specifically in aerial surveillance based applications. However, owing to the limitations

in the resolution of surveillance cameras, it has become challenging to achieve satisfactory detec-

tion performance in aerial images. To overcome this challenge, Molina et al. [154] employed a

super resolution algorithm to improve the vehicle type recognition performance. In their work,

they used super-resolved images to train the neural network, which obtained an improved recog-

nition performance. In [155], Ji et al. applied the GAN framework to perform simultaneous

super-resolution and vehicle detection in an end-to-end manner, where the detection loss is back

propagated into the super-resolution convolutional neural network during training to assist the de-

tection task. The effects of super-resolution techniques on vehicle detection algorithm performance

have been explored in the work of Shermeyer et al. [113] . In their work, the authors enhanced

satellite images by an upscale factor of 2x, 4x, and 8x using the Very Deep Super-Resolution

(VDSR) framework and a custom Random Forest Super-Resolution (RFSR) framework over five

distinct resolutions to identify various types of vehicles. Inspired by the positive effects of super-

resolution on vehicle detection, we proposed vehicle detection approach utilizing the GAN-based

super-resolution architecture proposed in [109]. In that architecture, we used a Single Shot Multi

Box Detector (SSD) for vehicle detection on super-resolved images, which achieved a significantly

higher performance compared to that of the low-resolution images. Recently, we have proposed

a Joint Super Resolution and Vehicle Detection Network (Joint-SRVDNet) [148] that tries to gen-

erate discriminative, high-resolution images of vehicles from low-resolution aerial images. The

validity of the proposed method is ensured by showing extensive experiments on several aerial

datasets, which has provided superior results over the other state-of-the-art methods for aerial

super-resolution and vehicle detection.
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Figure 4.1: Our proposed network

Figure 4.2: Architecture of the generator network with corresponding kernel size (k), number of
feature maps (n) and stride (s) indicated for each convolutional layer.

4.3 Proposed Model

In this paper, we proposed a joint cross-modal and super-resolution approach for vehicle detection

in aerial imagery shown in Fig. 4.1 which is based on the idea of conditional Generative Adversar-

ial Network (cGAN). Hence, to facilitate the detection task in cross-domain, we exploit the benefit

of domain transformation technique along with the super-resolution using a GAN-based architec-

ture. More specifically, we enforce a Deep Convolutional Neural Network (DCNN) to jointly learn

domain-specific features and a mapping between the LR images and the corresponding HR coun-

terparts in a cross-domain framework, such that it can alleviate the domain mismatch and improve

the performance of vehicle detection in aerial images.
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4.3.1 Cross-Modal Super-Resolution Using GAN

GANs have shown remarkable performances in representation learning and synthesized image gen-

eration. They have been widely applied in image super-resolution (first introduced by Ledig et al.

in [12]), image synthesis and image translation using the conditional GANs [13] and cyclic GANs

(cycleGANs) [112]. As one of our objectives is to estimate a HR version with distinctive features

of its LR input aerial image in a cross-domain framework, we utilize the cGAN architecture and

train it to learn a mapping function G : x → y which is conditioned on a source domain x. The

goal of G is to learn statistical distribution of the training data x which is in the LR IR domain for

our case and generate the corresponding SR VIS counterparts such that their image distribution is

indistinguishable from the image distribution of the target y that is in the HR VIS domain. Typi-

cally, the generator G is a differentiable function which is trained to learn the distribution pdata over

HR VIS data y. To do so, it takes LR IR input from the distribution px(x) and maps it to the target

data space as G(x; θg) where θg defines the parameters of the generator model. In addition, the

discriminator D acts like a classifier which is trained to return the probability distributions D(y)

and D(G(x)) for both training HR VIS examples from the distribution pdata(y) and SR VIS samples

from G(x), respectively. Basically, D is trained to maximize the probability of assigning the correct

label to both the training examples and samples from G. Simultaneously G is trained to minimize

log(1 – D(G(x))). In other words, D and G play the following two-player minimax game with the

adversarial loss lGAN(G, D):

min
G

max
D

lGAN(G, D) = min
G

max
D

[Ey∼pdata
[logD(y)] + Ex∼px

[log(1 – D(G(x)))]]. (4.1)

Following the architecture by Ledig et al. [12], we design our basic deep generator network illus-

trated in Fig. 2 which consists of B(=16) serially connected residual blocks with identical layout.

Each residual block uses two convolution layers of 3 × 3 kernel and 64 feature maps followed

by batch-normalization layers [89] and Parametric ReLU [90] as the activation function. To in-

crease the resolution of the input image, we employ two sub-pixel convolutional layers [91] in our

generator network.

The discriminator network is a standard convolutional network as shown in Fig. 3 that can cat-

egorize the images fed to it as real or fake. It has been implemented following the architecture
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Figure 4.3: Architecture of the discriminator network with corresponding kernel size (k), number
of feature maps (n) and stride (s) indicated for each convolutional layer.

summarized by Radford et al. [92]. To train discriminator, we use eight convolutional layers with

an increasing number of 4x4 filter kernels increased by a factor of 2 from 64 to 512 kernels. We

also add a dense layer as well as a sigmoid activation function at the end of the resulting 512 feature

maps to obtain a probability for classification.

4.3.2 Vehicle Detection in Aerial Imagery Using YOLOv3

Our goal is to perform vehicle detection in the SR VIS aerial images which are generated from our

proposed network using the LR IR input images. Generally, the aerial datasets contain vehicles

of different sizes which require a strong detection algorithm to extract contextual and semantic

information of those target objects. Hence, in this work, we use YOLOv3 the state-of-the-art

object detection algorithm for aerial vehicle detection.

Architecture Details

The architecture of YOLOv3 shown in Fig. 4.4 utilizes the idea of residual network when employ-

ing the Darknet-53 convolutional network to extract features from the input image. It concatenates

deeper layers with the earlier layers through up-sampling along with the additional convolutional

layers to retrieve fine-grained feature information. As shown in Fig. 4.4, YOLOv3 takes an image

and divides it into multiple grids, such as 16 × 16, 32 × 32 and 64 × 64 when input image is

512 × 512. Then classification and localization are applied at each grid size. If the center of any

ground truth object falls within a grid cell, that grid cell is then considered to be responsible for
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Figure 4.4: The YOLOv3 architecture for vehicle detection at three scales showing residual block,
upsampling layer as feature extractor.

detecting object. For such grid cell, a number of bounding boxes with their confidence scores and

their associated class probabilities are generated using a fully convolutional network architecture.

The most salient feature of YOLOv3 is that it makes detections at three different scales and three

different places in the network applying the feature pyramid network (FPN) [136] concept. It

predicts objects at three different scales of 16, 32 and 64 for large, medium and small object

detection. YOLOv3 uses 9 anchor boxes while predicting objects. Design of the anchor boxes

greatly impacts the performance of the detector. We have used k-means clustering to generate

these anchors for this database. The final number of detections by YOLOv3 is M × M × (B ∗ (4 +

1 + C)). Here, M × M is the number of grid cells, B is predicted number of bounding boxes in

a cell, 4 denotes the four coordinates of the bounding boxes and 1 is for the objectness score, C

is the number of classes ( C=1 : ‘vehicle’ in our experiments). It uses multi-label classification.

To compute objectness score, it replaces softmax with logistic regression. In addition, for each

label binary cross-entropy loss is used instead of mean squarred error for the calculation of the

classification loss.
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4.4 Loss Functions

4.4.1 Pixel-Wise MSE Loss

State-of-the-art image SR methods [91, 116] mostly rely on pixel-wise MSE loss to optimize the

network. For the training images IHRVIS
n in the VIS domain with their corresponding low-resolution

ILRNIR
n in the NIR domain, n = 1,....,N, we can calculate the MSE loss lMSE using the following

equation:

LMSE =
1
N

N∑
n=1

1
WH

W∑
x=1

H∑
y=1

((IHRVIS
n )x,y – G(ILRNIR

n )x,y)2, (4.2)

where W and H represent width and height of the image and G(ILRNIR
n ) are the super-resolved and

translated images into the VIS domain for n = 1,....,N training samples.

4.4.2 Perceptual Loss

Ledig et al. [12] proposed the perceptual loss, which is defined as the MSE loss over the high-level

features extracted from the corresponding images. These features are extracted using a pretrained

19 layer VGG Network [137]. The perceptual loss can be considered as the L2 distance between

the high-level feature representations of the synthesized super-resolved VIS image generated from

the LR NIR input image and the ground truth HR VIS image. For N training samples we solve:

Lper =
1
N

N∑
n=1

1
CjWjHj

Cj∑
c=1

Wj∑
x=1

Hj∑
y=1

(φj(IHRVIS
n )c,x,y – φj(G(ILRNIR

n ))c,x,y)2, (4.3)

where φj stands for feature maps of j-th convolutional layer and Cj, Wj and Hj define the dimensions

of the respective feature maps within the VGG19 network.

4.4.3 Adversarial Loss

The adversarial loss described by (1) forces the solutions to move towards the natural image mani-

fold by training the generator to fool the discriminator and thus generating photo-realistic images,

and training the discriminator to accurately classify “real” images from the generated ones (i.e.,

fake images). The adversarial loss Ladv defines the probability of the discriminator D(G(ILRNIR))

that the reconstructed image G(ILRNIR) is a real HR VIS image. Both the generator and discrimina-
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tor as shown in Fig. 2 and 3, respectively, use the following adversarial loss functions to optimize

the network.

Ladv = min
G

max
D

[EIHRVIS∼Ptrain(IHRVIS )[logD(IHRVIS)] + EILRNIR∼PG(ILRNIR )[log(1 – D(G(ILRNIR)))]], (4.4)

where Ptrain(IHRVIS) and PG(ILRNIR) define the probability distribution of the real high-resolution VIS

images and the corresponding low-resolution NIR images, respectively.

4.4.4 Total Loss

We optimize equations (2), (3), and (4) to train our joint cross-modal super-resolution network.

Therefore, the final loss function can be defined as follows:

LTotal = Ladv + LMSE + Lper. (4.5)

4.4.5 Detection loss

YOLOv3 optimizes three different losses: the localization, confidence and classification loss.

Equation (2) defines this loss. 1obj
ij means the object is detected by jth boundary box of grid cell i. xi,

yi, wi, hi are the real ground truth bounding box coordinates whereas x̂i, ŷi, ŵi, ĥi are the predicted

bounding box coordinates. Ci is the box confidence score in cell i, Ĉi is the box confidence score

for the predicted object:

Ldetection = λcoord

S2∑
i=0

B∑
j=0

1obj
ij (xi – x̂i)2 + (yi – ŷi)

2 + λcoord

S2∑
i=0

B∑
j=0

1obj
ij (

√
wi –

√
ŵi)2 + (

√
hi –

√
ĥi)2

+
S2∑
i=0

B∑
j=0

1obj
ij l(Ci, Ĉi) + λnoobj

S2∑
i=0

B∑
j=0

1noobj
ij l(Ci, Ĉi) +

S2∑
i=0

1obj
i

∑
c∈classes

l(pi(c) – p̂i(c)).

(4.6)

4.5 Experiments

We evaluate our proposed method on a publicly available Vehicle Detection in Aerial Imagery

(VEDAI) dataset. In this section, we discuss the dataset and the network implementation strategies
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in details.

4.5.1 Vehicle Detection in Aerial Imagery (VEDAI) Dataset

The VEDAI dataset is a benchmark for small target recognition especially vehicle detection in

aerial images. This dataset has around 1,210 images of two different resolutions such as 1, 024 ×

1, 024 pixels and 512 × 512 pixels. The images contained in this dataset are captured under both

near-infrared and visual light spectrum. The vehicles in these aerial images have extremely small

size, diverse backgrounds, multiples shapes, variations in scale, lighting/shadowing changes, and

specularities or occlusions. In addition, it includes nine different classes of vehicles, namely the

plane, boat, camping car, car, pick-up, tractor, truck, van, and the other category. We consider

all classes as a single class namely ‘vehicle’ for our task. For training and testing, we split the

dataset into 1,100 and 166 images, respectively. To increase the size of the training data, we apply

different augmentation techniques such as horizontal flipping and sharpening that make the model

more robust to different features.

4.5.2 Training Details

In our experiments, we use both an upscale factor of 2x and 4x between low- and high-resolution

images. To obtain LR images, the HR images are down sampled using bicubic kernel with a down

sampling factor of 2 or 4. During implementation, we use an input image of size 128 × 128 either

in the NIR or VIS domain and super-resolve it to 256 × 256 and 512 × 512, respectively in a

cross-domain framework.

We set the network hyper-parameters as follows: For cross-modal super-resolution, we adopt

the Adam optimizer with a momentum of 0.9 and a learning rate of 10–4. The model is trained for

10 iterations with a batch size of 4. For the detection model, we train the YOLO-v3 network for

10 epochs with an initial learning rate of 10–4 for the first 2 epochs and 10–6 for the last 8 epochs

with batch size 6. We optimize the network by the Adam optimizer with a momentum of 0.9 and

a weight decay of 0.9995. We fine-tune our detection model by setting IoU to 0.60, confidence

threshold to 0.45 and NMS with the Jaccard coefficient of 0.45 to achieve the best performance.

We implement the entire network using the tensorflow framework and train it over two NVIDIA
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((a)) ((b))

Figure 4.5: Precision-recall graph of the state-of-the-art object detector YOLOv3 performed on the
(a) HR VIS images of size 256×256, 512×512, and the corresponding SR VIS images generated
from our proposed network for the case of scenario 1 over the VEDAI-VISIBLE dataset and (b)
HR NIR images of size 256 × 256, 512 × 512, and the corresponding SR NIR images generated
from our proposed network for the case of scenario 2 over the VEDAI-NIR dataset.

Titan XpGPU.

4.6 Performance Evaluation

In this section, we present comparative results for vehicle detection on the VEDAI dataset to eval-

uate the performance of our proposed joint cross-modal super-resolution model. We investigate

vehicle detection performance of our network in terms of mean Average Precision (mAP). For

more comprehensive performance analysis, we also provide precision recall curve. To prove the

efficacy of our proposed method, we conduct several experiments considering three different sce-

narios. The scenarios are as follows:

4.6.1 Scenario 1

In this case, we assume that we have a LR NIR detector and two well trained HR VIS detectors to

perform detection on the synthesized super-resolved images generated from our proposed network.

Detection results can be summarized as follows.

• We apply the LR NIR detector on the LR NIR (128 × 128) images and plot precision-recall

curve (see Fig. 4.5 (a)) to show the performance of this detector.
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Table 4.1: Detection performance for scenario 1 in terms of mean average precision (mAP) of the
proposed network.

Input (LR NIR)mAP (LR NIR)SR (2x) VISmAP (SR (2x) VIS)mAP (Original VIS)SR (4x) VISmAP (SR (4x) VIS)mAP (Original VIS)

128 × 128 43.84% 256 × 256 51.81% 55.33% 512 × 512 61.31% 85.33%

Table 4.2: Detection performance for scenario 2 in terms of mean average precision (mAP) of the
proposed network.

Input (LR VIS)mAP (LR VIS)SR (2x) NIRmAP (SR (2x) NIR)mAP (Original NIR)SR (4x) NIRmAP (SR (4x) NIR)mAP (Original NIR)

128 × 128 44.18% 256 × 256 49.24% 54.39% 512 × 512 69.45% 85.66%

• To evaluate the efficacy of our proposed method, we perform detection using the HR VIS

detectors on synthesized SR VIS images of size 256 × 256 and 512 × 512, respectively

generated from our network which has been trained with the NIR input images of size 128×

128. We plot the corresponding precision recall curves in Fig. 4.5. From this figure, we

observe that at a given recall, the precision values of the HR VIS detectors tested on the

SR VIS images of size 256 × 256 (blue curve in Fig. 4.5(a)) and 512 × 512 (red curve

in Fig. 4.5(a)) are much higher than the LR NIR detector that is trained with the images

of comparatively lower resolution (magenta curve in Fig. 5(a)) and also comparable to the

original ones.

To evaluate the performance of our detection model we use mAP as the evaluation metric which

measures mean of the average precision. Table 4.1 summarizes the mAP results of our experiments

from where we can see that our proposed network has achieved 7.97% better precision for the SR

VIS images of size 256 × 256 than the LR NIR 128 × 128 images. Moreover, the precision is

increased by a significant margin of 17.47% for the SR VIS images of size 512× 512 compared to

the LR NIR input images.

4.6.2 Scenario 2

We have conducted experiments for the reverse scenario, where we train our proposed network

with the VIS input images of size 128 × 128 and super-resolve them into the NIR domain by an

upscale factor of 2x and 4x. We generate the corresponding SR NIR images of size 256× 256 and
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512 × 512, respectively. In this case, we have a LR VIS detector and two well-trained HR NIR

detectors. Therefore, we perform detection on these synthesized super-resolved images using the

HR NIR detectors to varify the adequacy of our proposed algorithm. The results are discussed as

follows:

• We perform detection on the LR VIS images of size 128 × 128 using the trained LR VIS

detector and plot the corresponding precision recall curve in Fig. 4.5(b).

• Similar to the previous case, we also invesitigate the detection performance of the trained

HR NIR detectors on the synthesized SR NIR images of two different sizes 256 × 256

and 512 × 512. The results in Fig. 4.5(b) shows the robustness of the proposed method by

providing better results even for the synthesized NIR images.

Table 4.2 briefly summarizes the mAP results for scenario 2 where we can see that when we use the

HR NIR detector on the SR NIR images of size 256× 256, it achieved 5.06% better precision than

the LR VIS counterparts. Moreover, for the SR NIR images of size 512×512, the network achieved

significant improvement in precision which is 25.27% higher than the LR NIR counterparts.

From the above-mentioned quantitative results for the detection tasks, we observe that the NIR

detector is performing better than the VIS detector specifically in the case of high resolution. The

mAP result for the detection on the SR NIR images of size 512 × 512 is 8.14% higher than the

SR VIS versions. These findings focus on the encouragement of using the NIR detector in dark

environment instead of using the RGB detector which might be a great help to the military and

surveillance based applications.

4.6.3 Scenario 3

In Case 3, we conduct experiment using a LR VIS detector as well as a well trained HR VIS

detector to perform detection on the synthesized images generated from our proposed network.

The difference between this case and the previous ones is that, we don’t perform super-resolution.

We only perform detection on the synthesized images.

• To see the effect of the domain transformation technique on detection results, we apply the

LR VIS detector on the synthesized LR VIS (128×128) images from the LR NIR (128×128)
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Figure 4.6: Precision-recall graph of the state-of-the-art object detector YOLOv3 performed on
the HR VIS images of size 128 × 128, 512 × 512, and the corresponding synthesized VIS images
generated from our proposed network for the case of scenario 3 over the VEDAI dataset.

Table 4.3: Detection performance when using the LR NIR input for case 3 in terms of mean average
precision (mAp) of the proposed network.

Input (LR NIR)Synthesized VIS mAP (Synthesized VIS) mAP (Original VIS)
128 × 128 128 × 128 39.24% 44.18%

Table 4.4: Detection performance when using the HR NIR input for case 3 in terms of mean
average precision (mAp) of the proposed network.

Input (HR NIR)Synthesized VIS mAP (Synthesized VIS) mAP (Original VIS)
512 × 512 512 × 512 74.19% 85.33%

images. The results are summarized in Table 4.3 and Fig. 4.6. In this case, the network

achieved 39.24% average precision which is close to the performance of the original VIS

images.

• In addition, we also utilize the HR VIS detector to perform detection on the synthesized HR

VIS (512 × 512) images generated from the HR NIR (512 × 512) input images. From the

results shown in Fig. 4.6 and mAP scores in Table 4.4, it is clearly seen that the proposed

network obtained 74.19% average precision for the synthesized images that can be consid-

ered as good as to the original one. From the experimental results, we can say that for both

scales our proposed network ensures the significant effect of modality transformation on the

detection task.
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4.7 Conclusion

In this work, to address the challenge of RGB-IR vehicle detection problem in aerial images,

we propose an approach that jointly optimizes a unified network for both domain transformation

and super-resolution technique. The purpose of our algorithm is to generate high quality super-

resolved images in cross-domain from the lower-resolution counterparts, so that the larger areas

can be surveilled with minimal degradation in detection performance. To extend our research work,

currently, we are trying to test our proposed framework on other aerial datasets. We are also trying

to optimize our network for different spectral bands such as long-wave to mid-wave to investigate

the detection performance.
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Chapter 5

Deep GAN-Based Cross-Spectral

Cross-Resolution Iris Recognition

5.1 Introduction

Identity verification based on the analysis of a person’s physiological properties is believed to be

more reliable than other means of identification such as a PIN or password, username, or access

card. Fingerprint, palmprint, face, and iris biometric modalities have seen widespread use for hu-

man identification [156–159]. Among all biological traits, iris is well suited for the most accurate

and secure personal authentication because of the distinctive patterns present in the iris textures

for individuals [159,160]. The human iris pattern is observed to have unique and different textures

due to the process of chaotic morphogenesis that causes its formation in early childhood, exhibiting

variation even among identical twins. Therefore, in recent decades, iris recognition has received

significant attention as an identity verification method in the biometric community [161, 162] for

civilian and surveillance applications.

Conventional iris recognition biometric systems are based on iris images obtained under near-

infrared (NIR) illumination due to the optical properties of the human iris in the NIR band of the

electromagnetic spectrum. Broadly speaking, the NIR light absorption characteristics of the pig-

ment melanin within the iris tissue determines the visibility of iris texture details in NIR imaging.

As a result, the iris textures appear much better under illumination in the 700 ∼ 900 nm wave-

length range compared to illumination within the visible wavelengths in the 400 ∼ 700 nm range.
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For this reason, in most commercial iris recognition systems, single-band near-infrared (NIR) iris

matching techniques have been extensively used for identity authentication tasks [161,163]. These

systems use well-established algorithms and protocols to perform identification when the probe

and gallery are in the same domain, which has resulted in highly-accurate performance. However,

the majority of these methods require close-distance iris imaging to ensure that the acquired images

are in good quality with minimum acceptable iris diameter [159]. To eliminate these constraints

in the NIR-based iris recognition, several visible wavelength based iris recognition systems have

been developed [164, 165] in the last few years, which has expanded the scope of investigating

the capabilities of the iris matching techniques under visible light illumination. In addition, sev-

eral competitions such as the Noisy Iris Challenge Evaluation (NICE) [166], and the Mobile Iris

Challenge Evaluation [167] focus on the realistic acquisition process of visible iris images. The

major factors behind this attention to visible wavelength-based iris recognition are (1) visible range

cameras are capable of acquiring images from long distance, and (2) they are low-cost compared

to NIR cameras. Emerging dual imaging technology in recent smartphones offer image capture in

the visible and NIR illuminations. As a result, now police and every law enforcement officer, cus-

toms and border protection officer, and special operator has an agency-issued cellphone to perform

multi-modal biometric captures (face, fingerprint, and iris), which are used later for authentica-

tion. In this context, effective usage of this opportunistic visible iris images requires accurate iris

matching with the corresponding NIR images enrolled in the national ID databases.

Moreover, recent advances in video surveillance technology have enabled the capture of very

high-resolution iris images in the visible spectrum using low-cost camera technologies, which can

be used for identification purposes within the same domain or across different spectra. However,

most large-scale galleries of iris images have been acquired in the lower resolution near-infrared

(NIR) domain. Therefore, cross-spectral and cross-resolution iris matching has emerged as a ma-

jor challenge [168, 169]. It is essential to address both cross-spectral as well as cross-resolution

methods for matching these opportunistic visible iris query probes against the enrolled NIR iris

images in a gallery.

In the last few years, deep neural network architectures, such as a convolutional neural network

(CNN), have dramatically improved the capabilities in automatically learning the deep represen-

tation of specific image features for object detection and classification of visual patterns. These
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Table 5.1: A summary of the recent related works on cross-spectral iris recognition, accuracy is
reported at a given False Acceptance Rate (FAR)

.

Reference Method Database Iris comparison Iris matching Features Matching accuracy
[170] A predictive NIR iris image WVU Multi-spectral iris Genuine = 280 Cross-spectral Hand-crafted 95.2%

is used from the color image database Impostor = 20,745 (FAR = 0.001)
[171] IrisCode using 1D (1) PolyU bi-spectral Genuine = 2800 Cross-spectral Hand-crafted (1) 52.6%

Log-Gabor filter iris database Impostor = 1,953,000 (FAR = 0.1)
(2) Cross-eyed-cross- Genuine = 2160 (2) 70.3%
spectral iris recognition Impostors = 516,240 (FAR = 0.1)

database
[169] NIR to VIS texture (1) PolyU bi-spectral Genuine = 2800 Cross-spectral Hand-crafted (1) 64.91%

synthesis using MRF iris database Impostor = 1,953,000 (FAR = 0.1)
model (2) Cross-eyed-cross- Genuine = 2160 (2) 78.13%

spectral iris recognition Impostors = 516,240 (FAR = 0.1)
database

[168] CNN with softmax (1) PolyU bi-spectral Genuine = 2800 Cross-spectral self-learned (1) 90.71%
cross-entropy loss for iris database Impostor = 1,953,000 (FAR = 0.01)
feature extraction and (2) Cross-eyed-cross- Genuine = 2160 (2) 87.18%
SDH for compression spectral iris recognition Impostors = 516,240 (FAR = 0.01)
and classification database

cpGAN [1]Conditional coupled (1) PolyU bi-spectral Genuine = 2800 Cross-spectral self-learned (1) 92.38%
generative adversarial iris database Impostor = 1,953,000 and cross- in the embedded (FAR=0.01)
network (cpGAN) resolution domain

algorithms have also shown superior results when compared to classical techniques based on hand-

crafted features. Recently, successful deployment of deep learning architectures for the task of the

same or cross-domain iris recognition has gained attention in the literature. Generative adversarial

networks (GANs) [11], among other deep neural network architectures, have shown outstanding

capabilities in different areas of computer vision and biometric applications [18, 35, 92, 172–179].

A range of applications of GANs for iris recognition has been presented, including data aug-

mentation, synthesis of NIR periocular images, synthesizing iris images and iris super-resolution

[180,181]. In this paper, our main contribution is the extensive application of our novel algorithms

on three publicly available iris datasets comparing two different GAN-based frameworks for cross-

spectral (VIS vs NIR) and cross-resolution (low-resolution (LR) NIR to high-resolution (HR) VIS)

iris matching, which resulted in a new state-of-the-art approach in the area of ocular biometrics.

We have developed two approaches by which we apply a family of deep learning frameworks

for different cross-spectral iris matching scenarios. In our first approach, we employ a conditional

GAN (cGAN) [149] architecture to map the cross-spectral data to the same spectral domain. We

apply it at the same resolution and extend it to the cross-resolution iris matching problem. We have

designed our first method based on a scenario when one already has access to an Open-source or

an off-the-shelf iris matcher (e.g., Open-Source OSIRIS [182] matcher) to conduct the iris veri-
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fication process. The key idea in our first method is to synthesize the VIS iris images from their

corresponding NIR iris images in a gallery at the same resolution or higher resolution through

a joint cross-modal super-resolution process. Our first method is assumed to be a preprocessing

module that translates a NIR image into its corresponding VIS iris image before using a commer-

cial iris matcher. In our work, we have used OSIRIS software to conduct the matching between

the synthesized VIS iris images from a gallery of NIR iris images and a probe VIS iris image. In a

summary, our first approach offers four contributions to the field of iris recognition:

• A new domain adaptation framework, which acts as a preprocessing module for cross-spectral

iris matching based on generative adversarial networks to transform the cross-domain problem to

the same domain and achieves comparable performance when compared to several state-of-the-art

methods.

• Integrating the cross-resolution matching scenario into the cross-spectrum setting and redefin-

ing the matching framework as a joint super-resolution and cross-spectral matching architecture.

• Introducing a new WVU face and iris dataset, which will contribute to the biometric field for

cross-spectral face and iris recognition.

• Performing substantial experiments on the PolyU Bi-Spectral dataset [168, 169], WVU face

and iris dataset and cross-eyed-cross-spectral iris recognition database [183].

We observe a significant improvement in the cross-spectral iris matching accuracy from the

experimental results of our first approach, which validates that our domain adaptation technique

requiring self-learned features extracted from the raw data can achieve remarkable performance

gains for iris verification tasks similar to the previous research presented in the literature. How-

ever, it is still essential to explore a more compressed and distinctive representation of the raw data.

In earlier works, researchers have widely used subspace learning for data representation [184–186].

Basically, it has been proven that the most relevant and useful inner characteristics of an image can

be mapped to a reduced low-dimensional latent subspace.

Motivated by this, in our second method, we focus on the idea of designing a dedicated cross-

spectral iris matcher completely avoiding the use of any off-the-shelf iris matcher. We hypothesize

that iris images in the VIS domain possess a latent connection with iris images in the NIR domain

in a latent feature subspace. Therefore, we exploited this latent connection by projecting the VIS
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and NIR iris images into a common latent embedding subspace, even if they are at different res-

olutions. Furthermore, we posit that, if we perform matching in this latent domain, verification

performance would be more accurate than our first method due to the inherent direct iris matching

in a shared common feature domain. Moreover, our second method is designed to circumvent sev-

eral shortcomings of the commercial iris matchers that our first method depends on. The idea can

be elaborated on with a use of a case scenario. For example, the matching engine of a commercial

iris matcher cannot be adjusted to the resolution of the iris images captured at a distance. It cannot

operate directly on the lower resolution images while enrolled images in the gallery, are compara-

tively, at a higher resolution. In addition, effective usage of opportunistic high-resolution VIS iris

images captured by smartphones, surveillance cameras, etc. requires an accurate, fast, stable, and

secure iris matcher. This can be achieved with the real-valued feature representation in the com-

mon embedded latent subspace instead of a binarized feature representation like the one used in

other classical iris recognition approaches in the literature. These underlying reasons motivated us

to develop such a dedicated cross-spectral iris matcher, which is highly desirable. Hence, we have

proposed a deep coupled learning framework for cross-spectral iris recognition, which utilizes a

conditional coupled generative adversarial network (cpGAN) [1] to learn a common embedded

feature vector via exploring the correlation between the NIR and VIS iris images in a reduced di-

mensional latent embedding feature subspace. The key benefits from our second iris recognition

approach can be summarized as the following:

• We analyze an effective method to learn the subspace embedded features and develop a novel

framework for cross-spectral iris matching using our cpGAN architecture.

• Comprehensive experiments on three different benchmark datasets (1) PolyU Bi-Spectral

dataset (2) WVU face and Iris dataset and (3) Cross-eyed-cross-spectral database with superior

results over the baseline approaches ascertain the validity of our cpGAN framework.

• To the best of our knowledge, this is the first study that has investigated two different tech-

niques utilizing the potential capabilities of a GAN to improve the performance of existing cross-

spectral iris recognition methods reported in the literature.
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Figure 5.1: Cross-domain and cross-resolution iris recognition framework; Scenario 1: NIR to
visible translation; Scenario 2: NIR to visible joint/separate translation and Super-resolution ,
Scenario 3: Visible to NIR translation.
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5.2 Related Work

Cross-spectral iris recognition requires a VIS iris probe to be matched against a gallery of NIR

iris images. While conventional iris recognition methods have achieved high matching accuracy,

cross-spectral iris matching algorithms have not yet reached a high level of performance and pose

a greater challenge for real-world applications.

Table 1 summarizes recent cross-spectral iris algorithms that are based on two strategies 1) ex-

tracting information from both spectral domains and then combining such information for the final

decision, or 2) synthesizing a NIR image from its corresponding visible image and then matching

against a NIR gallery. Using the first strategy, Vyas and Kanumuri [187] proposed a new feature de-

scriptor using template partitioning based on variations in the iris texture. In their work, they have

applied a 2D Gabor filter bank to obtain the iris pattern at various scales and orientations. They

utilize the difference of variance (DoV) features to divide the filtered iris template into sub-blocks,

as the DoV features are invariant to noise caused by illumination occlusion and position shifting.

However, this method could not achieve the high accuracy required for practical applications (high

equal error rate (EER) of 31.08%) because it is unable to relate the information comprised in the

NIR and VIS images. Tan et al. [188] describe a framework for segmenting iris images in both

domains which is helpful for further multi-spectral fusion of information. According to Oktiana et

al. [189] local binary pattern (LBP) and binary statistical image feature (BSIF) are the best feature

descriptors based on the VIS and NIR imaging systems, which are able to accurately extract the

texture patterns of the iris for cross-spectral matching.

Another recent work [190] also used BSIF along with the χ2 distance metric to obtain match

scores between the VIS probe and NIR reference ocular images. They then fuse all the scores to

make the final decision. To encourage advances in cross-spectral iris and periocular recognition,

there has been a competition [191] held among five teams, which is considered as an extension of

1st competition that was arranged for a similar task (more recently, Sequeira et al. [183] released

a new cross-eyed and cross-spectral iris dataset to advance research on the challenging cross-

spectral iris matching problem). They submitted twelve methods for the periocular task and five

for the iris task. In the work of Alonso-Fernandez et al. [192] fusion of periocular and iris informa-

tion achieved considerable match performance improvement, where iris information is obtained
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by using different iris features extraction techniques. Wild et al. [193] used information from

iris images captured at multiple bands of the electromagnetic spectrum and presents an efficient

feature-level fusion to improve cross-spectral iris recognition performance. Sharma et al. [194]

proposed an algorithm, that consists of two neural network architectures, and trained it on a cross

spectral periocular dataset. It resulted in an improved matching accuracy compared to the existing

feature descriptors previously mentioned above.

On the other hand, using the second strategy, several efforts toward estimating NIR images

from visible images have been proposed recently. For instance, researchers in [170] have ex-

plored an adaptive learning method to predict NIR images to address the performance shortcom-

ings, which was considered below the benchmarks caused by cross-spectral matching. Similarly,

in [169], authors develop a domain adaption framework using Markov random fields (MRF) to es-

timate a NIR iris image from its corresponding VIS iris image and perform matching against a NIR

image gallery. In the same direction, Burge and Monaco [195, 196] implemented a model which

utilized features derived from the color and structure of the VIS iris images to predict the corre-

sponding synthesized NIR iris images. We have also noticed similar works in the ocular biometric

field for the task of cross-spectral periocular image recognition. Recently, Reja et al. [197] pro-

posed a novel image transformation technique using cascaded refinement networks to synthesize a

NIR periocular image from the corresponding VIS periocular image. Another study [198] reported

that feature-based approaches are prone to changes during the feature extraction process. There-

fore, they have adopted phase-only correlation and band-limited phase-only correlation techniques

to develop a phase-based iris recognition system.

Although the approaches mentioned above have advanced cross-spectral iris matching one step

ahead by achieving good results, but to keep pace with the increasing demand for more robust

biometric systems, researchers have recently concentrated their efforts towards CNN-based iris

verification system [168]. In this study, the authors observed that CNN-based features offer a

significantly compact representation for the iris template along with sparse information, which

potentially helps to improve the accuracy of the iris recognition system. Moreover, this approach

incorporates a supervised discrete hashing (SDH) on the learned features, which achieved an EER

of 5.39%.
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Figure 5.2: Architecture of our proposed conditional cpGAN framework. During training, the con-
trastive loss function is used in the latent embedding subspace to optimize the network parameters
so that latent features of iris images from different spectral domain of the same identity are close
to each other while the features of different identities are pushed further apart [1].

Another interesting approach, iris image super-resolution, has also gained attention due to its

impact on iris verification methods. The authors in [199] explored deep learning architectures

such as stacked auto-encoders and CNN for single-image iris super-resolution. Wang et al. [200]

proposed a framework based on an adversarial training with triplet networks in order to improve

iris image resolution for further recognition.

5.3 Methodology

To address the performance degradation reported in cross-spectral iris matching, our primary goal

is to develop an algorithm that minimizes the distance between the VIS iris image and NIR iris

image distributions belonging to the same person. Therefore, we have developed two different

domain adaptation techniques. These two techniques are based on finding a mapping, or a low-

dimensional shared latent subspace, between the VIS and NIR iris modalities to significantly re-

duce the cross-spectral iris matching discrepancy and provide a new state-of-the-art result. The
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techniques developed in this paper are shown in Fig. 5.1 and Fig. 5.2, respectively. Since most of

the available iris galleries are acquired under NIR illumination and the opportunistic iris images

are obtained under the VIS domain at higher resolution, in our first technique we find a mapping

between the NIR and VIS iris images and design a new framework (see Fig. 5.1) based on joint

cross-domain and cross-resolution matching to enable cross-spectrum iris recognition for pairs of

images with the same and different resolutions. In greater detail, we address two challenges: 1)

performing cross-domain mapping for the purpose of the intra-domain iris matching, and 2) doing

the same when the images from each spectral domain have different resolutions. As a result, there

should be a joint transformation of spectrum and resolution, which will be discussed in detail in

subsections 5.3.1.

We consider three main scenarios, as shown in Fig. 5.1, and develop our iris matching frame-

work around them based on different cross-spectral scenarios. The first scenario is matching a vis-

ible probe against an NIR gallery translated to an equivalent visible gallery. The second scenario

is matching a high-resolution visible probe against a translated and super-resolved NIR gallery to

a high-resolution visible gallery. The third scenario is matching an NIR probe against a visible

gallery translated to an equivalent NIR gallery. The reason behind including the cross-resolution

setting in our framework, is that, as an emerging problem domain, current opportunistic visible

iris images extracted from high-resolution face images are typically at a higher resolution than the

NIR images.

Apart from being focused solely on the generation of a synthesized VIS image from its NIR

counterpart, in our second approach, we emphasize the idea of learning a latent subspace to ex-

tract meaningful representative features from the VIS and NIR iris images. Thus, we develop our

second approach as shown in Fig. 5.2, which projects both the NIR and VIS iris images to a com-

mon latent low-dimensional embedding subspace using two generative networks. The key reason

behind developing this architecture is to learn the semantic similarity between two samples of the

same subject but in different spectral domains. Therefore, inspired by our previous cpGAN archi-

tecture [1], we trained this network using a similarity measure based on a contrastive loss [201] to

ensure that the distance between the images corresponding to the genuine pairs (VIS iris image and

NIR iris image of the same person) is minimized, and that of the imposter pairs (VIS iris image

and NIR iris image of the different persons) is maximized.
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To summarize our two approaches, we have studied and developed two different deep convo-

lutional GAN-based architectures to ascertain the adaptive learning potential for cross-spectral iris

matching, i.e., cGAN and cpGAN. Like other approaches, before training both networks, prepro-

cessing steps require iris images from both spectra to be subjected to segmentation, normalization

and image enhancement processes. Then, normalized image samples are fed to each network. The

network in our first approach mainly utilizes the adversarial loss to synthesize VIS iris image from

its NIR counterpart before performing different verification scenarios, while in our second ap-

proach, the network integrates the contrastive loss along with the adversarial learning [11] to gen-

erate matching scores. The following sections provide the details of our approaches and introduce

the cGAN and cpGAN architectures along with the associated loss functions that are implemented

in our framework to investigate the cross-spectral iris matching problem.

5.3.1 Deep Conditional Adversarial Framework

Recently, GANs have received considerable attention from the deep learning research community

due to their significant contributions in the field of image generation. The basic GAN framework

consists of two modules– a generator module, G, and a discriminator module, D. The objective of

the generator, G, is to learn a mapping, G : z → y, so that it can produce synthesized samples from

a noise variable, z, with a prior noise distribution, pz(z), which is difficult for the discriminator, D,

to distinguish from the real data distribution, pdata, over y. The generator, G(z; θg) is a differentiable

function which is trained with parameters θg when mapping the noise variable, z, to the actual data

space, y. Simultaneously, the discriminator, D, is trained as a binary classifier with parameters θd

such that it can distinguish the real samples, y, from the fake ones, G(z). Both the generator and

discriminator networks compete with each other in a two-player minimax game. We calculate the

following loss function, L(D, G), for the GAN:

L(D, G) = Ey∼Pdata(y)[log D(y)] + Ez∼Pz(z)[log(1 – D(G(z)))]. (5.1)

The objective function of GAN defines the term “two-player minimax game” by optimizing
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the loss function, L(D, G), as follows:

min
G

max
D

L(D, G) = min
G

max
D

[Ey∼Pdata(y)[log D(y)] + Ez∼Pz(z)[log(1 – D(G(z)))]]. (5.2)

One of the variants of GAN, the cGAN is introduced in [149], which expands the scope of

synthesized image generation by setting a condition for both the generative and discriminative

networks. The cGAN applies an auxiliary variable, x, as a condition which could be any kind of

useful information such as texts [202], images [13] or discrete labels [149]. The loss function for

the cGAN, Lc(D, G), can be represented as follows:

Lc(D, G) = Ey∼Pdata(y)[log D(y|x)] + Ez∼Pz(z)[log(1 – D(G(z|x)))]. (5.3)

Similar to (2), the objective function of the cGAN is minimized in a two-player minimax manner,

which is denoted as LcGAN(D, G, y, x) and defined by:

LcGAN(D, G, y, x) = min
G

max
D

[Ey∼Pdata(y)[log D(y|x)] + Ez∼Pz(z)[log(1 – D(G(z|x)))]]. (5.4)

Domain Translation Using cGAN

A more recent algorithm in the field of ocular biometrics [169,203] has shown success in estimating

NIR iris images from VIS iris images and then matching them against the NIR instances in the

gallery. However, they did not use CNN-based algorithms, even though many of the recent iris

recognition systems have investigated the capabilities of CNN in learning anatomical properties.

Therefore, we have developed a deep CNN-based domain translation network in our first method.

We proposed to translate the iris images from the NIR domain to visible, or vice versa. Therefore,

image translation plays an important role as one of two integral parts of our frameworks.

Recent advances in deep learning reported in the literature have provided very powerful tools

for the task of image-to-image translation [13]. Such translations can be interpreted as image do-

main transformations, where the task is to learn a mapping from one modality to another modality.

In our first method, we use the conditional GAN (cGAN) architecture [13] for the task of NIR

to VIS iris image translation or vice versa. The cGAN architecture has been successful in a va-
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riety of image-to-image translation tasks in the computer vision research community. It includes

Sketch → Portrait, Sketch→ Pokemon, Depth→ Streetview, pose transfer, etc. Such deployment

of cGAN in image translation tasks has inspired us to explore its performance in synthesizing cor-

responding VIS iris images from the NIR iris gallery, to be used as a preprocessing module for the

cross-spectral iris image translation.

During training the cGAN, we condition on an NIR iris image and generate a corresponding

synthesized VIS iris output image or vice versa as shown in our proposed framework (see Scenario

1 and Scenario 3 in Fig. 5.1). Here, we have demonstrated that a simplified cGAN framework

is sufficient to achieve adequate synthesized results through adversarial learning. In addition, our

analysis shows that this method is effective at conducting cross-spectral iris matching under the

same spectrum setting (a VIS iris probe is matched against a synthesized VIS gallery generated

from its corresponding NIR gallery or vice versa.) with impressive results.

Joint Translation and Super-Resolution Using Modified cGAN

Leveraging the benefits of the cGAN architecture, we have investigated the possibility of iris do-

main translation by using a structured loss [13] to penalize any probable structural mismatch be-

tween the synthesized output and target. Successful deployment of this network helps us to over-

come the challenge faced in cross-spectral iris matching. However, in Scenarios 2(a) and 2(b),

representing the additional cross-resolution case (see Fig. 1), the size of the output image should

be larger than the size of the input image, i.e., the network should learn domain translation to a

higher resolution. In this context, we modify the architecture of our cGAN generator by integrating

the concept of super-resolution during the cross-domain translation. Super-Resolution (SR) esti-

mates a HR super-resolved image from its LR counterpart, which has been vigorously applied to

various computer vision applications. Although reconstructing an accurate HR image from its LR

version is a very difficult task, multiple SR algorithms have been developed in recent years [204]

to address this challenge.

Recently, the GAN-based SRGAN [12] approach has shown excellent results with high per-

ceptual image quality by retrieving the fine textural details from a LR input image. Following their

approach of up-sampling the LR input image, we improve our cGAN-based translation architec-
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ture and incorporate a super-resolution layer as part of our cross-spectral framework to deal with

the cross-resolution task considered in our basic Scenario 2. To synthesize high-quality VIS iris

images, we train our network with a perceptual loss [72], which helps to generate a more accurate

VIS iris images along with the widely used L2 reconstruction loss [91, 116] and the adversarial

loss [12] functions. A similar iris super-resolution method has been proposed in [200], which inte-

grates adversarial training into triplet networks in order to develop a super-resolution architecture

for low-quality iris images.However, the ability of their SR network is limited to super-resolving

iris images in the same spectral domain. On the other hand, we jointly perform super-resolution

and domain transformation in one shot to overcome the limitations of acquiring high-resolution

NIR iris images. More specifically, our network produces a gallery of super-resolved HR VIS iris

images from a gallery of LR NIR iris images, which is then used to match a HR VIS iris probe

against it.

5.3.2 Verification

In this article, we have proposed to perform cross-spectral iris matching under the same spectra and

the same resolution setting by adopting joint translation and super-resolution technique followed

by the verification process. To accomplish this, we train our network on unrolled iris images of one

spectral domain as input and generate unrolled iris images of the other spectral domain at the same

resolution or higher resolution based on the scenarios described in the earlier sections. To perform

verification, we employ a commercially available software, Open Source for IRIS (OSIRIS), which

was developed within the BioSecure project [182] and offered by its authors as a free, open-source

iris matcher. OSIRIS follows the iris matching concept proposed in the works of Daugman [159].

It applies Daugman’s rubber sheet model for unwrapping the iris image from polar coordinates

onto a Cartesian rectangle to process image segmentation and normalization tasks. Hence, during

verification we match a normalized VIS iris probe against a gallery of synthesized normalized VIS

iris images generated from our network using this OSIRIS software. It first generates iris codes

by applying phase quantization of multiple Gabor wavelet filtering outcomes, while matching is

performed using XOR operation, with normalized Hamming distance as an output dissimilarity

metric. For genuine comparisons, we expect values close to zero, while we expect scores around
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0.5 for imposter comparisons.

5.3.3 Deep Coupled Adversarial Framework

Our second proposed technique is a cpGAN architecture that consists of two coupled cGAN mod-

ules with the same architecture, as shown in Fig. 5.2. One of them is dedicated to synthesizing the

VIS iris images, and hence, we refer to as the VIS cGAN module. Similarly, the other module is

dedicated to synthesizing the NIR iris images, which is referred to as the NIR cGAN module. Our

cpGAN network is inspired by the Siamese network [205], which ensures pairwise learning, where

all the parameters are simultaneously updated throughout the network. We have followed a more

recent U-Net-based, densely-connected encoder-decoder structure proposed in [206] to design our

generator, which helps to achieve the low-dimensional embedded subspace for cross-spectral iris

matching via a contrastive loss along with the standard adversarial loss. In addition to the adversar-

ial loss and contrastive loss [201], the perceptual loss [72], and L2 reconstruction loss are also used

to guide the generators towards the optimal solutions. Perceptual loss is measured via a pre-trained

VGG 16 network [103], which helps in sharp and realistic reconstruction of the images. In real-

istic opportunistic iris recognition scenarios, a VIS iris probe is usually matched against a gallery

of NIR iris images. To create such application scenario, we focus on matching a VIS iris probe

against a gallery of NIR iris images, that have not been seen before by the network. To perform

this matching in a cross-spectral domain setting, a discriminative model is required to produce a

domain-invariant representation. Therefore, we force the network to learn iris feature representa-

tions in a common embedding subspace by utilizing a U-Net auto-encoder architecture that uses

class-specific contrastive loss to match the iris patterns in the latent domain. As previously men-

tioned, we use a U-Net auto-encoder architecture for our generator due to its structural ability of

extracting features in the latent embedding subspace. More specifically, the contracting path of the

“U shaped” structure of the U-Net captures contextual information, which is passed directly across

all the layers, including the bottleneck. In neural networks, the bottleneck forces the network to

learn the compressed version of the input data that only contains useful information to preserve the

structural integrity of the image required to reconstruct the input. Along with the bottleneck, the

high-dimensional features of the contracting path of the U-Net, combined with the corresponding
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upsampled features of the symmetric expanding path, provides a means to share the useful infor-

mation throughout the network. Moreover, during domain transformation, a significant amount of

low-level information needs to be shared between input and output, which can be accomplished by

leveraging a U-Net-like architecture.

We have followed the architecture of patch-based discriminators [13] to design the discrimina-

tors of our proposed model. The discriminators are trained simultaneously along with the respec-

tive generators. It is worthwhile to mention that the L1 loss performs very well when applied to

preserve the low-frequency details but fails to preserve the high-frequency information, whereas

patch-based discriminator penalizes the structure at the patch scale to ensure the preservation of

high-frequency details.

The main idea behind using the U-Net shaped generator is to gradually build a connection

between the VIS and NIR iris images in the common embedding feature subspace. Since the

features are domain invariant in the embedded subspace, it provides credibility to discriminate

images based on identity. Therefore, our final objective is to find a set of domain invariant features

in a common latent embedding subspace by coupling the two generators via a contrastive loss

function, Lcont [201].

The contrastive loss function, Lcont, is defined as a distance-based loss metric, which is com-

puted over a set of pairs in the common embedding subspace such that images belonging to the

same identity (genuine pairs i.e., a VIS iris image of a subject with its corresponding NIR iris

image) are embedded as close as possible, and images of different identities (imposter pairs i.e., a

VIS iris image of a subject with a NIR iris image of a different subject) are pushed further apart

from each other. The contrastive loss function is formulated as:

Lcont(z1(xi
VIS), z2(xj

NIR), Y) = (1 – Y)
1
2

(Dz)2 + (Y)
1
2

(max(0, m – Dz))2, (5.5)

where xi
VIS and xj

NIR denote the input VIS and NIR iris images, respectively. The variable, Y, is a

binary label, which is set to 0 if xi
VIS and xj

NIR belong to the same class (i.e., genuine pair), and equal

to 1 if xi
VIS and xj

NIR belong to different classes (i.e., impostor pair). z1(.) and z2(.) are denoted as

the encoding functions of the U-Net auto-encoder, which transform both xi
VIS and xj

NIR, respectively

into a common latent embedding subspace. Here, m, is used as the contrastive margin to “tighten”
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the constraint. The Euclidean distance, Dz, between the outputs of the functions, z1(xi
VIS), and

z2(xj
NIR), is given by:

Dz =
∥∥∥z1(xi

VIS) – z2(xj
NIR)
∥∥∥

2
. (5.6)

Therefore, if Y = 0 (i.e., genuine pair), then the contrastive loss function, (Lcont), is given as:

Lcont(z1(xi
VIS), z2(xj

NIR), Y) =
1
2

∥∥∥z1(xi
VIS) – z2(xj

NIR)
∥∥∥2

2
, (5.7)

and if Y = 1 (i.e., impostor pair), then the contrastive loss function, (Lcont), is :

Lcont(z1(xi
VIS),z2(xj

NIR), Y) =
1
2

max

(
0, m –

∥∥∥z1(xi
VIS) – z2(xj

NIR)
∥∥∥2

2

)
. (5.8)

Thus, the total loss for coupling the VIS generator and NIR generator is denoted by Lcpl and is

given as:

Lcpl =
1

N2

N∑
i=1

N∑
j=1

Lcont(z1(xi
VIS), z2(xj

NIR), Y), (5.9)

where N is the number of training samples. The contrastive loss in the above equation can also

be replaced by some other distance-based metric, such as the Euclidean distance. However, the

main aim of using the contrastive loss is to be able to use the class labels implicitly and find a

discriminative embedding subspace, which may not be the case with some other metric such as

the Euclidean distance. This discriminative embedding subspace would be useful for matching the

VIS iris images against the gallery of NIR iris images.

5.4 Loss Functions

5.4.1 Generative Adversarial Loss

The VIS and NIR generators are denoted as GVIS and GNIR, as they will synthesize the corre-

sponding VIS and NIR iris images from the input VIS and NIR iris images, respectively. The

patch-based discriminators used for the VIS and NIR iris GANs are denoted as DVIS and DNIR,
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respectively. To implement our proposed methods, we have used the conditional GAN, where the

generator networks GVIS and GNIR are conditioned on the input VIS and NIR iris images, respec-

tively. In addition, we have trained the generators and the corresponding discriminators with the

cGAN loss function [149] to ensure a real-looking natural image reconstruction such that the dis-

criminators cannot distinguish the generated images from the real ones. Let LVIS and LNIR denote

the cGAN loss functions for the VIS and NIR GANs, respectively. Therefore, the loss function for

the cGAN which is considered as the backbone architecture in our first approach, can be defined

as following:
LVIS = LcGAN(DVIS, GVIS, yi

VIS, xi
VIS), (5.10)

LNIR = LcGAN(DNIR, GNIR, yj
NIR, xj

NIR), (5.11)

where LcGAN is defined as the cGAN objective function in (5.4). The term, xi
VIS, is used to denote

the VIS iris image, which is defined as a condition for the VIS cGAN, and yi
VIS, is denoted as the

real VIS iris image. It is worth mentioning that the real VIS iris image, yi
VIS, is same as the network

condition given by xi
VIS. Similarly, xj

NIR, denotes the NIR iris image that is used as a condition for

the NIR cGAN. Again, like yi
VIS, the real NIR iris image, yj

NIR, is same as the network condition

given by xj
NIR. The total adversarial loss for our proposed cpGAN is given by:

LGAN = LVIS + LNIR. (5.12)

5.4.2 L2 Reconstruction Loss

We consider the L2 reconstruction loss as a classical constraint for both the VIS cGAN and NIR

cGAN to ensure better results. The L2 reconstruction loss measures the reconstruction error in

terms of the Euclidean distance between the reconstructed iris image and the corresponding real

iris image. We denote the reconstruction loss for the VIS cGAN as L2VIS and define it as:

L2VIS =
∥∥GVIS(z|xi

VIS) – yi
VIS

∥∥2
2 , (5.13)

where yi
VIS is the ground truth VIS iris image, and GVIS(z|xi

VIS), is the output of the VIS generator.

Similarly, we denote the reconstruction loss for the NIR cGAN as L2NIR:
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L2NIR =
∥∥∥GNIR(z|xj

NIR) – yj
NIR

∥∥∥2

2
, (5.14)

where yj
NIR is the ground truth NIR iris image, and GNIR(z|xj

NIR), is the output of the NIR generator.

Depending on the different cross-spectral iris matching scenarios, we use either L2VIS or L2NIR as

the reconstruction loss, which is again generally termed as L2cGAN for the method proposed in our

first approach.

For the cpGAN architecture proposed in our second approach, the total L2cpGAN reconstruction

loss can be defined by the following equation:

L2cpGAN =
1

N2

N∑
i=1

N∑
j=1

(L2VIS + L2NIR). (5.15)

5.4.3 Perceptual Loss

Although the GAN loss and the reconstruction loss are used to guide the generators, they fail to

reconstruct perceptual features in the generated images. Perceptual features are defined by the

visual characteristics of objects, which provide a perceptually pleasing look to the image. Hence,

we have also used the perceptual loss, introduced in [72], for style transfer and super-resolution.

The perceptual loss function basically measures high-level differences, such as content and style

dissimilarity, between images. The perceptual loss is based on high-level representations from a

pre-trained VGG-16 [103] like CNN. Moreover, it helps the network to generate better and sharper

high-quality images [72]. As a result, it can be a significant alternative to solely using the L1

or L2 reconstruction error. Recently, Zhang et al. [207] introduced the LPIPS loss metric, which

has been adapted in several deep learning architectures for image reconstruction. Therefore, it

can be considered as an alternative loss function for perceptual fidelity instead of the well-known

ImageNet pre-trained VGG-based perceptual loss [72].

In both of our approaches, we have added perceptual loss to both the VIS and NIR cGAN mod-

ules using a pre-trained VGG-16 network. It involves extracting the high-level features (ReLU3-3

layer) of VGG-16 for both the real input image and the reconstructed output of the generator. The

perceptual loss calculates the L1 distance between the features of real and reconstructed images to

guide the generators GVIS and GNIR. The perceptual loss for the VIS cGAN network is defined as:
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LPVIS =
1

CpWpHp

Cp∑
c=1

Wp∑
w=1

Hp∑
h=1

∥∥V(GVIS(z|xi
VIS))c,w,h – V(yi

VIS)c,w,h
∥∥, (5.16)

where V(.) is used to denote a particular layer of the VGG-16 and Cp, Wp, and Hp denote the layer

dimensions.

Likewise, the perceptual loss for the NIR cGAN network is:

LPNIR =
1

CpWpHp

Cp∑
c=1

Wp∑
w=1

Hp∑
h=1

∥∥∥V(GNIR(z|xj
NIR))c,w,h – V(yj

NIR)c,w,h
∥∥∥. (5.17)

Here, we simply define LPVIS or LPNIR as LPcGAN to calculate perceptual loss for our first approach.

The total perceptual loss function for the cpGAN is given by:

LPcpGAN =
1

N2

N∑
i=1

N∑
j=1

(LPVIS + LPNIR). (5.18)

5.4.4 Overall Objective Function

We sum all the loss functions defined above to calculate the overall objective function LtotcGAN and

LtotcpGAN for our proposed cGAN and cpGAN architectures, respectively:

LtotcGAN = L2cGAN + λ1LcGAN + λ2LPcGAN
, (5.19)

where L2cGAN is the total reconstruction error, LcGAN is the total conditional generative adversarial

loss function, and LPcGAN is the total perceptual loss for our proposed cGAN model. Variables λ1,

and λ2 are the adjustable hyper-parameters used to weigh the different loss terms. The total loss

for cpGAN is given as:

LtotcpGAN = Lcpl + λ3LGAN + λ4LPcpGAN + λ5L2cpGAN , (5.20)
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where Lcpl is the coupling loss, LGAN is the total generative adversarial loss, LPcpGAN is the total

perceptual loss, and L2cpGAN is the total reconstruction error. Variables λ3, λ4, and λ5 are the hyper-

parameters used as a weight factor to numerically balance the magnitude of different loss terms.

5.5 Experiments

We first briefly introduce the publicly available datasets that we have used in our experiments and

discuss the implementation details of our proposed cGAN and cpGAN architectures along with

their training setup. To evaluate the performance of our methods, we perform a range of exper-

iments for different cross-spectral iris matching scenarios and compare their performance with

other state-of-the-art iris recognition methods in the cross-domain setting. We provide detailed

comparative experimental results in the following sections. Finally, in order to ascertain the use-

fulness of our cross-spectral iris recognition frameworks, we conduct additional experiments for

cross-device iris matching scenarios.

5.5.1 Database

Three available cross-spectral database, PolyU bi-spectral iris database [169], WVU Face and Iris

Dataset*,† and Cross-eyed-cross-spectral iris recognition database [183] are employed to validate

our proposed methods.

PolyU Bi-Spectral iris database

The PolyU Bi-Spectral iris database contains iris images of 209 subjects acquired simultaneously

under both the VIS and NIR illuminations. Each subject consists of 15 different instances of

right and left-eye images with a resolution of 640 × 480 pixels for both VIS and NIR spectrum.

Therefore, the total number of images in this dataset is 12,540 (209 × 2 × 2 × 15). We used a

publicly-available segmentation algorithm [165] to accurately segment and normalize iris images

for the experiments. This segmentation algorithm provides normalized iris images of 512 × 64

*This data was collected at WVU under IRB # 1805125982 with appropriate human subjects’ approval.
†This dataset is available upon request at biic.wvu.edu.



M. Mostofa Chapter 5. Deep GAN-Based Cross-Spectral Cross-Resolution Iris Recognition 81

Figure 5.3: Iris image preprocessing steps (Segmentation, Normalization, Enhancement) for (a)
PolyU bi-spectral iris database and (b) WVU face and iris dataset (c) Cross-eyed-cross-spectral
iris recognition database.

pixels, samples of which are shown in Fig. 5.3(a). Following the approach used in [169], we

selected the first ten instances for our network training and the remaining five instances for the

testing. The all-to-all matching protocol generated 2,800 genuine scores and 1,953,000 imposter

scores.

WVU face and iris dataset

The West Virginia University (WVU) Face and Iris dataset is particularly developed for cross-

spectral opportunistic iris recognition. It contains 1,248 subjects, which provides a total of 2,496

left and right NIR as well as VIS iris images (1, 248 × 2). We use the method presented in [165]

to extract the normalized iris images (512 × 64) from the original iris images of size 640 × 480

pixels. Sample images from this dataset are shown in Fig. 5.3(b). Again, following the same train-

test protocol used in reference [169] for this dataset, we attained 750 genuine scores and 561,750

imposter scores for 375 test subjects.
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((a))

((b))

Figure 5.4: Architecture of our proposed cGAN (a) generator and (b) discriminator with corre-
sponding kernel size (k), number of feature maps (n) and stride (s) indicated for each convolutional
layer.
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Cross-eyed-cross-spectral iris recognition database

The Cross-eyed-cross-spectral iris recognition database provides 3,840 iris images from 240 classes

for both spectra obtained from 120 subjects. Each of the classes from every subject has eight sam-

ple of 400 × 300 pixels for both spectra. We use the same iris segmentation and normalization

algorithm used in [165] to normalize all the iris images. The dimension of all the segmented and

normalized iris images from this dataset is 512 × 64 pixels. Sample images from the cross-eyed

cross-spectral database are shown in Fig. 5.3(c). In order to ensure fair comparison, we follow

the train-test protocol used in [169] and choose five image samples for training and the remaining

three samples for testing. Applying an all-to-all matching protocol, the network generated 2,160

genuine scores and 516,240 imposter scores.

5.5.2 cGAN Architecture Implementation

We adopted our proposed cGAN network structure from reference [12] as depicted in Fig. 4

for our domain translation technique, and formulated the overall loss function inspired by refer-

ences [12, 13, 72]. In more detail, for our generator (see Fig. 5.4(a)), we have implemented the

ResNet16 architecture [119], with 16 identical residual blocks. A single residual block is com-

posed of two convolutional layers with 3 × 3 kernels, 64 feature maps, batch-normalization layers

and a Parametric Rectified Linear Unit (ReLU) [90, 133] activation function. We use this net-

work for iris domain translation based on two different cross-spectral situations (see Scenario 1

and Scenario 3 in Fig. 1) that we have proposed in our first approach. We also integrate the

super-resolution process in the translation network by adding a sub-pixel convolution layer with

the layout explained in [91], which has been illustrated in Scenario 2(a) of Fig. 5.1. Like [12],

for our discriminator architecture, we follow what is presented in [92], which consists of eight

convolutional layers with 3 × 3 kernel size. The number of kernels increases from 64 to 512, sim-

ilar to VGGNet [103]. Rather than max-pooling, strided convolution is employed for resolution

reduction. As shown in Fig. 5.4(b), after that, we add a dense layer, a Leaky RELU, another dense

layer, and finally, a sigmoid activation function. In summary, the generator gets a low-resolution

(or high-resolution) image from one of the domains and translates it or jointly translates and super-

resolves it to the other domain, and the discriminator is fed with the output of the generator and
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also a high-resolution image of the other domain.

5.5.3 cpGAN Architecture Implementation

We have implemented our cpGAN architecture using the U-Net architecture as the generator mod-

ule. We have followed the architecture of ResNet-18 [119] to implement both the encoder and

decoder sections of the U-Net model. In encoder, each block is designed by applying two 3 × 3

convolutions, each followed by a ReLU. For downsampling, it uses a 2× 2 max pooling operation

with stride 2. We double the number of feature channels at each downsampling step. Similarly,

each step in the decoder section upscales the feature map by applying a 2 × 2 transpose convolu-

tion [208], upsampling the dimension of the feature map. Each feature map is concatenated with

the corresponding feature map from the encoder, followed by two 3× 3 convolutions with a ReLU

activation function.

5.5.4 Training details

Both of our frameworks have been implemented in Pytorch. We trained the network with a batch

size of 16 and a learning rate of 2 × 10–4. We used the Adam optimizer [209] with a first-order

momentum of 0.5, and a second-order momentum of 0.999. We have used Leaky ReLU as the acti-

vation function with a slope of 0.35 for the discriminator. To find the optimal hyper-parameters for

our learning algorithms, we have used a random search strategy [210]. Following their technique,

we experiment with different scaling heuristics to find the optimal hyper-parameter multiplier,

which results in the best verification accuracy. Accordingly, for the network convergence, we set

λ3 to 1, and λ4, and λ5 to 0.3. In addition, λ1, and λ2, are set to 10–6 and 2 × 10–3, respectively.

For training, genuine/impostor pairs are created from the VIS and NIR iris images of the same/different

subjects. During the experiments, we ensure that the training set is balanced by using the same

number of genuine and impostor pairs.

5.5.5 Evaluation on PolyU Bi-Spectral Database

We perform our first set of experiments on the PolyU Bi-Spectral database considering many dif-

ferent cross-spectral iris matching cases for both previously-mentioned approaches. In all the
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experiments, each iris probe image is matched against a gallery of iris images, which generates

genuine and imposter scores. Using these matching scenarios, we calculate the key recognition

performance parameters, such as genuine acceptance rate (GAR), false acceptance rate (FAR), and

equal error rate (EER). In addition, we also plot receiver operating characteristics (ROC) curves to

analyze the GAR with respect to FAR. In addition, we compare our results over other considered

state-of-the-art cross-spectral iris recognition methods described in [168, 169, 171] and [211] . We

use the same train-test protocol provided in their original paper for fair comparison.

To evaluate the effectiveness of our proposed cGAN architecture, we conduct the following

experiments:

(a) Scenario 1 : NIR to VIS domain translation

In this experiment, we train the network to translate a gallery of NIR iris images to its correspond-

ing gallery of synthesized visible iris images at the same resolution (see Fig. 5.1 Scenario 1).

Then, each VIS iris probe of the test set is matched against this synthesized VIS iris gallery. We

have shown the ROC result from this experiment in Fig. 5.5(a) and report the EER in Table 5.2.

We observe that our proposed algorithm achieves 99.50% and 80.50% GAR at 0.1 and 0.01 FAR,

respectively, and obtains an EER of 1.5%, which outperform the results reported for the algorithms

evaluated in [169,171], and [211] using the same train-test protocol. The network shows significant

improvement in cross-spectral iris matching by obtaining 15.53% and 25.18% less EER compared

to the results in [211], and [169], respectively.

(b) Scenario 2(a) : Joint translation and super-resolution from the LR NIR to HR VIS do-

main

Recently, with the emergence of new biometrics applications on smartphones, there is a strong

demand for acquiring high-resolution visible iris images at low cost. However, while the avail-

ability of higher resolution visible iris images will eventually lead to a cross-resolution mismatch

in the problem of cross-spectral iris matching, almost no attention has been turned toward it yet.

Although there would be higher noise levels in the visible domain compared to the NIR domain,

hopefully the higher resolution can compensate for the effect of this noise. To address the reso-
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((a)) ((b)) ((c))

Figure 5.5: ROC plots showing the performance of our approach (a) Scenario 1 and 3 with cGAN
architecture, (b) Scenario 2(a) and 2(b) with cGAN architecture and (c) cpGAN architecture ob-
tained on the PolyU Bi-Spectral database for the different cross-spectral matching scenarios [1].

lution differences, we determined how to match LR NIR iris images against the HR visible iris

images (i.e., unrolled NIR image size: 32x256, unrolled visible image size: 64x512). We train the

network to translate the LR NIR images to HR VIS images in such a way that it jointly transforms

the image domain and super-resolves it. Therefore, the network simultaneously learns both image

translation and super-resolution tasks. The network super resolves the input image by a factor of

two, and then the output can be used as a gallery of visible iris images for visible-to-visible iris

verification. Fig. 5.5(b) and Table 5.2 illustrates that our proposed joint translation and super-

resolution technique outperforms the baseline approach. It is worth mentioning that we separately

train both networks and report the results as a baseline approach to show the comparative perfor-

mance of the joint learning. We notice that the joint training significantly increases the matching

accuracy by 3.94%, 5.60% and 13.8% GAR at FAR of 0.1, 0.01 and 0.001, respectively.

(c) Scenario 2(b) : Separate translation and super-resolution from the LR NIR to HR VIS

domain

We have also fed the low-resolution NIR images to a cross-domain translation network from ref-

erence [13] and then the low-resolution output is fed to a super-resolution GAN (SRGAN) from

reference [12]. This is the Scenario 2(b) in Fig. 5.1, and results are shown in Fig. 5.5(b) and

Table 5.2. The separate training achieves 88.89%, 70.10%, and 56.10% GAR at FAR of 0.1, 0.01

and 0.001, respectively, which are significantly lower compared to the joint training. These results
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Table 5.2: Comparative performances on the PolyU Bi-Spectral database. Symbol ’-’ indicates
that the metric is not available for that protocol.

Algorithm Matching GAR@FAR=0.1GAR@FAR=0.01GAR@FAR=0.001EER (%)
Wang et al. [211] HR VIS vs HR NIR — 59.10 37.00 17.03

CNN with SDH [168] HR VIS vs HR NIR — 90.71 84.50 5.39
Nalla et al. [169] HR VIS vs HR NIR 58.8 — — 26.68

NIR to VIS texture synthesis using MRF model [169] HR VIS vs HR NIR 61.91 — — 23.87
IrisCode using 1D Log-Gabor filter [171] HR VIS vs HR NIR 52.6 — — 17.03

cpGAN [1] HR VIS vs HR NIR 99.99 92.38 84.98 1.02
cpGAN [1] HR VIS vs LR NIR 96.5 89.89 81.21 1.21
cpGAN [1] HR NIR vs LR VIS 93.30 84.75 73.45 1.26
cpGAN [1] LR NIR vs LR VIS 82.60 70.10 59.97 2.51

NIR to VIS domain translation (Ours cGAN) Scenario1 99.50 80.50 70.1 1.5
Joint domain translation & super-resolution (Ours Modified cGAN) Scenario 2(a) 92.83 75.70 69.9 1.6

Domain Translation & super-resolution (Separate Training) Scenario 2(b) 88.89 70.10 56.10 1.9
VIS to NIR domain translation (Ours cGAN) Scenario 3 87.49 69.50 64.90 1.4

Iriscode (OSIRIS) [182] HR VIS vs HR NIR 74.60 61.10 54.50 2.59
Iriscode (OSIRIS) [182] LR VIS vs LR NIR 71.05 55.60 43.10 3.0

validate our idea of joint transformation and super-resolution.

(d) Scenario 3 : VIS to NIR Domain Transformation

In order to examine whether or not the NIR-to-visible image translation is a more effective solu-

tion than translating the visible to NIR, both at the same resolution, we have trained a network to

map the visible images to the NIR domain and performed verification on the synthesized NIR iris

images (i.e., matching the synthesized NIR images against a gallery of NIR images). We feed a

given visible iris probe image to the network, which is trained to map visible to NIR images, and

then use the output image to compare with an existing gallery of NIR images. We report the ROC

result obtained from this experiment in Fig. 5.5(b) along with the comparative results from other

approaches. We consider the algorithm used in [182] as comparable benchmark for this scenario.

It proves the efficacy of our proposed approach by acquiring 2.19% less EER compared to the

baseline result mentioned above.

Similarly, to ascertain true cross-spectral matching ability of our proposed cpGAN network,

we experiment with different types of cross-comparisons as follows:

(a) Matching HR VIS probe against a HR NIR gallery:

To perform this verification, we train our coupled learning network with the unrolled HR 64× 512

VIS and NIR iris images such that VIS and NIR generators are trained to obtain domain invariant

features in a common latent embedding subspace using a contrastive loss. We plot ROC curves

comparing our approach with other state-of-the-art deep learning methods presented in [168,211],
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which apply different types of feature extraction techniques. From Fig. 5.5(c) and Table 5.2, we

notice that our cpGAN framework performs much better than the baseline matching algorithms

mentioned above. In this setting, our method achieves 1.67% more identification accuracy with

4.37% decrease in EER compared to the most recent cross-spectral iris recognition method [168].

Additionally, it outperforms the method described in [169,182] by a significant decrease of 1.57%

and 22.85% in EER, respectively. This significant improvement clearly indicates that using a cp-

GAN framework for projecting both the VIS and NIR iris images into a common latent embedding

subspace to retrieve the domain invariant features is better than the other existing deep learning

methods.

(b) Matching HR VIS probe against a LR NIR gallery:

Here, we consider a realistic iris matching scenario to analyze the cross-spectral matching accuracy

of our network. Due to the advances in imaging technology, opportunistic iris images extracted

from faces in the visible spectrum are at a higher resolution, while images already stored in the

gallery are in the low-resolution NIR domain. It has become a challenging task to build a correla-

tion between iris images in different resolutions as well as in different spectra. Many algorithms

fail to retrieve accurate semantic similarity among iris images of different resolutions and spectra,

which has resulted in a significant performance degradation in existing iris verification systems.

Therefore, we resolve this issue by training our cpGAN with the unrolled HR (64 × 512) VIS and

LR (32 × 256) NIR iris images, which ensures the retrieval of contextual and semantic features of

the iris images in a common embedding subspace. The results summarized in Fig. 5.5(c) and Table

5.2 indicate that the cpGAN network remains robust enough to provide superior results compared

to our matching Scenario 2(a) that was shown in Fig. 5.5(b). It has increased the GAR almost by

14% at 0.01 FAR.

(c) Matching LR VIS iris images against a gallery of HR NIR iris images:

In addition to the study mentioned above, we have also focused on matching LR VIS iris probe

against a gallery of HR NIR iris images. We consider a fact when subjects are at a large standoff

distance from the camera. Consequently, captured faces are assumed to be suffering from poor

quality due to low-resolution. On the other hand, the gallery images have comparatively higher

resolution which are usually taken in the NIR spectrum. Therefore, the modality gap between
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probe and gallery images makes the cross-spectral matching even more challenging. Hence, we

train the VIS and NIR generator of our network with the unrolled LR VIS iris images (32 × 256)

and HR NIR iris images (64 × 512), respectively, and perform matching in the latent embedded

subspace, that contains basic information about the iris texture patterns irrespective of the resolu-

tion. The experimental results reported in Table 5.2 show that our proposed scheme has produced

EER with a value of 1.26% which proves the adequacy of our approach even in low-quality videos.

(d) Matching LR VIS iris images against a gallery of LR NIR iris images :

We also perform additional experiments where our gallery images are in the low-resolution NIR

domain. To investigate the matching performance of our network, we feed both the VIS and NIR

generator with the unrolled LR VIS and NIR iris images. The experimental results reported in

Table 5.2 and Fig. 5.5(c) indicate the matching accuracy of our network for this cross-spectral

setting compared to the approach used in [182]. Even though we achieve an EER of 2.51% that

is much lower than several comparable methods, there is a tradeoff with verification performance,

which is not as satisfactory as our previous experiments outlined above.

5.5.6 Evaluation on WVU Face and Iris Database

To assess the effectiveness of our proposed approaches, we conduct a number of extensive experi-

ments on the WVU face and iris database for different cross-spectral matching scenarios similar to

the experiments performed on the PolyU bi-spectral database. To the best of our knowledge, there

is no other baseline algorithm in the literature that have performed cross-spectral iris matching

on this dataset. Therefore, our evaluation on the WVU face and iris dataset yields a new state-

of-the-art cross-spectral iris matching result, which will further encourage the biometric research

community to investigate the performance of other existing algorithms on this dataset. In this con-

text, we first report on the evaluation of the method in our first approach for matching cross-spectral

iris images under the same spectral domain. Then we discuss experimental results obtained from

our second method, which performs matching in the embedded domain.
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((a)) ((b)) ((c))

Figure 5.6: ROC plots showing the performance of our approach (a) Scenario 1 and 3 with cGAN
architecture, (b) Scenario 2(a) and 2(b) with cGAN architecture and (c) cpGAN architecture ob-
tained on the WVU face and iris database for the different cross-spectral matching scenarios.

Matching Results Obtained From cGAN Architecture

We consider similar experimental scenarios as stated in Section 5.5.5 when we trained our cGAN

model with the WVU face and iris database. We plot ROC results in Fig. 5.6(a) obtained from

the cGAN network that has been trained and tested for Scenario 1 and Scenario 3. In addition, we

summarize the EER in Table 5.3. Fig. 5.6(a) and Table 5.3 demonstrate that our proposed algorithm

achieves 99.50%, 80.50% and 70.1% GAR at 0.1, 0.01 and 0.001 FAR, respectively for Scenario 1,

where each VIS iris probe image of the test set is matched against a gallery of synthesized VIS iris

images. For comparison, we report recognition accuracy for this database which has been obtained

from the algorithm used in [182] for matching the HR VIS iris probe image against a gallery of

HR NIR iris images. It is obvious that our proposed cGAN algorithm significantly increases the

recognition accuracy by 18.8% for the FAR of 0.01 with 1.14% decrease in EER compared to the

cross-spectral iris matching result reported as a baseline approach (Matching HR VIS iris probe

image against a gallery of NIR iris images).

We also report identification accuracy for the reverse case as described by Scenario 3. In this

case, we train a network to map the VIS iris images to the NIR domain and perform matching

between the synthesized NIR iris images and a gallery of NIR iris images. The experimental

results summarized in Table 5.3 prove that even for the reverse scenario our approach achieves

8.1% higher recognition accuracy and 0.76% lower EER compared to the baseline result.
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Again, to ascertain the comparative performance of our joint network described in Scenario

2(a), which simultaneously translates and super-resolves a LR NIR iris image to a HR VIS image,

we separately train both networks and use the result as baseline. Additionally, we apply the pop-

ular IrisCode approach [182] to generate comparative matching scores (i.e., matching the LR VIS

iris probe against a gallery of LR NIR iris images). The ROC results from this set of experiments

are shown in Fig. 5.6(b), which indicate the superiority of our proposed joint learning method over

other benchmark results. Table 5.3 summarizes that our joint translation and super-resolution tech-

nique significantly outperforms the result obtained from separate training by 8.20% recognition

rate at 0.01 FAR.

Matching Results Obtained From cpGAN Architecture

To evaluate the verification performance of our coupled learning framework, we follow similar

experimental settings that were previously discussed in the earlier section for the PolyU bi-spectral

database. We experiment with four different cross-spectral and cross-resolution iris matching sce-

narios for this dataset and plot ROC results in Fig. 5.6(c) to show the recognition accuracy of our

proposed network. We also provide EER results in Table 5.3.

The experimental results illustrated in Table 5.3 indicate that our cpGAN network, which per-

forms verification in the embedding subspace, achieves a lower EER of 0.90% with a higher GAR

of 93% at 0.01 FAR, when matching HR VIS iris probe image against a gallery of HR NIR iris

images. Moreover, it significantly improves the matching accuracy by 31% GAR at 0.01 FAR

compared to the reported baseline result [182] using the same test data for the same cross-spectral

matching scenario.

Next, we consider a real-life cross-resolution matching scenario within the cross-spectral do-

main and train our cpGAN with the unrolled HR (64×512) VIS and LR (32×256) NIR iris images,

which gradually learns the inherent hidden correlation between iris images in the cross-resolution

and cross-spectral domains. The matching results briefly presented in Fig. 5.6(c) and Table 5.3

show that our cpGAN network ensures an accurate retrieval by outperforming the matching Sce-

nario 2(a) in Fig. 5.6(b) with 10.9% higher recognition accuracy at 0.01 FAR.

Also, we conduct experiments for the scenario with low-quality videos. ROC results and EER
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Table 5.3: Comparative performances on the WVU face and iris database.

Algorithm Matching GAR@FAR=0.1GAR@FAR=0.01GAR@FAR=0.001EER (%)
cpGAN(Ours) HR VIS vs HR NIR 99.54 93 84 0.90
cpGAN(Ours) HR VIS vs LR NIR 97.04 87.7 80.8 1.15
cpGAN(Ours) HR NIR vs LR VIS 92.89 83.50 72.70 1.20
cpGAN(Ours) LR NIR vs LR VIS 82.52 69.2 59.70 1.85

NIR to VIS domain translation (Ours cGAN) Scenario 1 97.79 80.8 75.1 1.0
Joint domain translation & super-resolution (Ours Modified cGAN) Scenario 2(a) 94.97 77.8 69.5 1.34

Domain translation & super-resolution (Separate Training) Scenario 2(b) 83.50 69.60 60.0 1.97
VIS to NIR domain translation (Ours cGAN) Scenario 3 88.53 70.10 67.70 1.38

Iriscode (OSIRIS) [182] HR VIS vs HR NIR 76.02 62.0 56.1 2.14
Iriscode (OSIRIS) [182] LR VIS vs LR NIR 71.7 55.5 42.7 3.01

scores detailed in Table 5.3 prove that our proposed scheme maintains robust performance even

when matching a LR VIS iris probe against an available HR NIR gallery. It has generated an EER

of 1.20%, which is considered as a lower EER value for an ideal biometric system.

Finally, we investigate the verification performance of our proposed cpGAN network when iris

images in the gallery are in low-resolution NIR domain. Therefore, we force the cpGAN network

to learn invariant features in the common embedding subspace from both the LR (32 × 256) VIS

and NIR iris images. The experimental results in Table 5.3 show that our proposed algorithm

obtains 3.7% more recognition accuracy at 0.01 FAR than the approach used in [182] on the same

test data for this cross-spectral setting.

5.5.7 Evaluation on Cross-Eyed-Cross-Spectral Iris Recognition Database

We perform another set of experiments using the cross-eyed database to quantify the cross-spectral

iris recognition accuracy for both of the approaches developed for this paper. We follow the same

experimental settings conducted for the other two datasets for different cross-spectral matching

scenarios that have been described in the previous sections. It is worth noting that while comparing

our results obtained for this dataset over existing algorithms [168, 169, 171, 182], we follow the

same train-test protocol used in their paper to show fair evaluation.

The comparative matching results from our cGAN and cpGAN architectures are shown in Fig.

5.7, while the corresponding EER results are summarized in Table 5.4. For comparison we use

several highly competitive benchmark MRF approach [169], polpular gabor filter based IrisCode

[182], SDH method [168] and another 1D log-gabor filter based IrisCode [171] to ascertain the

superiority of our proposed approaches.
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((a)) ((b)) ((c))

Figure 5.7: ROC plots showing the performance of our approach (a) Scenario 1 and 3 with cGAN
architecture, (b) Scenario 2(a) and 2(b) with cGAN architecture and (c) cpGAN architecture ob-
tained on the Cross-eyed-cross-spectral iris recognition database for the different cross-spectral
matching scenarios.

Fig. 5.7(a) depicts the experimental results for Scenario 1 and Scenario 3 from our cGAN

architecture compared to the baseline result using the most widely deployed IrisCode [182] ap-

proach. The results from Scenario 1 indicate that our proposed domain translation technique using

the cGAN architecture significantly improves the cross-spectral iris matching accuracy by 28.59%

at 0.01 FAR compared to the benchmark result using the IrisCode [182] approach. In addition, it

also achieves 15.3% higher GAR at 0.01 FAR and 0.73% lower EER even when we experiment

matching for Scenario 3.

In Fig. 5.7(b), we present ROC results for showing the performance of our proposed joint

network Scenario 2(a) where the network learns to translate and super-resolve simultaneously from

the LR NIR to HR VIS iris image, and compare this result to the approach when both techniques are

applied separately (see Fig. 5.1 Scenario 2(b)). Table 5.4 shows that joint training obtains 74.8%

GAR at 0.01 FAR, which outperforms the separate training considered as baseline by 14.8% GAR.

We also investigate the performance of our coupled learning framework for four different cross-

spectral and cross-resolution scenarios. We plot the resulting ROC curves in Fig. 5.7(c). Table 5.4

summarizes the EER results comparing our proposed approach with other state-of-the-art deep

learning iris recognition method proposed in [168, 169, 171, 182] for the same train-test protocol.

We notice that when we match the HR VIS iris probe image against a HR NIR iris gallery, our

cpGAN achieves superior recognition performance over the other baseline matching algorithms.
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Table 5.4: Comparative performances on the Cross-eyed-cross-spectral iris recognition database.
Symbol ’-’ indicates that the metric is not available for that protocol.

Algorithm Matching GAR@FAR=0.1GAR@FAR=0.01GAR@FAR=0.001EER (%)
CNN with SDH [168] HR VIS vs HR NIR — 87.18 — 6.34

NIR to VIS texture synthesis using MRF model [169] HR VIS vs HR NIR 78.13 — — 18.40
IrisCode using 1D Log-Gabor filter [171] HR VIS vs HR NIR 70.3 — — 19.48

cpGAN(Ours) HR VIS vs HR NIR 96.30 89.4 81.8 1.1
cpGAN(Ours) HR VIS vs LR NIR 90.3 81.7 79.6 1.28
cpGAN(Ours) HR NIR vs LR VIS 86.40 78.4 72.3 1.31
cpGAN(Ours) LR NIR vs LR VIS 81.80 62.0 59.0 2.55

NIR to VIS domain translation (Ours cGAN) Scenario 1 90.30 80.09 70.1 1.54
Joint domain translation & super-resolution (Ours Modified cGAN) Scenario 2(a) 80.8 74.8 67.02 1.71

Domain translation & super-resolution (Separate Training) Scenario 2(b) 71.30 60.0 54.90 3.04
VIS to NIR domain translation (Ours cGAN) Scenario 3 79.0 66.8 63.8 2.17

Iriscode (OSIRIS) [182] HR VIS vs HR NIR 60.0 51.5 44.8 3.9
Iriscode (OSIRIS) [182] LR VIS vs LR NIR 53.1 44.2 38.8 5.67

It obtains almost 26% and 18.17% more identification accuracy compared to the approach used

in [171] and [169], respectively. In addition, it also outperforms the most competitive cross-spectral

iris recognition approach [168] in the literature by a remarkable decrease of 5.24% in EER. All the

other scenarios achieve EER less than 2%, which reveals the robustness of our coupled network.

Again, even if we consider a LR NIR iris probe matched against a LR NIR iris gallery, we observe

it performs much better than the benchmark using IrisCode [182] for the same scenario.

5.6 Cross-Database Performance Evaluation

One of the most promising benefits of deep-learning-based iris recognition is its generalization

capability, which offers high matching performance even when using the model trained on com-

pletely different iris database. Therefore, we also evaluate cross-database matching performance

to validate the generalization capability of both of our approaches.

During this cross-database performance evaluation, first, we directly employ one of our models

that has been trained on the PolyU bi-spectral database to ascertain the verification performance

for the WVU face and iris database and Cross-eyed-cross-spectral iris recognition database with-

out any fine-tuning. More specifically, we have used one dataset for training, and disjoint dataset

for testing. Next, we follow the same technique to perform cross-database matching for the other

two datasets: we use a model trained on the WVU face and iris image database to evaluate the

recognition performance for the PolyU and Cross-eyed database, and similarly, for a model that

is trained using the Cross-eyed dataset. We maintain the same test-protocol as described for the
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respective databases in previous sections. For matching we consider only Scenario 1 when eval-

uating the performance of the cGAN architecture. To report evaluation of the cpGAN network,

we specifically consider the scenario where the HR VIS iris probe is matched against a HR NIR

gallery. We have already introduced both of these scenarios in the earlier sections.

The aim of this evaluation is to validate the generalization capability of our proposed frame-

works when the target iris database has limited training samples. We show the comparative per-

formance from the respective databases in Fig. 5.8-5.10 and report respective EER values in Ta-

ble 5.5-5.7 from this cross-database performance evaluation. These results for the cross-database

matching also indicate the performance improvement gained by employing our framework and

reveal its generalization capability.

((a)) ((b))

Figure 5.8: Comparative ROC results showing the cross-database matching of our approach (a)
Scenario 1 with cGAN architecture (b) cpGAN architecture (matching the HR VIS iris probe
against a HR NIR gallery) where both networks were trained only on the PolyU bi-spectral dataset.

Table 5.5: Cross-dataset matching performance evaluation. We trained both networks only on the
PolyU bi-spectral dataset.

Approach Iris Comparison Test Dataset GAR@FAR=0.01GAR@FAR=0.001EER (%)
cpGAN(ours)HR VIS vs HR NIR PolyU Bi-Spectral 92.38 84.98 1.02

WVU Face and Iris 88.9 81.7 1.13
Cross-eyed-cross-spectral 85.2 77.5 1.20

cGAN(ours) Scenario 1 PolyU Bi-Spectral 80.5 70.1 1.5
WVU Face and Iris 77.8 62.9 1.64

Cross-eyed-cross-spectral 75.5 57.9 1.72
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((a)) ((b))

Figure 5.9: Comparative ROC results showing the cross-database matching of our approach (a)
Scenario 1 with cGAN architecture (b) cpGAN architecture (matching the HR VIS iris probe
against a HR NIR gallery) where both networks were trained only on the WVU face and iris
dataset.

Table 5.6: Cross-dataset matching performance evaluation. We trained both networks only on the
WVU face and iris dataset.

Approach Iris Comparison Test Dataset GAR@FAR=0.01GAR@FAR=0.001EER (%)
cpGAN(ours)HR VIS vs HR NIR WVU Face and Iris 93.0 84.0 0.90

PolyU Bi-Spectral 89.40 81.9 1.13
Cross-eyed-cross-spectral 85.8 78.5 1.18

cGAN(ours) Scenario 1 WVU Face and Iris 80.8 75.1 1.54
PolyU Bi-Spectral 79.6 68.9 1.60

Cross-eyed-cross-spectral 76.0 67.5 1.66

Table 5.7: Cross-dataset matching performance evaluation. We trained both networks only on the
Cross-eyed-cross-spectral iris recognition dataset.

Approach Iris Comparison Test Dataset GAR@FAR=0.01GAR@FAR=0.001EER (%)
cpGAN(ours)HR VIS vs HR NIRCross-eyed-cross-spectral 89.4 81.8 1.1

PolyU Bi-Spectral 82.30 74.80 1.21
WVU Face and Iris 81.5 71.8 1.26

cGAN(ours) Scenario 1 Cross-eyed-cross-spectral 80.09 70.1 1.54
PolyU Bi-Spectral 71.5 68.9 1.75
WVU Face and Iris 69.2 64.4 1.9

5.7 Ablation Study

Training a GAN-based architecture is always difficult due to the GAN’s natural instability. Ad-

ditional loss functions in guiding the GAN training can significantly improve the performance.

However, these loss terms in the total combined loss are inconsistent on a numerical scale. There-

fore, we use hyperparameters as weight factors to numerically balance the magnitude of different
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Figure 5.10: Comparative ROC results showing the cross-database matching of our approach (a)
Scenario 1 with cGAN architecture (b) cpGAN architecture (matching the HR VIS iris probe
against a HR NIR gallery) where both networks were trained only on the Cross-eyed-cross-spectral
iris recognition dataset.

Dataset PolyU Bi-Spectral
Iris Comparison Scenario 1 (HR VIS vs Synthesized VIS)

Hyperparameter Settings GAR@FAR=0.01 GAR@FAR=0.001
λ1 = 100, λ2 = 2 × 10–3 68.9 54.6
λ1 = 10–2, λ2 = 2 × 10–3 75.7 63.5
λ1 = 10–4, λ2 = 2 × 10–3 78.1 66.8
λ1 = 10–6, λ2 = 2 × 10–3 80.5 70.1
λ1 = 10–6, λ2 = 2 × 10–2 72.7 61.4
λ1 = 10–6, λ2 = 2 × 10–1 70.1 58.5

((a))

Dataset PolyU Bi-Spectral
Iris Comparison HR VIS vs HR NIR

Hyperparameter Settings GAR@FAR=0.01 GAR@FAR=0.001
λ3 = 1, λ4 = 1, λ5 = 0.3 87.3 74.2

λ3 = 1, λ4 = 0.7, λ5 = 0.3 89.7 78.9
λ3 = 1, λ4 = 0.5, λ5 = 0.3 90.1 81.8
λ3 = 1, λ4 = 0.3, λ5 = 0.3 92.38 84.98
λ3 = 1, λ4 = 0.3, λ5 = 0.5 89.3 76.6
λ3 = 1, λ4 = 0.3, λ5 = 0.7 85.4 74.0
λ3 = 1, λ4 = 0.3, λ5 = 0.1 87.1 71.9

((b))

Table 5.8: Matching performance of our proposed (a) cGAN (b) cpGAN using different hyperpa-
rameters settings on the PolyU Bi-Spectral test dataset

losses which accelerates the total loss convergence. To determine the optimal hyperparameters for

our both cGAN and cpGAN models, we conduct an ablation study through changing the value of

hyperparameters : λ1, λ2, and λ3, λ4, λ5 adapted in equation (5.19) and (5.20), respectively. We

have summarized the analysis in Table 5.8, and show the match performance in Fig. 5.11.

5.7.1 Hyperparameter Analysis

We evaluate the sensitivity of match performance when hyperparameters are varied across a range

for training our proposed cGAN module. Training the cGAN with an L2 term alone might lead

to blurry results, since this loss penalizes the squared distance between ground truth outputs and

synthesized outputs at pixel level. Since synthesized image quality is our top priority, we have

added the ImageNet trained VGG-based perceptual loss, which is effective at generating realistic
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Figure 5.11: Comparative ROC results showing the sensitivity of matching performance on the
hyperparameters of our proposed (a) cGAN, when it is trained only on the PolyU Bi-Spectral
dataset for Scenario 1 (b) cpGAN, when it is trained only on the PolyU Bi-Spectral dataset for
matching the HR VIS iris probe against a HR NIR gallery.

synthesized images by including more recognizable structure. Therefore, we keep the weight factor

of the L2 loss term 1 and train cGAN at λ1 ∈ {100, 10–6}, and λ2= 2 × 10–3, which are used as

weight factors for adversarial loss term and perceptual loss term, respectively. We have also trained

the network for a varied range of λ2 ∈ {2 × 10–3, 2 × 10–1}, when λ1 = 10–6. From the analysis of

hyperparameters, as shown in Fig. 5.11(a), and Table 5.8(a), we notice that our proposed cGAN

achieves the best matching performance for Scenario 1, when it is trained with λ1 = 10–6, and λ2 =

2×10–3 on the PolyU Bi-Spectral dataset. We have used this setting to perform all the experiments

for cGAN and reported the obtained results in this paper.

For training the cpGAN, we have considered additional constraints, such as L2 loss and VGG-

based perceptual loss along with adversarial, and contrastive loss functions. Since we have de-

veloped our 2nd method to perform cross-spectral iris matching in the common embedded latent

feature subspace, we put more emphasis on contrastive loss, which cares about the distance be-

tween genuine pairs and also penalizes mismatch between imposter pairs. Therefore, the weight

factor for this loss term remains 1, and other hyperparameters have been changed to stabilize the

cpGAN training, which allows it to converge faster, and thoroughly improve performance.

As seen in Fig. 5.11(b), and Table 5.8(b), we keep the adversarial weight factor, λ3 = 1, when

changing the values λ4, and λ5 from 0.3 to 1.0, which define weight factors for perceptual, and L2

reconstruction loss term, respectively. From this ablation study, we have observed that λ4= λ5= 0.3
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obtains the best matching accuracy, when the HR VIS iris probe is matched against the HR NIR iris

gallery for the PolyU Bi-Spectral dataset (see Fig. 5.11(b) and Table 5.8(b)). For fair comparison,

we have used these settings to train the cpGAN for other datasets and reported the results in this

paper.

5.8 Limitation of the iris image acquisition method on the ob-

served results

The quality of iris images affects the matching performance of any iris recognition system, which

indicates the significant role of the iris acquisition process. It is the most initial part of any typical

iris recognition system. During the acquisition of iris images, one must maintain an ISO stan-

dard iris image format (iris diameter has to be 150 pixels [212]), which is not easy to achieve in

many data acquisition environments. Most of the commercial iris image acquisition systems are

designed to work at a close range and maintain a small operating distance, which is less than 1

meter [213]. Moreover, all of them need users’ cooperation. Therefore, it has become troublesome

to capture iris images at a distance to generate low-resolution iris images in realistic environments.

Therefore, there are no datasets available to study the effect cross-resolution and cross-spectral

mismatch on iris recognition systems in the literature. To overcome this limitation to some ex-

tent, the researchers developing state-of-the-art iris recognition systems have resized the original

high-resolution iris images to their desired low-resolution images. In our work, we first apply a

Gaussian filter and then resize the iris image using a bicubic interpolation method. We assume that

these artificially-generated low-resolution images have similar characteristics as the original low-

resolution images. However, we cannot certainly say that we would have achieved exactly similar

performance if we used the original low-resolution images. We have tried to obtain low-resolution

iris images as close as possible to a realistic setting. These results can be considered as a baseline

for further improvement if the low-resolution iris images can be acquired in a realistic setting.
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5.9 Conclusion

In this paper, we have described the development of two different deep learning frameworks for

cross-spectral and cross- resolution iris recognition. While both frameworks are developed based

on domain transformation, one of them functions by translating from one domain to the another

(NIR to VIS or vice versa), and the other framework transforms both domains to a latent em-

bedding subspace. Briefly stated, in our first approach, we have introduced a domain transla-

tion network which can be considered as preprocessing step for any off-the-shelf iris recognition

system. In addition, we have proposed a new joint translation and super-resolution technique to

address cross-resolution iris matching under the cross-domain problem. Experimental results on

three publicly available cross-spectral datasets indicate the superiority of our proposed method

over the earlier methods presented in the literature. This paper also investigates the domain in-

variant capability of our proposed cpGAN framework, which projects both the VIS and NIR iris

texture features into a common latent embedding subspace to perform matching in the embedded

domain. The goal of this network is to maximize the pair-wise correlation via contrastive loss dur-

ing projection for more accurate cross-spectral iris matching. Results reported in Section 5.5 show

significant improvement in the matching accuracy compared to other deep learning cross-spectral

iris recognition algorithms. For instance, cpGAN achieves improvements of approximately 33%,

when compared to the results reported in [211] for the PolyU Bi- Spectral dataset. Finally, we per-

form cross-database iris matching under the cross-spectral domain to evaluate the generalization

capability of our methods.
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Chapter 6

Pose Attention-Guided Profile-to-Frontal

Face Recognition and Reconstruction of

Frontal Faces

6.1 Introduction

The advent of deep convolutional neural networks (CNNs) has led to promising achievements in

unconstrained face recognition and verification techniques [14, 15]. It has even surpassed human

performance on several benchmark datasets [17]. However, a challenge that still remains to be

solved, is that of extreme pose variations, which degrade frontal-to-profile face verification accu-

racy by more than 10% compared to frontal-to-frontal matching accuracy. [214]. The most promi-

nent factors contributing to this performance degradation can be classified into three categories:

• Facial appearance distortion: In comparison to controlled environment, real-world profile

faces have different imaging conditions besides pose such as expression, occlusion, and illu-

mination variations as shown in Figure 1. These variations cause substantial changes in facial

appearance, which indicates a loss of consistent information useful for face recognition.

• Missing Semantic Consistency: When a face view is changed from frontal to profile, the

position and shape of facial texture varies nonlinearly, which inevitably introduce loss of

semantic correspondence in 2D images along with confusion in interpersonal texture differ-
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Figure 6.1: Frontal and Profile faces in the IJB-A Dataset under full pose variation, expression,
and different imaging conditions.

ences [215]. In consequence, extracted features from two images at different poses are no

longer similar and cannot provide high matching accuracy as expected in conventional face

recognition methods.

• Imbalance pose distributions: Deep learning based face recognition algorithms extensively

rely on very large datasets, which usually suffer from uneven pose distributions. This data

imbalance continues to impose challenges for face recognition, which forces the model to

lean towards frontal images than profile face image of a person resulting in poor matching

accuracy during frontal-to-profile verification. In contrast, human can easily identify faces

with extreme pose variations without significant drop in accuracy.

To address this performance gap between human and automatic models, traditional methods

apply several local descriptors such as Gabor [216], Haar [217], and LBP [218] to measure local

distortions and then adopt metric learning techniques [219, 220]. On the other hand, another re-

search community emphasizes on frontal view synthesis across poses. They utilize 3D geometrical

transformations [14, 39, 221] to reduce pose variations. Moreover, multiple novel architectures

have been proposed [46, 222, 223] for face normalization, which aligns faces to a canonical pose.

Although, they show impressive performance at normalizing small pose faces, their accuracy drops

severely under extreme pose conditions. To handle this problem, some researchers opt on learning

pose-robust features [41,224,225] for multi-view face images. Among them, Cao et al. [224] pro-

pose a lightweight DREAM block which learns specific feature transformation to perform frontal-

ization in feature space, while others explore multi-task learning to perform pose-invariant face

recognition (PIFR) [41, 44].

In this paper, we introduce a novel method to learn discriminative pose-invariant representation
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in a deep feature embedding subspace without performing profile face normalization (frontaliza-

tion) or learning disentangled features. Instead, we explicitly deal with the pose variability by

incorporating it as an auxiliary information to the feature extraction network. We hypothesize that

learning with side information allows for better generalization of the primary task by assisting it

to focus on the current context and ignore unnecessary information. To this end, we first develop a

deep coupled profile to frontal network using the contrastive loss, which is able to learn mapping

internal representation from faces into a compact 512-dimensional embedding subspace. Second,

to incorporate pose as an auxiliary signal, we propose an easy-to-implement pose attention block

(PAB), which automatically infers significant features from profile faces along channel and spa-

tial axes in deeper layers of the network. In other words, PAB is designed to empirically guide

to learn discriminative and pose-invariant features in an embedding subspace. Moreover, we also

investigate the capability of these learned embedding features via a generative adversarial network

(GAN). In a summary, this paper offers the following contributions:

• A novel coupled profile to frontal PIFR model utilizing pose as an auxiliary information is

developed.

• A pose attention block (PAB) module using a pretrained pose-estimation network is proposed

to guide a discriminative and pose-invariant feature learning framework in an embedding

subspace.

• Extensive experiments on different benchmark datasets and comparison to other state-of-the-

art methods have been performed to validate the effectiveness of our proposed PIFR network.

• Capability of the embedding features learned in our proposed network is explored for frontal

face synthesis via a GAN model, which indicates its usefulness in different face analysis

tasks apart from face recognition.



M. Mostofa Chapter 6. Pose Attention-Guided Profile-to-Frontal Face Recognition 104

6.2 Related Work

6.2.1 Face Frontalization

Face frontalization has become an extremely challenging task due to the self-occlusion that exists

in 2D projections of the input face with large pose variations. To address this problem, traditional

methods use 3D based models [39, 221, 226], statistical approaches [40], and deep learning based

methods [227–230] for face frontalization. Hassner et al. [39] used a 3D face model to generate

frontal shape of all input faces. Although it is proved to be efficient in face frontalization task,

it cannot achieve expected accuracy for profile and near profile faces, specifically faces with yaw

angle greater than 60°. A statistical model is proposed in [40], which solves a constrained low-

rank minimization problem to jointly perform frontal view reconstruction and landmark detection.

Recently, deep learning based methods have shown outstanding performances in frontal face syn-

thesis. In [228], a recurrent transform unit is proposed to reconstruct discrete 3D views. Yim et

al. [229] applied a concatenated network structure to rotate a non-frontal face, where they regular-

ize the output by image level reconstruction loss. With the emergence of GAN, researchers have

concentrated more on GAN-based methods, which has advanced the performance of face frontal-

ization methods. However, face frontalization is considered as an image-level pose-invariant rep-

resentation, which can improve PIFR performance mostly for face images at near frontal or half

profile.

6.2.2 Pose Invariant Representation Learning

Pose-invariant feature representation has been recently used as a mainstay of many face recogni-

tion tasks. Earlier works apply canonical correlation analysis (CCA) [231] to analyze the shared

characteristics among pose-invariant samples. Recent deep learning based approaches focus on

several aspects while training a network. To name, in [230], a deep neural network is trained to

separate face identity from viewpoints. Kan et al. [232] propose feature pooling across different

poses to allow a single network structure for inputs at multiple pose views. To disentangle poses in

feature representation, several methods [41, 233] carefully factorize out the non-identity part. Au-

thors in [234, 235] mostly consider fusing information at the feature level or distance metric level.
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Figure 6.2: Block diagram of our proposed deep coupled profile-to-frontal PIFR network

On the other hand, Cao et al. [224] propose a pose discrepancy corrector module, recently followed

by many researchers [45, 236] to empirically perform frontalization in feature space. Contrary to

these approaches, we mostly concentrate to utilize pose as side information via attention mecha-

nism and guide the network to learn discriminative, and pose-invariant features in an embedding

subspace.

6.3 Proposed Method

Here, we describe our proposed method which offers a new perspective of learning pose-invariant

feature representation via incorporating pose specific auxiliary information into deep subspace

learning profile to frontal face verification network. Inspired by the success of unified face recog-

nition system [17] in learning embedding from faces, we develop a deep coupled framework as

shown in Figure 6.2 to learn mapping from both frontal and profile faces to a compact feature

embedding subspace. Since profile faces have large pose variations, we exploit this angular knowl-

edge to explore how auxiliary pose information can improve the embedding feature representation

for profile faces. To implement this perspective, we propose the PAB module, which helps the

network to sequentially refine features in both channel and spatial dimension. In this section, first

we discuss the implementation technique of our PAB module, and then we detail how we integrate
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the auxiliary pose information to our deep coupled network.

6.3.1 Pose Attention Block (PAB)

We adopt a robust pose estimation network, i.e., Hopenet [237], which has been trained on a

large synthetically expanded dataset 300W-LP [238]. Hopenet uses ResNet50 as backbone of

their architecture and adds three fully connected layers to predict intrinsic Euler angles (yaw, pitch

and roll) directly from input off-angle face images as illustrated in Figure 6.2. To implement our

proposed PAB module, we take a feature map of size 2048×7×7 from the last convolutional layer

of Hopenet, that already provide us with more complex abstract features such as overall shapes,

pose and texture of the input face.

Our proposed PAB module consists of two sequential attention modules: adaptive channel

attention module (ACAM), and spatial attention module (SpAM) to emphasize meaningful features

and suppress unnecessary ones along channel and spatial axes, respectively. Briefly, for a given

input feature map, ACAM and SpaM attend to all channel and spatial locations through inferring a

1D channel attention map and a 2D spatial attention map. Figure 6.3 illustrates the framework of

the proposed PAB, that is integrated with our deep coupled learning framework in Figure 6.2. We

now discuss each component in detail.

Adaptive Channel Attention Module (ACAM)

Given an input feature map, x ε RC×H×W of size 2048×7×7, ACAM applies average-pooling and

max-pooling operation like CBAM [239] to learn inter-channel dependencies and generates two

different spatial context descriptors: xc
avg, and xc

max, respectively. To integrate spatial information,

they are forwarded to a shared multilayer perceptron (MLP1), which is typically a two layer fully

connected network as shown in Figure 6.3(a). Since our ultimate goal is to distill features for

the face recognition task along the channel dimension to highlight which of the feature maps are

relevant to shape, we set hidden size 128 and output in a way such that it can generate a 1D channel

attention map of 1792 consistent with the feature map depth size in our FR network. After that, we

use element-wise summation to merge feature vectors obtained from the shared MLP1 network. In

a summary, the channel attention is computed as follows:
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Figure 6.3: Block diagram of our PAB (a) Adaptive Channel attention module (ACAM) (b) Spatial
Attention Module (SpAM)

Mc(x) = σ(MLP1(xc
avg) + MLP1(xc

max)), (6.1)

where σ is the non-linear activation function.

Spatial Attention Module (SpAM)

Following CBAM [239], we design our spatial attention module (SpAM) to focus on the informa-

tive region in the spatial domain. In our SpAM, we compute a 2D spatial attention map of size

3 × 3 to be consistent with the feature map size of FR network as follows:

Fc(x) = σ(MLP2(xc
avg) + MLP2(xc

max)), (6.2)

Ms(x) = σ(conv2D[Fs
c(x)avg, Fs

c(x)max]), (6.3)

where Fc(x) denotes channel refined features in Figure 6.3(b), which is obtained using another

shared MLP2, and conv2D refers to the convolution on the concatenation of the average pooled

feature map, Fs
c(x)avg and max pooled feature map, Fs

c(x)max along the channel axes, which ensures

inter-spatial relationship of features.
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6.3.2 Profile to Frontal Coupled Subspace Learning Network

Our goal is to learn a discriminative, pose-invariant feature representation from a pair of face

images to a compact embedding subspace such that we can perform recognition of profile face

images with respect to a gallery of frontal face images in the embedded domain. Therefore, to

learn a rich feature representation, we propose a coupled deep convolutional network guided by a

pose attention module. Our method adopts a variant of InceptionResnet [240] architecture that is

used in FaceNet [17] as the core element of our network, which is pretrained on VGGFace2 [241].

The model structure in Figure 6.2 illustrates that a pair of images goes through the coupled

network consisting of two dedicated branches to extract features from both frontal and profile

images. Since there exists pose variations in profile faces, we hypothesis that we can leverage pose

as an auxiliary information to improve the ability of extracting highly discriminative features from

these profile faces. To accomplish this, the profile image is also fed to a pretrained Hopenet pose

estimation network, which provides pose attended information via our PAB module to sequentially

distill features along both channel and spatial dimension of this network.

Previous section explains the block design of our PAB module. It consists of two sub modules:

(1) ACAM, that generates a 1D channel attention map of 1792 to refine the feature map (1792 ×

3×3) of our profile coupled network along the channel dimension, and (2) SpAM, which produces

a 2D spatial attention map of size 3x3 to spatially attend the informative region in the feature maps

of our profile network as in Figure 6.2. For more details note that, both 1D and 2D attention maps

are multiplied with the feature maps of the profile network for adaptive feature refinement. In

addition, identity mapping after the pose informative feature aggregation results in purely distilled

relevant features before average pooling, which we term as pose refined features.

Such sharing of pose as auxiliary information during feature extraction from profile faces re-

sults in informative and task relevant features, which otherwise would not have been attained from

training only with a massive labelled faces. In addition, it also allows for better generalization of

the PIFR task by looking at new interpretations of the features. Once the embeddings are estab-

lished as feature vectors, we optimize the network via class-specific contrastive loss, which tries to

minimize squared Euclidean distance between the features of positive pairs (i.e., when profile and

frontal image share the same identity) and maximize it for negative pairs (i.e., when profile and



M. Mostofa Chapter 6. Pose Attention-Guided Profile-to-Frontal Face Recognition 109

frontal image comes from different identities).

6.4 Loss Function

Our goal is to learn a compact 512-D embedding subspace by coupling two mapping networks,

one for frontal and another one for profile face image, via a distance-based contrastive loss, Lcont

[201]. We compute this loss metric, Lcont over a set of genuine (i.e., a profile face image of a

subject with its corresponding frontal face image) and imposter (i.e., a profile face image of a

subject and a frontal face image of a different subject) pairs such that images belonging to the

same identity (genuine pair) are embedded as close as possible, and, simultaneously, images of

different identities are pushed away from each other in the common embedded subspace. The

contrastive loss function is formulated as:

Lcont(z(xi
p), z(xj

f), Y) = (1 – Y)
1
2

(Dz)2 + (Y)
1
2

(max(0, m – Dz))2, (6.4)

where xi
p and xj

f denote the input profile and frontal face images, respectively. The variable Y is a

binary label, which is equal to 0 if xi
p and xj

f belong to the same class (i.e., genuine pair), and equal

to 1 if xi
p and xj

f belong to the different class (i.e., impostor pair). z(.) is used to denote the mapping

function for xi
p and xj

f into a compact embedding subspace. To tighten the constraint, m is used as

contrastive margin.

The Euclidean distance, Dz, between the embedding features, z(xi
p) and z(xj

f), is given by:

Dz =
∥∥∥z(xi

p) – z(xj
f)
∥∥∥

2
. (6.5)

Therefore, if Y = 0 (i.e., genuine pair), then the contrastive loss function (Lcont) is given as:

Lcont(z(xi
p), z(xj

f), Y) =
1
2

∥∥∥z(xi
p) – z(xj

f)
∥∥∥2

2
, (6.6)
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and if Y = 1 (i.e., impostor pair), then contrastive loss function (Lcont) is :

Lcont(z(xi
p),z(xj

f), Y) =
1
2

max

(
0, m –

∥∥∥z(xi
p) – z(xj

f)
∥∥∥2

2

)
. (6.7)

Thus, the total loss to optimize the entire network is denoted by Ltotal for coupling both the

profile and frontal face in the embedded domain:

Ltotal =
1

N2

N∑
i=1

N∑
j=1

Lcont(z(xi
p), z(xj

f), Y), (6.8)

where N is the number of training samples. The main purpose of using the contrastive loss is to be

able to use the class labels, and margin to ensure discriminative embedding subspace, which may

not be obtained with some other metric such as the Euclidean distance. Finally, we use this pose

attended discriminative embedding subspace for matching of the profile images with the frontal

images.

6.5 Experiments

In this section, we describe our implementation details and the datasets that we have used to con-

duct our experiments. To evaluate the performance of our proposed PIFR network, we experiment

under two settings: (1) face identification on controlled Multi-PIE [242] face dataset, and (2) face

verification/identification on in-the-wild datasets including CFP [214] and IJB-A [243] with their

official evaluation protocols. In addition, we also report face recognition accuracy compared to

several state-of-the-art results on these datasets.

6.5.1 Datasets

Multi-PIE : The Multi-PIE dataset is the largest dataset released for multi-view face recognition

with respect to controlled variations in illumination and expressions across different poses. It con-

tains 754,204 images of 337 identities, captured at 15 view points ranging from –90° ∼ +90°, over

20 illumination conditions. To evaluate our proposed method for identification task, we conduct
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experiments under two settings following protocol used in [46] for fair comparison. Setting 1 in-

cludes images only from session 1 in the Multi-PIE dataset, which has 250 subjects. For training,

we choose first 150 identities with 11 poses within ±90° and 20 illuminations. During testing,

one frontal view with neutral expression and illumination (i.e., ID 07) is used in the gallery for

each of the remaining 100 identities and other images are considered as probe images. Setting 2

includes images only with neutral expression over all four sessions providing 337 identities. To

train our network, we use first 200 identities, while rest of the 137 IDs have been used for testing.

We maintain similar setup as setting 1 for our gallery and probe.

CFP : The Celebrities in Frontal-Profile (CFP) dataset is introduced to handle large-pose vari-

ations. It contains identities of 500 celebrities, which have been collected under constrained (i.e.,

images at different pose, illumination and expression) and unconstrained (i.e., images collected

from the Internet) settings. For each celebrity, it includes 10 frontal and 4 profile images. Follow-

ing their standard 10-fold evaluation protocol [214], we split the dataset into 10 folds, each with

350 genuine and 350 imposter pairs to perform both frontal-to-frontal (FF), and frontal-to-profile

(FP) verification task.

IJB-C: The IARPA Janus Benchmark–C (IJB-C) [244] face dataset has been released to ad-

vance the unconstrained face recognition by modeling more practical face recognition use cases.

It is an extension to the publicly available IJB-B [245] dataset, which contains 3, 531 subjects with

extreme variations in expression, illumination, geographic origin, and more. In total, it has 31, 334

still images and 1, 17, 542 video frames collected in unconstrained settings with different proto-

cols. To evaluate our algorithm’s ability, we perform both face verification (1:1), and identification

(1:N) tasks following their protocol.

M2FPA: Traditional face recognition databases typically rely on a two-dimensional image of

a person’s face, which can make it difficult to accurately identify individuals when they are not

facing the camera directly. However, by incorporating information about the pitch and yaw angles

of the face, the system can more accurately identify an individual even when they are not facing

the camera directly. In this direction, Multi-yaw Multi-pitch high-quality database for Facial Pose

Analysis (M2FPA) [246] introduces images with joint yaw and pitch variations. M2FPA includes

a total of 397,544 images of 229 subjects with 62 poses, 4 attributes, and 7 illuminations. Pose
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variations include 13 yaw angles (-90°to + 90°), 5 pitch angles (-30°to +45°), and 44 joint yaw and

pitch variations. We have considered 162 subjects for training and 62 subjects for testing.

6.5.2 Implementation Details

To implement our proposed coupled learning framework, we have used InceptionResnet-v1 [240]

pretrained on VGG-Face2 dataset. Since it is difficult to train the entire network from scratch, we

freeze all the trained layers before average pooling for both frontal and profile mapping modules

as shown in Figure 6.2. At the same time, our PAB module provides a pose attended 1D channel

attention map, and a 2D spatial attention map to assist the network to use only the relevant features

while extracting deep features from the profile faces. Therefore, the gradient also flows through

this PAB module to update its weights during optimization. Note that, since misleading pose

information can misguide the training, we don’t train Hopenet, which has been already trained on

a very large dataset, and proved to be an efficient pose estimation model. The entire framework

has been implemented in Pytorch. We used a batch size of 32 and the Adam optimizer [247] with

first-order momentum of 0.5, and learning rate of 10–3. For training, we generate same number of

genuine, and imposter pairs from frontal, and profile images of the same/different subjects to avoid

biasness towards positive pairs.

6.5.3 Evaluations on the Multi-PIE Benchmark

To show the effectiveness of our proposed method, first we evaluate our model on a controlled

database, Multi-PIE for profile to frontal pose-invariant face recognition task in the deep embed-

ding subspace under two different settings. We compare our method with several state-of-the-art

PIFR algorithms including HPN [43], c-CNN [248], PIM [46], FNM [46], and competitive GAN-

based methods : TP-GAN [249], CAPG-GAN [250], and PF-cpGAN [251].

Table 6.1 shows our rank-1 recognition accuracy compared to other approaches across full yaw

variations and illuminations under setting-1. For this experimental setup, we consistently achieve

100% accuracy over yaw angles < 75°, while outperforming other baselines. Even under extreme

pose (i.e., ±75°, and ±90°), when compared to CAPG-GAN, and PF-cpGAN, we significantly

outperform them by achieving average 11.85%, and 3% higher accuracy, respectively.
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Table 6.1: Rank-1 recognition rates (%) across poses and illuminations under Multi-PIE Setting-1.

Method ±90°±75°±60° ±45° ±30° ±15°

HPN [43] 29.8 47.5 61.2 72.7 78.2 84.2
c-CNN [248] 47.2 60.7 74.4 89.0 94.1 97.0

TP-GAN [249] 64.0 84.1 92.9 98.6 99.99 99.8
PIM [46] 75.0 91.2 97.7 98.3 99.4 99.8

CAPG-GAN [250] 77.1 87.4 93.7 98.3 99.4 99.9
FNM+VGG-Face [222] 41.1 67.3 83.6 93.6 97.2 99.0
FNM+Light CNN [222] 55.8 81.3 93.7 98.2 99.5 99.9

PF-cpGAN [251] 88.1 94.2 97.6 98.9 99.9 99.9
Backbone(without attention) 75.7 98.2 100.0 100.0 100.0 100.0

Ours 89.5 98.7 100.0 100.0 100.0 100.0

Table 6.2: Rank-1 recognition rates (%) across poses and illuminations under Multi-PIE Setting-2.

Method ±90°±75°±60° ±45° ±30° ±15°

FF-GAN [252] 61.2 77.2 85.2 89.7 92.5 94.6
TP-GAN [249] 64.6 77.4 87.7 95.4 98.0 98.6

CAPG-GAN [250] 66.0 83.05 90.6 97.3 99.5 99.8
DA-GAN [42] 81.5 93.2 97.2 99.1 99.8 99.9

PIM [46] 86.5 95.0 98.1 98.3 98.5 99.0
Backbone (without attention) 74.8 96.8 100.0 100.0 100.0 100.0

Ours 88.8 97.7 100.0 100.0 100.0 100.0

We also assess the performance of our proposed network on faces in Multi-PIE under setting-2,

which consists of more challenging face identities than setting-1. Evaluation results, shown in Ta-

ble 6.2 suggests that our proposed PAB purely assists the face recognition network to achieve 2.3%,

and 2.7% increase over the best performing method, PIM [46] in the large pose variations; ±90°,

and ±75°, respectively. Apart from this, our network achieves superior performance over the other

baseline models [46, 249, 252] in all yaw angles. Similar to setting 1, we note 100% recognition

accuracy for near-profile faces. These improvements indicate the efficacy of our method for PIFR

in constrained environment.

6.5.4 Evaluations on the CFP Benchmark

We evaluate our proposed method on the Celebrities in Frontal-Profile (CFP) dataset to analysis

face verification in unconstrained environment. To perform evaluation, we follow the standard 10-
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Table 6.3: Performance comparison on CFP dataset. Mean Accuracy and equal error rate (EER)
with standard deviation over 10 folds.

Frontal-Profile (FP) Frontal-Frontal (FF)
Algorithm Accuracy EER Accuracy EER

FV+DML [214] 58.47(3.51) 38.54(1.59) 91.18(1.34) 8.62(1.19)
LBP+Sub-SML [214] 70.02(2.14) 29.60(2.11) 77.98(1.86) 16.00(1.74)
HoG+Sub-SML [214] 77.31(1.61) 22.20(1.18) 85.97(1.03) 11.45(1.35)
FV+Sub-SML [214] 80.63(2.12) 19.28(1.60) 88.53(1.58) 8.85(0.74)
Deep Features [214] 84.91(1.82) 14.97(1.98) 93.00(1.55) 3.48(0.67)

Triplet Embedding [253] 89.17(2.35) 8.85(0.99) 98.88(1.56) 2.51(0.81)
Light CNN-29 [254] 92.47(1.44) 8.71(1.80) 99.64(0.32) 0.57(0.40)

PIM (Light CNN-29) [254] 93.10(1.01) 7.69(1.29) 99.44(0.36) 0.86(0.49)
PR-REM [224] 93.25(2.23) 7.92(0.98) 98.10(2.19) 1.10(0.22)

PF-cpGAN [251] 93.78(2.46) 7.21(0.65) 98.88(1.56) 0.93(0.14)
Backbone (without attention)92.57(1.10) 4.24(0.54) 97.10(0.11) 1.5(0.25)

Ours 95.67(1.64) 2.02(0.62) 99.70(0.21) 0.55(0.35)
Human 96.57(1.10) 5.02(1.07) 96.24(0.67) 5.34(1.79)

fold protocol like other approaches in the literature. We report the mean and standard deviation of

accuracy, and Equal Error Rate (EER) over the 10 splits for both frontal-frontal and frontal-profile

face verification settings.

Table 6.3 shows a comparison of our method with other state-of-the-art face recognition per-

formance on the CFP benchmark datatset. For fair comparison, first, we consider three different

hand-crafted feature extraction techniques: Hog [95], LBP [218], and Fisher Vector [255] along

with metric learning techniques Sub-SML [256], and diagonal metric learning (DML) [256]. To

compare against deep learning based approaches, we include Deep Features [234], Triplet Em-

bedding [253], Light CNN-29 [254], and recently proposed GAN-based latent feature learning

framework, PF-cpGAN [251].

From the results summarized in Table 6.3, we observe that our proposed method slightly im-

proves the FF verification performance compared to other deep learning based techniques. How-

ever, it outperforms human performance for this setting, and makes substantial improvement over

the conventional hand-crafted features by achieving average 18% higher accuracy with 24% de-

crease in EER for more challenging FP setting. In addition, when compared to best performing

PF-cpGAN, our proposed method improves the accuracy by 1.89% and reduce EER significantly
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Table 6.4: Performance evaluation on IJB-C benchmark. Symbol ’-’ indicates that the metric is
not available for that protocol.

Method
1:1 Verification 1:N Identification

GAR@ FAR= 0.01GAR@ FAR= 0.001@ Rank-1@ Rank-5
GOTS [244] 61.99 33.4 38.5 53.8
FaceNet [17] 81.76 66.45 69.22 78.7

VGGFace [18] 87.13 74.79 78.60 87.2
CFR-GAN [257] 86.46 74.81 - -

FNM [222] 91.2 80.4 78.6 88.7
PR-REM [224] 90.6 80.2 77.1 87.6

Backbone(without attention) 89.1 79.9 71.8 81.2
Ours 92.8 82.5 80.33 90.42

by 5% for FP verification. We also improve on the performance of PR-REM [224] by 2.5% higher

accuracy with approximately 6% lower EER. These findings show that the facial respresentations

learned by our coupled deep subspace learning framework with the help of PAB are discriminative,

and able to obtain pose-invariance at large pose variations.

6.5.5 Evaluations on the IJB-C Benchmark

We further evaluate face recognition (i.e., verification and identification) on another challenging

benchmark IJB-C, to validate the superiority of our proposed method in unconstrained environ-

ment. We compare with the recent state-of-the-art algorithms CFR-GAN [257], FNM [222], and

PR-REM [224], along with prior works [17, 18] in [244] for fair evaluation. As shown in Table

6.4, for profile to frontal verification, we improve the genuine accept rate (GAR) by approximately

7.69%, and 2.1% at the false accept rate (FAR) of 0.001 compared to recent works [222, 257].

Moreover, we also obtain outstanding performances on identification. Specifically, we achieve

1.73%, and 3.23% higher recognition accuracy for rank-1 in comparison to the FNM, and PR-

REM, respectively. To show the significant contribution of our proposed PAB module, we com-

pare our results with the backbone network (without attention). It shows our idea of incorporating

pose information boosts FP verification performance by 2.60% at 0.001 FAR, and identification

accuracy by 8.53% for rank-1.
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Figure 6.4: Reconstruction results via a GAN [2] model on Multi-PIE across different pose, illu-
mination, and expression using the compact 512-D embedding features learned using our proposed
network.

6.5.6 Frontal Face Reconstruction from Pose-Invariant Features Learned in

Deep Subspace

The purpose of our proposed PAB is to enhance the recognition performance of our coupled deep

subspace learning framework via contributing in feature refinement. In addition, class-specific con-

trastive loss has been used to push the network achieve pose-invariance in the embedding feature

domain. To validate our hypothesis, previous sections show comprehensive analysis on verifica-

tion and identification task for both constrained and in the wild conditions. Apart from recognition

task, there are many other scopes to utilize the feature vector learned in the deep subspace. For in-
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stance, if we could reconstruct frontal face from the deep features of its corresponding profile face,

it can be used in many face analysis tasks including emotion detection, expression tracking etc.

Moreover, it has broad applications in vision, graphics, and robotics. Therefore, to demonstrate

the usefulness of our proposed method, we adopt a GAN model [2] for reconstruction.

To accomplish this task, we modify residual network used in the two-pathway encode-decoder

architecture proposed by Tian et al. [2]. We consider their decoder module with the discriminator

network for frontal face synthesis. For training, we select profile and corresponding frontal images

from setting 1 of Multi-PIE dataset, which consists of 150 IDs with full yaw variations (-90°to

+90°), and remaining 100 IDs for test. First, we extract 512-d embedding feature vector from our

proposed PAB guided pose-invariant face recognition network for each of the profile image in the

trainset. After that, these profile feature vectors are given as input to the decoder and correspond-

ing frontal faces with no expression and neutral illumination are used as target, which force the

network adversarially learn the image distribution of the frontal faces. To generate identity pre-

serving, high visual quality frontal faces from its profile deep features, we incorporate pixel-wise

L1 reconstruction error, VGG-16 based Perceptual loss [72], and Light CNN-29 [254] network for

identification loss along with adversarial loss. In Figure 6.4, we show some representative results

on Multi-PIE test samples. Reconstruction results indicate that our proposed pose attention-guided

coupled framework is able to provide robust, and discriminative features in the deep subspace for

multiple use of profile to frontal matching in the embedded domain as well as high-fidelity frontal

face synthesis.

6.6 Ablation Study

6.6.1 Embedding Dimensionality

To represent each face into a tightly compact embedding subspace, we explore different embedding

dimensionalities: 128, 256, and 512. Experimental results reported in Table 6.5 illustrates that the

network is able to extract features enriched with relevant information in 512 dimension. We select

512-d for all experiments reported in this paper.
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Table 6.5: Rank-1 recognition rates (%) on Multi-PIE (Setting-1) for different embedding dimen-
sions

Dims±90°±75°

128 60.8 67.5
256 70.2 78.1
512 89.5 98.7

Table 6.6: Rank-1 recognition rates (%) on Multi-PIE (Setting-1) for different approaches of spatial
attention

Description ±90°±75°
Channel Refined Features + 1 × 1 conv + Max Pool 87.8 94.5
Channel Refined Features + 3 × 3 conv + Stride-2 89.5 98.7

6.6.2 Attention Maps

In this section, we show the effective design approach of our proposed pose attention mechanism

to efficiently guide the face recognition network. We first focus on computing different approaches

of SpAM in the pose attention block, PAB. Finally, we observe different combination of channel

and spatial attention in deep profile feature extraction. Each experiment has been explained in the

following sections.

Spatial attention

Given the channel-wise refined features, we explore two different approaches to generate a 2D

spatial attention map: (1) first, we use average-and max-pooling across the channel axes, which

generates two 2D descriptors, then apply standard 1 × 1 convolution followed by a max pool layer.

(2) second, we similarly generate two 2D descriptors, and apply 3 × 3 convolution with stride 2,

which proves to be outperforming the first approach. We report the comparison of two methods in

Table 6.6.

Arrangement of Spatial and Channel Attention

In this experiment, to refine pose informative features from the deep profile branch of our PIFR

network, we apply channel and spatial attention in two different ways. From a spatial viewpoint,

the channel attention works to infer global information whereas the spatial attention focuses on

local neighbourhood. However, the network response can be different upon the sequential order of
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Table 6.7: Rank-1 recognition rates (%) on Multi-PIE (Setting-1) for different arrangements in
attention mechanism

Description ±90°±75°
InceptionResnet + spatial + channel 87.2 95.6
InceptionResnet + channel + spatial 89.5 98.7

Figure 6.5: Comparing Cosine similarity distributions of the genuine pairs and imposter pairs for
full profile faces (±90°) of Multi-Pie Setting 1 between the backbone network (without attention)
and our coupled PIFR network (with attention)

each attention.

Table 7 summarizes the recognition performance on Multi-PIE for different attention sequences.

The results show that the we achieve better performance when we use channel-spatial order rather

than the vise versa.

6.6.3 Visualization

As shown in Figure 6.5, when compared to the backbone network (without attention), the similarity

distributions of the genuine pairs and the imposter pairs in our proposed coupled PIFR network are

more compact and distinct for full profile variations (±90°). Moreover, the area of similarity

between genuine pairs spread more and overlap with the area of imposter pairs when we only train

backbone network with constrastive loss without imposing attention on it. It further supports our

proposed idea of pose refinement via PAB attention module.
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Table 6.8: Rank-1 recognition rates (%) across poses at ±15° and ±30° pitch angles on M2FPA
dataset with yaw zero.

yaw 0°
pitch –30° –15° +15° +30°

Inception Resnet (w/o pose attention) 98.0 100.0 100.0 98.2
Inception Resnet (with pose attention) 98.6 100.0 100.0 98.9

Resnet50 (with pose attention) 100.0 100.0 100.0 100.0

Table 6.9: Rank-1 recognition rates (%) across poses at 0° pitch angle on M2FPA dataset with yaw
variations (–90° to +90°)

pitch 0°
yaw ±15° ±30° ±45° ±60° ±75° ±90°

Inception Resnet (w/o pose attention) 100.0 100.0 100.0 97.01 85.07 62.12
Inception Resnet (with pose attention) 100.0 100.0 100.0 98.51 88.1 78.68

Resnet50 (with pose attention) 100.0 100.0 100.0 100.0 97.01 86.36

Table 6.10: Rank-1 recognition rates (%) across poses at +15° pitch angle on M2FPA dataset with
yaw variations (–90° to +90°)

pitch +15°
yaw ±15° ±30° ±45° ±60° ±75° ±90°

Inception Resnet (w/o pose attention) 100.0 100.0 100.0 97.0 88.0 59.7
Inception Resnet (with pose attention) 100.0 100.0 100.0 98.5 94.01 66.7

Resnet50 (with pose attention) 100.0 100.0 100.0 100.0 96.75 87.5

6.6.4 Evaluation on M2FPA dataset for joint yaw and pitch variations

To investigate the FR performance of our proposed network for faces at pitch variations along with

yaw pose views, we select M2FPA dataset. We have also investigated different stem (i.e., Resnet50)

and trained with Supervised Contrastive Loss (SCL) along with Memory Bank to increase the

number of positive samples during training. Before analyse the results we briefly discuss SCL and

memory buffer technique in the following sections.

Supervised Contrastive Loss (SCL)

Supervised contrastive loss (SCL) [258] builds on the standard contrastive loss function, which

computes the contrastive loss between a pair of samples, where one sample is the target and the

other is a positive or negative example. The positive example is another sample from the same
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Table 6.11: Rank-1 recognition rates (%) across poses at –15° pitch angle on M2FPA dataset with
yaw variations (–90° to +90°)

pitch +15°
yaw ±15° ±30° ±45° ±60° ±75° ±90°

Inception Resnet (w/o pose attention) 100.0 100.0 98.1 95.52 69.1 40.29
Inception Resnet (with pose attention) 100.0 100.0 98.51 97.01 71.64 55.68

Resnet50 (with pose attention) 100.0 100.0 100.0 98.72 95.52 84.85

Table 6.12: Rank-1 recognition rates (%) across poses at +30° pitch angles on M2FPA dataset with
yaw zero.

pitch +30°
yaw ±22.5° ±45° ±67.5° ±90°

Inception Resnet (w/o pose attention) 98.3 98.01 86.0 27.0
Inception Resnet (with pose attention) 98.57 98.50 86.57 47.0

Resnet50 (with pose attention) 100.0 100.0 97.97 75.41

Table 6.13: Rank-1 recognition rates (%) across poses at –30° pitch angles on M2FPA dataset with
yaw zero.

pitch –30°
yaw ±22.5° ±45° ±67.5° ±90°

Inception Resnet (w/o pose attention) 98.0 94.03 67.16 26.87
Inception Resnet (with pose attention) 98.5 97.01 70.0 40.0

Resnet50 (with pose attention) 100.0 98.98 91.04 65.15

class as the target, while the negative example is a sample from a different class. The loss function

then incorporates the class labels of the target and the positive example to provide additional su-

pervision. By incorporating the class labels, SCL ensures that the learned representations are not

only discriminative but also meaningful in terms of the underlying class structure of the data.

Memory Bank

Memory Bank [259] is a data structure used in various machine learning models, particularly in

the context of contrastive learning. In contrastive learning, the aim is to learn representations that

can discriminate between different classes or categories in a dataset. The Memory Bank is used to

store representations of past examples, and the stored representations are used as positive examples

during training. Specifically, when a new example is presented during training, its representation is
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compared with the representations in the Memory Bank to find the most similar examples, which

are used as positive examples for contrastive loss computation.

The Memory Bank is typically updated periodically during training, with new representations

being added and old representations being discarded. This ensures that the Memory Bank contains

a diverse set of positive examples that are representative of the dataset. The use of a Memory Bank

in contrastive learning can lead to improved performance by providing a richer source of positive

examples during training. This can help to overcome the problem of limited positive examples,

which is particularly relevant in scenarios where the number of labeled examples is limited.

Result Analysis

We evaluate our proposed PIFR network on M2FPA dataset for extreme joint yaw and pitch angles.

Table 6.8 reports 100% rank-1 recognition accuracy across poses at ±15° and ±30° pitch angles

with yaw zero, when Resnet50 is used as stem and optimized using SCL loss with memory bank.

For similar training procedure, Table 6.9 also shows that when faces are at 0° pitch with yaw

variations ranging from ±15° to ±90° our PIFR network achieved around 12.14% higher accuracy

compared to the result obtained through using Inception Resnet for extreme yaw angles (±75°, and

±90°). We also summarize the performance of our proposed method for faces posed at joint pitch

(±15° to ±30°) and yaw variations (±15° to ±90°) in Table 6.10-6.13. We observe promising

results in extreme joint pitch and yaw views for Resnet50 optimized for SCL loss, which refers to

improving the quality of representation in the embedded domain.

6.7 Conclusion

In this paper, we propose a novel perspective of leveraging pose as auxiliary information to guide

a coupled profile to frontal deep subspace learning framework for PIFR. A pose attended feature

block (PAB) is designed to distill pose-specific useful features from profile faces in deep con-

volutional layers. To ensure discriminative, pose-invariant feature representation into a compact

embedding subspace, we couple both profile and frontal face images via a class-specific contrastive

loss, which maximizes the pair-wise similarity in the embedded domain. We perform a comprehen-

sive experiments on several benchmark datasets both in controlled and uncontrolled environmental

settings to evaluate the robustness of our model. The results indicate that our model remarkably
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outperform other state-of-the-art algorithms for profile to frontal pose-invariant face recognition.

In addition, we conduct a quick experiment to explore the generative capability of the embed-

ding features learned in deep subspace of our network. Moreover, we also investigate embedding

dimensionality and attention mechanisms from different perspectives to offer an effective design

choice of our proposed network.
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Chapter 7

Conclusion

In this dissertation, we analyzed generative adversarial network and its applications in aerial

vehicle detection and biometrics. In the first part of the dissertation, we investigated the problem

of vehicle detection in low-resolution aerial images. In addition, we also addressed the difficulty

of detection on infrared aerial images which have low-resolution, low-contrast, and few texture

features present in the image. We proposed a multi-scale super-resolution technique and a cross-

modal super-resolution approach to improve vehicle detection performance on aerial images. In

the second part, we developed methods for applications in biometrics. We have provided conclu-

sive analyses as follows:

Joint Training of Multi-Scale Super-Resolution and Vehicle Detection Network We empiri-

cally demonstrated that joint training of two interrelated tasks such as super-resolution and vehi-

cle detection can mutually benefit each other, which addresses our prime concern of performing

vehicle detection on low-resolution aerial images. According to this observation, first, a Multi-

scale (MsGAN) is developed to gradually restore the high-frequency components from the low-

resolution data at the multi-stage of the network. It shows that the proposed MsGAN achieves

superior performance in retrieving high-frequency details compared to conventional up-sampling

methods, such as interpolation and CNN-based methods. Then, we jointly train MsGAN and

YOLOv3 object detector end-to-end to enhance target regions in the super-resolved images to

become contextually more distinctive from the background, which in return improves detection

performance. We validated our proposed algorithm through extensive experiments on publicly

available aerial (i.e., VEDAI, DOTA) and satellite (i.e., xVIEW) datasets.
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Joint Cross-Modal Super-Resolution for Aerial vehicle detection A major limitation of the

conventional detection algorithm is most of them are RGB image-based detectors, which are not

suitable for detection being performed at night or in a dark environment. Again IR detector re-

quires a large amount of annotated training data and computational resources to train and deploy

the model. To alleviate this shortcoming, we developed a joint cross-modal super-resolution net-

work using cGAN, which has learned to translate LR IR images to HR super-resolved VIS images.

After that, We have applied our existing detector pre-trained on original HR VIS images on these

HR super-resolved and translated VIS images. Due to the limited availability of IR training images,

we experimented only on the VEDAI dataset which has both VIS and corresponding IR images.

GAN-Based Cross-Domain Iris Recognition We have investigated cross-domain (cross-spectral

cross-resolution) iris recognition problems and presented two different novel approaches to per-

form matching iris images acquired under different domains. To summarize, our first method in-

volves synthesizing HR VIS iris images from LR NIR iris images in a gallery or vice versa using a

cGAN-based domain adaption framework. By developing this framework, we integrated the cross-

resolution matching scenario into a cross-spectrum setting that is intended to be used as a prepro-

cessing step before conducting iris verification using an off-the-shelf iris matcher (i.e.,(OSIRIS)

assuming that the user already has access to such a matcher. our second method is designed to

address several shortcomings of commercial iris matcher that our first method depends on, specif-

ically in scenarios where the resolution of captured iris images varies. They may not be able to

operate directly on lower-resolution images while enrolled images in the gallery are at a higher res-

olution. This can lead to accuracy and robustness issues in the matching process. Therefore, our

second method involves learning subspace embedded features, which are a set of features that can

effectively capture the discriminative information of iris images in a low-dimensional subspace,

irrespective of the resolution of the input image. We have designed and implemented cpGAN,

which captures the correlation between NIR and VIS iris images in a reduced-dimensional latent

embedding feature subspace. We validated both approaches for cross-spectral iris recognition us-

ing publicly available datasets (i.e., PolyU Bi-Spectral, Cross-Eyed-Cross-Spectral dataset). We

introduced a new WVU Face and Iris dataset. Both approaches achieved promising results which

suggest new state-of-the-art results in the cross-spectral iris matching domain.
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Pose-Attention Guided Profile-to-Frontal Face Recognition and reconstruction of frontal

faces by GAN In uncontrolled environments, the variation of face pose can reduce the perfor-

mance of such a system and make recognition very difficult. Face pose variations refer to changes

in the orientation of the face, such as tilting, rotating, or looking up or down. These variations can

make it challenging for the system to accurately detect and match the face. We investigated the con-

tribution of these pose variations as side information through the implementation of a PAB module.

To develop our proposed framework, we implemented a novel coupled learning profile-to-frontal

FR network using different architectures and loss functions (i.e., Inception Resnet, Resnet-50,

contrastive loss (CL), supervised CL with Memory Bank). Then we infuse pose as complemen-

tary information to explicitly help the FR network to focus on important features along both the

“channel” and “spatial” dimensions. We validated our proposed network on both controlled (i.e.,

M2FPA, Multi-PIE) and uncontrolled datasets(i.e., CFP, IJB-C) and achieved outperforming re-

sults compared to other pose-invariant face recognition networks. Our proposed PIFR network

proved to be robust even for faces with extreme joint yaw and pitch variations. We utilized the

pose invariant features that we have learned in the embedding subspace of our PIFR network to

develop the Face Frontal GAN, which generates high-quality, identity-preserving frontalized faces

even when we have profile faces at extreme angles (+90°/ – 90°). It provides an efficient way for

face data augmentation.
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