111,388 research outputs found

    Marginal and Relevant Deformations of N=4 Field Theories and Non-Commutative Moduli Spaces of Vacua

    Get PDF
    We study marginal and relevant supersymmetric deformations of the N=4 super-Yang-Mills theory in four dimensions. Our primary innovation is the interpretation of the moduli spaces of vacua of these theories as non-commutative spaces. The construction of these spaces relies on the representation theory of the related quantum algebras, which are obtained from F-term constraints. These field theories are dual to superstring theories propagating on deformations of the AdS_5xS^5 geometry. We study D-branes propagating in these vacua and introduce the appropriate notion of algebraic geometry for non-commutative spaces. The resulting moduli spaces of D-branes have several novel features. In particular, they may be interpreted as symmetric products of non-commutative spaces. We show how mirror symmetry between these deformed geometries and orbifold theories follows from T-duality. Many features of the dual closed string theory may be identified within the non-commutative algebra. In particular, we make progress towards understanding the K-theory necessary for backgrounds where the Neveu-Schwarz antisymmetric tensor of the string is turned on, and we shed light on some aspects of discrete anomalies based on the non-commutative geometry.Comment: 60 pages, 4 figures, JHEP format, amsfonts, amssymb, amsmat

    Uniformizing higher-spin equations

    Get PDF
    Vasiliev's higher-spin theories in various dimensions are uniformly represented as a simple system of equations. These equations and their gauge invariances are based on two superalgebras and have a transparent algebraic meaning. For a given higher-spin theory these algebras can be inferred from the vacuum higher-spin symmetries. The proposed system of equations admits a concise AKSZ formulation. We also discuss novel higher-spin systems including partially-massless and massive fields in AdS, as well as conformal and massless off-shell fields.Comment: 29 pages, references added, final versio

    On generating series of finitely presented operads

    Full text link
    Given an operad P with a finite Groebner basis of relations, we study the generating functions for the dimensions of its graded components P(n). Under moderate assumptions on the relations we prove that the exponential generating function for the sequence {dim P(n)} is differential algebraic, and in fact algebraic if P is a symmetrization of a non-symmetric operad. If, in addition, the growth of the dimensions of P(n) is bounded by an exponent of n (or a polynomial of n, in the non-symmetric case) then, moreover, the ordinary generating function for the above sequence {dim P(n)} is rational. We give a number of examples of calculations and discuss conjectures about the above generating functions for more general classes of operads.Comment: Minor changes; references to recent articles by Berele and by Belov, Bokut, Rowen, and Yu are adde

    Global and local properties of AdS(2) higher spin gravity

    Get PDF
    Two-dimensional BF theory with infinitely many higher spin fields is proposed. It is interpreted as the AdS(2) higher spin gravity model describing a consistent interaction between local fields in AdS(2) space including gravitational field, higher spin partially-massless fields, and dilaton fields. We carry out analysis of the frame-like and the metric-like formulation of the theory. Infinite-dimensional higher spin global algebras and their finite-dimensional truncations are realized in terms of o(2,1) - sp(2) Howe dual auxiliary variables.Comment: 51 pages; v2: comments and refs added, typos removed, JHEP versio

    A statistical mechanics framework for the large-scale structure of turbulent von K{\'a}rm{\'a}n flows

    Full text link
    In the present paper, recent experimental results on large scale coherent steady states observed in experimental von K{\'a}rm{\'a}n flows are revisited from a statistical mechanics perspective. The latter is rooted on two levels of description. We first argue that the coherent steady states may be described as the equilibrium states of well-chosen lattice models, that can be used to define global properties of von K{\'a}rm{\'a}n flows, such as their temperatures. The equilibrium description is then enlarged, in order to reinterpret a series of results about the stability of those steady states, their susceptibility to symmetry breaking, in the light of a deep analogy with the statistical theory of Ferromagnetism. We call this analogy "Ferro-Turbulence

    Initial data for fluid bodies in general relativity

    Get PDF
    We show that there exist asymptotically flat almost-smooth initial data for Einstein-perfect fluid's equation that represent an isolated liquid-type body. By liquid-type body we mean that the fluid energy density has compact support and takes a strictly positive constant value at its boundary. By almost-smooth we mean that all initial data fields are smooth everywhere on the initial hypersurface except at the body boundary, where tangential derivatives of any order are continuous at that boundary. PACS: 04.20.Ex, 04.40.Nr, 02.30.JrComment: 38 pages, LaTeX 2e, no figures. Accepted for publication in Phys. Rev.
    • …
    corecore