18 research outputs found

    High Speed Clock Glitching

    Get PDF
    In recent times, hardware security has drawn a lot of interest in the research community. With physical proximity to the target devices, various fault injection hardware attack methods have been proposed and tested to alter their functionality and trigger behavior not intended by the design. There are various types of faults that can be injected depending on the parameters being used and the level at which the device is tampered with. The literature describes various fault models to inject faults in clock of the target but there are no publications on overclocking circuits for fault injection. The proposed method bridges this gap by conducting high-speed clock fault injection on latest high-speed micro-controller units where the target device is overclocked for a short duration in the range of 4-1000 ns. This thesis proposes a method of generating a high-speed clock and driving the target device using the same clock. The properties of the target devices for performing experiments in this research are: Externally accessible clock input line and GPIO line. The proposed method is to develop a high-speed clock using custom bit-stream sent to FPGA and subsequently using external analog circuitry to generate a clock-glitch which can inject fault on the target micro-controller. Communication coupled with glitching allows us to check the target\u27s response, which can result in information disclosure.This is a form of non-invasive and effective hardware attack. The required background, methodology and experimental setup required to implement high-speed clock glitching has been discussed in this thesis. The impact of different overclock frequencies used in clock fault injection is explored. The preliminary results have been discussed and we show that even high-speed micro-controller units should consider countermeasures against clock fault injection. Influencing the execution of Tiva C Launchpad and STM32F4 micro-controller units has been shown in this thesis. The thesis details the method used for the testing a

    Energy-Efficient Digital Circuit Design using Threshold Logic Gates

    Get PDF
    abstract: Improving energy efficiency has always been the prime objective of the custom and automated digital circuit design techniques. As a result, a multitude of methods to reduce power without sacrificing performance have been proposed. However, as the field of design automation has matured over the last few decades, there have been no new automated design techniques, that can provide considerable improvements in circuit power, leakage and area. Although emerging nano-devices are expected to replace the existing MOSFET devices, they are far from being as mature as semiconductor devices and their full potential and promises are many years away from being practical. The research described in this dissertation consists of four main parts. First is a new circuit architecture of a differential threshold logic flipflop called PNAND. The PNAND gate is an edge-triggered multi-input sequential cell whose next state function is a threshold function of its inputs. Second a new approach, called hybridization, that replaces flipflops and parts of their logic cones with PNAND cells is described. The resulting \hybrid circuit, which consists of conventional logic cells and PNANDs, is shown to have significantly less power consumption, smaller area, less standby power and less power variation. Third, a new architecture of a field programmable array, called field programmable threshold logic array (FPTLA), in which the standard lookup table (LUT) is replaced by a PNAND is described. The FPTLA is shown to have as much as 50% lower energy-delay product compared to conventional FPGA using well known FPGA modeling tool called VPR. Fourth, a novel clock skewing technique that makes use of the completion detection feature of the differential mode flipflops is described. This clock skewing method improves the area and power of the ASIC circuits by increasing slack on timing paths. An additional advantage of this method is the elimination of hold time violation on given short paths. Several circuit design methodologies such as retiming and asynchronous circuit design can use the proposed threshold logic gate effectively. Therefore, the use of threshold logic flipflops in conventional design methodologies opens new avenues of research towards more energy-efficient circuits.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    A hardware-embedded, delay-based PUF engine designed for use in cryptographic and authentication applications

    Get PDF
    Cryptographic and authentication applications in application-specific integrated circuits (ASICs) and field-programmable gate arrays (FPGAs), as well as codes for the activation of on-chip features, require the use of embedded secret information. The generation of secret bitstrings using physical unclonable functions, or PUFs, provides several distinct advantages over conventional methods, including the elimination of costly non-volatile memory, and the potential to increase the random bits available to applications. In this dissertation, a Hardware-Embedded Delay PUF (HELP) is proposed that is designed to leverage path delay variations that occur in the core logic macros of a chip to create random bitstrings. A thorough discussion is provided of the operational details of an embedded path timing structure called REBEL that is used by HELP to provide the timing functionality upon which HELP relies for the entropy source for the cryptographic quality of the bitstrings. Further details of the FPGA-based implementation used to prove the viability of the HELP PUF concept are included, along with a discussion of the evolution of the techniques employed in realizing the final PUF engine design. The bitstrings produced by a set of 30 FPGA boards are evaluated with regard to several statistical quality metrics including uniqueness, randomness, and stability. The stability characteristics of the bitstrings are evaluated by subjecting the FPGAs to commercial-grade temperature and power supply voltage variations. In particular, this work evaluates the reproducibility of the bitstrings generated at 0C, 25C, and 70C, and 10% of the rated supply voltage. A pair of error avoidance schemes are proposed and presented that provide significant improvements to the HELP PUF\u27s resiliency against bit-flip errors in the bitstrings

    Store-and-forward CDC packet transmission in digital systems

    Get PDF
    Data transmission across clock domains is a major point of interest by ASIC designers as a limited bandwidth can be responsible for a processing power bottleneck that affects the entire system. Clock domain crossing is inherently expensive in terms of area and latency as it requires overcoming issues related to the physical nature of integrated circuit latches, in particular metastability. These issues are dangerous as they do not manifest in RTL simulation. Due to this, designers often opt for generic data synchronisation solutions that are not fully suited to the nature of the data being transferred.This dissertation presents a clock domain crossing mechanism that allows two clock domains to share a common memory to transfer packet-based data. The mechanism consists in a memory controller that coordinates commands from a push (write) domain and a pop (read) domain.The main objective of the memory controller project consists in the implementation of efficient synchronisation methods in order to eliminate the need for separate synchronisation and storage memories. In essence, the controller is an extension of an asynchronous FIFO controller with added functionality, supporting multiple virtual FIFOs and variable length data packets

    Low-Power Design of Digital VLSI Circuits around the Point of First Failure

    Get PDF
    As an increase of intelligent and self-powered devices is forecasted for our future everyday life, the implementation of energy-autonomous devices that can wirelessly communicate data from sensors is crucial. Even though techniques such as voltage scaling proved to effectively reduce the energy consumption of digital circuits, additional energy savings are still required for a longer battery life. One of the main limitations of essentially any low-energy technique is the potential degradation of the quality of service (QoS). Thus, a thorough understanding of how circuits behave when operated around the point of first failure (PoFF) is key for the effective application of conventional energy-efficient methods as well as for the development of future low-energy techniques. In this thesis, a variety of circuits, techniques, and tools is described to reduce the energy consumption in digital systems when operated either in the safe and conservative exact region, close to the PoFF, or even inside the inexact region. A straightforward approach to reduce the power consumed by clock distribution while safely operating in the exact region is dual-edge-triggered (DET) clocking. However, the DET approach is rarely taken, primarily due to the perceived complexity of its integration. In this thesis, a fully automated design flow is introduced for applying DET clocking to a conventional single-edge-triggered (SET) design. In addition, the first static true-single-phase-clock DET flip-flop (DET-FF) that completely avoids clock-overlap hazards of DET registers is proposed. Even though the correct timing of synchronous circuits is ensured in worst-case conditions, the critical path might not always be excited. Thus, dynamic clock adjustment (DCA) has been proposed to trim any available dynamic timing margin by changing the operating clock frequency at runtime. This thesis describes a dynamically-adjustable clock generator (DCG) capable of modifying the period of the produced clock signal on a cycle-by-cycle basis that enables the DCA technique. In addition, a timing-monitoring sequential (TMS) that detects input transitions on either one of the clock phases to enable the selection of the best timing-monitoring strategy at runtime is proposed. Energy-quality scaling techniques aimat trading lower energy consumption for a small degradation on the QoS whenever approximations can be tolerated. In this thesis, a low-power methodology for the perturbation of baseline coefficients in reconfigurable finite impulse response (FIR) filters is proposed. The baseline coefficients are optimized to reduce the switching activity of the multipliers in the FIR filter, enabling the possibility of scaling the power consumption of the filter at runtime. The area as well as the leakage power of many system-on-chips is often dominated by embedded memories. Gain-cell embedded DRAM (GC-eDRAM) is a compact, low-power and CMOS-compatible alternative to the conventional static random-access memory (SRAM) when a higher memory density is desired. However, due to GC-eDRAMs relying on many interdependent variables, the adaptation of existing memories and the design of future GCeDRAMs prove to be highly complex tasks. Thus, the first modeling tool that estimates timing, memory availability, bandwidth, and area of GC-eDRAMs for a fast exploration of their design space is proposed in this thesis
    corecore