
Energy-Efficient Digital Circuit Design using Threshold Logic Gates

by

Niranjan Kulkarni

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved November 2015 by the
Graduate Supervisory Committee:

Sarma Vrudhula, Chair
Charles Colbourn

Jae-Sun Seo
Shimeng Yu

ARIZONA STATE UNIVERSITY

December 2015

ABSTRACT

Improving energy efficiency has always been the prime objective of the custom

and automated digital circuit design techniques. As a result, a multitude of methods

to reduce power without sacrificing performance have been proposed. However, as

the field of design automation has matured over the last few decades, there have been

no new automated design techniques, that can provide considerable improvements

in circuit power, leakage and area. Although emerging nano-devices are expected to

replace the existing MOSFET devices, they are far from being as mature as semicon-

ductor devices and their full potential and promises are many years away from being

practical.

The research described in this dissertation consists of four main parts. First is a

new circuit architecture of a differential threshold logic flipflop called PNAND. The

PNAND gate is an edge-triggered multi-input sequential cell whose next state function

is a threshold function of its inputs. Second a new approach, called hybridization,

that replaces flipflops and parts of their logic cones with PNAND cells is described.

The resulting hybrid circuit, which consists of conventional logic cells and PNANDs, is

shown to have significantly less power consumption, smaller area, less standby power

and less power variation.

Third, a new architecture of a field programmable array, called field programmable

threshold logic array (FPTLA), in which the standard lookup table (LUT) is replaced

by a PNAND is described. The FPTLA is shown to have as much as 50% lower energy-

delay product compared to conventional FPGA using well known FPGA modeling

tool called VPR.

Fourth, a novel clock skewing technique that makes use of the completion detection

feature of the differential mode flipflops is described. This clock skewing method

improves the area and power of the ASIC circuits by increasing slack on timing paths.

i

An additional advantage of this method is the elimination of hold time violation on

given short paths.

Several circuit design methodologies such as retiming and asynchronous circuit

design can use the proposed threshold logic gate effectively. Therefore, the use of

threshold logic flipflops in conventional design methodologies opens new avenues of

research towards more energy-efficient circuits.

ii

DEDICATION

To my parents

who always encouraged and supported me throughout this endeavor

To my wife, Neha

without whose continued support this dissertation would not have been possible

iii

ACKNOWLEDGMENTS

I would like to thank my adviser, Prof. Sarma Vrudhula, for having faith in my

abilities, and for all his guidance through the years. Despite several frustrating times,

he helped me keep moving with moral and intellectual support and for that I am

deeply indebted to him. My sincere thanks to my committee members as well, for

taking the time to review my work, attending my presentations, and offering many

helpful suggestions.

I am fortunate to have collaborated with Tejaswi Gowda, who first got me in-

terested in the field of threshold logic. I am thankful to many other colleagues who

became my friends, who were there for me when I needed them and for making the

otherwise grim workplace a whole lot more fun and cheerful. My special thanks to

Jinghua Yang and Joseph Davis, without their collaboration, this work would not

have been complete.

My family has always been a constant source of encouragement and support

through these long years. I am grateful for their trust in me, and for everything

they have done for me.

I gratefully acknowledge the support I received from the following agencies: The

Stardust Foundation through a Science Foundation Arizona grant SRG 0211-01; The

National Science Foundation for grants 1230401, 0702831 and PFI-BIC 1237856. I

would also like to thank the School of Computing, Informatics and Decision Systems

Engineering for granting me with necessary resources in a timely manner.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . xi

CHAPTER

1 INTRODUCTION . 1

2 BACKGROUND . 13

2.1 Necessity for Low Power . 13

2.2 Dynamic Power Reduction Methods . 15

2.3 Static Power Reduction Methods . 16

2.4 Threshold Logic: A New Approach . 17

2.5 Threshold Logic Gates . 18

2.6 Synthesis and Mapping using Threshold Logic . 21

2.7 Threshold Logic in Field Programmable Environment 22

3 THRESHOLD LOGIC FLIPFLOP. 24

3.1 Architecture . 24

3.2 Asynchronous Preset, Clear and Scan implementations 27

3.3 Threshold Functions Realized by a PNAND . 32

3.4 PNAND Delay Characteristics . 35

3.5 Robustness . 38

3.5.1 Comparison with TLL . 42

3.6 PNAND-1 (KVFF) Design . 44

3.6.1 Scan & Asynchronous Preset and Clear Architecture 46

4 TECHNOLOGY MAPPING WITH THRESHOLD GATES 51

4.1 PNAND vs Conventional Circuits . 52

4.2 BDD Based Decomposition using Cut Enumeration 55

v

CHAPTER Page

4.2.1 Enumeration of Cuts . 55

4.2.2 Threshold Decomposition . 57

4.2.3 Necessary Conditions . 60

4.2.4 Threshold Decomposition Heuristic . 61

4.3 ILP Based Decomposition . 64

4.3.1 0-1 ILP formulation . 65

4.3.2 Speeding up the 0-1 ILP . 68

4.3.3 Unate Function Enumeration . 69

4.3.4 Hybridization Procedure . 70

4.4 Experimental Results . 72

4.4.1 Methodology . 72

4.4.2 Circuits . 74

4.4.3 Results . 74

4.4.4 Advantages due to KVFF . 77

5 FIELD PROGRAMMABLE THRESHOLD GATE ARRAY 83

5.1 Overview. 83

5.2 PNAND as a Majority Gate . 85

5.3 FPTLA Architecture . 88

5.4 Synthesis of Nanopipelined Threshold Networks 90

5.4.1 Area Minimization Algorithm . 91

5.4.2 Buffer Insertion . 93

5.5 Robustness and Temperature Monotonicity . 95

5.5.1 Temperature Monotonicity . 96

5.6 Experimental Results . 97

vi

CHAPTER Page

5.6.1 Parameters for VPR . 98

5.6.2 Circuit Comparison Results . 99

5.6.3 Leakage Power and Glitching . 101

5.6.4 Circuit Yield . 103

6 NEW CLOCK SKEWING STRATEGY . 109

6.1 Introduction . 109

6.1.1 Overview of Clock Skewing . 109

6.1.2 KVFF with Completion Detection . 113

6.1.3 Clock Skewing using KVFF with Completion Detection 114

6.2 Optimal Clock Assignment . 116

6.2.1 Notations . 116

6.2.2 ILP Formulation . 117

6.3 Experimental Results . 122

6.3.1 Duty Cycle Considerations . 124

6.3.2 Elimination of Hold Violations . 125

6.3.3 Power-on Initialization . 125

7 FUTURE WORK . 129

7.1 Retiming . 129

7.1.1 Retiming for Minimum Clock Period . 129

7.1.2 Retiming for Minimum Area . 131

7.2 Novel Clock Distribution . 132

7.3 Asynchronous Circuit Design . 133

7.3.1 Dual Rail Circuits . 133

vii

CHAPTER Page

7.3.2 Comparison with CMOS based Asynchronous Implementa-

tions . 136

7.3.3 Relaxing Delay Insensitivity . 140

7.3.4 Comparison with Null Convention Logic 140

7.3.5 Implementing DI Primitive using PNANDs 145

7.3.6 Implementing DI Primitive using NCL Majorities 147

7.4 Novel Scanning Mechanism . 149

7.4.1 Flipflop Architecture . 150

7.4.2 Proposed Scan Architecture . 152

7.4.3 Scan Chain Operation . 152

7.4.4 Advantages of the Proposed Scan Mechanism 155

7.4.5 Flipflop Implementation . 156

REFERENCES . 158

APPENDIX

A CUT ENUMERATION . 167

A.1 Introduction . 168

A.2 Related Work . 171

A.3 Strong line cuts . 172

A.3.1 Relationship between Unidirectional Node Cuts and Strong

Line Cuts . 173

A.4 Cut enumeration . 175

A.4.1 MIS Pruning . 175

A.4.2 Enumerating MISs . 178

A.4.3 Results . 178

viii

LIST OF TABLES

Table Page

3.1 Functions Realized by PNAND-K, for K = 3, 5, 7, 9 36

3.2 A Bad Signal Assignment for f(a, b, c) = a∨bc Denoted by a+2b+2c >

3− 3a→ (a′, b′, b′, c′, c′|a, a, a, 1, 1) . 39

3.3 A Good Signal Assignment for f(a, b, c) = a∨bc Denoted by 3a+b+c >

3− a− b− c→ (a′, a′, a′, b′, c′|a, b, c, 1, 1) . 39

3.4 Delays of PNAND-K w/wo Scan, Relative to D-FF in 65nm LP process.

Layout Extracted Netlist Simulated at PVT = SS/1.1V/105◦C/, Input

and Clock slews = 70ps, Output Load = 20fF. 40

3.5 Delay Distribution of Layout Extracted D-FF and PNAND Cells Sub-

ject to Global Variations and Local Mismatch in 100,000 Monte-Carlo

Trials. 43

3.6 65nm Technology Comparison of Clock-to-Q delay Across Process Vari-

ations. The Simulation Corner is Statistical at 0.8V and -40C for

100,000 Monte-Carlo Trials. All Delays in Picoseconds 49

3.7 65nm Technology Design Comparison. The Simulation Corner is Slow/slow,

1.1V VDD and 105◦C. The Load Cap is 20fF . Signal Transition Times

are 70ps. Identical Drive Strengths were used for the Flipflops. 50

3.8 65nm Technology Comparison of Flipflop Characteristics. The Load

Cap is 20fF . All Input Signal Slews are 5ps. Identical Drive Strengths

used for all the Flipflops. 50

4.1 Comparison of PNAND with Conventional Standard Cell Implemen-

tation of Circuit Shown in Figure 4.2 (at SS, 105◦C, 1.1V) 54

4.2 Area and Wire-length Reduction . 75

ix

Table Page

4.3 Dynamic and Leakage Power Reduction @ TT, 25◦C, 1.2V and 30%

Switching Activity . 76

4.4 Variation in the Dynamic Power . 76

4.5 Dynamic and Leakage power reduction @ TT, 25◦C, 1.2V and 30%

Switching Activity due to KVFF . 78

5.1 Threshold Functions Implementable by 4/7 Majority 104

5.2 CLB and DTGB Properties Measured using Detailed SPICE Models

(supply = 1.2V) . 105

5.3 FPGA and FPTLA Circuit Results at Fixed 1.2V Supply with LUT-4 . 106

5.4 FPGA and FPTLA Circuit Results at Fixed 1.2V Supply with LUT-6 . 107

5.5 Redundancy m to be Added for Each Circuit . 108

6.1 Advantages of Local Clocking for the Circuit from Fig. 6.4 @ TT,1.2V,25C115

6.2 Improvements due to Local Clocking Compared to the Conventional

Globally Clocked CMOS Versions of 28-bit FIR Filter and 32-bit MIPS 123

6.3 Dynamic Power (mW) Improvements due to Local Clocking, Post-

layout @ TT, 1.2V, 25C . 124

7.1 Logic Values of Signal x Represented using Dual Signals x.f and x.t . . . 133

7.2 Number of Transistors Required to Implement Dual-rail DI Implemen-

tations . 139

7.3 Number of Transistors Required to Implement Dual-rail Function as a

Single Gate . 149

7.4 Logic Values of Output Q . 151

A.1 Running Times for Enumeration . 182

x

LIST OF FIGURES

Figure Page

1.1 Power Reduction Techniques . 2

3.1 PNAND Cell Design . 25

3.2 Importance of Feedback Transistors in the Input Networks of PNAND . 28

3.3 PNAND Cell Design with Asynchronous Set and Reset 29

3.4 PNAND Cell Design with Scan . 30

3.5 Operation of a Scan Chain Consisting of Four PNAND-9 Cells 31

3.6 KVFF Architecture . 44

3.7 KVFF Architecture with Asynchronous Preset and Clear 46

3.8 Differential Mode Strong Arm Flipflop Architecture 49

4.1 Subcircuits Replaceable by a Single PNAND Cell . 52

4.2 Comparison of PNAND with Functionally Equivalent Network of Stan-

dard Cells . 53

4.3 Comparison of Leakage of PNAND with Functionally Equivalent Net-

work of Standard Cells . 54

4.4 Decomposition of a Nonthreshold Function w.r.t a Threshold Function . 55

4.5 a) DAG with Strong Cuts Annotated. b) Corresponding Maximal In-

dependent Sets in LDG. 56

4.6 (a) Function F to be Decomposed. (b),(c) g-functions (d) H-function . . 79

4.7 An Example of Threshold Decomposition (a) Non-threshold Input Func-

tion F and Cut (b) Computation of g0 (c) H-function 80

4.8 A Motivational Example where a Non-threshold Function is Decom-

posed into a PNAND-3 Driven by a Single NAND Gate. 80

4.9 Advantages of Hybrid Circuits are Maintained Irrespective of the Op-

erating Frequency . 81

xi

Figure Page

4.10 Hybrid Circuits are More Energy-efficient at Higher Switching Activity 82

4.11 Variations in Dynamic Power of AES Circuit . 82

5.1 Realizing a 3 out of 5 Majority using PNAND-5 . 86

5.2 A PNAND Gate Array . 89

5.3 (a) Legal Function Substitution (b) Illegal Function Substitution Lead-

ing to a Non-threshold Function . 91

5.4 Monotonicity of Temperature . 97

5.5 Comparison of ED2 between FPGA and FPTLA Circuits 102

6.1 A General Synchronous Digital Circuit Architecture 110

6.2 (a) Clock Skewing Used to Increase Speed of the Circuit (b) Clock

Skewing Used to Reduce Number of Flipflops . 111

6.3 The KVFF Architecture With Output Local Clock 113

6.4 A Motivational Example that Exhibits Maximum Advantages due to

Local Clocking . 115

6.5 Improvements due to Local Clocking and KVFF Flipflops in Conven-

tional CMOS Circuits . 123

6.6 Spice Simulation Showing that the Duty Cycle of a Local Clock is Near

50%. 125

6.7 (a) Regular Flipflops Exhibit Hold Time Violation as RC Delay In-

creases (b) No Amount of RC Delay Induces A Hold Time Violation

When Local Clocking is Used . 126

6.8 (a) Two Independent Pairs of Flipflops (X1,Y1) and (X2,Y2) in a Cir-

cuit with Possible Initialization Issue (b) Their Positions in a Single

Scan Chain to Eliminate Metastability . 127

xii

Figure Page

7.1 Retiming for Minimum Delay using Conventional Flipflops Leads to

2ns Clock Period . 130

7.2 Retiming for Minimum Delay using PNANDs Leads to Smaller (1ns)

Clock Period . 131

7.3 A Novel Clocking Distribution using Local Clocks . 132

7.4 PNAND Circuit Abstraction . 134

7.5 Implementing Dual-Rail 3 out of 5 Majority Function using PNAND-5 . 135

7.6 A Dual Rail AND Gate using CMOS Gates . 136

7.7 A Dual Rail AND gate using CMOS Gates and Latches. 137

7.8 A DIM Synthesis of Two Input AND Gate . 138

7.9 A Dynamic Dual Rail AND Gate . 138

7.10 (a) Delay-insensitive PNAND Gate (b) Delay-sensitive Gate Triggered

Only by the Latest Arriving Signal . 141

7.11 2 out of 3 Static NCL Majority Gate . 142

7.12 Dual Rail Delay Insensitive NCL Half Adder . 142

7.13 (a) Generalized Primitive Used to Construct DI Netlist (b) State Tran-

sitions for the Primitive . 144

7.14 Implementation of Generalized DI Primitive using PNAND 146

7.15 Implementation of Generalized DI Primitive using NCL Majority Gates 148

7.16 Flipflop Architecture Required for the Proposed Scan Mechanism. 150

7.17 Implementation of Function FCD from Fig. 7.16 . 152

7.18 Proposed Connections to Create Scan-Chain using Flipflop from Fig.

7.16 . 153

7.19 A Possible Implementation of the Flipflop Shown in Fig. 7.16 157

xiii

Figure Page

A.1 a) A Covered Boolean Network. b) Its Graph Representation. c) The

Network Mapped on the Library Gates. 169

A.2 (a) Unidirectional Node Cut Denoted as {a, b, x, d} (b) Bidirectional

Node Cut Denoted by {a, b} . 170

A.3 Classification of Cuts and Their Relationships . 171

A.4 a) a DAG with Strong Cuts Annotated. b) The Corresponding Maxi-

mal Independent Sets in LDG. 173

A.5 a) Classification of Edges in a Bidirectional Cut b) Replication after

TM, (c) Classification of Edges in Corresponding Unidirectional Cut. . . 180

A.6 a) Formation of s − t Boolean Network for Determination of a Cut

Containing Line p. b) LDG from Fig. A.4 Pruned for k ≤ 2. 181

xiv

Chapter 1

INTRODUCTION

Minimizing the area and dynamic power of digital CMOS circuits have always been

two central objectives of the automated circuit design. This focus on dynamic power

stems from several problems arising from an increased power consumption. First

and foremost are thermal constraints. The increased temperature of circuits has

several debilitating effects such as reduced speed, increased leakage (wasted power),

accelerated aging etc. Reducing power consumption not only alleviates these problems

but also reduces packaging and cooling costs (Lin and Banerjee, 2008).

The second requirement for low power comes from limited energy capacity of bat-

teries used to power mobile devices, (Chalmers and Sloman, 1999). As more and

more transistors are packed on today’s chips, the power requirement starts growing

beyond the capabilities of the batteries necessitating energy-efficient designs. Im-

provements in battery technology to increase their capacity have not kept pace with

the increase in transistor count and transistor density made possible by technology

scaling. Energy efficient design is therefore critical for mobile platforms.

Efforts to reduce power consumption of digital CMOS circuits have been in progress

for nearly three decades (Chandrakasan and Brodersen, 1998; Panda et al., 2010). As

a result, a number of well understood and proven techniques for reducing dynamic

and leakage power have been incorporated into modern design practices and tools.

Fig. 1.1 gives an idea about all the levels of hierarchy at which power reduction

techniques have been explored.

1

Figure 1.1: Power Reduction Techniques

Power reduction techniques

A number of power reduction techniques have been applied at different levels of

the circuit design hierarchy namely at the system level (algorithm, source code and OS

compiler etc) (Piguet, 2005) (Lorch, 2001), at the architecture level (instruction set,

micro-architecture) (Qadri et al., 2009) (Zandrahimi and Al-Ars, 2014) (Moyer, 2001)

and at the circuit level (circuit design, gate design and transistor design) (Devadas

and Malik, 1995) (Chandrakasan and Brodersen, 2012). At each level, the techniques

range from being completely general (applicable to all designs) to being applicable to

specific types of circuits(such as only controllers or arithmetic designs). The dynamic

power of the static (charge driven) digital switching circuit is given by

Pdyn = C.V 2.αF (1.1)

where C denotes the capacitance that is being charged or discharged during switching,

V is the supply voltage, α denotes the switching activity, and F denotes the frequency

2

at which the circuit is operated. Each power reduction technique at any level targets

a combination of these parameters to reduce the power. At the circuit and CAD level,

efficient synthesis and technology mapping methods have been shown to reduce circuit

area and switching activity (Brzozowski and Kos, 1999) (Keutzer, 1988) (Tiwari et al.,

1993). Additional methods such as logic restructuring (Brzozowski and Kos, 1999),

gate sizing under timing slacks (Coudert, 1997), technology mapping (Tiwari et al.,

1993), re-timing (Monteiro et al., 1996), clock gating (Chandrakasan and Brodersen,

2012) etc. have been applied and a large body of work have been published on these

methods. We briefly summarize the techniques that are most relevant to this work.

The techniques explored in this dissertation for improving digital circuits fall in to

two categories.

1. Power and area reduction through gate sizing, and

2. Power reduction through the use of alternate types of timing elements.

Power and area reduction through gate sizing under timing slack

The use of smaller and slower cells can achieve reduction in area as well as dynamic

power. For example, a 4-input AND gate is smaller and slower than a tree of 2-input

AND gates. In the presence of positive timing slacks, it is possible to employ slower

cells. A well-known method to reduce total power without sacrificing performance is

to exploit slacks available on non-critical paths. The problem of choosing a particular

gate size, formally known as the “gate sizing problem” (Coudert, 1997) consists of

choosing, for each node of a mapped network, a gate implementation in the library,

such that some cost function (e.g. dynamic power, leakage power or area or some

combination of these) is optimized under given timing constraints. Techniques de-

scribed in (Chen and Sarrafzadeh, 1996) (Coudert, 1997) reduce the available timing

3

slack from a positive value to zero by using smaller and slower cells. The smaller cells

typically require less area and have lower dynamic and leakage power. The average

power improvement due to gate resizing in presence of timing slacks has been shown

to be 38% (Chen and Sarrafzadeh, 1996). Similar techniques to reduce gate sizes are

routinely employed in most commercial synthesis and mapping tools. Therefore, any

additional timing slack introduced on the critical path without any change in clock

period can reduce the total power considerably. This idea forms the basis of the power

reduction ideas presented in this work. The techniques presented here maximize the

timing slack on critical paths (for ASIC circuits) in order to reduce area and power.

Role of single and multi-input flip-flops in providing timing slack

In any timing path within a sequential circuit, the clock-to-Q delay and setup time

of flipflops play an important role in determining the clock period. The is especially

true in high speed pipelined datapath circuits. The clock period is determined by the

total delay of the flipflop which is the sum of setup time and the clock-to-Q delay.

Reducing the total delay results in extra slack, which can be used to reduce the size

of the logic gates feeding the flipflop.

In order to reduce effective delay (also called pipeline overhead) of the flip-flops,

attempts have been made to incorporate logic inside the flipflop. Dynamic and semi-

dynamic flip-flops described in (Klass, 1998) (Partovi et al., 1996) embed an NMOS

logic block in the master latch. These flipflops have a dynamic master latch that

presets and evaluates a logic function and a static back end that simply stores the

value computed by the master latch for the remainder of the clock cycle. However

these flip-flops pose few problems. First, their setup time grows substantially with

the increased complexity of the embedded logic. Ideally the complexity of functions

should not substantially affect the setup time. Second, for each logic function, a

4

new flipflop has to be designed, optimized and characterized from scratch which can

quickly become prohibitively expensive.

Threshold Logic Flipflops

Advantages of differential mode threshold gates

The static differential threshold gates (DTGs) overcome the obstacles posed by dy-

namic flip-flops that embed NMOS logic. The main feature of a DTG flip-flop is

computing and amplifying the conductivity difference between two networks of paral-

lel transistors referred to as the left input network (LIN) and the right input network

(RIN). If the LIN has lower impedance then the output is logic 1, otherwise it is

0. Since the impedance of either network is an integral multiple of the number of

ON transistors, the Boolean function of such DTG can be described by the predicate∑
xi >

∑
yi where xi are variables controlling the number of ON transistors in the

LIN and yi are Boolean variables controlling the number of ON transistors in the RIN.

This predicate can be algebraically rearranged to yield the predicate
∑

(xi− yi) > 0.

This type of pseudo-boolean predicate corresponds to the class of linear threshold

functions. Given a linear threshold function (which is a Boolean function), it is possi-

ble to connect the variables (and constants) to the input networks such that predicate

of the DTG reduces to that of the given threshold function.

The DTGs (Strandberg and Yuan, 2000a)(Padure et al., 2001b)(Leshner et al.,

2010) have been shown to be superior to the conventional multi-input and single

input flip-flops because of following advantages: (1) They have a much lower and

constant total delay whose value is almost independent of the complexity of the

function being implemented (2) They impose no additional requirements from clock

circuitry while exhibiting the same or lower clock load, (3) an they permit synthesis

5

time programmability i.e. the DTGs can be wired to implement a range of threshold

functions which effectively reduces the number of cells in the library. In essence, the

DTGs overcome most of the problems of flipflops embedding logic, however the type

of logic they can implement is restricted to threshold logic functions as opposed to

general Boolean functions.

One aspect of digital CMOS circuits that hasn’t changed is how logic functions

are computed. A CMOS ASIC circuit using static logic is a multi-level network of

AND/OR logic gates or more complex cells such as AOI/OAI cells, in which each node

computes a Boolean function of its inputs by establishing a conducting path from the

supply rails to its output. However, threshold functions, which are a proper subset of

unate Boolean functions, can be computed by fundamentally different mechanisms,

and this presents the possibility of further improvements in power consumption, per-

formance and area, which have not been thoroughly explored.

Let X=(x1, x2, · · · , xn), xi ∈ {0, 1}, w = (w1, w2, · · ·wn), wi ∈ R, and T ∈ R. A

unate Boolean function f(X) is called a threshold function if there exist weights w

and a fixed threshold T such that

f(X) =

1 if w′X ≥ T

0 otherwise.
(1.2)

= sgn+(w′X − T)1 (1.3)

Without loss of generality, the weights w and threshold T can be assumed to be

positive integers. The following are two examples of threshold functions.

f(a, b, c) = ab ∨ bc ∨ ac

= [wa = 1, wb = 1, wc = 1;T = 2] (1.4)

= [1, 1, 1; 2] (1.5)

1sgn+(x) = 1 if x ≥ 0, and sgn+(x) = 0 otherwise (see (Siu et al., 1995)).

6

g(a, b, c, d, e) = a(b ∨ c ∨ d ∨ e) ∨ b(cd ∨ de ∨ ce) ∨ cde

= [wa = 2, wb = 1, wc = 1, wd = 1, we = 1;T = 3] (1.6)

= [2, 1, 1, 1, 1; 3]. (1.7)

A threshold function can be implemented in the same way as any logic function,

e.g. network of logic primitives or a pull-up and pull-down network of pFETs and

nFETs, etc. Such implementations are not considered here, as they offer nothing new,

and in fact, can be quite inefficient for implementing threshold functions in terms of

speed, power and area. The implementations of a threshold logic gate considered

in this work compute the predicate in (1.2) by performing a comparison of some

electrical quantity such as charge, voltage or current. This is what distinguishes such

implementations of a threshold gate with any of the conventional implementations of

CMOS logic functions.

The reason for examining threshold gates as logic primitives stems from the fact

that they are computationally more powerful than the standard AND/OR logic prim-

itives. Many common logic functions such as the n-bit parity, n-bit multiplication,

division, powering, sorting, etc,. can be computed by polynomial size threshold net-

works of a fixed number of levels, while the same would require exponential size

AND/OR networks (Siu et al., 1995). A detailed treatment of the complexity of

threshold networks and constructive methods for various types of arithmetic func-

tions, including size-depth and weight-depth trade-offs is presented in (Siu et al.,

1995). An updated survey of the same appears in (Beiu, 2003), and an extensive

survey of circuit architectures of threshold gates is given in (Beiu et al., 2003). These

surveys point to a large body of results which suggest that threshold gates and net-

works can potentially lead to significant reductions in circuit size and delay. However,

the use of threshold logic gates in conventional ASIC design has not been thoroughly

7

explored due to the lack of efficient and reliable gate implementations and the neces-

sary infrastructure required for automated synthesis and physical design.

In this dissertation, new methodologies for digital circuit design with threshold

logic gates are described. The applications of threshold logic gates to improve energy-

efficiency of two well known digital circuit design methodologies viz. - Application

Specific Integrated Circuits (ASIC), Field Programmable Gate Arrays (FPGA) is

described. We present the design of new circuit primitives and new logic synthesis

algorithms.

The outline of the dissertation is as follows.

1. Chapter 2 describes the earlier work on the design and usage of differential

mode threshold logic gates in circuit design.

2. Chapter 3 describes a new, robust architecture for a threshold gate that employs

differential logic, referred to as a PNAND cell. As with other implementations

in the same category, a PNAND cell is clocked, and its behavior can be ab-

stracted to be that of a multi-input edge-triggered flip-flop (ETFF). Whereas a

conventional D-type ETFF (D-FF) computes the identify function f(x) = x on

a clock edge, a PNAND cell computes a threshold function f(x1, x2, · · · , xn),

also on a clock edge. Furthermore, like the D-FF, a PNAND cell can be made

scannable and have other features like asynchronous preset and clear.

Unlike conventional logic gates or cells, the function of a PNAND cell is not de-

termined by the cell itself. Instead, its function is determined by the signals that

drive its inputs. The signal assignment affects the delay, power and robustness

of the cell to process variations. Therefore, a specific signal assignment that

results in a least fanin PNAND cell to implement a given threshold function is

defined. Conversely, for a PNAND cell with k inputs (PNAND-k), and with the

8

specific signal assignment, the set of threshold functions that can be realized

only by such a cell, and no other cell with a smaller k is determined. This

leads to a small number of PNAND cells which collectively realize a substantial

number of complex threshold functions, many of which would otherwise require

a multi-level AND/OR network if implemented in a conventional design.

The robustness of the PNAND cell against parametric variations in 65nm tech-

nology is demonstrated (Section 3.5) through Monte Carlo simulations per-

formed with vendor supplied variation data obtained from fabrication, and

which include both global variations and local mismatch. The cells have been

designed to achieve zero out 100,000 Monte-Carlo simulation trials.

3. Chapter 4 describes two novel methods for technology mapping with PNAND

cells starting from a generic AND/OR netlists. Since a PNAND cell may be

viewed as a complex function embedded in a flip-flop, the technology mapping

algorithm explores cones of logic that end at D-FFs for threshold functions,

and replaces such subcircuits with the appropriate PNAND cell. The resulting

circuit will have a mixture of conventional logic gates and threshold logic cells,

and will be referred to as a hybrid design. A useful characteristic of threshold

functions that is exploited during technology mapping is the ease of determining

the NPN (input Negation, input Permutation, output Negation) equivalence

of two threshold functions. This is not the case with AND/OR logic. This

characteristic makes it simple to check if a a threshold function found in a logic

cone is NPN equivalent to any of the functions implemented by the small set of

PNAND cells in the library, thereby significantly increasing the set of possible

matches during technology mapping.

The results of technology mapping with threshold gates for a number of complex

9

designs are presented and compared with conventional logic implementations.

The PNAND cells were implemented as standard cells using a commercial 65nm

technology. The netlists resulting from technology mapping with threshold cells

were synthesized, and placed and routed using commercial tools. The same was

done for the conventional design. The resulting final layouts were extracted and

simulated for comparison with the conventional design.

4. Using the proposed PNAND as a basic cell, chapter 5 describes a novel de-

sign of a field programmable threshold logic array (FPTLA), and a method to

synthesize a network of TLGs that can be mapped on to the array.

The FPTLA can be programmed to realize any one of a number of threshold

functions by assigning the appropriate signals to the inputs. This reduces the

number of SRAMs required by the logic blocks by about 60%.

It is well known that differential mode threshold logic gates can be more sensitive

to mismatch due to process variations. However, mismatch in a PNAND need

not make the logic block unusable. Rather, mismatch causes the set of threshold

functions realizable by the PNAND to be altered. This leads to two different

scenarios in how the array can be utilized.

(a) A conservative approach is to simply ignore the cells whose functionality is

altered by process variations. To ensure feasibility of the mapping, if a TLG

network to be mapped has N TLGs, then an array of PNANDs larger than N

would be required. We show that for a given probability of a cell’s functionality

being altered, the number of extra cells required to achieve a very high circuit

yield is small.

(b) A key characteristic of PNAND cells is that mismatch can only result in

another set of threshold functions. That is, mismatch will not change a threshold

10

function into a non-threshold function – a characteristic that is demonstrated

here. Hence, instead of simply ignoring the altered cells, the synthesis procedure

can take in account the new set of all functions available on the array, and

generate a TLG network accordingly. Note that the synthesis procedure that

accounts for this additional flexibility is beyond the scope of this work.

We present experimental results by comparing FPTLA and conventional FPGA

implementations of several nanopipelined combinational benchmarks. Nanopipelined

circuits are path balanced in which each gate computes a function on a clock

edge. The throughput and speed of such circuits is very high due to such deep

level of pipelining. The power and delays of these circuits are obtained using

the well established VPR tool that accurately models the routing resources and

logic blocks.

5. Chapter 6 proposes a novel clocking method called as local clocking to further

improve power reduction of ASIC circuits. The most important thing about

local clocking is that it provides incremental improvements to existing circuits.

Therefore whether a circuit is already hybrid or not, local clocking can still be

applied. Local clocking works by deriving local clock signals from differential

mode threshold gates. Most differential mode gate circuits operate using a

sense-amplifier which has a differential amplified outputs (at logic 1 and logic

0 or vice versa). This state indicates the completion of computation which can

be used to generate another output signal which has same pattern (albeit delay

shifted) as the input clock. This skewed (delayed) output clock can be used to

locally trigger other flipflops to realize additional advantages such as reduction

in area and power under timing slack and elimination of hold time violations

on certain short paths. A 0-1 integer programming formulation is provided

11

for local clocking problem that decides which flipflops provide trigger to which

other flipflops while satisfying timing constraints. Finally experimental results

are provided on 64-bit multipliers withK pipeline stages (K=1 to 6) with locally

clocked CMOS only and hybrid circuits. The local clocking provides additional

3% to 8% improvement in post-layout dynamic power.

12

Chapter 2

BACKGROUND

2.1 Necessity for Low Power

Traditional ASIC (Application Specific Integrated Circuit) design involves con-

structing networks of CMOS (Complimentary Metal Oxide Semiconductor) logic gates

to implement a given functionality. CMOS logic gates such as NAND, NOR, OR etc.

consist of pullup and pull down networks and they function by establishing a con-

ducting path between one of the supply rails and the output depending on the input

combination. This paradigm has worked exceedingly well, in terms of dynamic power,

size and robustness of the circuit. However there is even greater need for low power

circuits due problems such as overheating and limited battery sizes of portable de-

vices.

One of the most common way to address power problem is to scale the process

geometry. As the size of transistors shrink, so does the area and power of circuits.

However it’s been observed that as process geometries shrink, the power density

(power consumption per unit area) grows. The absolute power may drop but the

power consumption per unit area (due to shrinkage in area) increases. The cooling

solutions can withdraw a fixed amount of heat per unit area. Therefore shrinking

process geometry does not diminish the need for low power circuits but rather makes

it more severe.

The total power of CMOS circuit consists of three components.

Ptotal = Pdyn + Pstatic + Pss. (2.1)

The total power is sum of the dynamic power, the static power and the short circuit

13

power (when both pullup and pull-down networks are ON). Dynamic power which is

the largest contributor to the total power is computed as

Pdyn = C.V 2.α.F. (2.2)

Equation 2.2 shows that a quick way to reduce power is to scale down the supply volt-

age (V), or the frequency (F) of operation. Indeed, techniques such as DVS (Dynamic

Voltage Scaling) and DVFS (Dynamic Voltage-Frequency Scaling) are utilized rou-

tinely to minimize the power of circuits depending on the workload and task deadline

requirements. However reducing voltage or frequency also reduces the speed of the

circuit. Most ASIC chips must operate at certain minimum speed while some have

more stringent high speed requirements. Therefore reducing voltage or frequency is

beneficial only when speed is not a concern. For a given voltage and frequency, the

power consumed by the circuit is a characteristic property of the circuit. Therefore

the main concern of circuit designers is to improve energy delay product rather than

power. Energy delay product (EDP) is computed as

EDP = Etot/F, (2.3)

where Etot is total energy expenditure and F is the frequency of operation of the

circuit. The unit of this metric is Joules × seconds per cycle which is equivalent to

the amount of energy spent multiplied by the amount of time taken for one operation.

A circuit with the lowest expenditure of energy and time combined for one unit of

operation is the most desired. EDP is directly related to the energy efficiency. A

circuit with lower EDP is said to be more energy-efficient (Gonzalez and Horowitz,

1996). We can improve the EDP by speeding up the circuit without increasing the

power, or lowering the power without decreasing the speed. The ASIC and FPGA

circuit designs proposed in this thesis explore both of these ideas.

14

2.2 Dynamic Power Reduction Methods

The power reduction methods tried so far span several decades of research. The

survey in (Devadas and Malik, 1995) gives an overview of most of the power reduction

techniques. A brief summary of these ideas is presented here to give the reader an

idea of how various approaches achieve power reduction.

Reducing Switching Activity

The clock gating technique enables the clock only when the circuit has a data

input to process. The enable circuit typically produces a signal that is used in clock

distribution networks to enable/disable propagation of the clock. The clock gating

technique reduces activity factor (α) in the Equation 2.2. Another way to reduce the

switching activity is restructure the logic. (Brzozowski and Kos, 1999) shows that a

different synthesis of the same function can lead to lower switching activity.

Another important contributor to the dynamic power is glitching. It can con-

tribute between 10% - 40% to the dynamic power. A glitch is a spurious transition

of a signal caused by unbalanced path delays in combinational circuits. Techniques

to minimize glitching by path balancing are presented in (Vijayakumar and Kundu,

2014) and (Lemonds and Shetti, 1994). Glitches are propagated by combinational

gates from inputs to their outputs. However sequential elements such as flipflops do

not propagate glitches. A retiming solution that introduces flipflops on most active

wires to reduce power is described in (Monteiro et al., 1996).

Reducing Capacitance

Almost all the remaining techniques focus on reducing the capacitance of the

circuit. The capacitance is directly proportional to the transistor (or logic gate) sizes,

15

as well as their number. At the transistor level, transistor resizing technique in (Tan

and Allen, 1994) minimizes the transistor sizes in a logic gate while meeting the delay

constraints. The combinational networks can be reduced in size by techniques such as

don’t care based optimization (Shen et al., 1992). Another approach for technology

independent optimization is by improved factorization of logical expressions based on

modified kernel extraction methods (Roy and Prasad, 1992).

Technology mapping step involves generating technology dependent realization of

logic networks using a given set of library primitives. Techniques to minimize power

by technology mapping are presented in (Keutzer, 1988) (Tiwari et al., 1993).

The power reduction methods in sequential circuits involve modifying state encod-

ing, retiming etc. The state encoding optimization technique which tries to reduce

the state transition graph and the number of states is presented in (Tsui et al., 1994).

2.3 Static Power Reduction Methods

The static or leakage power of the circuit Pstatic is a function of supply voltage,

temperature and the static currents through all the transistors in the circuit. The

contribution of static power compared to the dynamic power increases with miniatur-

ization. Therefore a number of techniques have been tried to reduce the static power

as well.

Most of the fabrication processes allow for multiple threshold voltage (VT) tran-

sistors , typically at three levels: low, standard and high. A transistor with high

VT has much less static current. However at the same time, high VT transistors are

also slower. Therefore a common technique is to use standard cells with high VT on

non-critical paths. This method is presented in (Roy et al., 2003).

Connecting transistors in series results in a substantial reduction in leakage.

Therefore placing a sleep transistor between the supply rail and one of the pullup/pulldown

16

networks reduces the leakage substantially(Kumar et al., 2013). The same stacking

technique is extended to power gating wherein an entire block of logic is supplied

power through a large PMOS transistor which is turned off when the circuit is not

operated.

Controlling the supply voltage is another common technique to reduce static cur-

rent. The supply voltage of memory modules is scaled down to a minimum possible

value that ensures data retention. If a logic block is not required to operate faster

a given certain speed its voltage can be reduced to a value that meets the speed

requirements.

2.4 Threshold Logic: A New Approach

Static CMOS logic has been the dominant design methodology for digital circuits

for the past several decades. Circuits consists of networks of AND, OR and NOT

gates. As described above, techniques for reducing power consumption of CMOS

circuits have been thoroughly investigated, and there hasn’t been, nor likely to be,

any new developments in reducing power consumption of static CMOS logic.

AND, OR and NOT functions are special cases of threshold functions, a natural

question to investigate is whether networks of more general threshold functions can

lead to faster, more compact, and lower power circuits. This is the main direction of

this research.

A large of body theoretical work on threshold networks has demonstrated the

numerous advantages in terms of size (i.e. number of gates), and speed (i.e. number

of levels). We now briefly describe some of the many advantages of threshold networks

over the conventional logic networks.

The symmetric functions are a subclass of Boolean functions whose output is only

a function of number of 1’s in the input vector. For example, parity or majority

17

functions can simply count the number of 1’s in the inputs to be able to produce the

output value. Symmetric functions of n inputs can be realized using O(
√
n) threshold

gates with depth of 3 (constant depth). Whereas symmetric functions such as parity

would require O(n) AND-OR-NOT gates with depth of O(log n).

Arithmetic circuits are the most commonly used blocks in today’s ASIC circuits.

Many n-bit functions such as multiplication and exponentiation require exponentially

many AND-OR-NOT gates. In contrast, a threshold networks of these functions

require at most a polynomial in n number of threshold gates and very small depth

(logic levels). For example, Addition and Comparison can be computed with depth-

2 and polynomial number of threshold gates. Multiplication can be computed with

polynomial sized circuit with depth of 4. Along with multiplication, powering, division

and sorting can also be computed with depth of 4 or less. It should be noted that the

integer weights of the threshold gates used in above networks are also polynomially

bounded.

The above results and others suggest that, at least in theory, threshold networks

can potentially be far more compact and faster than conventional logic networks.

Whether these advantages can be realized in practice depends on the physical char-

acteristics of threshold gates. In this dissertation, we demonstrate that a combination

of threshold gates and conventional logic can indeed result in smaller and lower power

circuits, than conventional logic networks, without sacrificing performance.

2.5 Threshold Logic Gates

If the predicate (1.2) in the definition of a threshold function is to be realized

by a single circuit, it must be able to selectively add some physical quantity that

represents the weights and compare that with a fixed quantity (threshold) having

the same type as the weights. Typically the physical quantity that is added is one

18

of the charge, current, magnetic or electric fields. Depending on which physical

quantity is utilized, there exists a range of threshold circuits that have been designed

till date. The comprehensive survey in (Beiu et al., 2003) shows nearly 50 different

implementations based on different principles. Here we provide a short synopsis of

some those implementations.

Threshold logic implementations can be broadly classified into two types: (1) static

or combinational or (2) sequential (clocked). The static implementations essentially

treat a threshold function as any other logic function, and therefore, a single pair of

complementary pull-up and pull-down networks can be used to implement the given

threshold function. However such implementations are prohibitively large and slow

for all but small functions. Examples of such implementation are (J., 1964; Z. and

W., 1967; Hidalgo-Lopez et al., 1995). Another early design (J, 1973) uses multiple

inverters driving a common node. The widths of these inverters are adjusted based

on weights of the threshold functions which forms a non-linear voltage divider at the

output node.

Among the sequential implementations, one of the earliest implementations is

based on switched capacitors (CTL) (Özdemir et al., 1996). Their main drawback

was large delay, area, DC power and the need for precise capacitance values. Although

the variant balanced CTL (B-CTL) (López-Garćıa et al., 2004) eliminated the need for

precise capacitance values by comparing relative voltages, it still retained the other

drawbacks. Neuron MOS TLG (Shibata and Ohmi, 1991), which performs similar

summation of voltage using capacitors eliminates the usage of a reference threshold

voltage. Several modified versions of Neuron MOS TLGs (Kotani et al., 1995, 1998)

were proposed as improvements of the basic version. Later versions of the same used

a sense-amplifier to sense the differential voltage after summation (Huang and Wang,

2000; Celinski et al., 2001), which improved the sensitivity and power dissipation.

19

The self-timed threshold logic (STTL) uses capacitor sharing to minimize capacitor

areas and can include negative weights without inverting inputs. However all these

implementations still utilized precise capacitance devices which are hard to fabricate

and also require large area.

Threshold logic gate architectures based on comparing conductances include (1) Sin-

gle input Current Sensing Differential Logic (SCSDL) (Strandberg and Yuan, 2000b),

(2) Differential Current Switch Threshold Logic (DCSTL) (Padure et al., 2001b),

(3) Current Mode Threshold Logic (CMTL) (Bobba and Hajj, 2000) and some of

its variants known as discharged CMTL (DCMTL) and equalized CMTL (ECMTL),

and Threshold Logic Latch (TLL) (Leshner et al., 2010; Leshner, 2010). A high

fanin current mode threshold logic gate similar to CMTL is presented in (Dara et al.,

2012), along with a analysis of its delay based on device models without accounting

for process variations. Technology independent analysis of the robustness of threshold

gates is presented in (Dechu et al., 2006), in which any type of variation is modeled

as perturbations in the weights and threshold.

Researchers have recognized that several of the post-CMOS nano technologies 1

which make it possible to efficiently and naturally implement threshold functions.

(Gupta and Jha, 2005) describes nano-pipelined implementations of threshold gates

using RTDs and (Lageweg et al., 2001) describes a novel design of an n-input linear

threshold gate, requiring one tunnel junction and n+2 capacitors. Using an improved

design of a SET based threshold logic gate, a full adder design is described in (Lageweg

et al., 2002). (Sulieman and Beiu, 2004) describes the optimal threshold gate based

design of a 16-bit parallel-prefix adder using single electron transistors (SET). SETs

1Resonant tunneling diodes (RTD)(Prost et al., 2000), carbon nanotube FETs (CNFET) (Ap-
penzeller et al., 2005) and carbon nanowires; single electron transistors (SET) (Lageweg et al., 2001),
quantum cellular automata (QCA) (Blair and Lent, 2003; Jian et al., 1998), non-charge based devices
such as spin transfer torque magnetic tunnel junctions (STT-MTJ), etc.

20

have been shown to realize latches, flip-flops and majority gates (Lageweg et al., 2001).

A threshold gate has been built with an RTD and an HFET (Chen et al., 1995). A

primitive gate in a QCA is a majority gate which is a threshold function (Zhang et al.,

2005).

2.6 Synthesis and Mapping using Threshold Logic

Most, if not all of the prior work on synthesis of threshold networks is technol-

ogy independent, and the earliest work dates back to the 1960s. A comprehensive

treatment of the subject through 1970s appears in (Muroga, 1971). Some of the

methods summarized in (Muroga, 1971) are: (1) Minterm expansion, which uses ex-

ponentially many majority gates; (2) Akers’ method based on self dualization and

positivization; (3) Minnick’s synthesis based on iterative solution of linear program-

ming problems along with artificial variables; (4) Hughes method which is similar to

Minnick’s method but doesn’t use artificial variables; (5) Winder’s method based on

geometric interpretation of monotonic properties of threshold gates and finally an op-

timum network synthesis for threshold networks based on integer linear programming.

These techniques are generally not suitable for present day industrial designs.

Reference (Siu et al., 1995) presents a thorough treatment of the fundamental

complexity results of threshold networks up to 1995, and (Beiu, 2003) covers many

additional results through 1999. Most of these results point to the fact that threshold

logic networks require fewer number and levels of gates compared to conventional

AND-OR-NOT networks. A more recent threshold synthesis procedure is due to

Zhang et al. (Zhang et al., 2005) which shows an average of 52% reduction in gate

count compared to Boolean networks for MCNC benchmarks. An improved method

based on iterative decomposition of BDD of a general Boolean function is presented

in (Gowda et al., 2011).

21

It should be noted that most of the prior work on threshold synthesis assumes ei-

ther an abstract threshold gate or nano-device based gates which are hard to fabricate

with required precision. But the MOSFET based differential mode threshold gates

(DTGs) that can compete with static CMOS style gates are essentially sequential by

nature. It is possible to develop a balanced or nano-pipelined network consisting only

of DTGs. Such networks, although faster than any conventional static CMOS gate

networks, pose several additional challenges such as increased complexity of clock

distribution, increased power and area etc. in ASIC domain 2 . Inspired from the

work in (Leshner et al., 2010), the present work in ASIC domain (Chapters 3 and 4)

further extend the idea of hybrid networks that consist of an optimal mix of PNANDs

and conventional CMOS standard cells.

2.7 Threshold Logic in Field Programmable Environment

Compared to standard cell based circuits, the attempts to utilize threshold logic

in a field programmable environment have been very scarce, and only a few imple-

mentations exist. (Rajendran et al., 2010) describe a novel memristor based threshold

logic gate array. The computing block in this architecture consists of a threshold gate

where memristance of the device act as weights. The computing block consists of

current mirrors which are used to add currents through the memristive devices which

is then compared with a reference current. Although they show substantial improve-

ments in power (about 75%) compared to MOSFET based 4-input LUT FPGA, the

absolute delay of the threshold gates are quite high (12 times that of LUT). Another

implementation that uses a nano-device is presented in (Nukala et al., 2012). The

computing block in this gate array is a threshold gate consisting of STT-MTJ (spin

2However in field programmable circuit domain, the clock is already distributed and therefore a
nano-pipelined implementation can take advantage of it. In fact, chapter 5 explores this idea.

22

transfer torque magnetic tunnel junction). This device switches its resistive state if

a current larger than certain magnitude (switching current) is passed through it. A

parallel network of pFETs is employed to tune the current passing through STT-

MTJ. If enough inputs are 1, then the current through the STT-MTJ is greater than

switching magnitude and it switches to the state of low resistance. Therefore the

STT-MTJ acts as a natural threshold logic gate.

23

Chapter 3

THRESHOLD LOGIC FLIPFLOP

This chapter explains the architecture, operation and cell level analysis of the

proposed threshold gate PNAND.

3.1 Architecture

Figure 3.1 shows the schematic of the threshold gate with k inputs, henceforth

referred to as PNAND-k. It consists of three main components: (1) two groups of

parallel pFET transistors referred to as the left input network (LIN), and right input

network (RIN), (2) a sense amplifier (SA), which consists of a pair of cross coupled

NAND gates, and a (3) set-reset (SR) latch. The cell is operated in two phases: reset

(CLK = 0) and evaluation (CLK 0→ 1). For the moment, ignore the transistors M9

and M10.

Reset phase: With CLK = 0, the two discharge devices M18 and M19 pull nodes

N5 and N6 low, which turn off M5 and M6, disconnecting all paths from N1 and

N2 to ground. In addition, M7 and M8 are active, which results in N1 and N2 being

pulled high. The nFETs M3 and M4 are ON. With N1 and N2 being high, the state

of the SR latch does not change.

Evaluation Phase: This corresponds to when CLK 0→ 1. A input that results in

` active devices in the LIN and r active devices in the RIN is denoted by `/r. The

signal assignment procedure (to be explained shortly) will ensure that ` 6= r. Assume

that ` > r. As a result, the conductance of the LIN is higher than that of the RIN.

As the discharge devices M18 and M19 are turned off, both N5 and N6 will rise

to 1. Due to the higher conductivity of the LIN, node N5 will start to rise first,

24

N1
N2

N5 N6

S
R

Q
QN

Symmetric SR Latch

N2

VDD

M1 M2

M3 M4
N1

M7

M5 M6

M8

Left input
network Right input

network

CLK
CLK

X0X1

M16

M18CLK

CLK

Xk-1

N1 Y0 Y1

M19 CLK

Yk-1

M17 CLK

N2

Sense Amplifier

M9 M10

Figure 3.1: PNAND Cell Design

which turns on M5. With M3 = 1, N1 will start to discharge through M3 and

M5. The delay in the start time for charging N6 due to the lower conductance of

the RIN allows for N1 to turn on M2 and turn off M4. Thus, even if N2 starts to

discharge, its further discharge is impeded as M2 turns on, resulting in N2 getting

pulled back to 1. As a result, the output node N1 is 1 and N2 is 0. As the circuit

and its operation are symmetric, if ` < r, then the evaluation will result in N1 = 0

and N2 = 1.

The active low SR-latch stores the signals N1 and N2. During reset, when

(N1, N2) = 1, the SR-latch retains its state. After evaluation, if (N1, N2) = (0, 1),

the output Q = 0, and if (N1, N2) = (1, 0), Q = 1, providing a dual-rail output for

the threshold function being computed. Therefore, once evaluated after rising edge

of the CLK, the output Q of the cell is stable for the remaining duration of the clock

cycle. Hence, it operates like an edge-triggered flip-flop, that computes a threshold

25

function.

Since it is the “difference in conductivity” between the LIN and RIN that is

sensed and amplified, the greater the difference, the faster and more “reliably” the

cell operates. In the layout of the PNAND cell, several steps were taken to ensure

robustness to process variations and signal integrity. A symmetric SR-latch (Nikolic

et al., 2000) was used to ensure near identical load on node N1 and N2 and near

equal rise and fall delays. The source nodes of M16 and M17 are shorted so that the

transistors in the LIN and RIN have nearly identical VD, VG and VS before clock rises.

The sizes of the pull-down devices in the differential amplifier were optimized, as were

the sizes of the input transistors in the LIN and RIN to maximize the conductivity

difference for the input combination that results in the worst-case contention between

the LIN and RIN, while keeping the RC delay of the input networks as low as possible.

In addition, to further improve the robustness of the cell, an internal feedback is

created with transistors M9 and M10 in the LIN and RIN, driven by N1 and N2,

respectively.

These additional transistors M9 and M10 in the input networks serve as keepers

to avoid the situation where N5 and N6 might be in a high impedance states (HiZ1,

HiZ0). Assume for the moment that M9 and M10 are not present, and consider the

situation in which there are k active devices in the LIN and none in the RIN. After

reset, N5 and N6 are both 0. When the clock rises to 1, N5 will rise to 1, and N6

will be HiZ0, and the circuit will correctly evaluate with N1 = 0, N2 = 1. Note

that M4 is inactive and M3 is active. Now suppose that while CLK = 1 the inputs

change, and all transistors in the LIN become inactive and some k transistors in the

RIN become active. N5 is now HiZ1, and N1 will remain at 0, keeping M4 inactive.

However, N6 rises to 1, turning on M6, but as long as M4 remains inactive, and M2

active, no change will take place. N5, being HiZ1, is susceptible to being discharged.

26

If that happens, N1 rises, activating M4, and discharging N2, which results in the

output being complemented.

Transistors M9 and M10 ensure that N5 and N6 do not become HiZ0 or HiZ1.

In the above situation, once N1 = 0 during evaluation, the presence of M9 driven by

N1 ensures that N5 = 1. Hence, after evaluation and while CLK = 1, any change in

the input state will not affect the side that determined the output, i.e. was discharged

first, and hence the output will not be disturbed.

Figure 3.2 shows waveforms from the SPICE simulation of a PNAND-9 netlist

extracted from layout, with and without M9 and M10 transistors. For the specific

signal assignment used in the technology mapping, the maximum number of active

devices in the LIN or RIN among all the functions realized by a PNAND-9 is 5.

Therefore the simulation shown in Figure 3.2 starts with applying a 5/4 input, which

results in N1 = 0, N2 = 1 and Q = 1. While CLK is held at 1, the input is switched

to 0/5, so that N5 = HiZ1. Next, N5 is discharged to ground through a capacitor,

which turns off M5 and turns on M7, pulling N1 to 1. This turns on M2 and turns

off M4, and N2 discharges to ground. The result is that while CLK = 1, if the input

switched leaving N5 or N6 in a HiZ1 state, it is possible to switch the output due to

coupling noise. The same experiment, when repeated with the presence of the keeper

transistors M9 and M10, does not result in the output being disturbed.

3.2 Asynchronous Preset, Clear and Scan implementations

The PNAND cell is a multi-input flip-flop, therefore it is necessary for it to have

typical features of a D-flip-flop such as asynchronous preset and clear as well as scan.

Evidently the PNAND cell operates quite differently compared to a master-slave D-

flip-flop. In master-slave DFF, the asynchronous preset and clear inputs must change

the state of both master and slave to make it independent of the state of the clock.

27

P-NAND WITHOUT
M9 and M10
transistors

P-NAND WITH
M9 and M10
transistors

Node N5 (after noise injection)

Output Q switches
incorrectly while CLK
= 1

Node N5 is restored
through Transistor M9

CLK

Correct output Q

Figure 3.2: Importance of Feedback Transistors in the Input Networks of PNAND

However in PNAND, the SR latch always follows the nodes N1 and N2 irrespective

of the clock. Hence the preset,clear and scan mechanisms need to change the state of

the sense amplifier.

Fig. 3.3 shows the implementation of asynchronous preset PREZ (active low) and

asynchronous clear CLR (active high). The additional transistors required in the

basic PNAND to implement preset and clear are shown with thicker lines. When

CLK is 0, N1 and N2 are both 1. When PREZ is asserted (set to 0) and CLR

= 0, the signal PRE rises to 1. Therefore transistor M9 is off cutting supply to node

N1. N1 discharges through the NMOS transistor M10 causing cell output Q to rise.

When CLR is asserted (CLR = 1), node N2 discharges through transistor M12

causing latch output Q to fall. When both CLR and PREZ are asserted, then CLR

alone operates and PREZ is filtered out indicating this is CLR dominated circuit.

The NOR gate can actually be moved outside the cell and shared across all cells

28

which allows the cell to have a single active high preset (PRE) signal. When CLK =

1, the state of N1 and N2 can be opposite. In this case, the NMOS transistors M10

and M12 must be sized to overcome PMOSes M1 and M2.

CLRN1 N2

N5 N6

S
R

Q
QN

Symmetric SR Latch

N2

VDD

M1 M2

M3 M4 M12

CLR

N1

M11

M10

M7

M5 M6

M8

M9

PREZ PRE

N5X0X1

M16

M18CLK

CLK

Xk-1

N1 Y0 Y1

M19 CLK

Yk-1

M17 CLK

N2

CLK
CLK

Figure 3.3: PNAND Cell Design with Asynchronous Set and Reset

If PNAND cells are to replace flipflops, scan capability is essential. The simplest

way to make a D-FF scannable is to use a 2:1 mux that selects between the input D and

the test input (TI), depending on whether or not the test mode is enabled (TE). This

is not practical for a multi-input flip-flop like the PNAND cell. Although there exist

several ways to implement scan for a PNAND cell, the one shown in Figure 3.4 has

negligible impact on the cell’s performance and robustness during normal operation.

All other variations were significantly worse in this regard.

The additional transistors for scan are labeled as S1 through S6. In the normal

mode, the signals TE (test enable) and TI (test input) are both 0, which disables the

scan related transistors (S1 through S4), and reduces the circuit function to the one

29

N1

N2

N5 N6

S
R

Q
QN

Symmetric SR Latch

N2

VDD

M1 M2

M3 M4 N1

M5 M6

M7

X0X1

M11

M13CLK

CLK

Xk-1

N1 Y0 Y1

M14 CLK

Yk-1

M12 CLK

N2

S2

S1

S4

S3TE

TI

TE

TI

CLK
CLK

M9 M10

S5TE

M8

S6 TE

Figure 3.4: PNAND Cell Design with Scan

shown in Figure 3.1.

We can see that in the scan mode, the TE signal itself acts as a clock for a

PNAND. In fact regular clock CLK must be held 0 for the scanning mechanism to

work. Therefore, if a circuit has a mix of D-FFs and PNAND cells, the PNAND cells

must be part of a separate scan chain. A common TE signal is used for both the scan

chains. However the way this TE signal is operated is different from the conventional

scanning mechanism. First the signal TE is held high and data is scanned into regular

flipflops (conventional way). Once this is finished, the CLK is held 0 and following

procedure is performed to stored data bits in PNANDs. Signal GTI (global test

input) is the entry point for the scan data input to the PNAND chain.

1. Set CLK = 0 and TE = 0.

2. Set GTI = i’th bit of the input (i = 0 initially).

30

3. Set TE = 1. Each PNAND registers its TI input.

4. Set TE = 0.

5. Increment i and repeat until the end of stream.

Note that as long as CLK = 0, the toggling of TE signal alone does not alter the

data already stored in the conventional D-Flipflop scan chain. Therefore at the end of

this procedure both PNANDs and flipflops store the required set of bits and regular

clocking can proceed. The pullup transistors S5 and S6 are included to eliminate a

DC path during testing. In absence of these transistors, when TE is asserted (0→ 1),

while CLK = 0, M7 is active, and there is a DC path V DD → M7→ M3→ S1→

S2→ GND.

Fig. 3.5 shows the waveforms obtained via SPICE simulation of a scan chain of

four PNAND-9 cells. The CLK is set to 0. The nodes Q1, Q2, Q3 and Q4 are output

nodes of 4 cells that are initialized to 0. The scan pattern being registered is (Q1,

Q2, Q3, Q4) = 1010.

Q4 Final Value = 0

CLK = 0 TE = scan mode clock GTI Sequence = 1010

Q3 Final Value = 1

Q2 Final Value = 0

Q1 Final Value = 1

Figure 3.5: Operation of a Scan Chain Consisting of Four PNAND-9 Cells

31

3.3 Threshold Functions Realized by a PNAND

This section explains how PNAND cells can be used to compute a restricted set

1 of threshold functions. This is done by connecting the appropriate signals to the

inputs in the LIN and RIN. If xi and yi are the signals that drive the gates of the

transistors in the LIN and RIN, respectively, then the function of the PNAND cell

can be expressed as

PNAND(x1, x2, · · · , xn, y1, y2, · · · yk)

=

1 if
∑k

i=1 xi >
∑k

i=1 yi,

0 if
∑k

i=1 xi <
∑k

i=1 yi,

X if
∑k

i=1 xi =
∑k

i=1 yi.

(3.1)

X in Equation 3.1 denotes an indeterminate state. This condition must be eliminated.

Let f(X) = [w, T], be a threshold function, and δ = maxX3f(X)=0 | w′X − T |. That

is δ is the magnitude of the largest weighted minterm in the off-set of f . In (Siu et al.,

1995) it shown that that (w′X−T +δ/2) 6= 0 and sgn+(w′X−T) = sgn+(w′X−T +

δ/2). This means that if the threshold T is replaced by T + δ/2, then the inequality

w′X ≥ T in (1.2) becomes a strict inequality w′X > T + δ/2, without changing

the threshold function. If the weights w and threshold T are integers with minimum

possible values, then δ = 1. Then

w′X ≥ T ≡ w′X ≥ T − 0.5 ≡ 2w′X ≥ 2T − 1. (3.2)

Therefore, the indeterminate state can be eliminated by doubling the weights and

replacing the threshold T with 2T − 1.

1It should be noted even though a given PNAND-k implements a limited set of functions, for any
arbitrary threshold function H, there exists a k such that PNAND-k can implement H.

32

Let W =
∑k

i=1wi. The inequality in (3.2) can be realized as is by a PNAND

in which the LIN has 2W transistors, whose gates are driven by the inputs, and the

RIN has 2T − 1 active transistors, and 2(W − T) + 1 inactive transistors 2 . Hence a

PNAND-2W will be required if the inequality (3.2) is used. As an example, consider

the threshold function f(a, b, c) = a ∨ bc ≡ 2a+ b+ c ≥ 2 ≡ 4a+ 2b+ 2c > 3. If f is

to be implemented with this inequality then a PNAND-8 will be necessary, with the

following signal assignment.

ā, ā, ā, ā, b̄, b̄, c̄, c̄︸ ︷︷ ︸
Left Input Network

| 0, 0, 0, 1, 1, 1, 1, 1︸ ︷︷ ︸
Right Input Network

. (3.3)

Any inequality equivalent to (3.2) can be realized by assigning the appropriate sig-

nals to the inputs networks of a PNAND cell. The choice of the inequality determines

the number of inputs of the PNAND cell and will affect the area, power, delay and

noise margin. In general, any constant appearing on the RHS of inequality (3.2) will

correspond to that many pFETs with their gates driven by 0. Thus inequality (3.2)

requires 2T −1 transistors in the RIN with gates at 0. Eliminating constant 0 literals

(pFETs driven by 0) from the LIN and RIN will result in the least number of transis-

tors in the input networks that are required to realize the given function. This can be

done by transferring 2T − 1 literals from the LIN to the RIN. After the transfer the

total weight of the LIN and RIN will be 2W −2T +1, and 2T −1, respectively. Hence

a PNAND-k, where k = max(2W − 2T + 1, 2T + 1), will be the smallest PNAND

(i.e. one with the least number of transistors in the LIN and RIN) that can realize

the given threshold function. Note that (1− x) in the integer domain is the same as

x̄ in the Boolean domain, and because the LIN and RIN consist of pFETs, a positive

literal x in the inequality corresponds to a pFET driven by x̄, and a negative literal

2The LIN and RIN have the same number of transistors to ensure a symmetric cell.

33

to a pFET driven by x. Consider again f(a, b, c) = a ∨ bc.

4a+ 2b+ 2c > 3 ≡ 3a+ b+ c > 3− a− b− c

≡ 3a+ b+ c > (1− a) + (1− b) + (1− c). (3.4)

The signal assignment corresponding to (3.4) is

ā, ā, ā, b̄, c̄,︸ ︷︷ ︸
Left Input Network

| a, b, c, 1, 1︸ ︷︷ ︸
Right Input Network

(3.5)

which implies that a PNAND-5 can be used to realize f , instead of a PNAND-8

corresponding to (3.3). Since 2T − 1 is odd, and 2W is even, transferring 2T − 1

literals from the LIN to the RIN will result in the sum of weights in the LIN being

odd. This will be the minimum number of inputs required in the LIN and RIN.

Therefore, the library need only have PNAND cells with odd number of inputs in the

LIN and RIN.

There can be several choices of 2T − 1 literals than can be transferred from the

LIN to the RIN. Among these, those that assign each literal to both the LIN and

RIN are preferred (see Subsection 3.4), and ties can be broken arbitrarily. We refer

to this as the optimal signal assignment (OSA).

The previous section described a signal assignment (OSA) that results in the

smallest PNAND to realize a given threshold function. In this section it is shown

how the set of functions realized by PNAND-k under OSA, for k = 3, 5, 7, 9 can be

enumerated. Given k, the pairs of (W,T) that satisfy the condition k = max(2W −

2T + 1, 2T + 1) are given by

(W,T) =

{(
k + 1

2
, 1

)
,

(
k + 3

2
, 2

)
, · · · ,

(
k,
k + 1

2

)
(
k + 1

2
,
k + 1

2

)
,

(
k + 3

2
,
k + 1

2

)
, · · ·

(
k − 1,

k + 1

2

)}
(3.6)

34

Given the valid set of (W,T) pairs associated with a given k, the weights of the

threshold functions that correspond to W is simply the set of partitions of the integer

W , without regard to their order. For example, with W = 3, the partitions are (2, 1)

and (1, 1, 1). Hence to enumerate the set of threshold functions that can be realized

by a PNAND-k with the OSA, the set of valid (W,T) are determined, and for each W

in that set, the set of integer partitions of W are enumerated. Table 3.1 shows the set

of functions for k = 1, 3, 5, · · · . A PNAND-3 can realize 3 non-degenerate threshold

functions, and a PNAND-5 can realize 8 non-degenerate threshold functions. The

number of non-degenerate functions for PNAND-7 and PNAND-9 are 18 and 42,

respectively. Thus a library of PNAND-k cells with k = 3, 5, 7, 9 can realize 71 basic

functions. Note that with threshold functions, it is easy to identify NPN equivalent

functions. The minimum, positive form of the weights and threshold are stored in the

library. Then if a NPN equivalent threshold function is discovered during technology

mapping, its weights and threshold are easily converted to positive form, and then the

library is searched for that combination. This results in a substantial increase in the

number of possible functions implementable by a given PNAND cell. On the other

hand, checking for NPN equivalence of arbitrary Boolean functions is an NP-hard

problem whereas it is polynomial (in terms of n = number of inputs of the function)

time problem when restricted to threshold functions.

3.4 PNAND Delay Characteristics

Unlike a traditional edge-triggered flipflop, the function implemented by a PNAND

cell is determined by the signals connected to its inputs. Thus, without a priori knowl-

edge of its use, delay characterization of a PNAND-k cell would have to consider each

of the 2k inputs (see Figure 3.1) in the LIN and RIN as independent signals. This

would be practically impossible to carry out. Fortunately, the delay of a PNAND cell

35

T
a
b
le

3
.1

:
F

u
n
ct

io
n
s

R
ea

li
ze

d
b
y

P
N

A
N

D
-K

,
fo

r
K

=
3,

5,
7,

9

K
(W

,T
)

W
ei

gh
t;

T
h

re
sh

ol
d

T
h

re
sh

ol
d

fn
B

o
ol

ea
n

fn
M

o
d

ifi
ed

T
h

re
sh

ol
d

fn
S

ig
n

al
as

si
gn

m
en

t

1
(1
,1

)
(1

;1
)

a
≥

1
a

2a
>

1
(a
′ |a

)

3
(2
,1

)
(1
,1

;1
)

a
+
b
≥

1
a

+
b

2a
+

2b
>

1
(a
′ ,
a
′ ,
b′
|b
,1
,1

)

(3
,2

)
(1
,1
,1

;2
)

a
+
b

+
c
≥

2
a
b

+
a
c

+
bc

2a
+

2b
+

2c
>

3
(a
′ ,
a
′ ,
b′
|b
,c
,c

)

(2
,2

)
(1
,1

;2
)

a
+
b
≥

2
a
b

2a
+

2b
>

3
(a
′ ,

1,
1|
a
,b
,b

)

5
(3
,1

)
(1
,1
,1

;1
)

a
+
b

+
c
≥

1
a

+
b

+
c

2a
+

2b
+

2c
>

1
(a
′ ,
a
′ ,
b′
,b
′ ,
c′
|c
,1
,1
,1
,1

)

(3
,3

)
(1
,1
,1

;3
)

a
+
b

+
c
≥

3
a
bc

2a
+

2b
+

2c
>

5
(a
′ ,

1,
1|
a
,b
,b
,c
,c

)

(4
,2

)
(2
,1
,1

;2
)

2a
+
b

+
c
≥

2
a

+
bc

4a
+

2b
+

2c
>

3
(a
′ ,
a
′ ,
a
′ ,
b′
,c
′ |a
,b
,c
,1
,1

)

(4
,2

)
(1
,1
,1
,1

;2
)

a
+
b

+
c

+
d
≥

2
a
b

+
a
c

+
··
·+

cd
2a

+
2b

+
2c

+
2d

>
3

(a
′ ,
a
′ ,
b′
,c
′ ,
d
′ |b
,c
,d
,1
,1

)

(4
,3

)
(2
,1
,1

;3
)

2a
+
b

+
c
≥

3
a
(b

+
c)

4a
+

2b
+

2c
>

5
(a
′ ,
a
′ ,
a
′ ,
b′
,c
′ |a
,b
,c
,1
,1

)

(4
,3

)
(1
,1
,1
,1

;3
)

a
+
b

+
c

+
d
≥

3
a
bc

+
a
bd

+
a
cd

+
bc
d

2a
+

2b
+

2c
+

2d
>

5
(a
′ ,
b′
,c
′ ,

1,
1|
a
,b
,c
,d
,d

)

(5
,3

)
(2
,1
,1
,1

;3
)

2a
+
b

+
c

+
d
≥

3
a
b

+
a
c

+
a
d

+
bc
d

4a
+

2b
+

2c
+

2d
>

5
(a
′ ,
a
′ ,
b′
,c
′ ,
d
′ |a
,a
,b
,c
,d

)

(5
,3

)
(1
,1
,1
,1
,1

;3
)

a
+
b

+
c

+
d

+
e
≥

3
a
bc

+
a
bd

+
··
·+

cd
e

2a
+

2b
+

2c
+

2d
+

2e
>

5
(a
′ ,
b′
,c
′ ,
d
′ ,
e′
|a
,b
,c
,d
,e

)

7
1
8

fu
n

ct
io

n
s

9
4
2

fu
n

ct
io

n
s

36

depends primarily on the number of inputs that have a certain characteristic, not on

which ones have that characteristic 3 . This allows for efficient characterization of its

delay and power, and development of a cell library for use in technology mapping.

Without loss of generality, assume that the number of active transistors in the

LIN is greater than the number in the RIN. Similar to other differential threshold

gates (Strandberg and Yuan, 2000b; Padure et al., 2001a; Leshner, 2010), the delay of

a PNAND cell is the sum of two delays: (1) the input network delay, which is the time

from the clock edge to when N5 transitions to 1; (2) the sense amplifier delay, which

is the time N5 turns on M5 and turns off M7, and N1 discharges to ground. For a

given number of active devices in either the LIN or the RIN, the input configurations

that exhibit the worst-case total delay or power are those in which the difference in

the number of active devices between the LIN and RIN is minimum, i.e. 1.

For PNAND-k, the input network delay is maximum for the 1/0 configuration as

this requires charging N5 to 1 only through one pFET. Let Mk denote the maximum

number of active devices that can occur in either the LIN or RIN. The value of

Mk depends on the function and the signal assignment, with smaller values being

preferred. In general Mk ∈ [(k + 1/2), k]. The sense amplifier delay is maximum

for the Mk/(Mk − 1) configuration because this represents the maximum possible

contention between the two input networks. The configuration that results in the

maximum contention is also the one that results in the maximum power consumption

of the cell. For the OSA, Mk = (k + 1)/2, which is the minimum possible value, and

the configuration with the maximum contention will be k+1
2
/k−1

2
. Thus for a PNAND-

k, the configurations that need to be examined for delay and power characterization

are 1/0, 2/1, · · · , K+1
2
/K−1

2
.

3This is indeed true of all differential threshold logic gates that rely on the relative difference
in impedances between two paths determined by the inputs, e.g. SCSDL (Strandberg and Yuan,
2000b), DCSTL (Padure et al., 2001a), TLL (Leshner et al., 2010; Leshner, 2010), among others

37

As stated earlier, signal assignment can have a substantial impact on the delay

and power of a PNAND cell. Moreover, not all functions would exhibit the same

worst-case input configurations. Tables 3.2 and 3.3 show two different signal assign-

ments for the function f(a, b, c) = a∨bc, and the input configurations associated with

each minterm. The signal assignment in Table 3.2 has both worst-case input configu-

rations present, namely 1/0 for maximum input network delay, and 4/3 for maximum

contention. The signal assignment in Table 3.3 is preferred because its worst-case

input network delay (corresponding to 2/1) and sense amplifier delay (corresponding

to 3/2) are lower than in assignment in Table 3.2. Thus the cell library has multiple

instances of each PNAND-k, corresponding to the various worst-case input configura-

tions that are possible, with each instance sized appropriately for each configuration.

During technology mapping, when a PNAND-k cell is selected to replace a threshold

subcircuit, the optimal instance of that cell is used. Table 3.4 provides a comparison

of the total delay (layout extracted setup time plus clock-to-output delay) relative to

a D-FF of each of the PNAND cells for various possible input configurations. There-

fore a value in the table < 1 indicates that PNAND is faster whereas a value >= 1

indicates that DFF is faster. We can see that PNAND cells (that compute a com-

plex threshold function) are almost always faster than a D-FF which computes mere

identity (buffer) function of its D-input.

3.5 Robustness

The evaluation of a threshold function by a PNAND cell is based on the relative

difference in conductance between the LIN and RIN. Ideally, these conductances

should be determined only by the number of active devices in the input networks.

Thus, asymmetry in a PNAND cell might lead to an imbalance that would incorrectly

favor one side over the other, independent of the input. Process corners as well

38

Table 3.2: A Bad Signal Assignment for f(a, b, c) = a ∨ bc Denoted by
a+ 2b+ 2c > 3− 3a→ (a′, b′, b′, c′, c′|a, a, a, 1, 1)

abc L R

000 0 3

001 2 3

010 2 3

011 4 3

100 1 0

101 3 0

110 3 0

110 5 0

Table 3.3: A Good Signal Assignment for f(a, b, c) = a ∨ bc Denoted by
3a+ b+ c > 3− a− b− c→ (a′, a′, a′, b′, c′|a, b, c, 1, 1)

abc L R

000 0 3

001 1 2

010 1 2

011 2 1

100 3 2

101 4 1

110 4 1

110 5 0

39

T
a
b

le
3
.4

:
D

el
ay

s
of

P
N

A
N

D
-K

w
/w

o
S
ca

n
,

R
el

at
iv

e
to

D
-F

F
in

65
n
m

L
P

p
ro

ce
ss

.
L

ay
ou

t
E

x
tr

ac
te

d
N

et
li
st

S
im

u
la

te
d

at
P

V
T

=
S
S
/1

.1
V

/1
05
◦ C

/,
In

p
u
t

an
d

C
lo

ck
sl

ew
s

=
70

p
s,

O
u
tp

u
t

L
oa

d
=

20
fF

.

K
→

3
5

7
9

#
L

IN
/#

R
IN

1/
0

2/
1

1/
0

2/
1

3/
2

1/
0

2/
1

3/
2

4/
3

1/
0

2/
1

3/
2

4/
3

5/
4

N
o

S
ca

n
0.

70
0.

63
0.

89
0.

76
0.

74
0.

95
0.

79
0.

75
0.

78
1.

01
0.

83
0.

79
0.

81
0.

84

S
ca

n
0.

74
0.

67
0.

97
0.

81
0.

78
1.

02
0.

85
0.

82
0.

85
1.

12
0.

91
0.

87
0.

89
0.

93

40

process variations however, can not only delay the computation, but also disrupt the

race causing an invalid output and making PNAND circuits more sensitive to process

variations. The process or PVT corners at which the PNAND cells were evaluated,

using a commercial 65nm process were: P ∈ {slow, typical, fast}, V ∈ {1.1V, 1.2V,

1.3V}, and T ∈ {−40◦C, 25◦C, 105◦C}. All the PNAND cells, for each of the input

configurations shown in Table 3.4 were successfully simulated at three PVT corners:

SS/1.1V/105◦C, TT/1.2V/25◦C, FF/1.3V/− 40◦C.

Next, the impact of process variations was examined through Monte Carlo sim-

ulations which included global and local variations. A global variation in a circuit

parameter p refers to the same amount of statistical perturbation in p for all circuit

components that are affected by p. On the other hand, a local variation or mismatch

in p means that the amount of statistical perturbation in p varies, independently from

component to component. The symmetry of the PNAND cells makes them much more

sensitive to local mismatch than conventional static CMOS logic. To ascertain the

impact, 100,000 Monte Carlo simulations were performed assuming both global and

local variations in the device Vt, and β, with the magnitude of variations obtained

from foundry data (referred to as a statistical corner). The voltage and temperature

were chosen to be 1.2V and −40◦C. The low temperature corner was chosen because

the reliability is directly proportional to the impedance difference of the networks

which in turn is directly proportional to the average resistance of each transistor in

the input networks. This resistance is the lowest (worst case) at very low tempera-

tures. The smaller the impedance difference between the input networks, the lower is

the voltage difference amplified by the sense-amplifier and lower the reliability of the

cell. Table 3.5 shows the results of the simulations. The data indicates that D-flip

flop has worse spread of delays compared to some of the lower cases such as 3/2,

2/1 and 1/0 irrespective of size of input networks. However the larger cases 5/4 and

41

4/3, as expected, have larger spread compared to the D-flip flop and smaller cases of

PNAND. Note that none of the cells have any functional failures in 100K Monte-Carlo

simulations i.e. every trial functioned correctly albeit with different delays.

3.5.1 Comparison with TLL

Among the conductance based, differential threshold logic gates, TLL has been

shown significantly better in terms of power dissipation, delay and robustness against

process variations (Leshner et al., 2010; Leshner, 2010). Furthermore, the PNAND

architecture described above most closely resembles the TLL architecture, and for

this reason, we elaborate on how PNAND significantly improves on the TLL design.

In TLL architecture, the clock input directly feeds drain terminals of transistors.

Due to this the capacitive load on the clock is variable. This is ill suited for char-

acterization of clock pin capacitance and thereby the design of the clock tree. In

PNAND, the clock input drives only one inverter, and therefore its clock pin ca-

pacitance is fixed and slightly smaller than that of the D-flip-flop. The TLL does

not consider the problem of coupling noise that can alter the computed value due

to floating nodes. As discussed in Section 3.1 and demonstrated in Figure 3.2, the

feedback in the PNAND cell eliminates this problem. TLL also behaves as a multi-

input edge triggered flipflop that computes a threshold function on the clock edge. Its

scan mechanism described in (Leshner, 2010) introduces additional transistors on the

normal evaluation path, significantly reducing its robustness and speed. In contrast,

the scan mechanism of the PNAND is completely non-intrusive and has minimal im-

pact on its robustness and delay. Finally, the method of signal assignment (Leshner,

2010) (referred to as “balanced signal assignment”) does not yield the best worst-case

for several threshold functions. For example, the threshold function F (a, b, c, d) =

[3, 2, 1, 1; 3] exhibits the worst case of 5/4 for the balanced assignment which is

42

T
a
b

le
3
.5

:
D

el
ay

D
is

tr
ib

u
ti

on
of

L
ay

ou
t

E
x
tr

ac
te

d
D

-F
F

an
d

P
N

A
N

D
C

el
ls

S
u
b

je
ct

to
G

lo
b
al

V
ar

ia
ti

on
s

an
d

L
o
ca

l
M

is
m

at
ch

in
10

0,
00

0
M

on
te

-C
ar

lo
T

ri
al

s.

S
et

u
p

ti
m

e
(p

s)
µ

C
2Q

(p
s)

σ
(p

s)
<

0σ
[0
σ

,1
σ

)
[1
σ

,2
σ

)
[2
σ

,3
σ

)
[3
σ

,4
σ

)
[4
σ

,5
σ

)
[5
σ

,6
σ

)
>

6σ

D
-F

F
54

17
7

5
15

59
8

68
94

3
12

68
0

23
61

36
7

45
6

0

P
N

A
N

D
-3

1/
0

-1
4

19
1

5
16

02
3

67
75

3
13

75
4

22
44

22
4

2
0

0

P
N

A
N

D
-3

2/
1

-1
4

17
5

4
16

63
5

67
84

4
13

11
7

22
46

14
5

13
0

0

P
N

A
N

D
-5

1/
0

-5
21

9
6

15
77

7
68

07
9

13
74

2
21

87
18

6
29

0
0

P
N

A
N

D
-5

2/
1

-5
19

0
5

15
59

3
68

19
5

13
72

2
22

07
26

8
15

0
0

P
N

A
N

D
-5

3/
2

-5
18

7
5

15
31

0
69

19
3

12
63

4
24

78
37

4
11

0
0

P
N

A
N

D
-7

1/
0

-2
22

8
7

15
78

5
68

81
4

12
55

1
26

22
22

8
0

0
0

P
N

A
N

D
-7

2/
1

-2
19

6
5

15
51

5
68

80
7

13
13

4
23

48
19

6
0

0
0

P
N

A
N

D
-7

3/
2

-2
18

9
5

15
34

3
68

79
5

13
26

1
23

21
26

5
15

0
0

P
N

A
N

D
-7

4/
3

-2
19

1
6

14
30

6
71

69
5

10
57

2
24

69
74

7
15

1
30

30

P
N

A
N

D
-9

1/
0

1
26

7
8

15
47

3
68

52
4

13
22

3
25

95
17

0
15

0
0

P
N

A
N

D
-9

2/
1

1
22

5
6

16
18

0
68

02
6

13
47

0
21

68
14

1
15

0
0

P
N

A
N

D
-9

3/
2

1
21

3
5

16
12

3
68

51
6

12
75

9
23

83
21

9
0

0
0

P
N

A
N

D
-9

4/
3

1
21

5
6

15
35

2
69

09
6

12
53

5
25

83
40

3
15

16
0

P
N

A
N

D
-9

5/
4

1
22

2
8

13
57

5
72

82
3

10
25

3
24

87
46

1
26

3
47

91

43

(a′, a′, a′, b′, b′, b′, b′, c′, d′|a, a, a, c, d, 1, 1, 1, 1). On the other hand, the worst input case

of F for the proposed optimal signal assignment (a′, a′, a′, a′, b′, b′, c′, d′, d′|a, a, b, b, c, 1, 1, 1, 1)

is 4/3 which is substantially more robust than 5/4 case.

3.6 PNAND-1 (KVFF) Design

A single input PNAND cell (PNAND-1) implements a single threshold function

viz. buffer function (F (x) = x). Therefore a single input PNAND cell is functionally

equivalent to a conventional master-slave D-flipflop. However the design complexity

of a single input PNAND can be substantially reduced with the knowledge that the

worst input case being exercised is (1/0) which can make PNAND as robust as MSFF.

The result of this is a new design of an edge-triggered flipflop called as KVFF. The

architecture of KVFF is shown in Fig. 3.6.

S
R

Q
QN

NAND SR Latch

N1

N2

D D

N1 N2

CLK

CLK CLK

D D

M1
M2

M3
M4

M5

M6

M7

M8

M9

M10

M11

Figure 3.6: KVFF Architecture

Operation of a KVFF

When the clock signal CLK = 0, following is the steady state of the circuit.

1. transistor M11 is OFF.

44

2. Since M11 is OFF, nodes N1 as well as N2 have no path to ground.

3. Transistor M1 and M4 are ON and pull up both nodes N1 and N2 to logic 1.

4. The NAND SR latch driven by N1 (=1) and N2(=1) maintains its last state at

the primary output Q of the flip-flop.

5. The keeper transistors M5 and M10 are OFF.

When CLK transitions from 0 to 1, the flipflop latches input D as follows. Assume

D = 1.

1. Transistor M11 turns ON whereas M1 and M4 (pullup transistors) turn OFF.

2. Transistor M6 and M7 are ON.

3. This causes node N1 to discharge and pulled down to logic 0.

4. Since D̄ = 0, transistor M8 is OFF which causes node N2 to float at 1.

5. As soon as node N1 falls to logic 0, PMOS transistor M3 (driven by node N1)

turns ON. This causes node N2 to remain firmly at logic 1.

6. As a result, the circuit stabilizes in a state where N1 = 0 and N2 = 1.

7. The NAND SR latch responds to inputs N1 (=0) and N2 (=1), and sets the

output Q to logic 1. As a result, input D is latched and appears at output Q.

8. The keeper transistor M5 turns ON, due to which node N1 has another path to

ground through M5. Note that even if input D switches at this point, the node

N1 remains firmly at logic 0 and node N2 remains firmly at logic 1.

When D = 0, the nodes N1 and N2 switch roles in above series of steps and SR

latch sets its output Q to 0.

45

3.6.1 Scan & Asynchronous Preset and Clear Architecture

The scan feature can be introduced for KVFF using same idea as conventional

D-flipflop where scan data input (TI) and D input are connected to a 2:1 MUX with

scan enable (TE) input connected as a select signal of the MUX. Asynchronous preset

(PRE) and clear (CLR) however require additional circuitry. Fig. 3.7 shows a CLR

dominated asynchronous preset and clear implementation.

S
R

Q
QN

NAND SR Latch

N1

N2

D D

N1 N2

CLK

CLK CLK

D D

M1
M2

M3
M4

M5

M6

M7

M8

M9

M10

M11

PRE’
CLR

PRE’ CLR

CLR PRE’
CLR CLR

PRE’ PRE’

M12 M13

M14 M15

M16 M17

PRE
CLR

Figure 3.7: KVFF Architecture with Asynchronous Preset and Clear

There is an internal signal called PRE’ derived from CLR and PRE. Note that

PRE’ = PRE if CLR = 0. When CLR = 1, PRE’ = 0. Therefore both clear and

preset cannot be asserted high. So the only values assumed by PRE’ and CLR are

(0,0), (0,1) and (1,0). Note that both of these are active high signals.

1. When CLR = PRE = PRE’ = 0, transistors M12, M13, M16 and M17 are ON

and M14 and M15 are OFF. The switch level view of the circuit reduces to

regular KVFF from Fig. 3.6 and works as regular flipflop.

46

2. When CLR = 0 and PRE = 1, we have PRE’ = 1. There are multiple possible

states of the cell before PRE is asserted.

(a) Suppose CLK = 0 i.e. cell is in reset state. In this case, M11 is OFF

therefore no path to ground exists for N1 or N2 and both of these nodes

are asserted high through M1 and M4 transistors. In this state when PRE’

is asserted 1, then transistors M12 turns OFF. Therefore N1 has no path

to VDD. On the other hand, N1 is provided a path to ground through M14

which is ON. As a result, node N1 discharges to assume logic state 0. At

the same time, PRE ′ is 0 and transistor M17 is OFF. Therefore node N2

has no path to ground. Since CLR = 0, and N1 = 0, node N2 charges to

VDD through M3 and M13 both of which are ON. As a result (N1,N2) =

(0,1) which sets the NAND latch asserting output Q to 1. When PRE is

de-asserted, node N1 and N2 receive their previous states viz (1,1) and SR

latch maintains the Q = 1 state until next rising edge of the clock.

(b) Suppose CLK = 1. Therefore the cell is in evaluation state. There are two

sub-cases depending on the values of (N1,N2).

i. Suppose (N1,N2) = (0,1). Output Q = 1 in this state. Asserting PRE

(and thereby PRE’) in this state, turns M14 and ON and M12 OFF.

Therefore N1 has no path to VDD and has a path to ground. The

opposite is true for N2 i.e. it has no path to ground and has a path to

VDD. Therefore N1 and N2 simply maintain their state and output Q

remains 1.

ii. Assume (N1,N2) = (1,0). Output Q = 0 in this state. When PRE and

therefore PRE’ is asserted, node N2 loses path to ground and starts to

float. At the same time, N1 is discharged through M14 and therefore

47

transistor M3 is turned ON. Therefore N1 and N2 flip their states i.e.

new state is (N1,N2) = (0,1) which causes output Q to rise to 1.

3. When CLR = 1, then PRE’ = 0 irrespective of the value of PRE. In this case,

the operation is similar to case 2 above except that the final state of nodes (N1,

N2) = (1, 0) irrespective of their current state. This causes the latch to reset

and output Q is de-asserted i.e. pulled low.

Advantages of KVFF

KVFF is better than both the ubiquitous master slave D-flipflop (MSFF) and

the differential mode strong-arm flipflop (SAFF). In general, the KVFF is faster and

more energy efficient than the MSFF and more robust than the SAFF. The SAFF

(Fig. 3.8) has an equalizer NMOS transistor. This results in the differential feedback

(sense-amplifier) to evaluate a 2-1 case (both N1 and N2 partially discharge before

settling in opposite values) upon clock trigger. The sizing of transistors determines

the robustness, despite the fact that SAFF is a single input threshold gate. On the

other hand, the operation of the KVFF is similar to PNAND with a 1/0 input case

(N1 discharges whereas N2 is held at 1), which is much more robust. Table 3.6

shows the result of 100,000 Monte Carlo trials at 0.8V, -40C and statistical corner.

It shows that the SAFF has functional failures because an incorrect bit was latched

due to process variations. Even in the instances that correctly latched the input bit,

the delay of SAFF had a very large standard deviation. Neither the KVFF nor the

MSFF had any failures at this corner.

For comparison of energy efficiency, we selected an MSFF cell from a commercial

standard cell library and we designed, sized and laid out a KVFF and an SAFF

cells with same drive strength. We chose the worst case PVT corner for all of the

simulations which were SS/1.1V/105C.

48

D D

X Y

N1 N2

CLK

CLK CLK

Equalizer

(a)

S
R

Q
QN

NAND SR Latch

N1

N2

Figure 3.8: Differential Mode Strong Arm Flipflop Architecture

Table 3.6: 65nm Technology Comparison of Clock-to-Q delay Across Process
Variations. The Simulation Corner is Statistical at 0.8V and -40C for 100,000

Monte-Carlo Trials. All Delays in Picoseconds

Failures Max Min (ps) Mean (ps) Stdev (ps)

MSFF 0 773 376 525 45

SAFF 2235 3859 360 581 192

KVFF 0 928 435 580 57

To satisfy the setup time constraints, the total delay, which is the sum of the

clock-to-Q delay (tc2q) and the setup time (tsu) must be considered. Thus we use

ttot = tsu + tc2q to compare the delay of all the flipflops.

Table 3.7 shows the delay, energy and energy delay product (EDP) comparison for

the flipflops. We can see that KVFF is 25% faster (ttot) compared to MSFF of same

drive strength. Although slightly bigger in layout size, KVFF is 20% more energy

efficient (smaller EDP) compared to MSFF.

Table 3.8 shows additional data to compare the DFF, the KVFF and PNAND cells

49

Table 3.7: 65nm Technology Design Comparison. The Simulation Corner is
Slow/slow, 1.1V VDD and 105◦C. The Load Cap is 20fF . Signal Transition Times

are 70ps. Identical Drive Strengths were used for the Flipflops.

tsu (ps) tc2q (ps) ttot (ps) Energy (fJ) EDP (fJ×ps) Area (µm2)

MSFF 90 264 354 15 5245 7.8

SAFF -4 258 254 13 3271 8.32

KVFF -11 277 266 16 4233 9.36

Table 3.8: 65nm Technology Comparison of Flipflop Characteristics. The Load
Cap is 20fF . All Input Signal Slews are 5ps. Identical Drive Strengths used for all

the Flipflops.

Setup Time (ps) Hold Time (ps) C2Q Delay (ps) Area (um2)

fast slow typ fast slow typ fast slow typ

DFF 40 115 70 15 -5 5 83 219 133 7.8

KVFF -6 -16 -10 39 114 67 91 242 145 10.4

PNAND-3 -17 -46 -28 28 73 45 86 221 135 19.76

PNAND-5 -11 -35 -17 27 73 44 93 244 148 21.84

PNAND-7 -6 -12 -8 27 73 44 98 256 155 24.96

PNAND-9 -1 -0.9 0.9 29 76 47 118 305 187 27.04

of different number of inputs. Their timing are compared at three P/V/T corners,

referred to as typical (typ), slow and fast, where typ P/V/T is TT/1.2V/25C, slow

P/V/T is SS/1.1V/105C and fast P/V/T is FF/1.3V/-40C.

Above results indicate that the PNAND cells are much faster compared to the

conventional DFF. Note that the delays of the conventional DFF are without any logic

driving it. The PNANDs on the other hand, compute complex threshold functions.

Therefore replacing the logic and a flipflop with a PNAND generates a large timing

slack which reduces the size of the the feeder logic.

50

Chapter 4

TECHNOLOGY MAPPING WITH THRESHOLD GATES

So far we have discussed the architecture, operation and characteristics of indi-

vidual PNAND cells. This chapter describes how to incorporate PNAND cells into

a general ASIC circuit with the goal of reducing area and power without sacrificing

performance. Since the resulting circuits will consist of conventional standard cells

(e.g. NAND, NOR, AOI, MUX, etc.), and PNAND cells, they will be referred to as

hybrid circuits, and the process of generating them will be referred to as hybridization.

A PNAND cell can replace a single output sub-circuit whose function is one of the

threshold functions in the library, and whose output has a clock cycle latency of one.

Figure 4.1 shows three different circuits that can be replaced by a single PNAND

cell. Note that replacing circuits shown in (b) and (c) with a single PNAND will

reduce the total number of flip-flops in the resulting hybrid circuit, which may result

in additional reduction in power. However one drawback of such replacement is it

would not be possible to perform a simple functional equivalence check between the

original circuit and its hybrid version, because the one-to-one correspondence between

the DFFs and PNANDs would be lost. For this reason, hybridization is restricted

to maintain the correspondence. Hence only the replacement of the type shown in

Figure 4.1 (a), i.e. replacement of a single flip-flop along with some or all of its fan-in

cone by a PNAND, is allowed.

Existing tools are not capable of performing synthesis or technology mapping with

PNAND cells for the following reasons. First, the function of a PNAND cell is de-

termined only after signals are connected to its inputs. Even if the set of functions

realized by all the PNAND cells is enumerated, the SOP representations of many

51

DFF

DFF

DFF

DFF

DFF

DFF

DFF

(a) (b) (c)

Figure 4.1: Subcircuits Replaceable by a Single PNAND Cell

functions are prohibitively large. Second, existing tools do not distinguish between a

threshold function from any other Boolean function. This makes the task of determin-

ing the NPN equivalence of a threshold subcircuit and one of the functions realized

by PNAND cells in the library, computationally prohibitive, because the number of

input variables of some of the threshold functions implementable by PNAND is large

(≥ 6). The approach followed here is to preprocess a conventional netlist by replacing

suitably chosen subcircuits with PNAND cells, and then optimize the resulting netlist

using the conventional synthesis and physical design tools, treating the PNAND cells

as non-removable function blocks, but using their timing, power and capacitance data

present in the characterized libraries.

4.1 PNAND vs Conventional Circuits

Comparing a PNAND with a D-FF alone does not demonstrate its full advantages

because a PNAND embeds a multi-input logic function, which might require several

levels of logic when synthesized with conventional logic cells. To illustrate this, con-

sider the circuit shown in Figure 4.2. The cone of logic feeding the output D-FF is

the threshold function f(a, b, c, d, e) = [2, 1, 1, 1, 1; 4], whose netlist was synthesized

using a 65nm technology. The output D-FF and the logic cone can be replaced with

a PNAND-7. After synthesis, and place & route using a commercial 65nm library,

both the netlists were extracted, simulated and respective circuit parameters were

52

obtained at the PVT corner SS/1.1V/105◦C. As is evident, the PNAND cell has

substantially lower total delay, as well as lower dynamic and leakage power. There

are several reasons for this. First, replacement of the logic cone with a single cell

has the obvious advantage of eliminating the logic cells thereby eliminating the inter-

nal switching activity of the cells, and reducing the leakage. Second, a PNAND cell

exhibits a lower input and clock capacitance. The lower input capacitance and the

reduced total delay (equal to delay of the logic absorbed plus setup time of D-flip-flop

minus setup time of PNAND) would result in additional slack for any feeder logic,

allowing synthesis tools to shrink the feeder to absorb the additional slack. In this

example there is no feeder logic because the entire cone was a a threshold function

(by design). However the feeder logic would be present in general circuits because

threshold functions are a small subset of Boolean functions, and the threshold cell

library is limited.

DFF

DFF

DFF

DFF

DFF

a

d

b

e

c

DFF
g

DFF

DFF

DFF

DFF

DFF

a

d

b

e

c

P-NAND-7
g

Figure 4.2: Comparison of PNAND with Functionally Equivalent Network of
Standard Cells

Besides reduction in dynamic power, delay and area, the PNAND circuit also

exhibits significantly lower leakage. To explore the dependence of leakage on the

input state, both circuits were simulated for all 32 input test patterns. Figure 4.3

shows the variation in leakage over all input patterns. The minimum, maximum and

53

Table 4.1: Comparison of PNAND with Conventional Standard Cell
Implementation of Circuit Shown in Figure 4.2 (at SS, 105◦C, 1.1V)

Parameter Delay Cell Area Power Leakage Total circuit cap

Conv. 515 ps 54 µm2 105 µW 34 nW 78 fF

PNAND 276 ps 33 µm2 76µW 9.3 nW 56 fF

∆ (%) 49% 28% 27% 72% 28%

average leakage of the conventional logic implementation are 3 to 4 times greater than

that of the PNAND circuit. Moreover, the leakage of the PNAND circuit doesn’t vary

at all over the input patterns.

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	 29	 30	 31	

Le
ak
ag
e	
Po

w
er
	 (n

W
)	

5	 bit	 Input	 CombinaAon	

Leakage	 Spread	 over	 Input	 combinaAons	

ConvenAonal	 Logic	 Circuit	 Leakage	 (nW)	 PNAND	 Leakage	 (nW)	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ConvenAonal	 	 	 PNAND	 	 	 	 	 	 	 	 	 	 	 	 	
MIN 	 	 	 	 26.47 	 	 	 	 	 	 	 	 	 	 9.25	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
MAX 	 	 	 	 39.90 	 	 	 	 	 	 	 	 	 	 9.37	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
STDEV 	 	 	 	 4.410 	 	 	 	 	 	 	 	 	 	 0.03	 	 	 	 	 	 	 	 	 	 	 	 	 	
Average 	 	 	 	 34.00 	 	 	 	 	 	 	 	 	 	 9.31	

Figure 4.3: Comparison of Leakage of PNAND with Functionally Equivalent
Network of Standard Cells

Although Fig. 4.2 shows a threshold function driving a flipflop, it is possible that

no threshold function drives a flipflop in the given circuit. In that case, an arbi-

trary function driving a flipflop can be decomposed such that resultant representation

consists of PNAND driven by additional logic. Such a decomposition is depicted in

54

Figure 4.4.

Non-
threshold
function

DFF

g1
x1

x2

xn

x1

x2

xn

g2

gk

P-NAND
F

F

Figure 4.4: Decomposition of a Nonthreshold Function w.r.t a Threshold Function

Following sections describe two methods that can decompose a Boolean function

into a set of functions (denoted as g functions) driving a threshold function (denoted

as H) implementable by a PNAND.

4.2 BDD Based Decomposition using Cut Enumeration

In this section, we explore a BDD based method to produce such a decomposition.

This method consists of enumeration of cuts present at the inputs of each flipflop and

converting each cut (logic gates + flipflop) into an equivalent decomposed version

and finally choosing the best decomposition that maximizes the absorbed logic. For

the BDD based method, the combinational logic part of the circuit, whose cuts are

enumerated, is specifically synthesized with 2-input NAND gates.

4.2.1 Enumeration of Cuts

The combinational circuit in a cone is represented as a directed acyclic graph

(DAG) where the nodes are gates and directed edges are the interconnects. A source

(sink) vertex is one that has no incoming (outgoing) directed arcs. A cut in a DAG

G = (N,A) is a minimal set of edges C such that every directed path from any of the

source vertices to any of the sink vertices contains at least one member of C.

55

Given a DAGG = (N,A), a line dependency graph (LDG) (Kagaris and Tragoudas,

1999a) is an undirected graph L = (V,E) where V = A i.e. each edge in the DAG

G is a vertex in the LDG L, and two vertices in L are adjacent if and only if the

corresponding edges in G lie on the same directed path. In (Kagaris and Tragoudas,

1999a) it is proved that a maximum independent set in an LDG is the same as a

maximum cut in the DAG. This idea can be extended by observing that any maximal

independent set in LDG is a cut in the DAG. Figure 4.5 shows the relation between

cuts and maximal independent sets. Thus, enumerating cuts of size k in a DAG is the

same as enumerating maximal independent sets (MIS) of size k in the correspond-

ing LDG. Furthermore these type of cuts, called as strong line-cuts (or strong cuts

in short), are not same as conventionally enumerated cuts. A detailed discussion of

these cuts and related theory are provided in the appendix.

A B C

ED

F

p q r
s

ut
p

ut

q

s

r

M

v v

(a) (b)

Figure 4.5: a) DAG with Strong Cuts Annotated. b) Corresponding Maximal
Independent Sets in LDG

There exists a large body of literature on enumerating the maximal independent

sets no larger than k. The method of cut enumeration used in the hybridization

procedure is based on the heuristic presented in (Eppstein, 2001a). The novelty of

the proposed method involves speeding up this heuristic by transforming the LDG

by adding and removing certain vertices and edges without eliminating any maximal

56

independent set of size k.

A vertex u in an LDG can be removed if and only if the smallest MIS containing

u is larger than k. Since an MIS is the same as a cut in the DAG, the smallest MIS

corresponds to the minimum cut. Using network flow, the size of the minimum cut

containing edge u can be determined. Similarly an edge (u, v) can be added to the

LDG if and only if the smallest MIS containing both u and v is larger than k. The

complexity of cut enumeration can be shown to be lower for the modified LDG. Since

neither vertex removal nor edge addition eliminates a k sized MIS, it follows that all

the k sized MISs of the original LDG are same as the k sized MISs in the modified

LDG. Hence, no cuts are lost.

This idea is illustrated by the DAG shown in Figure 4.5 (a). Suppose that the

cuts of size at most 2 are sought. In that case, the vertices p, q, r, s can be removed

(from corresponding LDG in Figure 4.5 (b)), since the smallest MIS containing any

one of them is larger than 2. The remaining LDG, consisting of the vertices {t, u, v},

contains two MISs i.e. {u, t}, {v} which corresponds to cuts in DAG. If the cuts

of size 3 or less are required then we can add edges (p, r),(q, r),(p, s),(q, s) so that

resultant LDG does not have an MIS of size 4 i.e. {p, q, r, s}. The speedup obtained

by the proposed method over (Eppstein, 2001a) is about an order of magnitude.

4.2.2 Threshold Decomposition

This section explains a threshold decomposition method that enables us to rep-

resent an arbitrary Boolean function using a threshold function in PNAND library.

The decomposition method is an extension of the BDD based disjoint decomposition

method first proposed by Lai et. al.(Lai et al., 1993).

We briefly explain the idea from (Lai et al., 1993) for better understanding of the

proposed threshold decomposition technique.

57

Definition 1. A Boolean function F (x0, x1, · · · , xn−1) is said to be decomposable

under a bound set of variables {x0, x1, · · · , xi−1} and a free set of variables {xi, · · · , xn−1}

for 0 < i < n, if there exists a function H such that F = H(g0(x0, · · · , xi−1), · · · ,

gk−1(x0, · · · , xi−1), xi, · · · , xn−1) for 0 < k ≤ i.

The arguments gi of the H-function are referred to as the g-functions or g-

variables. The bound sets and the free sets are arbitrary choices and each different

choice yields a different decomposition. Since the free set and the bound set are

disjoint, this is called disjoint decomposition.

Suppose we are given a Boolean function F as in Figure 4.6(a), and a bound set

B = {x0, x1, x2}. A bound set in the BDD corresponds to a horizontal cut in the

BDD. For example, as shown in Figure 4.6(a), the cut for the bound set B is set of

nodes S = {p, q, r}. Note that a cut in the BDD is not related to the cuts in a logic

cone mentioned earlier.

Step 1: For each of the nodes in the cut, a unique code is assigned. For N nodes,

each code can be represented as a bit sequence of length k = log2N . The assignment

of a code is strictly arbitrary and different assignments yield different decompositions.

As will be explained shortly, the problem of threshold decomposition is the same as

finding an assignment for which the resulting H function is a function in the PNAND

library. In the example, node p is assigned code 10, node q = 01 and node r = 00.

Step 2: After encoding the nodes of the cut, the g-functions are constructed. There

are always exactly as many g-functions as the length of the code (k) viz. g0, ..., gk−1.

The BDD of gi is computed using the BDD of F as follows. For each node f in

the cut with encoding (b0, ...bk−1), replace the node f with a constant, bi. In the

above example, the length of code is 2. Hence there are two g-functions, g0 and g1.

Figure 4.6(b) shows computation of g0 where each node in the cut (p,q,r) is replaced

with first bit of its code. Similarly, Figure 4.6 (c) shows computation of g1 where

58

each node in the cut is replaced with second bit of its code.

Step 3: The final step is to define the H-function. Equations (4.1) and (4.2) below

show construction of H.

Ti = [(bi0⊕̄g0) ∨ · · · ∨ (bik⊕̄gk)] ∧ fi, 1 ≤ i ≤ N (4.1)

H = T1 ∨ T2 ∨ · · · ∨ TN (4.2)

where fi ∈ S and (bi0, b
i
1, · · · , bik) is its encoding. Fig. 4.6 (d) shows the BDD for

H. By definition of H, the code of each node in the cut is exactly same as the input

combination of g-variables traced from the root in the BDD of H. For example,

the node p is encoded as 10 in original function F . This node is computed from

H by setting g0, g1 = 1, 0. Therefore every minterm of g-variables corresponds to

the encoding of a node in the original cut. Note that some minterms of g-variables

correspond to an unassigned code such as 11. These can be arbitrarily assigned to

any node in the cut. For example, the unassigned code 11 is assigned to node p which

resulted in reduction of BDD of H. The construction of H and g functions completes

the decomposition of F .

The above disjoint decomposition procedure can be intuitively explained as fol-

lows. For a given assignment A of bound variables, the original function F evaluates

to certain node in the cut, say f . If f is assigned a certain minterm (g0, · · · , gk−1) of

g-variables (code), then we make sure that for the same assignment A of bound vari-

ables, the g-functions evaluate to exactly that minterm (code). For example, given

an assignment (x0, x1, x2) = (1, 1, 0) of bound variables, function F evaluates to node

q. Since node q is reachable by g-variable assignment (g0, g1) = (0, 1), we ensure that

g0 evaluates to 0 on (x0, x1, x2) = (1, 1, 0) and g1 evaluates to 1 on the same.

59

4.2.3 Necessary Conditions

The procedure for threshold decomposition is an extension of the BDD based

decomposition procedure where an H-function is sought that is a threshold function.

An arbitrary encoding of nodes in the cut determines the H-function. It is then

possible to determine whether it is a threshold function. Hence the general problem

to be solved can be stated as follows: Given a set of nodes in the cut of an arbitrary

BDD, determine an encoding of these nodes for which the resultant H-function is

threshold. This problem can be shown to be NP-Hard. Hence we present a heuristic

for threshold function decomposition based on the following necessary conditions,

which can be easily established from the basic properties of threshold functions. The

necessary conditions for H to be a threshold function are:

1. Every node in the cut must be a threshold function. This follows directly from

the fact that every Shannon co-factor of a threshold function is also a threshold

function.

2. There must exist a common weight vector W for every function (node) in the

cut. Therefore every node Ni in the cut is a threshold function of the form

Ni = [W ;Ti].

There are couple of approaches to design exact algorithms to ensure that these

conditions are satisfied. Based on the number of nodes in the BDD of F and in the cut.

it is possible to put an upper bound on the maximum weight of resultant threshold

function. Using the maximum weight information, it is possible to derive a circuit-

SAT based formulation. The single output circuit produced by this formulation is

satisfiable if and only if a valid decomposition exists. In fact every solution of this

problem, yields a different decomposition. However, solving the circuit-SAT was

found to be impractical even for small instances of input BDD.

60

Alternatively, it is also possible to determine the required encoding by searching

of the encoding space. The solution space can be narrowed down significantly by

prohibiting certain encodings using the properties of Threshold logic.

Note that a decomposition algorithm is run on every horizontal cut (n of them) in

the BDD of every cut/sub-circuit in the cone for each flipflop. Under these conditions,

both of the exact algorithms were found to be too slow to be practical.

4.2.4 Threshold Decomposition Heuristic

The exact algorithms are slow and the solution generated by them may not be

in PNAND library. Therefore in this work, we resort to a fast heuristic targeted

specifically to the PNAND library. The proposed algorithm (algorithm 1) is given

below.

Algorithm 1 starts by checking two necessary conditions (lines 3-9) described in

section 4.2.3. At the end of step 9, a threshold function in the PNAND library which

contains the common weight vector Wc for all functions in the cut is obtained. If one

not found, failure is returned. The variables corresponding to weights in W/Wc are

precisely the g-variables. The size of support set of H is known beforehand hence

we look at only those functions in PNAND library having the desired size of support

set. Since nodes in S must be co-factors of H w.r.t the g-variables, lines 10-15 check

to ensure that the co-factors w.r.t all minterms of the g-variables belong to S and

only S. The minterm associated with fi ∈ S is its encoding. Given an encoding, the

g-functions can be computed using the BDD of F as described in section 4.2.2.

The condition in step 2 is implemented using the isThreshold algorithm from

(Gowda et al., 2011). The procedure isThreshold algorithm is not exact, and is

pessimistic, i.e., it will not declare a non-threshold function as being a threshold

function, but it may declare a threshold function as non-threshold function. However,

61

ThresholdDecompostion(F ,S = {f1, · · · , fN});

input : A Boolean function F and a cut denoted by set of nodes

S = {f1, · · · , fN}
output: A set of decompositions D of F s.t. H-function is a threshold

function in PNAND library

D = φ;

if any fi ∈ S is not threshold then

return φ;

end

Find a common weight vector Wc for all functions in S such that

f1 = [Wc;T1], · · · , fN = [Wc;TN];

if no valid Wc exists then

return φ;

end

foreach function [W ;T] in PNAND library s.t. Wc ⊂ W do

foreach minterm m of variables in W/Wc do

f = eval([W ;T],m);

if f ∈ S then
Assign code m to function f ;

end

end

if all functions in S are assigned a code then

H = [W ;T];

G = g-functions (using method in 4.2.2);

D = D
⋃

(H,G);

end

end

return D;

Algorithm 1: Threshold Decomposition Algorithm

62

for all the 338 functions in the PNAND library, isThreshold correctly identifies them

as threshold. The computation of the common weight vector (Wc) is also an equally

hard a problem as identifying threshold function itself. For exactness, it can be

solved using ILP. Since ILP run-times are not practical, the implementation employs

a heuristic to speed it up. The heuristic finds a common weight vector between every

pair of nodes in S and checks if resultant common weight vector works for all nodes

in S. The procedure to find a common weight vector between a pair of nodes called

tryEqualizeWeights is described in (Gowda et al., 2011).

Consider the special cut in the BDD of F for which S = {F}. This corresponds

to the case where F itself is a threshold function. In this case, the g-functions do not

exist, and the bound set is empty. Such cuts are most preferable since any logic due to

g-functions is eliminated. Extending the idea further, we observe that it is preferable

to have bound set as small as possible to minimize the g-functions. Therefore the

cuts in the BDD are examined from top to bottom until a decomposition is found.

Note that different variable orderings of the BDD lead to different decompositions.

In general, orderings that have smaller BDDs lead to better threshold decompositions

and are therefore preferred.

An example of the threshold decomposition procedure is shown in the Figure 4.7.

The input is a non-threshold function ab + cd (Figure 4.7 (a)). Cut 1 is not valid

since the top node (which represents ab + cd) is not a threshold function. Cut 2 is

not valid because no common weight vector for the children can be found (lines 6-9).

Cut 3 is valid since all necessary conditions are satisfied. The common weight vectors

of nodes c and 1 are respectively [wc = 1, wd = 1;T = 2] and [wc = 1, wd = 1;T = 0].

The common weight vector [1, 1] is then searched in the PNAND library for a match.

A candidate match containing common weight vector is [2, 1, 1; 2]. Since the co-

factors of [2, 1, 1; 2] w.r.t to g0 having weight 2, are [wc = 1, wd = 1;T = 0] and

63

[wc = 1, wd = 1;T = 2], this function yields valid decomposition. Figure 4.7 (b)

and (c) show the construction of g0 and H respectively. The final decomposition is

F = g0 + cd and g0 = ab.

4.3 ILP Based Decomposition

This section describes an ILP based method of producing functional decompo-

sition which is more effective and allows for more flexibility in decomposition such

as don’t care sets. The formal problem statement of this method is as follows. Let

F (x1, · · · , xn) be a given Boolean function and let L(g) denote some appropriate cost

of a function g that is to be minimized. For instance, L(g) could denote the number

of literals in a minimum SOP form of g or an optimally factored form of g. Let

H(g1, g2, · · · , gk) = [w1, · · · , wk;T] be a given threshold function. Then the problem

is to determine functions g1(x1, · · · , xn), g2(x1, · · · , xn), · · · , gk(x1, · · · , xn) such that

F = H(g1, g2, · · · , gk) and
∑k

i=1 L(gi) is minimum.

The condition that the two circuits in Figure 4.4 be functionally equivalent leads

to a necessary condition on the decomposition. Let M1 and M0 be minterms in

the on-set and off-set of F , respectively. Then, for the circuit in Figure 4.4(b),

H(g1(M1), · · · , gk(M1)) = 1, andH(g1(M0), · · · , gk(M0)) = 0. Therefore,
∑k

i=1wigi(M1) ≥

T and
∑k

i=1wigi(M0) < T must be true. It is important to note that as long as these

two conditions are satisfied, the g functions can contain any subset of minterms of

variables of F , including those in the on-set and off-set of F .

Figure 4.8 shows an example of one possible decomposition of F (a, b, c, d) = (ā+

b̄)(c+d)+cd. The threshold function H(g1, g2, g3) = g1g2+g1g3+g2g3. This is a 2-out-

of-3 majority function that can be implemented by a PNAND-3. One decomposition

of F results in g1(a, b, c, d) = ā + b̄, g2(a, b, c, d) = c and g3(a, b, c, d) = d. Notice

that the g functions cover both on-set and off-set minterms of F . The decomposition

64

also demonstrates the substantial area and delay improvements that are possible with

decomposition. Also, if the g functions turn out to be single literals, then F itself is

a threshold function.

Different choices for g functions are compared based on their cost, which is∑k
i=1 L(gi). The time required to compute this cost function can be very high. For

instance, it can be based on the minimum SOP or the optimally factored form of each

of the g functions. If it is a one time effort, it may be acceptable. However, in the

present application, it is part of an inner loop of the hybridization procedure, and

hence is not practical for all but very simple circuits. One way to simplify the eval-

uation of the cost of the g functions is to restrict them to be unate. This is because

the minimum SOP of a unate function is unique and is easily obtained by ensuring

that the SOP expression is minimal with respect to single cube containment (Hachtel

and Somenzi, 1996). Then the total number of literals in the minimum SOP is an

accurate reflection of the number of two input AND/OR gates required to realize the

function. In the statement of the decomposition problem given above, the functions

F and H are given. The function F is extracted from the netlist and H is one of

the threshold functions in the cell library. One way to ensure that the g functions

are unate is to ensure that F is unate. In the following, an efficient solution to the

problem of computing the g functions is presented, given a unate function F and a

threshold function H. Without loss of generality, F and gi can be assumed to positive

unate functions.

4.3.1 0-1 ILP formulation

The decomposition algorithm must compute the g functions which are inputs to

the H function. Each gi function is a subset of all the minterms Mj of the variables

from the support set of F i.e. x1, x2, · · · , xn. One way to explore all possible gi

65

functions is by associating each minterm Mj with each function gi. This is done by

introducing a Boolean variable mi,j, which is 1 if Mj belongs to the function gi, and

0 otherwise. However as discussed earlier, computing cost of gi functions using a

linear expression of mi,j variables is not possible. Therefore instead of associating a

minterm Mj with a gi function, we associate a unate cube Cj with a gi function. The

total cost of the gi function is now the total number of literals in all the cubes of gi,

which is now a linear expression.

Let C denote the set of positive cubes over the set of variables {x1, x2, · · · , xn}.

That is

C = {φ, x1, x2, · · · , xn, x1x2, · · · , xn−1xn, · · · ,

x1x2 · · ·xn}.

Let the Boolean variable ci,p = 1 if and only if the cube Cp ∈ C is added to

the g-function gi. Since each cube contains one or minterms, there is a relationship

between the Boolean flags ci,p and mi,j. This relationship is expressed using following

constraints.

ci,p ≤ mi,j, 1 ≤ i < k, Cp ∈ C,Mj ⊆ Cp, (4.3)

The constraint (4.3) states that if any cube Cp is added to the function gi, then all the

minterms Mj contained in Cp must also added to gi. We now express the functional

equivalence constraints briefly described in Section 4.3.

k∑
i=1

wi.mi,j ≥ T, ∀Mj ⊆ F (4.4)

k∑
i=1

wi.mi,j < T, ∀Mj ⊆ F (4.5)

Constraints (4.4) and (4.5) ensure that any association of cubes (and therefore minterms)

to the gi functions must ensure that resultant decomposition computes the original

66

function F .

Finally, we describe the objective function for this formulation. As stated earlier,

whenever a cube Cp is associated with a gi function, the cost of gi increases by number

of literals in the cube Cp. Assume Cost(Cp) denotes the pre-defined cost of cube Cp.

The cost of each gi function, denoted by integer variable Cgi is denoted as follows.

Cgi =
∑
Cp∈C

Cost(Cp).ci,p (4.6)

The objective function is the sum of costs of all the gi functions, i.e.,

min
k∑

i=1

Cgi (4.7)

Equations (4.3), (4.4), (4.5), (4.6) and (4.7) denote a complete 0-1 ILP formulation

of the decomposition problem.

As an example, consider a unate function F = ac + ad + bc + bd + cd and

H(g1, g2, g3) = [1, 1, 1; 2] = g1.g2 + g2.g3 + g1.g3. The above formulation seeks a

distribution of the unate cubes to the three functions g1, g2 and g3. The ILP solution

is g1 = a + b (i.e. g1 has two cubes, a and b), g2 = c, g3 = d. Indeed we see that

F = g1.g2 + g2.g3 + g1.g3 = (a+ b).(c) + (a+ b).(d) + (c).(d).

The proposed 0-1 ILP formulation automatically allows for don’t cares of F . Ac-

cording to the constraints (4.4) and (4.5) only the minterms that are contained F

and F are considered for equivalence check. If a minterm is not present in F or F ,

then the ILP solver minimizes the g functions by appropriately distributing the don’t

care minterms into F and F . This can result in simultaneous reduction of g functions

and/or the reduction of the H function. For example, assume that the don’t care set

for the function on the left hand side is found to be DC = a ∨ b in Fig. 4.8. The

decomposition would result in the elimination of the NAND gate and reduces the H

function from majority to a two input OR gate.

67

4.3.2 Speeding up the 0-1 ILP

The 0-1 ILP formulation above has a large number of variables along with loose

constraints. We can reduce the number of variables and better constrain the solution

space with following modifications.

Cube Containment

When a cube Cp is added to the function gi, none of the cubes contained in Cp need

be added to gi. Therefore additional constraints on ci,p variables are as follows.

ci,p + ci,q ≤ 1, 1 ≤ i ≤ k, Cq ∈ C, Cp ∈ C, Cq ⊂ Cp (4.8)

Symmetries

If the H function is symmetric with respect to a group of gis, then there will exist

a large number of equivalent optimal solutions. To eliminate some of the symmetric

solutions, we enforce the constraint on costs of each of the gi functions. For each

symmetry group of gi variables denoted as (gu, gu+1, · · · , gv), the following set of

constraints are added.

Cgj ≤ Cgj+1
, u ≤ j < v (4.9)

Reduced cube-set

A cube c contains (Boolean containment and NOT set containment) a cube d if all

the literals in cube c are also present in cube d. A given positive cube Cp will be

part of the optimal set of g functions if and only if it contains at least one cube of

original function F . As an example, consider function F = ab + bcd. The cube-set

C = {φ, a, b, c, d, ab, bc, bd, cd, bcd} suffices to yield optimal decomposition of F wrt

any H function. The remaining cubes such as cube ac can never be part of an optimal

68

decomposition of F with respect to any threshold function. This significantly reduces

the total number of cubes Cp ∈ C and thereby, the number of ci,p variables. Here is

the proof why this cube-set reduction works.

Theorem 1. A given positive cube c will be part of the optimal set of g functions if

and only if it contains at least one cube of original function F .

Proof. We prove this by contradiction. Without loss of generality assume that F is

a positive unate function of all its variables. Also assume that for some threshold

function H and an optimal decomposition denoted by gi functions, there exists an

irredundant cube c ∈ g1 which does not contain any cube of F . Therefore g1 =

c + Q where Q denotes remaining cubes in g1. An expression for F can be written

as F = H = g1.R + S where R and S are expressions containing all gi variables

except g1. If we replace g1 by its definition then we can represent original function

as F = (c+Q).R+ S = c.R+Q.R+ S. Note that cube c contains each of the cubes

in c.R. However c does not contain any cube in F therefore all the cubes in c.R

must be redundant and wholly contained in Q.R+S. As a result all the cubes in the

expression c.R can be eliminated without changing the definition of F . We can also

eliminate these cubes by simply eliminating cube c from g1 altogether. However if we

remove cube c from g1 then we have a g1 function with smaller cost. This contradicts

the fact that original decomposition denoted by gi variables is optimal.

4.3.3 Unate Function Enumeration

We note that the ILP based procedure requires a unate function driving a flipflop.

We describe a procedure that enumerates only unate functions similar to how strong

cut enumeration enumerates function required for BDD based decomposition. The

procedure to enumerate the unate functions driving a flipflop is outlined in Algorithm

69

2. This procedure is indeed a form of cut enumeration. However an important distinc-

tion between conventional cut enumeration and this procedure is that it enumerates

only cuts that are unate functions.

The input to the procedure in Algorithm 2 is an abstract gate level netlist con-

structed from the synthesized netlist generated by the synthesis tool. The synthesized

netlist from the synthesis tool consists of cells such MUX, OR, NAND etc. However

not each of these functions is unate. Therefore an extra step is applied that converts

each gate into small sub-network consisting solely of unate functions. As an example,

if a gate is a MUX denoted by f = a.s̄+ s.b, then this cell is converted into two gates

represented as f = g + s.b and g = a.s̄. Note that f is a unate function now. This

way we can ensure that every flipflop is driven by a unate gate.

The procedure in Algorithm 2 works by repeated absorption of fanin gates in a

breadth first manner. If a function is not unate after absorption of a fanin gate, the

search beyond that gate is terminated.

4.3.4 Hybridization Procedure

This section outlines the procedure that uses the decomposition methods described

above to convert a sequential network into a hybrid network. The outer hybridization

procedure takes as an input, a cell level netlist synthesized using RTL compiler and

the list of flip-flops in this network. It returns the minimum area hybrid netlist. The

outer procedure is simple. For each flipflop, it determines a decomposition (using

either of above two methods) consisting of a PNAND cell and a set of gi functions

that drive its inputs. Among all the decompositions, the one that provides maximum

reduction in logic is chosen and that flipflop along with unate function F feeding it,

is replaced with this decomposition. Each time a flip-flop is replaced, the resultant

netlist is stored and re-synthesized.

70

EnumUnateFunctions(F,N);

input : A fanin logic cone of a flipflop F , a fixed integer N indicating the

number of unate functions to enumerate

output: A list of L of N unate functions each of which driving the flipflop F

L = φ;

Q = queue();

// g denotes the logic gate driving flipflop F ;

Q.append(g);

while (Q.size() > 0 && N > 0) do

g = Q.pop();

S =fanin gates of g;

foreach h ∈ S do

u =merge(g, h);

if u is not unate then

continue;

end

Q.append(u);

L = L
⋃
{u};

N = N − 1;

end

end

Algorithm 2: Procedure to enumerate unate functions in a logic cone driving

a flipflop

71

The flip-flops are replaced by PNAND one-by-one in the order of their criticality

because PNANDs can most benefit the critical paths by providing slacks. The logic

cones on critical paths are larger and reduce substantially under timing slacks and low

input capacitance supplied by PNANDs. Another reason why PNANDs must reside

on the critical paths is because they have higher hold time than the conventional

D-flip-flops. Since the critical paths are longer, the effort of the synthesis tools to

meet the hold time is minimal. In fact, the PNANDs on non critical paths can force

the synthesis tools to insert buffers to meet hold time worsening the circuit area

and power. Among all the intermediate re-synthesized netlists obtained from above

procedure, the minimum area netlist is chosen as the final hybrid netlist.

In practice, the optimal decomposition can be pre-computed for all the flip-flops

in parallel, say on a cluster of computers, and utilized in the order of criticality. This

significantly speeds up the computation. Therefore the whole procedure can be run in

near constant time provided enough resources are available to process large circuits.

4.4 Experimental Results

In this section, we present the results of experiments carried out on several large

function blocks. For comparison, two complete implementations of each circuit were

carried out, one using conventional logic design and the other being a hybrid design.

All the final results are based on simulations performed on extracted netlists of the

circuits after placement and routing were successfully completed, and the designs met

the timing requirements and passed the equivalence check.

4.4.1 Methodology

The methodology followed is summarized below.

1. A library of four PNAND cells (PNAND-3, PNAND-5, PNAND-7 and PNAND-

72

9) was created and the layout of each was optimized to achieve 0 errors in

100K Monte Carlo simulations for the input case that exhibits the maximum

contention, accounting for both global variations and local mismatch.

2. Each of the four cells was then characterized for different worst-case delay input

combinations. This is to allow a more accurate calculation of function-specific

delays during the synthesis phase. A new approach to characterize the setup and

hold times of PNANDs was developed and verified. The conventional approach

to characterize the setup and hold times of DFFs is not valid, as PNANDs are

multi-input flipflops.

3. For a given circuit C, minimum period synthesis was performed using Cadence

RT compiler, resulting in a netlist CminP . The library cells used during synthesis

were characterized at the PVT corner (SS, 105C, 1.1V).

4. The hybridization of netlist CminP was performed to produce a hybrid netlist

H(CminP). We specifically show results for ILP based decomposition method

because not only it can be shown to be theoretically superior, but indeed prac-

tical results of ILP based method are better.

5. Logic synthesis of the netlist H(CminP) was carried out using Cadence RT com-

piler, with the target clock period of minP , to produce a netlist H∗(CminP).

During this stage, the PNAND cells were left untouched.

6. Both CminP and H∗(CminP) were successfully placed and routed using Cadence

Encounter, with the target clock period of minP , ensuring that CminP and

H∗(CminP) could be operated at the same clock frequency. The multi-corner

analysis feature of the tool was used in order to best meet setup and hold timing

constraints. The setup corner was (SS, 105C, 1.1V), whereas the hold corner

73

(FF, -40C, 1.3V). The tool was also provided with another nominal operation

corner (at which the circuit will actually operate post-fabrication) which is TT,

25C, 1.2V.

7. The layout extracted netlists were then used to simulate the circuits for dynamic

and leakage power. The placed and routed netlists (both conventional as well as

hybrid) were simulated in verilog for a large number of inputs patterns with a

fixed switching activity of each input. The resulting switching activities in the

circuit were saved in a VCD (value change dump) file. This file is then given to

the Synopsys power measurement tool, PrimeTime, along with circuit parasitics

and libraries. The tool produces near accurate values of the average dynamic

and leakage power for both CMOS and hybrid circuits. In order to ensure that

the characterized power data for hybrid circuits (specifically P-NAND cells)

was accurate, the power of PNAND cells was estimated using both HSPICE

and PrimeTime and found them to be within 1%.

4.4.2 Circuits

Experiments were conducted on five large commonly used circuit blocks. These

are (1) a 32-bit, 2-stage Wallace Tree multiplier, (2) a 28-bit, 4-tap digital FIR Filter,

(3) a 3-stage, 64-bit floating point multiplier, (4) a 32-bit MIPS core without a floating

point unit, and (5) a 10-stage standard encryption circuit implementing the AES

algorithm, with 128-bit key and 128-bit plain text input.

4.4.3 Results

Table 4.2 shows the comparison of the area and total wire length of the con-

ventional logic circuits and hybrid circuits. The results demonstrate a substantial

74

reduction in both the total area and wire-length for the multipliers and the filter.

In general, datapath circuits greatly benefit from hybridization in terms of area and

wire length. The other circuits, namely the MIPS core and the AES circuit, while

still smaller (without a performance loss), show less improvement.

Area (mm2) Total wire length (mm)

Circuit Conv. Hybrid % ∆ Conv. Hybrid % ∆

Multiplier 0.043 0.032 25 135 95 29

Filter 0.124 0.091 27 350 245 30

FPU 0.094 0.082 13 398 323 19

MIPS 0.076 0.067 11 321 293 9

AES 0.7 0.6 15 3177 3080 3

Table 4.2: Area and Wire-length Reduction

Table 4.3 shows the comparison of dynamic and leakage power of the circuits

at nominal operation corner (TT, 25C, 1.2V) and at 30% primary input switching

activity. The results indicate a very substantial reduction in both dynamic as well as

leakage power of the hybrid circuits compared to the conventional . Note again, this

is without a performance loss. As stated earlier, the power reduction is due to the

absorbed logic as well as the logic that reduces under timing slacks. The leakage of

the circuits is a small percentage of dynamic power because the particular 65nm LP

(low power) process, as opposed to the GP (general purpose) process. The ratio of

leakage to dynamic power is substantial in a GP process, and therefore we can expect

that for GP processes the improvement in leakage will further add to the improvement

in total power.

We also explored how the reductions in dynamic power would vary as a function

of the operational frequency and the input switching activities. Figures 4.9 and 4.10

75

Dynamic Power (mW) Leakage Power (µW)

Circuit Conv. Hybrid % ∆ Conv. Hybrid % ∆

Multiplier 35.9 22.7 37 4.22 2.13 49

Filter 67.1 43 36 13.68 6.71 51

FPU 46.8 35.9 23 7.68 5.59 27

MIPS 31.6 22.6 29 5.61 3.88 31

AES 205 170 17 55.2 45.5 18

Table 4.3: Dynamic and Leakage Power Reduction @ TT, 25◦C, 1.2V and 30%
Switching Activity

Table 4.4: Variation in the Dynamic Power

Standard Deviation of Dynamic Power (mW)

Circuit Conventional Hybrid % ∆

Multiplier 2.9289 1.7248 41

Filter 8.6197 4.8469 44

FPU 4.5985 3.2108 30

MIPS 6.9563 5.5251 35

AES 3.079 2.0606 33

shows the results for the Wallace Tree multiplier. Similar results were obtained for all

the other circuits. The improvements in dynamic power of the hybrid multiplier was

demonstrated across all frequencies. Similarly, the advantages of the hybrid multiplier

was consistent across a wide range of input switching activities.

Another important characteristic of hybrid circuits is the reduced standard devi-

ation of dynamic power across clock cycles. Table 4.4 shows the relative reduction in

the power variation for various circuits.

Reduced power variation in power is useful in two ways. As the variation in the

76

current demanded by the chip reduces, the load fluctuations on the power grid is

reduced. This may help free power grid and/or decap cell area.

The second advantage of reduced variations is increased resistance to the differ-

ential power profile attack on the cryptographic processors such as AES. The AES

circuit can reveal bits of the encryption key based on temporal power profile as the

chip encrypts/decrypts a particular plain-text. A reduction in variation makes it

harder to reveal bits of the encryption key. Figure 4.11 shows the instantaneous

power (per cycle) over a number of cycles and corresponding standard deviation.

The two plots have identical scales on x and y axes (not shown due to size restric-

tion). The horizontal dark line in the middle of each curve represents mean dynamic

power. The mean powers are aligned for comparison of the power variation. The left

plot shows power variations for conventional circuits whereas the right one shows the

same for hybrid circuits. It can be seen that the standard deviation of the power is

considerably less for hybrid AES.

4.4.4 Advantages due to KVFF

Recall that KVFF is a single input PNAND architecture introduced in Section 3.6

which is basically a new type of D-flipflop. Note that even through KVFF does not

itself absorb any logic, it still has smaller setup time than conventional master-slave

D-flipflop. Therefore hybridization (aka resynthesis) with KVFFs and conventional

CMOS library cells also provides certain advantages due to reduction of logic under

timing slack. One might be interested in these results is because KVFFs are as robust

as conventional D-flipflops. Therefore all the advantages gained by using KVFFs come

without degrading the circuit robustness in any way. KVFF can simply be added to

the conventional library of cells to obtain these advantages. Table 4.5 shows the

improvements in dynamic power due to KVFF alone.

77

Dynamic Power (mW) Leakage Power (µW)

Circuit Conv. KVFF % ∆ Conv. KVFF % ∆

Multiplier 35.9 31.5 12 4.22 3.91 7.3

Filter 67.1 56.3 16 13.68 10.54 23

FPU 46.8 39 16 7.68 6.61 14

MIPS 31.6 31.3 1 5.61 5.48 2.3

AES 205 191.4 6.6 55.2 53.25 3.5

Table 4.5: Dynamic and Leakage power reduction @ TT, 25◦C, 1.2V and 30%
Switching Activity due to KVFF

Comparing Tables 4.3 and 4.5, we can see that improvements due to KVFF alone

are typically less than what hybridization can provide. This is due to the lack of

absorption of logic. An additional advantage of KVFFs is that they are smaller in

size compared to PNANDs and therefore incur less burden on routing and cell area

during automated place & route.

78

Figure 4.6: (a) Function F to be Decomposed. (b),(c) g-functions (d) H-function

79

a

b

1 0

cut 3

0

1

g0

cut 2

cut 1
a

b

c

d

1 0

c

d

1 0

g0

F H

(a) (b) (c)

Figure 4.7: An Example of Threshold Decomposition (a) Non-threshold Input
Function F and Cut (b) Computation of g0 (c) H-function

DFF

c
d

a
b c

d
1

1

1

2

replaced by
P-NAND-3

DFF

a
b

d

c

Figure 4.8: A Motivational Example where a Non-threshold Function is
Decomposed into a PNAND-3 Driven by a Single NAND Gate

80

Figure 4.9: Advantages of Hybrid Circuits are Maintained Irrespective of the
Operating Frequency

81

Figure 4.10: Hybrid Circuits are More Energy-efficient at Higher Switching
Activity

Conventional
AES
STDEV = 3.08mW

Hybrid AES
STDEV = 2.06mW

Figure 4.11: Variations in Dynamic Power of AES Circuit

82

Chapter 5

FIELD PROGRAMMABLE THRESHOLD GATE ARRAY

5.1 Overview

In this chapter, we present the architecture of a novel programmable logic ar-

ray, referred to as Field Programmable Threshold-Logic Array (FPTLA), in which

the basic cells are PNANDs. A PNAND can be programmed to implement different

threshold logic functions by routing appropriate signals to their inputs. This reduces

the number of SRAMs inside the logic blocks by about 60% compared to conventional

CLBs, without adding any significant overhead in the routing infrastructure. Since a

PNAND is essentially a multi-input, edge-triggered flipflop that computes a threshold

function, a network of PNANDs forms a nano-pipelined circuit. The advantages of

such a network are demonstrated on a set of deeply pipelined datapath circuits imple-

mented on FPTLAs and conventional FPGAs using the well established FPGA design

framework VTR (Verilog To Routing) and VPR (Versatile Place and Route) (Rose

et al., 2012). The results indicate that an FPTLA can achieve up to 2X improvement

in delay for nearly the same energy and logic area compared to the conventional LUT

based FPGA. Although differential mode circuits can potentially be more sensitive to

process variations, FPTLAs can be made robust to such variations without sacrific-

ing their improved energy efficiency and performance over FPGAs. We also present

a novel method to synthesize a network of threshold logic gates (TLGs) that can be

mapped onto FPTLA.

Below we summarize some of the key features of the proposed design, methods

and the methodology.

83

1. The FPTLA can be programmed to realize any one of a number of threshold

functions by assigning the appropriate signals to the inputs of PNAND logic

blocks (referred to as DTGB which stands for differential threshold gate block).

This reduces the number of SRAMs required by the logic blocks by about 60%.

2. Since a PNAND cell can implement a variety of threshold functions, charac-

terizing its behavior at different temperature values would require performing

MC simulations of each function at each temperature value. We show that this

is not necessary. Specifically, we demonstrate a property that we refer to as

functional monotonicity with temperature. If FTi
denotes the set of threshold

functions that can be reliably computed by a PNAND at temperature Ti, then

the FTi
⊆ FTj

, for Tj > Ti. This means that if a PNAND cell is programmed to

realize a function f , and it is verified that it indeed computes f at temperature

T1, then it is guaranteed to compute f at any temperature T2, for T2 ≥ T1.

3. As we have seen, PNANDs are sensitive to mismatch due to process varia-

tions. However, mismatch in a PNAND need not make the logic block unus-

able. Rather, mismatch causes the set of threshold functions realizable by the

PNAND to be altered. This leads to two different scenarios in how the array

can be utilized.

(a) A conservative approach is to simply ignore the cells whose functionality is

altered by process variations. To ensure feasibility of the mapping, if a TLG

network to be mapped has N TLGs, then an array of PNANDs larger than N

would be required. We show that for a given probability of a cell’s functionality

being altered, the number of extra cells required to achieve a very high circuit

yield is very small.

(b) A key characteristic of PNAND cells is that mismatch can only result in

84

another set of threshold functions. That is, mismatch will not change a threshold

function into a non-threshold function – a characteristic that is demonstrated

here. Hence, instead of simply ignoring the altered cells, the synthesis procedure

can take in account the new set of all functions available on the array, and

generate a TLG network accordingly. Note that the synthesis procedure that

accounts for this additional flexibility is beyond the scope of this work.

4. We present experimental results by comparing FPTLA and conventional FPGA

implementations of several nanopipelined datapath circuits. Nanopipelined cir-

cuits are path balanced in which each gate computes a function on a clock edge.

The throughput and speed of such circuits is very high due to such deep level

of pipelining. The power and delays of these circuits are obtained using the

well established VPR tool that accurately models the routing resources and

logic blocks.

5.2 PNAND as a Majority Gate

There are many ways to map signals to the inputs of a PNAND-K, while satisfying

the constraint that the LIN and RIN never have the same number of active devices.

The different signal assignments will result in different delay, power and robustness to

process variations. As our target implementation is an FPTLA, having 2K inputs for

every cell would result in excessive wiring congestion. For this reason we have chosen

to wire the LIN and RIN internally, so that the primary inputs drive the gates of the

RIN and their complements drive the gates of the LIN. Figure 5.1 shows a PNAND-5

wired internally in such a manner.

A m out of n majority function is 1 if at least m of the inputs are 1. A PNAND-

K wired in the manner described realizes a (K + 1)/2 out of K majority function.

Whenever the LIN has n devices ON, the RIN has K − n devices ON. To ensure

85

they are not equal, K must be odd. In that case, whenever at least (K + 1)/2 inputs

are 1, the LIN will have more ON transistors then the RIN, resulting in the output

Q of PNAND evaluating to 1. For example, the PNAND-5 cell shown in Figure 5.1

can realize 3 out of 5 majority when all the inputs are independent signals. In the

notation of a threshold function it is f(a, b, c, d, e) = [1, 1, 1, 1, 1; 3].

Fig. 5.1 shows how to connect 5 inputs a, b, c, d, e to reduce a PNAND-5 to a 3

out of 5 majority i.e.

a
b
c

Right input
netwok

Left input
netwok

d
e

Figure 5.1: Realizing a 3 out of 5 Majority using PNAND-5

Given a PNAND-K implementing its majority function, the only input config-

urations m/n that will occur are where m + n = K. For example, a PNAND-7

implementing a 4 out of 7 majority has only 8 cases that occur at its inputs – (4/3,

3/4), (5/2, 2/5), (6/1, 1/6) and (7/0, 0/7). The delay of a PNAND has two com-

ponents: the propagation delay through the LIN or RIN, which is the time required

to charge node N5 or N6, and the sense-amp delay to correctly distinguish the dif-

ference between two rising voltage waveforms. For an input configuration m/n, the

propagation delay is, to a first order, inversely proportional to the max(m,n). The

maximum sense-amp delay occurs for all input configurations for which |m− n| = 1,

86

and among those, for which m or n is maximum. Thus for a PNAND configured as a

majority gate, the same configuration exhibits the maximum propagation delay and

sense amp delay, namely m = (K + 1)/2 and n = (K − 1)/2, or vice-versa.

Any threshold function f = [w1, w2, · · ·wn|T] can be implemented using a T out

of W majority function, where W =
∑

wi (Muroga, 1971). For example, consider

a threshold function f(a, b, c) = a ∨ bc = [2, 1, 1; 2], where wa = 2, wb = wc = 1 and

T = 2. Here T = 2 and W = 4. Given a 2 out of 4 majority function g(p, q, r, s) =

[1, 1, 1, 1; 2] f can be realized by a PNAND by simply connecting signal a to the inputs

p and q, signal b to r and signal c to the input s of the function g. However note that

the 2 out of 4 majority is realizable using a 3 out of 5 majority by simply setting one of

its input signal to 1. Therefore any majority function has a fixed subset of threshold

functions it can implement under all possible assignment of signals (including 0 and

1) to its inputs.

Consider implementing a 4-input AND gate f(a,b,c,d) using the 4 out of 7 majority

g(p, q, r, s, t, u, v). The assignment p = a, q = b, r = c, s = d, t = u = v = 0 realizes

this function. Only when all of a, b, c, and d are 1, the threshold of 4 out of 7

majority is reached and output is 1 realizing a 4 input AND gate. Table 5.1 lists all

the functions that are implementable by a PNAND-7 cell configured as a 4 out of

7 majority function, along with the required signal assignment. Incidentally, this is

indeed the set of all functions that PNAND-7 can implement in general. Therefore

we can see that in terms of ability to implement functions, a PNAND-K is as powerful

as a (K + 1)/2 out of K majority function.

The support set of each of the functions is assumed to be a, b, c, · · · . Note that

for some functions, the Boolean expression has too many terms to enumerate.

An important advantage of the proposed FPTLA is that a PNAND majority gate

is programmed to compute a threshold function just by routing appropriate input sig-

87

nals (including constants 1 and 0) to its input ports. Since PNAND functions require

complemented signals, K SRAMs for PNAND-K and other circuitry are required to

compute the complements of the signals.

5.3 FPTLA Architecture

In this section, we describe a gate array architecture consisting of PNAND cells

that we shall refer to as Field Programmable Threshold Gate Array (FPTLA). As

stated earlier, a PNAND cell can be viewed as an edge triggered multi-input flipflop

that computes threshold functions. Hence a network of PNANDs constitutes a gate-

level or nanopipelined circuit, where each element is clocked, and each path has

exactly same number of threshold gates. It appears as a network of flipflops with no

intervening combinational logic gates. This pipelined circuit is then mapped onto a

gate array architecture, which is described below.

The FPTLA architecture is similar to the conventional island style FPGA pro-

grammable fabric (Fig. 5.2). However the logic blocks in FPGA are replaced with

PNAND blocks (DTGB). A DTGB consists of a PNAND-7 majority gate shown in

Fig.5.1. Each input of the DTGB can be fed to the majority in true or complemented

form using an XOR gate and a configurable SRAM. A DTGB has total of 8 inputs

and 1 output and only 7 SRAMs. Compared to a DTGB, a standard 4-input LUT

based CLB has more than 2X transistors considering those in SRAM bits. Also note

that PNAND-K requires K SRAMs whereas LUT-K requires 2K SRAMs.

The C blocks denote Connection boxes. The C boxes connect the channel wires

to the input and output pins of the DTGBs. The S-boxes or the switch boxes allow

wires to switch between vertical and horizontal wires. The purpose of this routing

grid is to connect appropriate signals to the inputs of each of DTGB including the

required constants.

88

DTGB DTGBDTGBC C

DTGB DTGBDTGBC C

DTGB DTGBDTGBC S

S S

S S

C C C

C C S

Programmable
fabric

DTG-7
Majority

Gate

CLK
A0

Q

S

S

A6

Figure 5.2: A PNAND Gate Array

It should be noted that the DTGB is not functionally equivalent to an LUT but

rather an alternate programmable unit. There have been similar attempts where

an alternate functional unit such as ULMs (Zilic and Vranesic, 1996) were used. In

this work, we specifically focus on a programmable threshold logic element that can

implement a certain set of threshold functions, and compare the resulting design with

a conventional FPGA realizing the same overall function.

Alternative designs of logic blocks are possible where an LUT is augmented with

a PNAND. It is also possible to model FPTLA as a learning network where weights

of variables can be altered by routing appropriate signals to the inputs of DTGBs.

However these considerations are beyond the scope of the present work.

89

5.4 Synthesis of Nanopipelined Threshold Networks

Any threshold synthesis algorithm requires identifying whether given Boolean

function is threshold or not. Since the set of threshold functions is restricted to

those that can be realized by a PNAND-7 (configured as a 4-outof-7 majority), a

simple ILP based identification approach suffices. Thus we can limit our identifi-

cation procedure to only those threshold functions that can be implemented by a

PNAND-7.

The proposed threshold synthesis method is an area minimization technique based

on the method in (Zhang and Cotofana, 2005). The central idea of the area minimiza-

tion technique is a well known operation in Boolean synthesis called node elimination.

In this operation, the logic expression (SOP) of the node is substituted into the logic

expressions of all its fanout nodes. In traditional Boolean synthesis, this operation has

no particular constraints and simple objectives such as minimization of fanin/fanout

or speed (levels) and area (number of gates) can be followed. However in the proposed

threshold network synthesis, a substitution is permitted if and only if the resultant

logic function is also threshold. Fig. 5.3 (a) shows an example of how a threshold

gate is eliminated by substituting its expression into that of its fanout gates. Fig.

5.3 (b) shows a case where substitution is not allowed as the resultant function is not

threshold.

The node elimination technique can be iteratively applied to an initial synthesis

of a threshold logic network. The elimination of nodes in each iteration results in a

network of fewer and larger threshold gates. This is the basis of the area minimization

technique.

90

1

1

a

b
2

1

1

c
2

2
1

1
a

c

2

1
1

1

a

c

3b

2
1

1

a

c

3b

f

g

f

g

v

1

a

b
2

2
1

1
c

d

2

v1

z = ab + cd is not
threshold

(a)

(b)

z

Figure 5.3: (a) Legal Function Substitution (b) Illegal Function Substitution
Leading to a Non-threshold Function

5.4.1 Area Minimization Algorithm

The area minimization algorithm works on a directed acyclic graph (DAG) rep-

resenting a netlist of threshold logic gates. Let D(N,A) denote the circuit DAG. N

denotes the set of nodes and A denotes the set of directed edges in D. The outline

of the procedure is shown in Algorithm 3.

The input to the algorithm can be any netlist, where the nodes represent thresh-

old functions that can be implemented by PNAND-7. This includes a conventional

AND/OR network. Hence in our implementation, we start with a 2-input AND-OR

network. At each step in the algorithm, the largest subset of nodes that can be re-

moved simultaneously is obtained and these nodes are then eliminated. The process

is repeated until no nodes can be eliminated. In an elimination step, the set of all

nodes that can be eliminated is obtained. Since all such nodes may not be eliminated

simultaneously, a graph H is constructed denoting the relationship between nodes

that can be simultaneously eliminated. A pair of removable nodes (u,v) are adjacent

91

MinimizeArea(G);

input : A threshold network G

output: A reduced area threshold network

while True do

S = set of nodes that can be eliminated in G;

//Construct an undirected graph H(V,E);

V = S;

foreach pair of nodes (u, v) ∈ S do

if (u, v) ∈ A OR (v, u) ∈ A OR u and v have a common fanout then

Add edge (u,v) to E;

end

end

//Assign weights to the nodes in H;

foreach node u ∈ V do

// Nu is the set of successors for gate u;

// C is a large constant;

Wu = −C ∗ |Nu|;
end

// Compute maximum weighted independent set in H.

T = MWIS(H,W);

if |T | == 0 then

break;

end

G = Eliminate all nodes in T from D by substitution;

end

return G;

Algorithm 3: Area Minimization Algorithm

92

in H if and only if they share an edge or a common fanout gate in the circuit DAG

and therefore cannot be simultaneously removed. The largest subset that can be

eliminated is obtained as a maximum weighted independent set in H. The weights

assigned to each node are based on the number of their fanout nodes. It is desirable

to eliminate the nodes with the fewest number of fanout nodes first. Therefore they

are assigned the highest possible weight. Other criteria can also be used to assign

weights. For example, nodes that increase the complexity (or sum of weights) of the

resultant threshold function upon substitution can be assigned lower weights whereas

the nodes that decrease the complexity can be assigned higher weights.

5.4.2 Buffer Insertion

An important requirement in nano-pipelined circuits is that each path from any

primary input to any primary output have the same number of clocked elements.

Often, the logic circuits consist of unbalanced paths that need be balanced by us-

ing timing buffers. In the proposed architecture, a single DTGB can be used as a

buffer gate. However it is desired that the number of buffers should be as small as

possible since buffers do not contribute to useful computation. The buffer insertion

problem for path balancing of directed acyclic graphs is a well studied problem and

an LP formulation is provided in (Hu et al., 1994). However in this work we use a

much simplified algorithm to insert buffers. Following is the simpler buffer insertion

algorithm used in this work. Note that using a sophisticated buffering algorithm or

synthesis methods that minimize the buffers can further improve results shown here.

The main idea behind the buffer insertion algorithm is that each threshold gate

must be (and need be) buffered only as many times as its farthest feed-forward suc-

cessor (fanout node). Any other successor (which must require fewer buffers) can use

the output of one of the buffers in the cascade to ensure balanced paths.

93

Levelize(G);

input : A threshold network G

output: The threshold network G with all paths of equalized using buffers

foreach node u ∈ G do

compute maximum distance Lu of node u from primary inputs;

end

foreach node u ∈ G do

Bu = −1;

foreach directed edge (u, v) in G do

Bu =max(Bu, Lv − Lu − 1);

end

Insert a cascade of buffer nodes named u1, u2, · · · , uBu after the node u;

foreach directed edge (u, v) in G do

index = Lv − Lu − 1;

if index > 0 then

replace edge (u, v) with (uindex, v);

end

end

end

Algorithm 4: Buffer insertion algorithm to balance all paths

94

5.5 Robustness and Temperature Monotonicity

Differential mode logic is generally more sensitive to process variations, and PNANDs

are no exception. The robustness of the PNAND cell was explored using Monte-Carlo

simulations. The reliability of the cell depends on the difference in the conductance

of the two networks as perceived by the sense amplifier. The robustness of the cell

is higher if this difference is larger. The PNAND cell was optimized to increase the

difference in the conductance.

There are two fundamentally different viewpoints to assess the reliability of a cell.

1. A PNAND cell is said to work if and only if it correctly computes the output

for all possible input patterns.

2. Alternatively, if a cell does not implement the majority function, it can be

shown that the cell implements some threshold function. Consider the inequality∑
i

Wixi ≥ T . The process variations simply perturb the value of the weights

represented by the conductance of each of the transistors in the input networks.

Regardless of the perturbation in the weights from the nominal, the resultant

expression is still an arithmetic inequality and therefore represents a threshold

function. In a field programmable environment, we can determine the set of

functions of a cell post fabrication and an intelligent mapping procedure can

still use the cells which do not necessarily implement a large majority function.

In this work however, we restrict our analysis to option (1) mentioned above.

Therefore a PNAND cell instance (represented by a trial in Monte-Carlo simulation)

is said to succeed if it correctly implements its majority function. The maximum

number of function alterations occur at the Slow-NMOS-Fast PMOS (asymmetric

corner) at -40C. The worst input configuration for PNAND-7 is 4/3 (or 3/4). The

95

optimized PNAND-7 was simulated for 100,000 Monte-Carlo trials at 0.9V supply

voltage for the worst-case input configuration. We observed that the 94320 out of the

100,000 circuits computed the 4/3 case correctly. This means that the probability of

a PNAND-7 cell computing the any of the functions in Table 5.1 is 0.9432.

5.5.1 Temperature Monotonicity

As temperature increases, we observed that the probability of correct computation

of a PNAND cell also increases. However, whether or not a given cell that works at

lower temperature also works at a higher temperature needs to be asserted. For this

exploration, we chose a PNAND-9 implementing 5 out of 9 majority, because it was

far less robust than a PNAND-7. The objective is to determine that the effect of

temperature on the success rate of the cell.

First, using Monte Carlo sampling, 2000 instances of a PNAND-9 were generated,

simulating process variations. Each of the instances were simulated for temperatures

from -40C to 120C, in increments of 10C. At each temperature, the set of cells that

correctly computed the output were noted. The result is that set of properly working

cells at temperature Ti was a subset of the cells that worked at temperature Tj,

for Tj > Ti. Fig. 5.4 displays the results in a Venn diagram. The innermost set

named F1825 (named based on the number of successes in 2000 viz. 1825) is the

set of cells that passed the success criteria at -40C. The successive circles show the

sets that worked at progressively higher temperatures. Thus a PNAND cell that

passes the success criteria at lower temperatures is guaranteed to work at higher

temperatures. The monotonicity of temperature has an important role to play in the

practical usability of the field programmable array of PNAND cells. A cell in the

array need only be tested post fabrication at the lowest allowed temperature and can

be certified to work at all the higher temperatures.

96

There is a simple explanation for this behavior. Suppose there are n devices ON in

the LIN and n− 1 ON in the RIN. Let ZL and ZR denote the impedances of the LIN

and RIN, then ZL ≈ 1
n

and ZR ≈ 1
(n−1) . Then the greater the difference |ZL − ZR| =

1
n(n−1) , the more likely that it will compute the correct value. As n increases, each

individual impedance decreases, as does their difference (quadratically). The increase

in temperature counteracts this effect by increasing the impedance of the two input

networks. Moreover, the temperature effect is nonlinear. Thus the increase of the

impedance of the LIN and RIN need not be the same, and in fact, the impedance

of the RIN increases slightly more than that of the LIN, resulting in a increased

likelihood of the output being 1. This is the principal reason why there are fewer

failures of PNANDs at higher temperatures.

F1825 (-40C)

F1977 (125C)

Figure 5.4: Monotonicity of Temperature

5.6 Experimental Results

The experiments were performed using the well known VTR (Verilog-to-routing)

framework along with customized technology and architecture definition files. The

conventional LUT based FPGA circuits were constructed using a 4-input LUT since

it has been shown that LUT size of 4 results in the most area-efficient FPGAs (Rose

et al., 1990). Although we also present the results for 6-input LUT.

97

5.6.1 Parameters for VPR

The VPR tool requires an architecture specification file and a technology file to

place and route a netlist and compute its delay and power. The CLB used for FPGA

consists of a 4-input LUT driving a D-flipflop and an output mux that selects between

the LUT output and the D-flipflop output. The architecture file was populated with

delay and power data measured from a complete spice model of CLB. The muxes

and the D-flipflop used in the spice model were the fastest implementations chosen

from a commercial 65nm standard cell library. The fastest 2:1 mux is a transmission

gate based mux with an output driver and has 12 transistors. The D-flipflop has

40 transistors. Therefore, seventeen 2:1 muxes, 17 SRAMs and a D-flipflop together

result in (17 x 12 + 17 x 6 + 40 =) 346 transistors in a CLB.

The DTGB architecture used is shown in Fig. 5.2. It consists of an optimized

PNAND-7 laid out as a standard cell and has 36 transistors. The fastest XOR gate

from 65nm commercial library has 10 transistors. Therefore one PNAND-7, 7 XORs,

7 inverters and 7 SRAMs result in (36 + 7 x 10 + 7 x 2 + 7 x 6 =) 162 transistors

in a DTGB. In a similar manner, entire DTGB was modeled in SPICE and detailed

measurements such as setup times, delays at the experimental corner (nominal, 1.2V,

25C), energy per toggle of each of the input pins and static power were provided.

The required fields in both FPGA and FPTLA architecture specification files were

populated using the measured data. The routing related fields such as wire delays,

and capacitances were calculated based on the 65nm technology files. Additional

routing related fields such as number of tracks per channel that C-box and S-box

connect to (Fc, Fs), and the configurations for clock tree were kept identical for both

FPGA and FPTLA, since the clock pin capacitances of both logic blocks are same.

Table 5.2 shows the comparison of the characteristics of a CLB and DTGB.

98

The input capacitance of a PNAND cell is extremely small since the input network

transistors are nearly minimum size. Additionally a DTGB computes only on clock

edge. Therefore the input pin toggle energy of DTGB is much smaller compared to

that of an LUT. On the other hand, the clock toggle energy of CLB consists of energy

of a single D-flipflop driving the output mux, whereas DTGB computes and stores

the output of a threshold function.

The threshold synthesis and the buffer insertion procedure were implemented in

Python. The threshold identification uses the ILP solver package lpsolve (v 5.5). The

results are shown (Table 5.3) for 6 combinational datapath circuits suitably nano-

pipelined, placed and routed using VPR for both FPGA and FPTLA.

The first circuit is a 128-bit comparator, which compares a pair of 128-bit un-

signed integers a and b and has three outputs which denote whether a ¿ b, a ¡ b

or a == b. The second one is a 16-bit bit-level sorter with 16 inputs and 16 out-

puts. A bit-level sorter treats its inputs as an array of bits and produces sorted array.

The sorter is a useful computing block that enables efficient implementations of large

symmetric functions such as large majorities, parity and counting functions that are

typically used in arithmetic circuits. The remaining 4 circuits are ISCAS combina-

tional benchmarks. We specifically chose one small, two medium and one large to

denote the scalability of our approach. Note that the threshold netlist of Comparator

and Sorter were manually designed whereas the ISCAS benchmarks were synthesized

using the proposed synthesis method.

5.6.2 Circuit Comparison Results

Table 5.3 shows the comparison between FPGA and FPTLA implementations of

various circuits for several parameters.

Since FPTLA circuits are nanopipelined, they are inherently fast. Therefore the

99

conventional FPGA implementations were also pipelined using retiming for minimum

delay with k stages where k was varied from 2 to the same number of pipeline stages

as FPTLA circuits. Then the circuit that exhibited the minimum EDP was chosen

for comparison. For 4 out of 6 circuits, the lowest EDP FPGA-circuits were also

the fastest. For C3540, the fastest FPGA implementation was 1.87ns which was still

1.6X slower than the FPTLA. Moreover at this speed, the EDP of the FPTLA was

1.6X better than FPGA implementation. For C6288, the minimum EDP of FPGA is

almost same as the FPTLA however that particular FPGA implementation is 4.3X

slower than FPTLA.

The channel width of the FPTLA implementations was same or better across all

the circuits. The column labeled # Cells represents N , for N ×N array.

Although the FPTLA has more cells, the individual DTGB has half the number

of transistors of a CLB. A smaller logic block (with much fewer SRAMs) can result

in shorter lengths of wire which leads to smaller buffers, muxes and other routing

resources for FPTLA. Without optimized layouts of DTGB and CLB, the impact of

logic block sizes on routing infrastructure and the entire gate array remains somewhat

speculative. However we provide comparison of number of transistors (column # LB

xtors) in all the logic blocks in the grid for both FPGA and FPTLA implementations.

In passing, we note that the impact of routing infrastructure, although substantial

in conventional FPGAs, can be greatly minimized in near future with the help of

emerging nano-technologies such as RRAM (Resistive RAM) based interconnects.

For example, (Cong and Xiao, 2014) demonstrates an RRAM based routing infras-

tructure that has about 96% lower silicon area and 70% lower power than the routing

infrastructure in conventional FPGAs. In our experiments we observed that, on av-

erage more than 85% of the FPTLA delay and 90% of total energy is consumed by

routing infrastructure whereas for conventional FPGA implementations, these ratios

100

(on average) were 57% and 74%.

It is also possible to scale down the voltage of FPTLA until the performance of

FPTLA and FPGA are matched. We expect the voltage scaling to provide as much

as 2X improvement in power at the same performance. However the VTR tool does

not support voltage scaling at present.

Similar results are shown in Table 5.4 with 6 input LUT are used in FPGAs. The

FPTLA numbers are same however the FPGA is implemented with 6-input LUT.

The 6 input LUT almost always reduce the number of gates (size of FPGA grid) but

they do not significantly reduce clock period. On the other hand, they exhibit higher

energies.

Martin et al. (Martin et al., 2002) propose Energy-Delay squared product (ED2)

as a better voltage independent metric over Energy-Delay product (ED). They show

that an optimal ED2 implies optimal energy (E) and delay (D). For example, consider

two circuits with identical ED products at a given supply voltage. We can reduce the

supply voltage and equalize the delay of two circuits. In this case, the circuit with

lower delay will consume lower energy because of quadratic dependence of energy on

voltage. Therefore in addition to ED, we also present comparison of normalized ED2

(Fig. 5.5).

5.6.3 Leakage Power and Glitching

FPGAs are often plagued by substantial static power due to their large areas.

In our experiments we use LP (low power) commercial models of 65nm transistors

which offer extremely low leakage current. Therefore static power portion of total

power is substantially smaller (0.01%) for all the circuits in FPGA as well as FPTLA.

However we note that a DTGB has 50% lower leakage than CLB (excluding SRAMs)

and has 60% fewer SRAMs. Additionally we can scale down the voltage of entire

101

Figure 5.5: Comparison of ED2 between FPGA and FPTLA Circuits

FPTLA (routing infrastructure, SRAMs, DTGBs) to match speed of FPGA which

will further reduce the static power of FPTLA.

The second important contributor to energy wastage is the glitching. In non-

pipelined circuits, the glitching can account for more than 70% of dynamic power

(Lamoureux et al., 2008). FPTLA circuits have nearly zero glitching since these

circuits are nanopipelined. A pipelined FPGA may have such low glitching only

when pipelining is deep enough resulting in many LUTs used as mere buffer gates.

Coupling this with higher dynamic and static power of CLBs, ED of heavily pipelined

conventional FPGA circuits can be substantially higher. For example, the ED of an

FPGA implementation of the 128-bit comparator with same number of pipeline stages

as FPTLA counterpart, is 2.5X higher than ED of the FPTLA circuit and ED2 is

5.3X higher.

The switching activity of primary inputs used in all our experiments was set to

20%. It should be noted that as the primary input switching activity increases,

the non-pipelined circuits often suffer from excessive glitching. The DTGB power

is fairly constant over all switching activities. We compared the ED advantage of

the 128-bit comparator for various switching activities between FPGA and FPTLA

102

implementations. We observed that the advantages in ED for FPTLA grow from

1.7X at 10% switching activity to 2.1X at 30% switching activity.

Another important characteristic to be noted is that the energy per clock toggle

of PNAND over all of its input patterns is almost same, with standard deviation less

than 10% of the mean. This would result in much more accurate estimation of power,

as well as greater resilience to the power profile attacks for cryptographic processors.

5.6.4 Circuit Yield

Given a circuit with several PNAND cells, a few cells are bound to compute a

different function than the majority under process variations. Therefore some re-

dundancy needs to be introduced in order to ensure a high circuit yield. Given a

circuit having N cells the redundancy is defined as additional m cells that need to be

present in the chip to ensure that at least N cells work with a very high probability.

If P4/7 denotes the probability that a 4 out of 7 majority gate functions correctly, the

probability of success (yield) of the circuit Y is given by the following expression.

Y =
m∑

K=0

(
N +m

K

)
P4/7

N+m−K(1− P4/7)
K (5.1)

The probability that a PNAND cells functions correctly is 0.9432. Table 5.5 shows

the redundancy (additional cells in gate array i.e. m) required for each circuit in order

to ensure that Y ≥ 0.999 and also for Y ≥ 0.999999. It can be seen that a very high

yield can be ensured with very few additional cells.

103

Table 5.1: Threshold Functions Implementable by 4/7 Majority

Function Programming pattern Boolean expression

1 [1; 1] a, 1, 1, 1, 0, 0, 0 a

2 [1,1; 1] a, b, 1, 1, 1, 0, 0 a+b

3 [1,1; 2] a, b, 1, 1, 0, 0, 0 ab

4 [1,1,1; 2] a, b, c, 1, 1, 0, 0 ab+bc+ac

5 [1,1,1; 1] a, b, c, 1, 1, 1, 0 a+b+c

6 [1,1,1; 3] a, b, c, 1, 0, 0, 0 abc

7 [1,1,1,1; 2] a, b, c, d, 1, 1, 0 6 terms

8 [1,1,1,1; 3] a, b, c, d, 1, 0, 0 4 terms

9 [1,1,1,1,1; 3] a, b, c, d, e, 1, 0 10 terms

10 [2,1,1; 2] a, a, b, c, 1, 1, 0 a+bc

11 [2,1,1; 3] a, a, b, c, 1, 0, 0 ab+ac

12 [2,1,1,1; 3] a, a, b, c, d, 1, 0 a(b+c+d)+bcd

13 [1,1,1,1; 1] a, b, c, d, 1, 1, 1 a+b+c+d

14 [1,1,1,1; 4] a, b, c, d, 0, 0, 0 abcd

15 [1,1,1,1,1; 2] a, b, c, d, e, 1, 1 10 terms

16 [1,1,1,1,1; 4] a, b, c, d, e, 0, 0 5 terms

17 [1,1,1,1,1,1; 3] a, b, c, d, e, f, 1 20 terms

18 [1,1,1,1,1,1; 4] a, b, c, d, e, f, 0 15 terms

19 [1,1,1,1,1,1,1; 4] a, b, c, d, e, f, g 35 terms

20 [2,1,1,1; 2] a, a, b, c, d, 1, 1 a+bc+cd+bd

21 [2,1,1,1; 4] a, a, b, c, d, 0, 0 a(bc+cd+bd)

22 [2,1,1,1,1; 3] a, a, b, c, d, e, 1 8 terms

23 [2,1,1,1,1; 4] a, a, b, c, d, e, 0 7 terms

24 [2,1,1,1,1,1; 4] a, a, b, c, d, e, f 15 terms

25 [2,2,1,1; 3] a, a, b, b, c, d, 1 a(b+c+d)+b(c+d)

26 [2,2,1,1; 4] a, a, b, b, c, d, 0 ab+acd+bcd

27 [2,2,1,1,1; 4] a, a, b, b, c, d, e 7 terms

28 [3,1,1,1; 3] a, a, a, b, c, d, 1 a+bcd

29 [3,1,1,1; 4] a, a, a, b, c, d, 0 a(b+c+d)

30 [3,1,1,1,1; 4] a, a, a, b, c, d, e 5 terms

104

Table 5.2: CLB and DTGB Properties Measured using Detailed SPICE Models
(supply = 1.2V)

Property CLB DTGB Ratio

No. of Transistors 346 162 2.1X

I/P toggle Energy (fJ) 43.5 3.2 13.6X

Clock toggle Energy (fJ) 10.6 15.1 0.7X

Delay LUT (ps) 292 129 2.26X

Static Power (nW) 5.5 2.93 1.87X

105

T
a
b
le

5
.3

:
F

P
G

A
an

d
F

P
T

L
A

C
ir

cu
it

R
es

u
lt

s
at

F
ix

ed
1.

2V
S
u
p
p
ly

w
it

h
L

U
T

-4

D
el

ay
(n

s)
E

D
P

(p
J
n

s)
C

h
an

n
el

W
id

th
#

C
el

ls
#

L
B

x
to

rs

C
ir

cu
it

F
P

G
A

F
P

T
L

A
R

at
io

F
P

G
A

F
P

T
L

A
R

at
io

F
P

G
A

F
P

T
L

A
F

P
G

A
F

P
T

L
A

F
P

G
A

F
P

T
L

A

S
o
rt

er
1.

7
4

0
.9

1
1.

9X
7.

0
3.

8
1.

9X
8

8
11

1
4

41
86

6
3
17

52

C
43

2
1.

8
4

0
.8

3
2.

2X
14

.6
7.

3
2.

0X
10

8
17

2
0

99
99

4
6
48

00

C
88

0
2.

3
1

0
.8

8
2.

6X
26

.4
13

.6
1.

9X
10

1
0

19
2
4

12
49

06
9
33

12

C
3
5
40

2.
3
9

1
.1

3
2.

1X
52

.1
41

.3
1.

3X
14

1
4

24
3
2

19
92

96
16

58
88

12
8
-b

it
C

o
m

p
ar

at
or

2.
2
9

1
.0

8
2.

1X
61

.4
31

.4
2.

0X
14

1
0

28
3
1

27
12

64
15

56
82

C
6
2
88

2.
6
1

1
.4

1.
9X

18
3

14
5

1.
3X

18
1
8

38
4
7

49
96

24
35

78
58

106

T
a
b
le

5
.4

:
F

P
G

A
an

d
F

P
T

L
A

C
ir

cu
it

R
es

u
lt

s
at

F
ix

ed
1.

2V
S
u
p
p
ly

w
it

h
L

U
T

-6

D
el

ay
(n

s)
E

D
P

(p
J
n

s)
C

h
an

n
el

W
id

th
#

C
el

ls
#

L
B

x
to

rs

C
ir

cu
it

F
P

G
A

F
P

T
L

A
R

at
io

F
P

G
A

F
P

T
L

A
R

at
io

F
P

G
A

F
P

T
L

A
F

P
G

A
F

P
T

L
A

F
P

G
A

F
P

T
L

A

S
o
rt

er
1.

9
1

0
.9

1
2.

1X
15

.0
7

3.
8

4X
8

8
10

1
4

82
60

0
3
17

52

C
43

2
1.

8
1

0
.8

3
2.

2X
25

.0
3

7.
3

3.
4X

8
8

17
2
0

23
87

14
6
48

00

C
88

0
2.

6
2

0
.8

8
3.

0X
42

.2
2

13
.6

3.
1X

14
1
0

15
2
4

18
58

50
9
33

12

C
3
5
40

2.
8
2

1
.1

3
2.

5X
57

.3
4

41
.3

1.
4X

16
1
4

21
3
2

36
42

66
16

58
88

12
8
-b

it
C

o
m

p
ar

at
or

2.
2
6

1
.0

8
2.

1X
12

2.
89

31
.4

3.
9X

16
1
0

27
3
1

60
21

54
15

56
82

C
6
2
88

2.
2
6

1
.4

1.
6X

22
3.

71
14

5
1.

5X
18

1
8

28
4
7

64
75

84
35

78
58

107

Table 5.5: Redundancy m to be Added for Each Circuit

Circuit # Gates m (@Y=99.9%) m (@Y=99.9999%)

Sorter 184 30 30

C432 521 20 30

C880 763 30 40

C3540 1407 50 60

128-bit Comparator 939 60 70

C6288 952 90 100

108

Chapter 6

NEW CLOCK SKEWING STRATEGY

6.1 Introduction

In the previous chapters, we introduced a new type of threshold gate referred to

as PNAND, that integrates a threshold function with an edge triggered flipflop. An

important characteristic of PNAND cells is that they produce two signals, labeled

by N1 and N2 (see Fig. 3.1) that are complements of each other at the end of the

evaluation phase. Thus N1 and N2 together signal the end of the computation.

After the clock transitions from 0 to 1, (N1, N2) = (0,1) or (1,0) signals the end

of computation. This means that when the NAND(N1,N2) transitions from 0 to 1,

the computation has been completed. Thus every PNAND or KVFF can be made

to generate a completion signal. This property can be exploited in several ways, one

of which is the use of local clocking to further improve the design in terms of power,

area and performance. In this chapter, we present a novel clock skewing strategy that

exploits the availability of completion signals with KVFFs.

6.1.1 Overview of Clock Skewing

A general sequential circuit (see Figure 6.1), consists of a network of combinational

clouds (acyclic network of logic gates), interconnected by registers (Maheshwari and

Sapatnekar, 1999). Conventional design of such networks is based on the assumption

that every register receives the clock signal (assuming single phase clocking) at exactly

the same time. In practice, guaranteeing simultaneity of clock arrival times is not

possible due to gate and interconnect delays. The difference in the clock arrival times

109

at two registers is referred to as the clock skew between those registers. There is an

extensive body of literature, spanning two decades, on the optimal design of a clock

networks aimed at minimizing the skew, and accounting for it in the maximization of

the clock frequency (Maheshwari and Sapatnekar, 1999; Ivan S. Kourtev, 2009).

X

Y

Z

W

C

C

C

W

Input
Data

Output
Data

Figure 6.1: A General Synchronous Digital Circuit Architecture

Clock skew can also be deliberately introduced to improve the performance (Fish-

burn, 1990), power and even area of a digital circuit. This topic has also been exten-

sively developed and modern design tools routinely perform clock skew based design

optimization. This paper describes a new approach to the generation and utiliza-

tion of skewed clocks for the purpose of reducing dynamic power without sacrificing

performance. Figure 6.2 shows a simple example of how clock skewing can be used

to improve the performance and area of a sequential logic circuit. Clock skewing is

implemented by introducing delay buffers in the clock distribution network. Let Ai

denote the arrival time of the clock at register Ri. Then the clock skew between two

registers, Ri and Rj, which are separated by a combinational cloud, is Ai − Aj. Fig.

6.2 (b) shows how clock skewing can used to reduce the clock period from 3 to 2, by

delaying the clock input to flipflop Y by 1 unit. The general problem of clock skew

110

scheduling is to determine the arrival times of the clock signal to each register subject

various timing constraints, with the goal of optimizing some objective function such

clock period (Fishburn, 1990), dynamic power (Vijayakumar and Kundu, 2014), etc.

This is most often formulated as a linear programming problem.

X 3ns Y 1ns Z

(a)

f f1ns 1ns

1ns(c)

X 3ns Y 1ns Z

Cy = 1ns

(b)

Min Clock Period
(Pmin)
Pmin = 3ns - Cy
Pmin = 3ns - 0 =
3nsCy = 0ns

Cz = 0nsCx = 0ns

Cx = 0ns
Cz = 0ns
(hard
constraint)

Min Clock Period
(Pmin)
Pmin = 3ns - Cy
Pmin = 3ns - 1ns
= 2ns

Figure 6.2: (a) Clock Skewing Used to Increase Speed of the Circuit (b) Clock
Skewing Used to Reduce Number of Flipflops

Clock skewing is closely related to retiming. Their equivalence was first shown

in (Rahul B. Deokar, 1995). Figure 6.2(b) shows a simple example, in which delib-

erate clock skewing is equivalent to retiming, and results in fewer registers. In fact,

clock skewing can theoretically achieve the same advantages as retiming without al-

tering the number and positions of the registers. However, in practice, it cannot

111

simply replace retiming, because it requires much greater precision in timing of clock

arrivals. Another use of clock skewing is to improve the robustness of the circuit

in the presence of process variations. A quadratic programming formulation of the

clock skew scheduling problem to maximize the robustness of the circuit in presence

of timing inaccuracies is presented in (Ivan S. Kourtev, 2009). Clock skewing has

also been used to reduce the power of the circuit, specifically power wasted due to

glitching (Vijayakumar and Kundu, 2014).

In this chapter, a new clock skewing technique is shown which extends the use

of clock skewing to reduce the dynamic power, without introducing any additional

buffers in the clock network. The key idea behind reducing dynamic power is based on

the observation that it is possible to introduce timing slacks on selected paths with

large combinational logic cones without violating timing constraints. Any positive

slack on such paths is exploited by technology mapping and layout tools to reduce

the size and power of the combinational logic. While slack-based optimization is not

new, our approach to both creating the slack and not requiring additional buffers is

new. Not requiring buffers to skew the clock has some obvious advantages. It can

reduce the buffer area, and dynamic as well as the leakage power. Moreover, it places

less constraints on the design and results in faster timing closure. This is because,

buffer delays need to be very precise to achieve timing closure when introducing

deliberate clock skew. When that precision is not achievable, it limits the use of clock

skewing.

An important consequence of the proposed method is that it eliminates hold-

time violations on certain short paths, again without introducing any buffers in the

datapath. A short path is a register-to-register path with little or no logic in between

the registers. These paths are prone to hold-time violation, which occurs when the

signal being latched by a flipflop is not held constant for a sufficient duration required

112

by the flipflop. Hold-time violations are important because they render the circuit

unusable as they cannot be eliminated by external controls such as the supply voltage

or the clock frequency.

The main contributions are summarized below.

1. Using KVFFs with completion detection we introduce a new clocking scheme,

referred to as local clocking, that optimally determines the sources and desti-

nations of the skewed clocks.

2. We present a precise formulation of the optimization problem to maximize the

slack, which is later reclaimed by area minimization. The proposed method is

applicable to general ASIC circuits.

3. We demonstrate how local clocking can eliminate hold-time violations.

6.1.2 KVFF with Completion Detection

Fig. 6.3 shows the architecture of the KVFF flipflop with an output local clock.

S
R

Q
QN

NAND SR Latch

N1

N2

D D

N1 N2

CLK

CLK CLK

D D

M1
M2

M3
M4

M5

M6

M7

M8

M9

M10

M11

N1

N2
CPO

Figure 6.3: The KVFF Architecture With Output Local Clock

113

When CLK = 0, N1 and N2 are both 1, therefore CPO is also 0. Similarly when

CLK = 1, N1 and N2 assume opposite values depending on the value of input D. But

in either case one of N1 or N2 is 0 and therefore CPO = 1. Therefore we note that

output CPO follows input CLK but is a combinationally delayed. Also CPO changes

only after the input state (D) is successfully read. Therefore output CPO is a “safe”

clock signal to be used to clock other flipflops as input D may be altered only after

it is latched by the flipflop. It is possible to use a simple buffer to produce output

clock. However, the output clock in such cases cannot guarantee that input D will

not change before it is stored by the flipflop.

6.1.3 Clock Skewing using KVFF with Completion Detection

Fig. 6.4 shows an example circuit where skewing with local clock can provide

substantial reduction in the circuit power and area without changing the clock period.

The large cone used in this circuit is the MSB (most significant bit) of the 64-bit

multiplier’s output. The flipflop Y feeds the local clock to the flipflop X thereby

providing an additional slack to the flipflop X. Due to this, the area in the feeder

of the flipflop X can be reduced considerably without any performance loss. Table

6.1 shows the advantages in terms power, area and delay after automated place and

route(P & R) using Cadence Encounter, of the circuit in Fig. 6.4 compared to the

conventional globally clocked circuit.

The main advantage in this particular example are the area and power reduction of

the combinational logic under additional slack provided by the delayed local clocking.

The problem of reducing gate sizes under timing slack is a well studied problem and

is routinely implemented in commercial synthesis and layout tools. Note that the

clock period of the circuit was not changed i.e. both the circuits (original and locally

clocked) were processed at the same clock period which was 2.6ns.

114

DF

DF

DF

X Y

Large
Combinational
Logic Cone

Global CLK

Global CLK

Local
clock
provided
by flipflop
Y

KVFF with
output
local clock

Figure 6.4: A Motivational Example that Exhibits Maximum Advantages due to
Local Clocking

Table 6.1: Advantages of Local Clocking for the Circuit from Fig. 6.4 @
TT,1.2V,25C

Parameter Area Power Leakage Total circuit cap

Globally clocked 127410 µm2 163.7 mW 13.3 µW 264 pF

Locally clocked 84698 µm2 90.8 mW 6.6 µW 156.3 pF

∆ (%) 33% 44% 50% 40%

Since the flipflop X receives a local clock, the total capacitance driven by the

global clock tree reduces. Note that this doesn’t reduce the total power of the clock

tree, but local clocking definitely does not increase burden on existing clock tree but

rather alleviates it slightly.

In this particular example, the flipflop Y produces an output clock trigger after

it has finished latching its D-input. The local clock signal that triggers flipflop X, is

therefore hazard free i.e. it does not overwrite the data bit latched by flipflop Y. This

is the main advantage of the local clock generated using completion detection. The

115

path from flipflop X to flipflop Y cannot have hold-time violation irrespective of the

operational and process corner, and clock/data slews in this circuit. Therefore local

clocking can potentially eliminate hold-time violations in such cases.

An alternative application of this local clocking can be simply to eliminate hold-

time violations on maximum possible number of short paths. However in this work,

we focus on the reduction of power and area by providing skewed clocks to the flipflops

with large input combinational logic cones.

6.2 Optimal Clock Assignment

This section describes the generalized problem formulation of the local clock as-

signment problem. Informally the problem can be stated as follows. Given a sequen-

tial circuit consisting only of edge triggered entities, decide the clock input of each

of the register to be either the global clock or to be the output clock of any local

register such that maximum registers with the largest feeders receive local clocks and

all the timing constraints are satisfied. A 0-1 integer programming formulation of the

problem is provided as follows.

6.2.1 Notations

Given any sequential synchronous circuit consisting flipflops and combinational

logic, it can be represented by a directed graph G = (N,A) where N denotes the

set of nodes and A is the set of arcs (directed edges). Each flipflop Ri in the circuit

is a node in this graph. There is a directed edge (Ri, Rj) if there is a directed

combinational path starting from the flipflop Ri and ending at the flipflop Rj.

For any flipflop Ri assume that,

1. Ai denotes arrival of clock (whether local or global) at flipflop Ri

116

2. Ei denotes the delay from input clock (CLK) to output clock (CPO)

3. Si denotes setup time

4. Hi denote the hold time

5. Ti denotes the clock-to-output delay

6. Di,j denotes the maximum combinational path delay from flipflop Ri to flipflop

Rj.

7. di,j denotes the minimum combinational path delay from flipflop Ri to flipflop

Rj.

8. P is the clock period of the circuit.

6.2.2 ILP Formulation

Following indicator variables are the decision variables of this formulation.

xi,j =

1 If Ri is clocked by the output clock of Rj

0 otherwise

Clock uniqueness constraints: A flipflop Ri receives clock from at most one other

flipflop.

∀i,
n∑

j=1

xi,j ≤ 1 (6.1)

Note that if Ri does not receive clock from any flipflop Rj i.e.
∑n

j=1 xi,j = 0 then it

is clocked by the global clock by default.

local clock fan-out constraints: A flipflop can provide local clock to at most

a fixed number of flipflops. If this number is increased arbitrarily, the advantages

obtained by local clocking are lost due to complex local clock sub-trees. This fan-out

117

bound depends on several parameters such as process technology, size of the circuit

etc. In this formulation, we fix the local clock fan-out to be at most 1.

∀j,
n∑

i=1

xi,j ≤ 1 (6.2)

Arrival Constraints: When a flipflop Ri is locally clocked by a flipflop Rj, the

arrival of clock at Ri depends on the arrival of clock at flipflop Rj and the delay of

flipflop Rj in producing output clock.

∀i, Ai =
n∑

j=1

xi,j.(Aj + Ej) (6.3)

Let yi,j = xi,j.(Aj + Ej) and indicate the timing relationship between arrivals of the

clocks. But these would be nonlinear constraints. They can be made linear using

following additional set of constraints. Let u denote the upper bound on the arrival

times of the flipflops. u can be suitably chosen depending on the latency (arrival)

constraints of the circuit.

∀i, j, yi,j ≤ u.xi,j (6.4)

∀i, j, yi,j ≤ Aj + Ej (6.5)

∀i, j, yi,j ≥ Aj + Ej − u.(1− xi,j) (6.6)

∀i, j, yi,j ≥ 0 (6.7)

We can verify that when xi,j = 0, yi,j = 0 for a given i and j values. Similarly

when xi,j = 1, yi,j = (Aj +Ej). “No cycle constraints” (described below) ensure that

a given Ai is never a function of itself.

No cycle constraints: The xi,j variables denote an adjacency matrix of a directed

graph. This directed graph shows the local clocking relationship between the flipflops

and is referred to as the “clock graph”. Note that the clock graph is different from the

flipflop graph (which denotes data dependencies between flipflops) described above.

118

We can see that the clock graph cannot have cycles, i.e. there cannot exist a set of

flipflops each of which receives clock from a flipflop in the same set. Therefore the

“no cycle constraints” are encoded as follows.

Let Li denote an index in the topological ordering of the flipflops (wrt flipflop

graph). Note that a valid topological order exists for a directed graph with no cycles

(DAG).

∀(i, j), Li ≥ xi,j.Lj + ε (6.8)

In the presence of a cycle of flipflops (remember that an edge in this cycle indicates

clocking relationship and not data relationship), such as R1 → R2 → R3 → R4 → R1.

We have an inconsistency L1 > L2 > L3 > L4 > L1 i.e. L1 is strictly greater than

itself. Li variables have a valid assignment if and only if there is no cycle in the clock

graph.

Note thatMi,j = xi,j.Lj is a non-linear quantity. We can linearize these constraints

as follows. Let v denote the upper bound on the values of Li variables. Given a graph

of n flipflops this upper bound is any constant > (n+ 1).ε

∀i, j, Mi,j ≤ v.xi,j (6.9)

∀i, j, Mi,j ≤ Lj + ε (6.10)

∀i, j, Mi,j ≥ Lj + ε− v.(1− xi,j) (6.11)

∀i, j, Mi,j ≥ 0 (6.12)

Setup time constraints: Given a pair of flipflops (Ri, Rj) ∈ A of the flipflop graph,

the setup constraints can be modeled by calculating the required and arrival times

at the flipflop Rj and ensuring the required time is higher than the arrival time. For

a register-to-register path between registers Ri and Rj, the arrival time of data at

Rj is calculated as Ai + Ti + Di,j. The required time at register Rj is calculated as

119

Aj − Sj + P . Setup time constraints are satisfied when

Ai + Ti +Di,j ≤ Aj − Sj + P. (6.13)

Rearranging above inequality, the setup constraints are stated as follows.

Ai − Aj ≤ P − Ti −Di,j − Sj (6.14)

The term P − Ti−Di,j −Sj denotes the setup slack available on the path from Ri to

Rj. These setup time slacks can be obtained from any commercial synthesis tool for

a given pair of flipflops.

Hold time constraints: The hold time constraints for a pair of flipflops (Ri, Rj) ∈ A

of the flipflop graph are as follows.

Ai − Aj ≥ Hj − Ti − di,j (6.15)

Objective Function: The objective function is to maximize the slack imparted to

the largest cones of logic. Therefore the goal is to maximize the total area of the

cones rooted at flipflops that can receive local clocks. Let Fi denote the size of the

cone of logic driving a flipflop Ri. Note that Fi are known constants. The objective

used in the proposed technique is as follows.

Max.
n∑

i=1

Fi(
n∑

j=1

xi,j) (6.16)

One needs to be careful about situations where a solver might produce a lot of local

clocks for flipflops with small logic cones as opposed to a few with large cones. The

latter is more beneficial as it reduces more logic area under slack while simultaneously

reducing layout burden of extra local clock wires. In order to make sure the solutions

of these types are produced, we can restrict the objective function to the flipflops

whose cones are sufficiently large.

120

Although not demonstrated in this work, an alternative objective function can

be used if the goal is to minimize the probability of hold-time violations in the cir-

cuit. The short paths (denoted as pairs of flipflops (Ri, Rj)) can be assigned weights

depending on the probability of observing a hold time violation on them. If the prob-

ability of observing a hold-time violation on a path is high then the weight of the path

is larger. This weight is also an indicator of the number of buffers required on the

path to remove the violation. If these weights are denoted as Wi,j (known constants)

then an alternate objective function to maximize the total weight of all the paths is

as follows. This objective ensures that very few short paths remain that need to be

buffered to fix hold-time violations on them.

Max.
n∑

i=1

n∑
j=1

Wi,j.xi,j (6.17)

Placement Dependency

If the local clock wire from flipflop Rj to flipflop Ri is too long then it often degrades

the clock signal while simultaneously increasing the delay at the receiving flipflop.

In some extreme cases, it is possible that the wire delays can be sufficiently large

to force the place and route tool to not be able to meet the timing. Therefore care

needs to be taken to ensure that the local clock wires are short. This can be done by

considering the placement of the flipflops. An additional constraint can be imposed in

above formulation where flipflop Ri can receive skewed local clock from flipflop Rj if

the Manhattan distance between Ri and Rj is sufficiently small. The maximum value

of this distance depends on the process technology and wire density of the design

under consideration. Note that it is also possible for a placement tool to place the

instances to be amenable for local clocking. However this idea is not explored in this

dissertation.

121

6.3 Experimental Results

Experiments were conducted on several complex circuit blocks. These include

a 64-bit signed integer multiplier, a 28-bit 4-tap FIR filter, and a 32-bit simplified

MIPS processor. Unlike the filter and the MIPS processor, the 64-bit multiplier

was pipelined, and provided an opportunity to explore throughput versus power by

varying the number of pipeline stages. The number of stages was varied from K = 0

to K = 5. K = 0 denotes the circuit with only input and output flipflops. Also,

beyond 5 stages, the conventional design showed no improvement in throughput while

consuming greater energy.

All the circuits were synthesized by Cadence RTL compiler using a commercial

65nm LP cell library. They were then placed and routed using Cadence Encounter,

at the respective peak frequency of the conventional design, i.e. the one with only

conventional DFFs. Estimates of power were obtained using PrimeTime, with fully

extracted post-layout netlists. Note that the delay on the local arcs are affected

by the placement of the registers. Therefore, in our formulation the local arcs were

restricted to the flipflops that were physically not too far apart.

Fig. 6.5 shows the percentage improvement in the ratio of the dynamic power to

frequency, leakage and area using KVFFs and local clocking, over the conventional

design. The results demonstrate that circuits with KVFFs providing skewed clocks

are consistently better compared to the conventional globally clocked circuits. The

best improvement is obtained for K = 3. The length of critical path in this circuit

contains about 10-12 gates, which is typical of pipelined datapaths.

Additional circuit results for a 28-bit, 4-tap FIR filter and a 32-bit pipelined

MIPS are shown in Table 6.2. These results further demonstrate the significant

improvements due to KVFF and local clocking.

122

Figure 6.5: Improvements due to Local Clocking and KVFF Flipflops in
Conventional CMOS Circuits

Table 6.2: Improvements due to Local Clocking Compared to the Conventional
Globally Clocked CMOS Versions of 28-bit FIR Filter and 32-bit MIPS

Power per MHz Area Leakage

Filter 22.5 % 12.4 % 32.1 %

MIPS 23.4 % 15.4 % 21.8 %

An important point to be noted is that local clocking is not always feasible. For

example, three other circuits were tried viz. 2-stage 128-bit integer comparator, 32-

bit sorter and 128-bit, 10-stage Advanced Encryption Standard (AES) circuit. local

ILP solution did not introduce any skewed clock arcs in these circuits resulting in no

improvements. local clocking generally results in significant improvements in circuits

with unequal or unbalanced paths such as in Fig. 6.4. This is a natural consequence

of the fact that no skews can be introduced on perfectly balanced paths without

123

violating setup time constraints.

The local clocking can further improve the power of hybrid circuits as well. Ta-

ble 6.3 shows the dynamic power of 64-bit multipliers. The column labeled Con-

ventional is the conventional globally clocked circuit and hybrid denotes the hybrid

version of the corresponding circuit. The column names with suffix LC denote the

locally clocked versions of the respective circuits and %∆ denotes the improvement

of local clocking (Hybrid LC) over globally clocked hybrid circuits. It is seen that the

hybrid versions of 64-bit multipliers exhibit additional reduction of about 3%-8% in

power due to local clocking.

Table 6.3: Dynamic Power (mW) Improvements due to Local Clocking,
Post-layout @ TT, 1.2V, 25C

K Conventional Conv. LC Hybrid Hybrid LC %∆ Frequency (MHz)

0 63.7 - 45.6 - - 345

1 98.5 94.6 67.4 64.4 4.5 526

2 126.8 123.4 104.8 96.9 7.5 709

3 149.9 130.3 116.9 107.2 8.3 800

4 178 172.9 155.2 151.7 2.3 909

5 216.2 212.5 211.8 203.5 3.9 1053

6.3.1 Duty Cycle Considerations

It is desired that the duty cycle of the local clock should be about same as the

input clock i.e. 50%. In order to ensure this is the case, a SPICE simulation was

carried out where a KVFF with local clock drives the clock input of a regular flipflop.

Fig. 6.6 provides the results of the spice simulation. We can see that the duty cycle

of the local clock is about 52% which is close to 50%.

124

Figure 6.6: Spice Simulation Showing that the Duty Cycle of a Local Clock is
Near 50%

6.3.2 Elimination of Hold Violations

The local clock can be used to eliminate hold-time violations when the local clock

arc is as shown in Fig. 6.7(b). This is demonstrated by SPICE simulations of the

circuits in Fig. 6.7(a) and (b). The global clock arrival uncertainty between the pairs

of flipflops is simulated using RC delay. For small values of R and C, both circuits

showed no hold violations. However, as the values of R and C (and hence resultant

delay) were increased, the circuit in Fig. 6.7(a) exhibited hold violation confirmed

by incorrect output waveforms. However no amount of RC delay on the local clock

resulted in hold-time violations indicating elimination of hold-time violation.

6.3.3 Power-on Initialization

The flipflop Y in Fig. 6.4 provides local clock to the flipflop X and flipflop X

feeds data input to flipflop Y. Therefore the state of the clock received by flipflop X

and its output are interdependent. It is possible for the output of flipflop X to be in

state where D = D = V DD/2, especially when the circuit is powered up. When the

125

DFF DFF
Q D QD

Global
Clock

DFF KVFF
Q D QD

(a)

CPO

Global
Clock

(b)

Figure 6.7: (a) Regular Flipflops Exhibit Hold Time Violation as RC Delay
Increases (b) No Amount of RC Delay Induces A Hold Time Violation When Local

Clocking is Used

clock goes low, the flipflop Y resets and nodes N1 and N2 (Fig. 6.3) are 1 forcing

local clock signal CPO to be 0. However when external clock of flipflop Y rises while

D = D = V DD/2, then the evaluation might not finish (because of existence of a DC

path since both the transistors M6 and M8 are ON) and can cause output clock CPO

to never rise. Due to this, the flipflop X does not change its state since its clock is

stuck at 0. This leads to a dead loop where no state change happens despite toggling

of the external clock. Notice that this is only a problem after a chip power-up because

once D 6= D then the feedback works perfectly as expected.

This issue can be fixed using a synchronous or asynchronous reset signal for

flipflops X and Y. However in absence of such signals, a more economical solution

is to size the transistors in the KVFF such that if D = D = V DD/2, then it evalu-

ates one way or another leading to a rise of the CPO signal.

A completely non-intrusive and exact solution for the initialization issue, in ab-

sence of synchronous/asynchronous reset signals, exists if the given flipflops are scan

flipflops. All that is required is careful re-ordering of scan chain. For example, consider

a chain of scan flipflops as in Fig. 6.8. In non-scan (regular) mode, the initialization

issue exists for the pairs of flipflops (X1,Y1) and (X2,Y2). However in scan mode, we

126

can ensure that CPO output of both Y1 and Y2 flipflops rises (i.e. it is not stuck at

0) by connecting the TI (test-input) input of these flipflops as shown. This ensures

that the flipflops Y1 and Y2 receive a proper test-input in each cycle and ensures

that all flipflops are properly initialized. This simply requires the scan mode to be

enabled for as many cycles as there are KVFF flipflops after the chip is powered on.

QX1 D
CPO

TI
QY1D

TI

Global Clock

QX2 D
CPO

TI
QY2D

TI

Global Clock

CPO
TI QY1GTI

CPO
TI QY2 TI QX1

Y1.CPO

TI QX2

Y2.CPOGlobal
Clock

(a)

(b)

Figure 6.8: (a) Two Independent Pairs of Flipflops (X1,Y1) and (X2,Y2) in a
Circuit with Possible Initialization Issue (b) Their Positions in a Single Scan Chain

to Eliminate Metastability

Local clocking strategy, due to its dependency on knowledge of circuit timing,

clock arrival timings, cell placements etc. is to be ideally run by an automated place

& route tool. This type of clocking can be used as an additional step in circuit

optimization after placement and clock tree synthesis and routing steps are finished.

This step can help meet timing constraint easier i.e. without requiring significant cell

resizing or buffering. Local clocking can also reclaim area under timing slack. It can

even be used to eliminate hold violations on some short paths which might otherwise

require large buffer area to fix. In practice, it is also possible to create multiple

versions of local clock generating cells that provide a range of skews. The clock tree

127

optimization then can be further improved to take advantage of these multiple skews

to best achieve some or all of the above objectives.

This chapter explored a new idea of producing skewed local clock that can be used

to reduce the dynamic power of the circuits and to eliminate hold time violation on

given short paths. Traditional approach to skew based optimization is to compute a

skew schedule and synthesize a clock distribution tree that meets the schedule. The

local clocking idea changes the traditional paradigm of skew based optimization from

the synthesis of clock trees to an in-place optimization. The local clocking technique

is additive to the existing circuit optimization techniques and therefore can be applied

to any existing circuit to further improve its power or to eliminate hold time issues.

128

Chapter 7

FUTURE WORK

This chapter outlines some open problems and new ideas that can potentially lead to

substantial improvements in the dynamic power and area of the sequential circuits.

Certain novel sequential circuit architectures and methods that can be used to miti-

gate problems such as clock distribution tree power, reducing number of flipflops etc

are also mentioned. Finally, implementations of asynchronous circuits using PNAND

is also shown.

Some of these methods and ideas specifically apply to the large pipelined data-

path circuits such adders, multipliers, and other arithmetic circuits etc. Indeed the

data-path circuits consume majority of power and are the most critical any general

purpose sequential circuits that perform data processing.

7.1 Retiming

7.1.1 Retiming for Minimum Clock Period

The problem of retiming using flipflops was first studied by (Leiserson and Saxe,

1991). Retiming involves either moving the flipflops or introducing a skew to each

flipflop (Rahul B. Deokar, 1995) such that both the setup and the hold time con-

straints are satisfied while clock period is minimized. In these retiming problems, the

logic itself is not modified. However when PNANDs are introduced at a node then

they can absorb some of the logic and speed up the circuit further. This is different

from a conventional flipflop that does not absorb logic at all. The most important

point is that the setup time of PNAND and its output delay doesn’t depend on the

129

amount of absorbed logic. This is the main difference between conventional logic in

flipflop designs and PNAND.

The presence of logic in a flipflop is further complicated by the fact that PNANDs

introduced at different nodes may absorb different amounts of logic. This is because

PNANDs specifically implement threshold logic functions. Therefore different nodes

may have different sizes of logic functions that are threshold by nature.

An intuitive solution to the problem of retiming for minimum delay is to retime

using conventional flipflops followed by hybridization. However this solution will

not be optimal. Fig. 7.1 shows a small example where a simple circuit is retimed for

minimum delay. The positions of retimed flipflops are shown by small dark rectangles.

Assuming each gate delay is 1 ns, the clock period is 2ns. Even if we replace the

flipflops and feeding logic by the PNANDs, the clock period is still 2ns (due to AND

and XNOR gates).

DF

DF

DF

DF

DF

DF

1
1

1 1 1

1

11

Figure 7.1: Retiming for Minimum Delay using Conventional Flipflops Leads to
2ns Clock Period

On the other hand, Fig. 7.2 shows that there exists a different retiming solution

130

with 1ns of clock period. Therefore the retiming with PNANDs is a new problem and

requires an in-depth investigation.

DF

DF

DF

DF

DF

DF

1
1

1 1 1

1

11

A PNAND
replaces
everything in
this box

Figure 7.2: Retiming for Minimum Delay using PNANDs Leads to Smaller (1ns)
Clock Period

7.1.2 Retiming for Minimum Area

Retiming for minimizing area involves minimizing the number of sequential ele-

ments (flipflops) without changing the clock period. This problem is addressed in

(Leiserson and Saxe, 1991). However when the conventional flipflops are used, there

is less room for reducing the number of sequential elements. But with PNANDs,

there is a larger space to move PNANDs as they can absorb logic to make-up for the

degradation in critical path delay. Fig. 4.1(b) and 4.1(c) show how a single PNAND

can potentially replace multiple flipflops thereby reducing the number of sequential

elements. Therefore it is possible to reduce number of flipflops using PNANDs when

the logic cones are not rooted at flipflops.

131

7.2 Novel Clock Distribution

This section proposes another new clocking strategy inspired from the local clock-

ing idea presented in Chapter 6. The objective of this architecture is to minimize the

load on global clock tree and eliminate hold time violations on most short paths. The

architecture of this clocking mechanism is depicted using a small circuit example in

Fig. 7.3

DF DF DF

Global Clock

Locally generated clocks

Figure 7.3: A Novel Clocking Distribution using Local Clocks

The chain of inverters with flipflops depict a datapath pipeline circuit in an ab-

stracted way. Notice how global clock only triggers only the final stage flipflops. The

output flipflops upon consuming their input data, trigger previous stage for new data

which upon latching their input, in turn, trigger their previous stage. On each rising

edge of the clock, every k’th stage latches its input data data and requests a new

data from the (k-1) th stage. Therefore the data is pulled towards outputs and the

clocking strategy is known as “pull-data clocking”. The idea behind the architecture

is to distribute a single global clock into multiple local clocks. An important point to

132

note that this circuit is still a synchronous circuit and therefore can be analyzed for

timing using existing tools.

7.3 Asynchronous Circuit Design

7.3.1 Dual Rail Circuits

Unlike conventional synchronous circuits, asynchronous circuits do not have a

central synchronizing clock signal. The computing elements/blocks communicate with

each other using the handshake protocols (Sparso and Furber, 2002). An alternative

to the handshake protocols is to use dual rail circuits which can detect validity and

value of Boolean signals represented as two signals. This section discusses only at an

architectural level how to design dual rail circuits using PNANDs.

A dual-rail circuit operates on logical signals represented using two physical sig-

nals/wires. The main requirement of the dual-rail representation is the necessity to

represent an invalid state along with Boolean values 0 and 1. As such, a signal x

represented as two rails x.f and x.t has the following meaning as shown in Table 7.1.

Note : Some dual-rail circuits use (0,0) as an invalid state.

x.f x.t x

1 1 invalid

1 0 0

0 1 1

0 0 not used

Table 7.1: Logic Values of Signal x Represented using Dual Signals x.f and x.t

The functional behavior of a dual-rail logic gate is -

1. When all the inputs are valid, the output must be the given function of inputs.

133

2. When all the inputs are invalid, the output must be invalid.

3. When some of the inputs are invalid and others are valid, the output must retain

the last state (last valid or invalid state)

N1
N2

N5 N6

VDD

M1 M2

M3 M4

M7

M5 M6

M8

Left input
network Right input

network

CLK
CLK

X0X1

M16

M18CLK

CLK

Xk-1

N1 Y0 Y1

M19 CLK

Yk-1

M17 CLK

N2

Sense Amplifier

M9 M10

x0

x1

xk

y0

y1

yk

CLK

N1

N2

Figure 7.4: PNAND Circuit Abstraction

The original PNAND circuit can abstracted as shown in Fig. 7.4. The simple

function of such an abstracted circuit is as follows.

1. When CLK = 0, PNAND is in reset phase and N1 = N2 = 1.

2. When CLK goes from 0 to 1, N1 = 0 and N2 = 1 if and only if the
∑
xi >

∑
yi.

If
∑
xi <

∑
yi, then N1 = 1 and N2 = 0.

3. For all other states and transitions at inputs, N1 and N2 maintain their last

state.

Fig. 7.5 shows a PNAND-5 implementing a dual rail 3 out of 5 majority function.

The inputs (a,b,c,d,e) are all dual-rail and so is the output z. An n-input muller-C

element raises its output to 1 if and only if all of its inputs are 1. Its output is 0 if all

of its inputs are 0. For any other input combination, the muller-C element maintains

its last state. The circuit in Fig. 7.5 functions as follows.

134

PNAND-5

x0
x1

x4

CLK
N1

N2

x2
x3

y0
y1
y2
y3
y4

a.f

b.f

c.f

d.f

e.f

a.t

b.t

c.t

d.t

e.t

z.f

Muller-C

a.f
a.t

b.f
b.t

c.f
c.t

d.f
d.t

e.f
e.t

z.t

Figure 7.5: Implementing Dual-Rail 3 out of 5 Majority Function using PNAND-5

1. When all dual-rail inputs are valid i.e. (1,0) or (0,1), the outputs of the NAND

gates are 1, due to which output of the muller-C gate is 1. The output of muller-

C acts as a CLK signal for PNAND and hence it evaluates majority function

and stores the computed value.

2. When all dual-rail inputs are invalid (1,1), the outputs of all the NAND gates 0,

due to which output of muller-C is 0. Since CLK of the PNAND is now 0, the

PNAND resets and nodes N1 and N2 are pulled to 1 making dual-rail output

as invalid.

3. When some dual rail inputs are invalid, some outputs of the NAND gates are 0

135

but not all, then the muller-C element maintains the last state. Hence PNAND

maintains the last state (either computed or reset).

Note that the dual rail circuits need an acknowledgment signal to notify the

completion of computation. This signal is the completion detection signal D =

(N1 &N2).

7.3.2 Comparison with CMOS based Asynchronous Implementations

Dual-rail circuits can be designed using conventional static logic gates by defining

each output rail as a single-rail Boolean function of all the input rails. For example,

a CMOS dual-rail AND gate is defined in Fig. 7.6.

a.f
b.f

a.t
b.t

z.t

z.f

Figure 7.6: A Dual Rail AND Gate using CMOS Gates

Note that this dual-rail AND gate doesn’t retain its output when the inputs are

partially invalid. In order to satisfy this condition, dual-rail latches are needed as

shown in Fig. 7.7.

The functionality of the dual rail latches in Fig. 7.7 is as follows.

• If EN = 0, N1 = N2 = 1.

• If EN = 1, N1 = I0 and N2 = T0.

When both inputs are valid, the muller-C produces a 1 at its output and the

latches are enabled causing output rails to evaluate the input. When both the inputs

136

z.t

z.f

a.f
a.t
b.f
b.t

C

a.f
a.t

b.f
b.t

I0
T0 N2

N1

N2
N1I0

T0

Dual rail-Latches

EN

EN

Figure 7.7: A Dual Rail AND gate using CMOS Gates and Latches

are invalid, muller-C produces a 0 at its output and the latches produces invalid

inputs to the static gates leading to invalid output z. When one input is valid and

not another, the muller-C, the latches and the output z maintain their last state.

We can see that a significant amount of logic is needed to produce a delay-

insensitive dual rail static 2-input AND gate. Another way to create a purely static

latch-less implementation is using Delay Insensitive Minterm Synthesis using muller-

C (DIMS)(Sparso and Furber, 2002), where a k-input DI gate requires 2k as many k

input muller-C gates. The outputs of these gates are combined using two static OR

gates to generate both rails of the output function. Fig. 7.8 shows a 2 input AND

gate using DIMS idea.

Similar to the PNAND implementation, the dynamic logic dual-rail AND gate is

defined as shown in Fig. 7.9.

The circuit in Fig. 7.9 operates as follows.

1. When both the inputs are invalid, EN = 0 and outputs are precharged to 1 i.e.

output is also invalid.

137

Figure 7.8: A DIM Synthesis of Two Input AND Gate

EN

EN

l_a.f l_b.f
l_a.t

l_a.t

z.t z.f

a.f
a.t
b.f
b.t

C

a.f
a.t

b.f
b.t

I0
T0 N2

N1

N2
N1I0

T0

EN

EN

l_a.t
l_a.f

l_b.f
l_b.t

Figure 7.9: A Dynamic Dual Rail AND Gate

2. When EN = 1, depending on the state, one of the nodes discharges to produce

a complemented dual-rail output. In general, the dual rail dynamic gates are

defined similar to CMOS style gates. Each rail is defined as individual function

and its NMOS network appears on the two sides of the dynamic gate.

In terms of operation as a function of their inputs, all three implementations

discussed above are identical. We can connect these gates in any fashion to produce

a netlist or a block realizing a larger function such as a multiplier. An important

thing to note here is that none of these gates have the output latch boundaries i.e.

output is stored only as long as inputs do not change to a different valid state or an

138

invalid state. It is not stored until it has been consumed by the fanouts. Therefore

conceptually, these gates are combinational gates in asynchronous domain.

We can compare the implementation of dual-rail CMOS/dynamic logic gates with

the PNAND based implementation in terms of number of transistors or area required

to implement a given function. Table 7.2 shows the number of transistors required to

implement few complex functions.

Function Static (with latches) Dynamic (with latches) PNAND

Full Adder 102 84 72

2/3 majority 78 71 46

3/5 majority 214 157 64

Table 7.2: Number of Transistors Required to Implement Dual-rail DI
Implementations

It can be seen from Table 7.2 that the number of transistors required for PNAND

implementations are much less in many cases especially for large majorities.

The performance of these circuits depends on the specific implementation of a

function (or how it is synthesized) and transistor sizing. However we note that the

PNAND implementation requires a constant number of stages/levels to compute a

threshold function. Static implementations may use large multi-level networks and

dynamic implementations will end up with complex series-parallel stacks of NMOSs;

both of which are expected to be slower than the PNAND implementations.

Note : PNANDs are “inherently dual-rail” unlike static or dynamic implemen-

tations where each rail is defined explicitly as an independent function. PNAND

requires dual-rail inputs (for signal assignment) and always produces dual-rail output

signals (N1,N2) as a result of evaluation.

139

7.3.3 Relaxing Delay Insensitivity

The delay insensitivity criteria can be relaxed to obtain a trade-off between power

and area. For the PNAND gate shown in Fig. 7.5, note that out of all the input

signals to the gate, one of the signals is always the latest depending on the circuit

topology. Therefore only such a latest signal changing to a valid state could trigger

the computation. Note that under any assumption about the arrival times of the

signals, the delay insensitivity no longer holds.

Fig. 7.10 (a) shows the delay insensitive PNAND based circuit. This circuit

computes only when all its inputs are valid. Fig. 7.10 (b) shows the same circuit

triggered only by the latest signal c (say). Note that circuit (b) is delay sensitive and

therefore a configurable delay element is added to ensure it works post manufacture.

Due to removal of the NAND gates and the muller-C element, the circuit (b) is faster,

smaller and lower power compared to the circuit (a).

In order to obtain a smoother trade-off between delay-insensitivity and power, “k”

latest signals can be used instead of all the signals. When k = 1, we get the circuit

in Fig. 7.10 (b) and when k = n i.e. all inputs are considered the circuit becomes

completely delay-insensitive.

7.3.4 Comparison with Null Convention Logic

Null Convention Logic (Fant and Brandt, 1996) is another well-known design

methodology for delay insensitive threshold logic gates. This section explains the

architecture of these gates and a primitive comparison of these gates with PNANDs

in terms of number of transistors.

The logic function of an NCL “k out of n” majority gate is similar to a muller-C

element and is described below.

140

PNAND-5

x0

x1

x4

CLK
N1

N2

x2

x3

y0

y1

y2

y3

y4

a.f

b.f

c.f

d.f

e.f

a.t

b.t

c.t

d.t

e.t

z.f

Muller-C

a.f
a.t

b.f
b.t

c.f
c.t

d.f
d.t

e.f
e.t

z.t

PNAND-5

x0

x1

x4

CLK
N1

N2

x2

x3

y0

y1

y2

y3

y4

a.f

b.f

c.f

d.f

e.f

a.t

b.t

c.t

d.t

e.t

z.f

c.f
c.t

z.t

(a) (b)

Latest dual-
rail signal
among
a, b, c, d, e

Adjustable delay

Figure 7.10: (a) Delay-insensitive PNAND Gate (b) Delay-sensitive Gate
Triggered Only by the Latest Arriving Signal

• If k or more inputs are 1, output is 1

• If (and only if) all inputs are 0, output is 0

• For any other combination, the output of the gate is the last state.

In essence, an NCL gate generalizes the functionality of a muller-C element. The

conventional n-input muller-C element is same as an “n out of n” majority NCL gate.

Fig. 7.11 shows the architecture of a static 2 out of 3 majority NCL gate (Fant and

Brandt, 1996).

The circuit in Fig. 7.11 works as per description above. For example, when all the

inputs are 0, the node ZN is charged to 1 and output Z falls. Since none of the NMOS

transistors in a box labeled ”Hold0” are ON, the node ZN rises without contention.

When any 2 out of three inputs (A,B,C) are ON, the node ZN is pulled low through

one of the branches (again without contention) and the output Z rises to 1. For any

other state of the inputs, transistors in both boxes labeled Hold1 and Hold0 are ON

and the node ZN and therefore output Z maintains its state.

141

Z

A A

A

A A

A
B

B B

B

B

B

C

CC

C

C

C

ZN

RESET

SET
HOLD0

HOLD1

2

A

B

C

Z

Symbol of 2
out 3 NCL
majority

Figure 7.11: 2 out of 3 Static NCL Majority Gate

NCL gates have an inbuilt latch (notice the feedback in Fig. 7.11 where output Z

feeds back into the circuit). NCL majority gates can be connected in certain fashion

to realize dual-rail delay insensitive primitives. For example, Fig. 7.12 shows a half

adder constructed using NCL majority gates. An important distinction to be made

for NCL gate is that the gate architecture assumes (0,0) as an invalid state of the

dual-rail input.

a.t

a.f

b.t

b.f

c.t

c.f

s.t

s.f

Figure 7.12: Dual Rail Delay Insensitive NCL Half Adder

The circuit in Fig. 7.12 works as follows.

142

1. When all the inputs are invalid i.e. (0,0), all the majorities produce 0 and

output s and c are invalid i.e. (0,0) each.

2. When all the inputs are valid, the circuit produces sum and carry indicating

Boolean addition of its inputs. For example, assume A.t = B.f = 0 and A.f =

B.t = 1. Therefore logically input A = 0 and B = 1. As such, output of 2 out

of 3 majority (marked as ”01”) is 1. Therefore c.t = 0 and c.f = 1 i.e. carry

output is 0. Similarly s.t = 1 and s.f = 0 indicating sum = 1.

The synthesis of an arbitrary n-input function can be done by synthesizing the

function using majorities. The positive rail (t) and negative rail (f) are computed

independently similar to the static or the dynamic circuits. NCL based synthesis

improves over DIMS synthesis by replacing static n out of n muller-C elements with

generalized muller-Majorities aka NCL gates.

In order to create a logic network (such as a datapath pipeline) using delay-

insensitive primitives (aka primitives with completion detection), each primitive must

hold its output until it has been consumed by all of its fanouts. This is achieved by

primitives that behave like a state machine whose next state depends on the states

of its fanins and fanouts. Therefore each of the dual-rail gates described in Question

2 (above) must be augmented with additional logic that converts it into such state

machine. Before delving into the implementation specifics, we first describe how such

a state-machine primitive behaves.

Generalized DI primitive

Each primitive has fanin gates that produce new data for it and has fanouts that

consume the output data from it and it operates as a state machine with two states

(compute and reset). A primitive is known to be in compute state when it has valid

143

dual-rail output (1,0) or (0,1) and in reset state when the output is invalid (1,1).

Therefore the output of the primitive represents its state.

The primitive knows about the states of its fanins by looking at its input rails i.e.

if input rails are all (0,1) or (1,0) fanins are in compute state. If they are (1,1) the

primitive deduces that the fanins are in reset state. The primitive knows about the

states of its fanouts by looking at acknowledge (ACK) signals from fanouts. If the

acknowledge signal is high, the corresponding fanout gate is in compute state and if

it is low, it is in reset state. A generalized form of such state-machine is shown in

Fig. 7.13 (Sparso and Furber, 2002).

Delay
Insensitive
Primitive

2

2

2

Dual rail
inputs
from all
fanins

2 Z (to
fanouts)

ACK signals
from all fanouts

ACK (to
fanins)

START
RESET

(Z = invalid and
ACK = 0)

COMPUTE
(Z = valid and

ACK = 1)

All inputs valid
and all incoming
ACK = 0

All inputs invalid
and all incoming
ACK = 1

Any other inputs
and ACK state

Any other inputs
and ACK state

(a)

(b)

Figure 7.13: (a) Generalized Primitive Used to Construct DI Netlist (b) State
Transitions for the Primitive

1. Each primitive/gate starts in a reset state when powered up, independent of the

state of other gates. This is usually achieved using a global reset signal which

is de-asserted once all the gates are in reset state.

144

2. A primitive enters a compute state (and computes a valid output token) if and

only if all its fanins are in compute state and all its fanouts are in reset state.

3. The primitive enters a reset state if and only if all its fanins are in reset state

and all its fanouts are in compute state.

4. For any other state of fanins and fanouts, the primitive maintains its current

state.

The DI primitives can be connected together to create a network that behaves as

an asynchronous delay-insensitive pipeline. One can imagine waves of successive

computations (progressing through the network in a topological fashion) in which

each gate bobs up (compute state) and down (reset state). The delay of individual

gates is immaterial for the functioning of this circuit. For example, if certain gate F

doesn’t change it’s state for a long time then it impacts state of all predecessors and

successors who will wait on the state change of the gate F . Note: It is not possible to

implement DI primitive using conventional synchronous state machines which require

a global clock to trigger the state change.

7.3.5 Implementing DI Primitive using PNANDs

Implementation of such state machine using PNANDs is shown in Fig. 7.14. The

circuit operates as follows.

1. The circuit has a global reset signal (not shown) that resets the PNAND when

powered up. The global reset is de-asserted when all the gates are in the reset

state.

2. When inputs of this gate are first asserted valid, the outputs of NAND gates

and muller-C1 are 1. Note that all the fanouts are in reset state and incoming

145

acknowledgement signals are low. The inverted acknowledgments are therefore

high and output of muller-C2 is also 1. This causes the two input muller-

C element to produce 1 which triggers PNAND and the gate enters compute

state. PNAND asserts its dual-rail output valid which is read by its fanouts.

Also in the compute state, the ACK signal to fanins is 1.

3. As a result of acknowledgement to fanins, the fanins enter reset state (at some

point in time). However gate maintains its asserted output until all fanouts have

acknowledged it. When all fanouts acknowledge this gate by raising incoming

ACK signals, inputs to all the muller-C elements are 0 which produces CLK

= 0 for PNAND and as a result the gate enters reset state by de-asserting

its output. For any other intermediate state/transitions/glitches of inputs, the

PNAND primitive maintains its current state.

PNAND-5

x0

x1

x4

CLK

N1
N2

x2

x3

y0

y1

y2

y3

y4

a.f

b.f

c.f

d.f

e.f

a.t

b.t

c.t

d.t

e.t

z.f

Muller-C1

a.f
a.t

b.f
b.t

c.f
c.t

d.f
d.t

e.f
e.t

z.t

Muller-C2 Ack signals
from fanouts

C

Ack signal
to fanins

Figure 7.14: Implementation of Generalized DI Primitive using PNAND

146

7.3.6 Implementing DI Primitive using NCL Majorities

Fig. 7.15 shows an NCL dual-rail gate (such as in Fig. 7.12) augmented with

additional NCL 2 out of 2 majorities to implement generalized primitive from Fig.

7.13. The circuit works as follows. Recall that invalid state for any dual-rail input to

the NCL gates is (0,0) -

1. Initially data inputs to this gate are invalid i.e. (0,0). Therefore all four 2 out

of 2 majorities produce a 0 at outputs. Hence the inputs to dual-rail NCL gate

itself are all (0,0) and it sets output z = (0,0) which is invalid output. At the

same time, all fanouts are also in reset state leading to inverted ACK signals to

k out of k majority being 1. Therefore ”control” input is 1 in the reset state of

the gate. Similarly, inputs to the 2 out of 4 majority at the bottom are 0 and

therefore it produces ACK = 0. Therefore in reset state output is invalid and

ACK = 0.

2. When all data inputs from fanins are valid (note that ”control” signal is 1), the

inputs are relayed to the dual-rail NCL gate which computes valid output z. At

the same time, 2 of the 4 inputs to the 2 out of 4 majority at the bottom are 1

and therefore it produces ACK = 1. Therefore in compute state ACK = 1 and

output z is valid

A potential hazard situation in case of PNAND primitive occurs when the inter-

nally generated CLK signal of PNAND arrives before the (t) or (f) rails of the inputs

feeding its data inputs. However the chance of this occurring is extremely rare due

to the delay in generating the CLK signal. Moreover, this is adjustable inside the

primitive. Outside the primitive, unbounded wire delays can exist and the network

will function correctly.

147

2

2

2

2

Dual-rail
NCL gate

2

Z.f

Z.t

A.t

A.f

B.t

B.f

ACK
(from k

fanouts)k

ACK (to
fanins)

Control

Figure 7.15: Implementation of Generalized DI Primitive using NCL Majority
Gates

A potential hazard situation in the network of of NCL DI primitive is described as

follows. The DI primitive computes the ACK signal independent of the state of the

gate and prior to the state change of the gate. The state of the gate is determined by

the output of the gate which is either valid (compute) or invalid (reset). Since ACK is

computed and sent to the fanins “before” the state of the gate changes, it is possible

that the fanin primitive might invalidate the data bit before dual-rail NCL gate

computes the output z. This hazard situation occurs between the two interconnected

DI primitives which can make NCL networks fail under certain conditions.

148

We can compare the resources required to implement DI circuits using PNAND

vs NCL in terms of number of transistors utilized by the primitives. Note : The

majority function is implemented using a pull-up, pull-down network in NCL majority

gates. Therefore larger majorities such as 2 out 4 majority or 3 out of 5 majority

are not only slower, but also consume significantly higher area and power due to

static implementations. This is the main difference between implementing dual rail

delay-insensitive logic gates using NCL majorities and PNANDs. Table 7.3 shows

the number of transistors required to implement some complex dual-rail functions as

a single primitive. Note : A dual-rail 2 out of 3 majority function is not same as

the NCL majority gate from Fig. 7.11 which computes a 2 out of 3 majority of its

single-rail inputs. The building blocks of dual-rail primitives using NCL technology

are NCL majority gates.

Function NCL PNAND

Half Adder 124 64

Full Adder 176 72

2/3 majority 44 48

3/5 majority 168 68

4/7 majority 596 88

5/9 majority 2564 108

Table 7.3: Number of Transistors Required to Implement Dual-rail Function as a
Single Gate

7.4 Novel Scanning Mechanism

This section outlines the design of a novel scanning mechanism along with the

modifications in the single and multi-input differential mode flipflops that are required

149

to implement the proposed scheme. Scanning the data serially in and out of the chip

is indispensable for functional testing of integrated circuits post manufacture. The

main advantage of this proposed scanning mechanism is elimination of hold time

violation in the scan-chain during test/scan mode.

7.4.1 Flipflop Architecture

This section provides the functional description of a flipflop that is necessary in

the proposed scan-mechanism. A possible architectural implementation of such a

flipflop is provided in Section 7.4.5. Fig. 7.16 shows the inputs and outputs required

for usage of the new scan mechanism.

TE
TI

D
CLK

Q

N1

N2 CD
FCD

Figure 7.16: Flipflop Architecture Required for the Proposed Scan Mechanism

The description and function of each of the input and outputs signals is as follows:

1. Input signal D is same as data input signal D typically found in master-slave

D-type flipflops.

2. Input signal TI is a test input. Typically the input signal TI is driven by a

flipflop that precedes the given flipflop in a scan chain.

150

3. Input signal CLK is a synchronous clock for the normal (as opposed to test)

mode operation. Note that this clock is NOT a scan clock.

4. Input signal TE acts as trigger for the test mode. It is necessary that CLK must

be 0 whenever TE is changed. Similarly TE must be 0 when CLK is operated.

5. Output signals N1 and N2 have the following functionality.

(a) With TE = 0 and CLK = 0, N1 = 1 and N2 = 1.

(b) With TE = 0, when CLK changes from 0 to 1, N1 = D and N2 = D.

(c) With CLK = 0, when TE changes from 0 to 1, N1 = TI and N2 = TI.

(d) TE = 1 and CLK = 1, leads to race condition and values of outputs N1

and N2 are unpredictable.

(e) For all other inputs and transitions not described above, nodes N1 and N2

must retain their last state.

(f) Output signal Q is defined as a function of the signals N1 and N2. This

function is defined by the following truth table.

N1 N2 Q

1 1 last state

1 0 0

0 1 1

Table 7.4: Logic Values of Output Q

(g) The combination N1 = N2 = 0 is illegal and will result in a race condition

leading to unpredictable state of output Q.

151

The functional block FCD produces another output signal called CD which stands

for completion detection. This block takes inputs TE, N1 and N2. Its Boolean

function is described as follows.

CD = TE ∧ (N1 ∨ N2)

where ‘∧’ is a Boolean AND operation and ‘∨’ is a Boolean OR operation. An

implementation of this function is shown in Fig. 7.17.

N1

TE

TEN1

N2

N2

CD

Figure 7.17: Implementation of Function FCD from Fig. 7.16

7.4.2 Proposed Scan Architecture

Given a set of flipflops that satisfy above functionality, they can be connected in

a chain as shown in Fig. 7.18. The D-inputs of each of the flipflop are driven by the

logic which is not shown.

7.4.3 Scan Chain Operation

First we describe the purpose of each signal followed by how to operate each signal

from Fig. 7.18 in order to scan-in and scan-out data along the chain.

152

Global CLK

GTE_OUT

GTE_IN

GTO

TE
D

TI
CLK

Q

N1

N2 CD
FCD

TE
D

TI
CLK

Q

N1

N2 CD
FCD

TE
D

TI
CLK

Q

N1

N2 CD
FCD

GTI
FF1 FF2 FF3

Figure 7.18: Proposed Connections to Create Scan-Chain using Flipflop from Fig.
7.16

Signal Description

1. Input signal GTI is Global Test Input signal. This signal is directly controlled

by a chip-wide primary input and is an entry point of the scan chain.

2. Input signal GTE IN is Global Test Enable signal. This signal is held at logic

0 in normal mode. If we want to operate scan, this signal is used as a control.

Notice that GTE IN doesn’t fan-out to each and every flipflop as in conventional

scan.

3. Input signal Global CLK refers to the clock used in normal mode operation.

4. Output signal GTO is the output line of the scan-chain and serve as the tail-end

of the scan-chain from where data bits are pulled out serially.

5. Output signal GTE OUT is the indicator signal that the data bit at GTI has

been registered and can change. GTE OUT can be connected to GTE IN signal

of another scan-chain in case we want to merge two scan-chains (from the same

or different chips) into a single one.

153

Normal Mode Operation

In normal mode operation, input signal GTE IN is held stable at logic 0. As a result,

TE input of the flipflop FF3 (Fig. 7.18) is 0. Note that when TE = 0, CD = 0.

Therefore TE input of second flipflop (FF2) is also 0 which in turn makes TE input

of FF1 zero. As a result, TE input of all the D-flipflops is logic 0. Each flipflop simply

acts as a normal D-flipflop ignoring TI input.

Scan-in and Scan-out Operation

Typically the scan-in and the scan-out operations are performed at the same time i.e.

while existing data bits stored in the registers are being pulled out from output GTO,

new data is introduced into the chain through GTI input. Following is the series of

steps to scan-in a new data bit.

1. Global CLK = 0 and is held at 0 until all the steps below are completed. For

all flipflops, N1 = 1 and N2 = 1.

2. GTE IN that was 0 in normal mode is now asserted i.e. GTE IN= 0→ 1. This

is TE(FF3).

3. When TE(FF3) = 1, the outputs N1 and N2 of flipflop FF3 must be TI and TI

respectively and Q = TI. Flipflop FF3 copies the state stored in flipflop FF2.

Finally since TE(FF3) is 1, signal CD(FF3) rises to 1.

4. Note that signal CD(FF3) is input signal TE(FF3). FF2 in turn copies the

state stored in FF1.

5. As a result, the rising trigger applied at GTE IN ripples up the scan-chain

forcing each flipflop to copy the state from its predecessor in the chain. The

first flipflop FF1 copies the state applied at the input GTI. Effectively a new

154

bit is scanned into the chain. The rising of output GTE OUT signals that the

new bit has been successfully scanned in.

6. Now a falling trigger is applied at GTE IN i.e. GTE IN= 1 → 0. TE input

of FF3 falls which causes its output CD to fall as well. Note that output Q of

FF3 is un-affected since falling transition on TE doesn’t change Q. The falling

trigger also ripples up the chain making no change in the state.

7. When signal GTE OUT falls to 0, a new data bit can now be introduced at the

input GTI and step 2 on-wards are repeated until the chain is filled with new

data.

7.4.4 Advantages of the Proposed Scan Mechanism

1. No hold time violations in the scan-chain itself. This is because in the test mode

operation, the current flipflop copies the state of the previous flipflop. The

previous flipflop doesn’t start latching its inputs until the current flipflop has

finished consuming output of the previous flipflop. This is the main advantage

of the completion detection (CD) circuitry.

2. Elimination of a single global test-enable signal (TE) thereby reducing routing

resources. The global test-enable TE signal is routed to all the flipflops which

requires buffers and routing area.

3. Elimination of the separate scan clock which reduces routing resources required

to route the scan clock.

4. Synthesis and automatic layout tools do not have to optimize timing related to

scan mechanism due to asynchronous operation of scan testing.

155

5. If two independently developed hardware blocks that use this scanning mech-

anism reside on a same chip, then their scan inputs/outputs can simply be

cascaded to make a single larger chain. This reduces the scan IO pin overhead

without worrying about errors in scanning mechanism itself.

However despite these advantages what remains to be analyzed is the power and

area overhead of this scan mechanism. The flipflops that implement aforementioned

functionality are typically differential mode flipflops. There exist several variants of

these flipflops that are not only faster but more energy efficient compared to the

traditional master-slave flipflops such as KVFF and PNANDs. The additional func-

tional block FCD can be embedded inside these differential mode flipflops. There is

no sizing restriction on this block and hence the transistors shown in Fig. 7.17 can

be minimum size allowed by a process technology.

Additionally, existing scan mechanism requires a global test-enable TE signal

which is routed to each and every flipflop and therefore is a high fanout net. All the

buffers required to route test-enable signal can now be eliminated. Additionally, the

differential mode flipflops that are amenable to the proposed scan mechanism, are

typically faster. Due to their higher speed, the logic surrounding these flipflops can

be reduced. The area overhead is expected to be negative indicating an improved

area of the circuit.

7.4.5 Flipflop Implementation

A possible implementation of the flipflop described in Fig. 7.16 is shown in Fig.

7.19 which we can see is derived from original PNAND architecture.

156

N1

N2

N5 N6

S
R

Q
QN

Symmetric SR Latch

N2

VDD

M1 M2

M3 M4 N1

M5 M6

M7

D

M11

M13CLK

CLK

N1

M14 CLK

M12 CLK

N2

S2

S1

S4

S3TE

TI

TE

TI

CLK
CLK

M9 M10

S5TE

M8

S6 TE

D

N1

TE

TEN1

N2

N2

CD

TE
TE

Figure 7.19: A Possible Implementation of the Flipflop Shown in Fig. 7.16

157

REFERENCES

Appenzeller, J., Y.-M. Lin, J. Knoch, Z. Chen and P. Avouris, “Comparing carbon
nanotube transistors - the ideal choice: a novel tunneling device design”, Electron
Devices, IEEE Transactions on 52, 12, 2568–2576 (2005).

Beiu, V., “A survey of perceptron circuit complexity results”, in “Intl. Joint Conf.
Neural Networks IJCNN03”, vol. 2, pp. 989–994 (2003).

Beiu, V., J. M. Quintana and M. J. Avedillo, “VLSI Implementations of Threshold
Logic - A Comprehensive Survey”, IEEE Trans. Neural Networks 14, 1217–1243
(2003).

Blair, E. and C. Lent, “Quantum-Dot Cellular Automata: an Architecture for Molec-
ular Computing”, in “Simulation of Semiconductor Processes and Devices, 2003.
SISPAD 2003. International Conference on”, pp. 14 – 18 (2003).

Bobba, S. and I. Hajj, “Current-mode threshold logic gates”, in “Computer Design,
2000. Proceedings. 2000 International Conference on”, pp. 235–240 (2000).

Brzozowski, I. and A. Kos, “Minimisation of power consumption in digital integrated
circuits by reduction of switching activity”, in “EUROMICRO Conference, 1999.
Proceedings. 25th”, vol. 1, pp. 376–380 vol.1 (1999).

Byskov, J., “Algorithms for k-colouring and finding maximal independent sets”, in
“Proc. Symp. on Discrete Algorithms”, pp. 456–457 (PA, USA, 2003).

Byskov, J. M., “Enumerating maximal independent sets with applications to graph
colouring”, Oper. Res. Lett. 32, 6, 547–556, URL http://dx.doi.org/10.1016/
j.orl.2004.03.002 (2004).

Case, M. L., A. Mishchenko and R. K. Brayton, “Cut-based inductive invariant com-
putation”, in “Proc. IWLS’08”, pp. 172–179 (2008).

Celinski, P., J. Lopez, S. Al-Sarawi and D. Abbott, “Low power, high speed, charge
recycling cmos threshold logic gate”, Electronics Letters 37, 17, 1067–1069 (2001).

Chalmers, D. and M. Sloman, “A survey of quality of service in mobile computing
environments”, Communications Surveys, IEEE 2, 2, 2–10 (1999).

Chandrakasan, A. and R. Brodersen, eds., Low Power CMOS Design (Wiley-IEEE
Press, 1998).

Chandrakasan, A. P. and R. W. Brodersen, Low power digital CMOS design (Springer
Science & Business Media, 2012).

Chatterjee, S., On algorithms for technology mapping, PhD Thesis (ProQuest, 2007).

Chatterjee, S., A. Mishchenko and R. K. Brayton, “Factor cuts”, in “Proc. ICCAD
’06”, pp. 143–150 (2006).

158

http://dx.doi.org/10.1016/j.orl.2004.03.002
http://dx.doi.org/10.1016/j.orl.2004.03.002

Chen, D.-S. and M. Sarrafzadeh, “An exact algorithm for low power library-specific
gate re-sizing”, in “Proceedings of the 33rd Annual Design Automation Confer-
ence”, DAC ’96, pp. 783–788 (ACM, New York, NY, USA, 1996), URL http:
//doi.acm.org/10.1145/240518.240666.

Chen, K. J., K. Maezawa and M. Yamamoto, “Novel current-voltage characteristics of
an inp-based resonant- tunneling high electron mobility transistor and their circuit
applications”, in “International Electron Devices Meeting”, pp. 379–382 (1995).

Cong, J. and Y. Ding, “FlowMap: an optimal technology mapping algorithm for delay
optimization in lookup-table based FPGA designs”, IEEE Trans. CAD 13, 1, 1–12
(1994).

Cong, J., G. Han and Z. Zhang, “Architecture and compiler optimizations for data
bandwidth improvement in configurable processors”, IEEE Trans. on VLSI Syst.
14, 9, 986–997 (2006).

Cong, J., C. Wu and Y. Ding, “Cut ranking and pruning: enabling a general and
efficient FPGA mapping solution”, in “Proc. FPGA’99”, pp. 29–35 (ACM, New
York, 1999).

Cong, J. and B. Xiao, “Fpga-rpi: A novel fpga architecture with rram-based pro-
grammable interconnects”, Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on 22, 4, 864–877 (2014).

Cormen, T., C. Leiserson, R. Rivest and C. Stein, Introduction to algorithms (MIT
Press, Cambridge, MA, 2001).

Corneil, D. G. and Y. Perl, “Clustering and domination in perfect graphs”, Discrete
Applied Mathematics 9, 1, 27–39 (1984).

Coudert, O., “Gate sizing for constrained delay/power/area optimization”, Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on 5, 4, 465–472
(1997).

Dara, C., T. Haniotakis and S. Tragoudas, “Delay analysis for an n-input current
mode threshold logic gate”, in “VLSI (ISVLSI), 2012 IEEE Computer Society An-
nual Symposium on”, pp. 344–349 (2012).

Dechu, S., M. Goparaju and S. Tragoudas, “A metric of tolerance for the manufac-
turing defects of threshold logic gates”, in “Defect and Fault Tolerance in VLSI
Systems, 2006. DFT ’06. 21st IEEE International Symposium on”, pp. 318–326
(2006).

Devadas, S. and S. Malik, “A survey of optimization techniques targeting low power
circuits”, in “in Proc. Design Automation Conf”, pp. 242–247 (1995).

Een, N., A. Mishchenko and N. Sorensson, “Applying logic synthesis for speeding up
SAT”, Lect. N. Comp. Sci. 4501, 272 (2007).

159

http://doi.acm.org/10.1145/240518.240666
http://doi.acm.org/10.1145/240518.240666

Eppstein, D., “Small Maximal Independent Sets and Faster Exact Graph Color-
ing”, in “Proceedings of the 7th International Workshop on Algorithms and Data
Structures”, WADS ’01, pp. 462–470 (Springer-Verlag, London, UK, 2001a), URL
http://portal.acm.org/citation.cfm?id=645933.673363.

Eppstein, D., “Small maximal independent sets and faster exact graph coloring”,
Lect. N. Comp. Sci. pp. 462–470 (2001b).

Fant, K. and S. Brandt, “Null convention logictm: a complete and consistent logic
for asynchronous digital circuit synthesis”, in “Application Specific Systems, Archi-
tectures and Processors, 1996. ASAP 96. Proceedings of International Conference
on”, pp. 261–273 (1996).

Fishburn, J., “Clock skew optimization”, Computers, IEEE Transactions on 39, 7,
945–951 (1990).

Ford, L. and D. Fulkerson, “Flow in networks”, Princeton University Press, Princeton,
NJ (1962).

Golumbic, M., Algorithmic graph theory and perfect graphs (North-Holland, 2004).

Gonzalez, R. and M. Horowitz, “Energy dissipation in general purpose microproces-
sors”, Solid-State Circuits, IEEE Journal of 31, 9, 1277–1284 (1996).

Gowda, T., S. Vrudhula and N. Kulkarni, “Identification of threshold functions and
synthesis of threshold networks”, IEEE Transactions on Computer-Aided Design
(TCAD) 30, 5, 665–677 (2011).

Gupta, P. and N. Jha, “An algorithm for nanopipelining of rtd-based circuits and
architectures”, Nanotechnology, IEEE Transactions on 4, 2, 159–167 (2005).

Hachtel, G. D. and F. Somenzi, Logic Synthesis and Verification Algorithms (Kluwer
Academic, 1996).

Hidalgo-Lopez, J., J. Tejero, J. Fernandez and A. Gago, “New types of digital com-
parators”, in “Circuits and Systems, 1995. ISCAS ’95., 1995 IEEE International
Symposium on”, vol. 1, pp. 29–32 vol.1 (1995).

Hu, X. S., S. C. Bass and R. G. Harber, “Minimizing the number of delay buffers in
the synchronization of pipelined systems”, Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on 13, 12, 1441–1449 (1994).

Huang, H.-Y. and T.-N. Wang, “Cmos capacitor coupling logic (c3l) circuits”, in
“ASICs, 2000. AP-ASIC 2000. Proceedings of the Second IEEE Asia Pacific Con-
ference on”, pp. 33–36 (2000).

Ivan S. Kourtev, E. G. F., Baris Taskin, Timing Optimization Through Clock Skew
Scheduling (Springer US, 2009).

J, L., “Threshold gate circuits employing field-effect transistors”, URL http://www.
google.com/patents/US3715603, uS Patent 3,715,603 (1973).

160

http://portal.acm.org/citation.cfm?id=645933.673363
http://www.google.com/patents/US3715603
http://www.google.com/patents/US3715603

J., M. V., “Majority logic circuit using a constant current bias”, URL http://www.
google.com/patents/US3155839, uS Patent 3,155,839 (1964).

Jian, P. S., G. Haddad, P. Mazumder and J. Schulman, “Resonant Tunneling Diodes:
Models and Properties”, Proceedings of the IEEE 86, 4, 641 –660 (1998).

Kagaris, D. and S. Tragoudas, “Maximum Weighted Independent Sets on Transitive
Graphs and Applications”, Integr. VLSI J. 27, 77–86, URL http://portal.acm.
org/citation.cfm?id=309614.309619 (1999a).

Kagaris, D. and S. Tragoudas, “Maximum weighted independent sets on transitive
graphs and applications”, Integration, the VLSI Journal 27, 1, 77–86 (1999b).

Keutzer, K., “Dagon: technology binding and local optimization by dag matching”, in
“Papers on Twenty-five years of electronic design automation”, pp. 617–624 (ACM,
1988).

Klass, F., “Semi-dynamic and dynamic flip-flops with embedded logic”, in “VLSI Cir-
cuits, 1998. Digest of Technical Papers. 1998 Symposium on”, pp. 108–109 (1998).

Kotani, K., T. Shibata, M. Imai and T. Ohmi, “Clocked-neuron-mos logic circuits
employing auto-threshold-adjustment”, in “Solid-State Circuits Conference, 1995.
Digest of Technical Papers. 41st ISSCC, 1995 IEEE International”, pp. 320–321
(1995).

Kotani, K., T. Shibata, M. Imai and T. Ohmi, “Clock-controlled neuron-mos logic
gates”, Circuits and Systems II: Analog and Digital Signal Processing, IEEE Trans-
actions on 45, 4, 518–522 (1998).

Kulkarni, N., N. Nukala and S. Vrudhula, “Minimizing area and power of sequential
cmos circuits using threshold decomposition”, in “Proceedings of the International
Conference on Computer-Aided Design”, ICCAD ’12, pp. 605–612 (ACM, New
York, NY, USA, 2012), URL http://doi.acm.org/10.1145/2429384.2429514.

Kumar, P., S. Pradeep and S. Pratibha, “Lssr: Lector stacked state retention tech-
nique a novel leakage reduction and state retention technique in low power vlsi
design”, (2013).

Lageweg, C., S. Cotofana and S. Vassiliadis, “A linear threshold gate implementation
in single electron technology”, in “Proc. IEEE Computer Society Workshop on
VLSI”, pp. 93–98 (2001).

Lageweg, C. R., S. D. Cotofana and S. Vassiliadis, “A full adder implementation
using set based linear threshold gates”, in “Proceedings 9th IEEE International
conference on electronics, circuits and systems - ICECS 2002”, pp. 665–669 (2002).

Lai, Y.-T., M. Pedram and S. B. K. Vrudhula, “Bdd based decomposition of logic
functions with application to fpga synthesis”, in “Proceedings of the 30th interna-
tional Design Automation Conference”, DAC ’93, pp. 642–647 (ACM, New York,
NY, USA, 1993), URL http://doi.acm.org/10.1145/157485.165078.

161

http://www.google.com/patents/US3155839
http://www.google.com/patents/US3155839
http://portal.acm.org/citation.cfm?id=309614.309619
http://portal.acm.org/citation.cfm?id=309614.309619
http://doi.acm.org/10.1145/2429384.2429514
http://doi.acm.org/10.1145/157485.165078

Lamoureux, J., G. Lemieux and S. J. E. Wilton, “Glitchless: Dynamic power min-
imization in fpgas through edge alignment and glitch filtering”, Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on 16, 11, 1521–1534 (2008).

Leiserson, C. E. and J. B. Saxe, “Retiming synchronous circuitry”, Algorithmica 6,
1-6, 5–35, URL http://dx.doi.org/10.1007/BF01759032 (1991).

Lemonds, C. and S. Shetti, “A low power 16 by 16 multiplier using transition re-
duction circuitry”, in “Proceedings of the International Workshop on Low Power
Design”, pp. 139–142 (1994).

Leshner, S., Modeling and Implementation of Threshold Logic Circuits and Architec-
tures, Ph.D. thesis, Arizona State University (2010).

Leshner, S., B. Krzysztof and S. Vrudhula, “Design of a robust, high performance
standard cell threshold logic family for deep sub-micron technology”, in “Proceed-
ings of the IEEE International Conference on Microelectronics”, pp. 52–55 (Cairo,
Egypt, 2010).

Lin, S.-C. and K. Banerjee, “Cool chips: Opportunities and implications for power
and thermal management”, Electron Devices, IEEE Transactions on 55, 1, 245–255
(2008).

Ling, A. C., J. Zhu and S. D. Brown, “BddCut: Towards scalable symbolic cut
enumeration”, in “Proc. ASP-DAC’07”, pp. 408–413 (2007).

López-Garćıa, J., J. Fernández-Ramos and A. Gago-Bohórquez, “A balanced capac-
itive threshold-logic gate”, Analog Integr. Circuits Signal Process. 40, 1, 61–69,
URL http://dx.doi.org/10.1023/B:ALOG.0000031434.48142.a3 (2004).

Lorch, J. R., Operating systems techniques for reducing processor energy consumption,
Ph.D. thesis, University of California, Berkeley (2001).

Maheshwari, N. and S. Sapatnekar, Timing Analysis and Optimization of Sequential
Circuits (Kluwer Academic, 1999).

Martin, A. J., M. Nyström and P. I. Pénzes, “Power aware computing”, pp. 293–315
(Kluwer Academic Publishers, Norwell, MA, USA, 2002), URL http://dl.acm.
org/citation.cfm?id=783060.783076.

Mishchenko, A., R. Brayton, J.-H. R. Jiang and S. Jang, “Scalable don’t-care-based
logic optimization and resynthesis”, in “Proc. FPGA ’09”, pp. 151–160 (ACM, NY,
2009).

Mishchenko, A., S. Chatterjee, R. Brayton, X. Wang and T. Kam, “Technology map-
ping with boolean matching, supergates and choices”, (2005).

Mishchenko, A., S. Cho, S. Chatterjee and R. Brayton, “Combinational and sequential
mapping with priority cuts”, in “Proc. ICCAD’07”, pp. 354–361 (2007).

162

http://dx.doi.org/10.1007/BF01759032
http://dx.doi.org/10.1023/B:ALOG.0000031434.48142.a3
http://dl.acm.org/citation.cfm?id=783060.783076
http://dl.acm.org/citation.cfm?id=783060.783076

Monteiro, J., S. Devadas and A. Ghosh, “Retiming sequential circuits for low power”,
International journal of high speed electronics and systems 7, 02, 323–340 (1996).

Moon, J. and L. Moser, “On cliques in graphs”, Israel Journal of Mathematics 3, 1,
23–28 (1965).

Moyer, B., “Low-power design for embedded processors”, Proceedings of the IEEE
89, 11, 1576–1587 (2001).

Muroga, S., Threshold Logic and its Applications (Wiley-Interscience New York,
1971).

Nikolic, B., V. G. Oklobdzija, V. Stojanovic, W. Jia, J. K.-S. Chiu and M. Ming-
Tak Leung, “Improved sense-amplifier-based flip-flop: design and measurements”,
Solid-State Circuits, IEEE Journal of 35, 6, 876–884 (2000).

Nukala, N., N. Kulkarni and S. Vrudhula, “Spintronic threshold logic array (stla) -
a compact, low leakage, non-volatile gate array architecture”, in “Nanoscale Ar-
chitectures (NANOARCH), 2012 IEEE/ACM International Symposium on”, pp.
188–195 (2012).

Özdemir, H., A. Kepkep, B. Pamir, Y. Leblebici and U. Çilingiroğlu, “A capaci-
tive threshold-logic gate”, Solid-State Circuits, IEEE Journal of 31, 8, 1141–1150
(1996).

Padure, M., S. Cotofana, C. Dan, M. Bodea and S. Vassiliadis, “A new Latch-based
Threshold Logic Family”, in “CAS 2001 Proceedings. International Semiconductor
Conference, 2001.”, vol. 2, pp. 531 –534 vol.2 (2001a).

Padure, M., S. Cotofana, C. Dan, S. Vassiliadis and M. Bodea, ““A new latch-based
threshold logic family””, in “International Semiconductor Conference”, vol. 2, pp.
531–534 (2001b).

Pan, P. and C.-C. Lin, “A new retiming-based technology mapping algorithm for
LUT-based FPGAs”, in “Proc. FPGA ’98”, pp. 35–42 (ACM, New York, 1998).

Pan, P. and C. L. Liu, “Optimal clock period FPGA technology mapping for sequen-
tial circuits”, ACM TODAES 3, 3, 437–462 (1998).

Panda, P. R., A. Shrvastava, B. Silpa and K. Gummidipudi, Power-efficient System
Design (Springer, 2010).

Partovi, H., R. Burd, U. Salim, F. Weber, L. DiGregorio and D. Draper, “Flow-
through latch and edge-triggered flip-flop hybrid elements”, in “Solid-State Circuits
Conference, 1996. Digest of Technical Papers. 42nd ISSCC., 1996 IEEE Interna-
tional”, pp. 138–139 (1996).

Peddersen, J., S. Shee, A. Janapsatya and S. Parameswaran, “Rapid embedded hard-
ware/software system generation”, in “Int. Conf. on VLSI Design”, pp. 111–116
(2005).

163

Piguet, C., Low-power processors and systems on chips (CRC Press, 2005).

Prost, W., U. Auer, F. J. Tegude, C. Pacha, K. F. Goser, G. Janssen and R. T.
Van Der, “Manufacturability and robust design of nanoelectronic logic circuits
based on resonant tunneling diodes”, Int. J. Circ. Theory Appl. 28, 537–552 (2000).

Qadri, M. Y., H. S. Gujarathi and K. D. McDonald-Maier, “Low power processor ar-
chitectures and contemporary techniques for power optimization–a review”, Journal
of computers 4, 10, 927–942 (2009).

Rahul B. Deokar, S. S. S., “A fresh look at retiming via clock skew optimization”, in
“Design Automation, 1995. DAC ’95. 32nd Conference on”, pp. 310–315 (1995).

Rajendran, J., H. Manem, R. Karri and G. Rose, “Memristor based pro-
grammable threshold logic array”, in “Nanoscale Architectures (NANOARCH),
2010 IEEE/ACM International Symposium on”, pp. 5–10 (2010).

Rose, J., A. E. Gamal, S. Member and A. Sangiovanni-vincentelli, “Architecture of
field-programmable gate arrays: The effect of logic block functionality on area
efficiency”, Proceedings of the IEEE 25, 1217–1225 (1990).

Rose, J., J. Luu, C. W. Yu, O. Densmore, J. Goeders, A. Somerville, K. B. Kent,
P. Jamieson and J. Anderson, “The vtr project: Architecture and cad for fpgas
from verilog to routing”, in “Proceedings of the 20th ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays”, pp. 77–86 (ACM, 2012).

Roy, K., S. Mukhopadhyay and H. Mahmoodi-Meimand, “Leakage current mech-
anisms and leakage reduction techniques in deep-submicrometer cmos circuits”,
Proceedings of the IEEE 91, 2, 305–327 (2003).

Roy, K. and S. Prasad, “Syclop: Synthesis of cmos logic for low power applications”,
in “Computer Design: VLSI in Computers and Processors, 1992. ICCD’92. Pro-
ceedings, IEEE 1992 International Conference on”, pp. 464–467 (IEEE, 1992).

Shen, A., A. Ghosh, S. Devadas and K. Keutzer, “On average power dissipation and
random pattern testability of cmos combinational logic networks”, in “Proceedings
of the 1992 IEEE/ACM international conference on Computer-aided design”, pp.
402–407 (IEEE Computer Society Press, 1992).

Shibata, T. and T. Ohmi, “An intelligent mos transistor featuring gate-level weighted
sum and threshold operations”, in “Electron Devices Meeting, 1991. IEDM ’91.
Technical Digest., International”, pp. 919–922 (1991).

Siu, K.-Y., V. Roychowdhury and T. Kailath, Discrete Neural Computation: A The-
oretical Foundataion, Information and Systems Sciences Series (Prentice Hall, En-
glewood Cliffs, New Jersey, 1995).

Sparso, J. and S. Furber, Principles Asynchronous Circuit Design (Springer, 2002).

164

Strandberg, R. and J. Yuan, ““Single input current-sensing differential logic
(SCSDL)””, in “International Symposium on Circuits and Systems”, vol. 1, pp.
764–767 (2000a).

Strandberg, R. and J. Yuan, “Single Input Current-Sensing Differential Logic
(SCSDL)”, in “Proceedings. ISCAS 2000 Geneva. The IEEE International Sym-
posium on Circuits and Systems, 2000.”, vol. 1, pp. 764–767 vol.1 (2000b).

Sulieman, M. and V. Beiu, “Characterization of a 16-bit threshold logic single-electron
technology adder”, in “Circuits and Systems, 2004. ISCAS’04. Proceedings of the
2004 International Symposium on”, vol. 3, pp. III–681 (IEEE, 2004).

Takata, T. and Y. Matsunaga, “An Efficient Cut Enumeration for Depth-optimum
Technology Mapping for LUT-based FPGAs”, in “Proceedings of the 19th ACM
Great Lakes Symposium on VLSI”, GLSVLSI ’09, pp. 351–356 (ACM, New York,
NY, USA, 2009), URL http://doi.acm.org/10.1145/1531542.1531622.

Tan, C. H. and J. Allen, “Minimization of power in vlsi circuits using transistor
sizing, input ordering, and statistical power estimation”, in “Proceedings of the
1994 International Workshop on Low Power Design”, pp. 75–80 (1994).

Tiwari, V., P. Ashar and S. Malik, “Technology mapping for low power”, in “Design
Automation, 1993. 30th Conference on”, pp. 74–79 (IEEE, 1993).

Tsui, C.-Y., M. Pedram, C.-A. Chen and A. M. Despain, “Low power state assignment
targeting two-and multi-level logic implementations”, in “Proceedings of the 1994
IEEE/ACM international conference on Computer-aided design”, pp. 82–87 (IEEE
Computer Society Press, 1994).

Vijayakumar, A. and S. Kundu, “Glitch power reduction via clock skew scheduling”,
in “VLSI (ISVLSI), 2014 IEEE Computer Society Annual Symposium on”, pp.
504–509 (2014).

Z., F. R. and S. E. W., “Direct coupled, current mode logic”, URL http://www.
google.com/patents/US3321639, uS Patent 3,321,639 (1967).

Zandrahimi, M. and Z. Al-Ars, “A survey on low-power techniques for single and mul-
ticore systems”, in “Proceedings of the 3rd International Conference on Context-
Aware Systems and Applications”, ICCASA ’14, pp. 69–74 (ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineering),
ICST, Brussels, Belgium, Belgium, 2014), URL http://dl.acm.org/citation.
cfm?id=2762722.2762735.

Zhang, L. and S. Cotofana, “An input weights aware synthesis tool for threshold logic
networks”, in “In Proceedings of the 16th Annual Workshop on Circuits, Systems
and Signal Processing, ProRisc 2005”, pp. 578–583 (2005).

Zhang, R., P. Gupta, L. Zhong and N. K. Jha, “Threshold Network Synthesis and
Optimization and Its Application to Nanotechnologies”, IEEE Transactions on
Computer-Aided Design 24, 1 (January 2005).

165

http://doi.acm.org/10.1145/1531542.1531622
http://www.google.com/patents/US3321639
http://www.google.com/patents/US3321639
http://dl.acm.org/citation.cfm?id=2762722.2762735
http://dl.acm.org/citation.cfm?id=2762722.2762735

Zilic, Z. and Z. Vranesic, “Using bdds to design ulms for fpgas”, in “Field-
Programmable Gate Arrays, 1996. FPGA ’96. Proceedings of the 1996 ACM Fourth
International Symposium on”, pp. 24–30 (1996).

166

APPENDIX A

CUT ENUMERATION

167

This chapter provides a detailed discussion of the strong line cut enumeration
idea introduced in Section 4.2.1. The proposed line cut enumeration is applicable for
general technology mapping as well. Therefore we treat line cut enumeration as an
independent problem and discuss in depth in this chapter.

A.1 Introduction

Technology mapping (TM) is a process of transforming a generic Boolean network,
which is a network consisting of primitive gates (e.g. AND/OR), into an equivalent
mapped network, that consists of a network of cells from a given technology library.
Depending on the target implementation, the library cells can correspond to either
lookup tables (LUT) in the case of an FPGA, or to a pre-designed set of standard
cells in the case of an ASIC. The measures of delay, power, area, or some combination
of them serve as an objective function to optimize during the transformation process.

TM is formalized as a graph covering problem. A given Boolean network is rep-
resented as a directed acyclic graph (DAG) G = (V,E), which is referred to as the
subject graph. The cells in the library, being single output Boolean functions, are also
represented by DAGs, and each is referred to as a pattern graph. A feasible solution
of TM is a complete covering of the subject graph with one or more of the pattern
graphs (see Figure A.1). A core step in this process is to identify a subgraph in the
subject graph to match with one or more pattern graphs. In the structural approach
to TM (Chatterjee, 2007), the selection of sub-graphs is achieved by computing a cut.

The recent works on structural approaches to TM (Mishchenko et al., 2007; Chat-
terjee et al., 2006; Cong et al., 1999; Ling et al., 2007) are based on a particular type
of a cut, called minimal node-cut. A node-cut Cv associated with a node v ∈ V is a
subset of nodes in the transitive fanin cone of v such that every path from the primary
inputs to v includes a node in Cv. Note that in the existing literature, the definition
of a node-cut restricts it to be minimal, i.e., no proper super-set of a node cut is a
legal node cut. In this chapter, we will explicitly refer to a minimal node cut, if that
is the case. By definition, A k-feasible minimal node cut of a node v is a minimal
node cut of cardinality k (Chatterjee et al., 2006).

A cut together with a node v defines a single-sink subgraph that is either directly
mappable onto a k-input LUT in the case of an FPGA, or constitutes a match candi-
date for a NPN-equivalent standard cell, for an ASIC design, provided such an entity
exists in the given library. In the literature k-feasible node cuts are usually simply
referred as k-feasible cuts as no other type of cut is usually considered for technology
mapping (Mishchenko et al., 2007; Chatterjee et al., 2006; Cong et al., 1999; Ling
et al., 2007).

In Figure A.1, associated with node G0, the sets {G6, G7}, and {G6, G8} are
2-feasible minimal node cuts, whereas {G2, G5, G7} is a 3-feasible minimal node cut.
When the cut {G6, G7} is selected, the actual sub-graph replaced by a cell in TM con-
sists of gates {G8, G0}. Similarly, when the cut {G2, G5, G7} is chosen the subcircuit
consisting of gates {G8, G6, G0} is replaced.

A node may have many associated k-feasible node cuts, which result in different
coverings. In TM, the quality of a covering is usually taken to be the delay of the
critical path, and/or the total area of the mapped circuit. Hence, to evaluate the
quality of the complete covering, cuts also need to be evaluated. The quality of a cut

168

G
1

G
5

G
2

G
4

G
3

G
0

G2
G1

G5

G6

G4

G3

G7

G8

G0

(a) (b) (c)

G
8

G
7

G
6

a b c d e f a b c d e f a b c d e f

h h h

Figure A.1: a) A Covered Boolean Network. b) Its Graph Representation. c) The
Network Mapped on the Library Gates.

is typically a combined measure of the subcircuit that will be replaced by a library
cell and the subcircuit that feeds that cell. Since neither of these can be evaluated
without knowing the cut, enumeration of cuts is a core task in TM. Consequently,
there has been a significant amount of effort devoted to the development of efficient
algorithms for enumerating k-feasible node cuts (Chatterjee et al., 2006; Cong and
Ding, 1994; Ling et al., 2007; Pan and Liu, 1998).

While structural technology mapping turned out to be very successful, minimal
node cuts bear some bias that eventually limits the number of possible matches. As
demonstrated in (Mishchenko et al., 2005), this may result in excluding many feasible,
high quality matches from the evaluation. The authors of (Mishchenko et al., 2005)
address this problem by constructing so-called supergates i.e. single output networks
of library gates that are added to the library in order to increase the number of
matches. This demonstrates that enhancing a match space could yield significant
benefits for structural technology mapping.

Existing work on TM focuses on minimal node cuts. However, including non-
minimal node cuts can increase substantially increase the possible matches. Consider
Figure A.2. The node cut C = {a, b, x, d} is not minimal since {a, b, d} is also a
(minimal) node cut. However C corresponds to the function ab+x+d. This happens
to be a linearly separable (threshold) function, which would never be found by any
cut enumerator that enumerates only minimal node cuts. Another representation of a
cut, based on edges, is called a line cut, which includes both minimal and non-minimal
node cuts.

Definition 2. (a) A line cut is a minimal set of directed edges in a single sink DAG
which when removed, eliminates all paths from any of source (primary input)
to the sink i.e. produces an “S-T bipartition”.

(b) A line cut is k-feasible if its cardinality (number of edges) is k or smaller.

169

(c) A line cut is called a strong line cut (Kagaris and Tragoudas, 1999b) if no two
edges in the line cut are on the same directed path.

Note that line cuts and node cuts are simply two representations of same entity,
and either form can be converted into other. They both partition the nodes of the
DAG into two mutually exclusive sets S and T . In such an S-T partition, the set S
of nodes must contain primary inputs and T must contain the sink node v.

Figure A.2: (a) Unidirectional Node Cut Denoted as {a, b, x, d} (b) Bidirectional
Node Cut Denoted by {a, b}

Figure A.2 a) shows a line cut consisting of edges {(x, z), (a, y), (b, y), (d, w)}. The
node cut corresponding to this line cut is C = {a, b, x, d}, which is not minimal. Since
minimal and non-minimal node cuts are useful, it appears that line cuts are the cuts
that should be enumerated. A cut can also be classified as being unidirectional or
bidirectional. It is unidirectional if all the edges between S and T originate in S and
terminate in T . Otherwise it is bidirectional.

In Figure A.2(a) the line cut {(x, z), (a, y), (b, y), (d, w)} (corresponding node cut
being C = {a, b, x, d}) generates S = {a, b, c, d, e, x}, and T = {y, z, w}, and is uni-
directional. In Figure A.2(b), the line cut {(a, c), (b, g)} (corresponding node cut is
{a, b}) has S = {a, b} and T = {c, g}, and is bidirectional since (b, g) is a “forward
edge” and (c, b) is a “backward edge”. Note also that the minimal node cut {a, b, d}
would identify ab+ a′b′+ d as a function to be replaced by some cell from the library.
However this is neither a member of any well defined class of functions, e.g. threshold
functions, nor it is a function that would be in a typical cell library. Thus, minimal
cuts are not always the most useful or desirable. In addition, we show that bidirec-
tional cuts are not necessary and discarding them does not degrade quality of TM
with regard to critical path delay. Thus we need only enumerate unidirectional node
cuts (minimal or non-minimal).

We establish a one-to-one correspondence between unidirectional node cuts and
strong line cuts (Kagaris and Tragoudas, 1999b). This correspondence is important
because there exists a well established relation between strong line cuts in a DAG
and independent sets in its corresponding line dependency graph (LDG) (Kagaris and
Tragoudas, 1999b). This allows for construction of fast strong line cut enumeration
techniques based on enumeration of independent sets. Since the latter is a problem
well researched in computational graph theory, techniques exist that can be directly
applied to enumerating line cuts by enumerating independent sets. Figure A.3 shows
classification of cuts and their relationships. The proposed technique for enumerating
strong line cuts was used in (Kulkarni et al., 2012) to find threshold functions in a
logic circuit.

170

Line cuts

Minimal node cuts Non-Minimal node cuts

Bidirectional Unidirectional Unidirectional Bidirectional

Strong line cuts

Conventionally
enumerated

Discardable set

Figure A.3: Classification of Cuts and Their Relationships

The new ideas in this chapter include:

• Introduction of unidirectional node cuts and a proof showing that restricting
the cut space to only unidirectional node cuts does not degrade the quality of
mapping for delay.

• Establishing the equivalence unidirectional node cuts and strong line cuts.

• An efficient k-feasible strong line cut enumeration algorithm based on the rela-
tionship between a DAG and its LDG.

• A general framework and the specific implementation of a pruning technique
for k-feasible strong line cut enumeration.

• An efficient implicit representation of bounded size MISs of a graph that allows
for both unconstrained and constrained enumeration of such MISs.

A.2 Related Work

The importance of cut computation in TM for FPGAs was first identified by the
Cong et al. (Cong and Ding, 1994). They developed a novel and elegant network
flow based algorithm that directly identified a single, depth-optimal, k-feasible node
cut, without enumerating cuts. Later, Pan et al. (Pan and Lin, 1998; Pan and Liu,
1998) developed an efficient algorithm for enumerating cuts that avoided the large
computational requirements of network flow. More recently, Ling et. al (Ling et al.,
2007) developed a novel scheme for implicitly encoding cuts using Binary Decision
Diagrams (BDD). This representation allowed for extraction of cuts when the value of
a cut could be computed recursively. However, the authors admit that BDD approach
is not very well suited for cut enumeration since non-cuts, which dominate cuts, are
also implicitly included and need to be pruned during enumeration.

171

Finding a computationally efficient way of encoding and enumerating cuts is of
fundamental importance to technology mapping. Recently Takata et al. (Takata and
Matsunaga, 2009) proposed a top-down scheme for the procedure of (Pan and Liu,
1998) and demonstrated speed-ups of 3x-8x for larger k = 8, 9. Unfortunately, since
the number of cuts of size at most k is of O(nk), cut enumeration algorithms inher-
ently suffer from poor scalability. To alleviate this problem, techniques for ranking
and pruning of cuts were first proposed by Cong et al. in (Cong et al., 1999). The
basic observation of this work is that for certain optimization objectives it is possible
to narrow the search down efficiently and extract depth-maximal or area-minimal
cuts directly. Similar ideas, referred to as priority cuts, were proposed by Mischenko
et al. in (Mishchenko et al., 2007), where appropriate seeding of the procedure from
(Pan and Liu, 1998) assured enumeration of only O(n2) priority cuts instead of O(nk)
cuts. These can be further sorted by quality, and pruned. An alternative approach
to pruning was proposed by Chatterjee et al. in (Chatterjee et al., 2006) where they
introduced hierarchical partitioning of the cut space based on a novel concept that is
similar to algebraic factorization. The authors showed that while complete factoriza-
tion may still suffer from poor scalability, partial factorization of the cut space could
yield good, practical solutions with very short runtimes. Takata (Takata and Mat-
sunaga, 2009) proposed a partial enumeration scheme that enumerates only a subset
called label cuts. The scheme improves scalability of cut enumeration and guarantees
to maintain the circuit’s depth, at the expense of small increase in the estimated
network area.

All the works identified above, and many others have demonstrated that struc-
tural technology mapping, the core of which involves cut enumeration, leads to far
superior solutions than the traditional graph/tree matching based algorithms. Cut
enumeration has also found uses in related applications such as re-synthesis through
rewriting (Mishchenko et al., 2009), application specific instruction set extension gen-
eration/optimization (Cong et al., 2006), hardware/software co-design (Peddersen
et al., 2005), model checking in verification (Case et al., 2008), and SAT problem
preprocessing for simplification (Een et al., 2007).

The use of a line dependency graph (LDG) derived from a DAG was proposed
by Kagaris et al. (Kagaris and Tragoudas, 1999b) to compute the maximum strong
cut in a circuit for the purpose of delay testing. Based on the observation that
an LDG is a transitively-oriented graph, hence a comparability graph (Golumbic,
2004), they provide an efficient and elegant algorithm that computes a maximum
independent set of the LDG using network flow. This set represents a maximum
strong cut in the corresponding DAG. While their approach generated interest in
the area of delay-testing, we will demonstrate that there is still greater opportunity
for further exploration and exploitation of the DAG/LDG duality for strong cut
enumeration.

A.3 Strong line cuts

We now describe the relation between DAGs and their corresponding line de-
pendency graphs (LDG). An LDG is an undirected graph derived from a DAG that
encodes the transitive dependencies between DAG edges (Kagaris and Tragoudas,
1999b). Each edge e of the DAG has a corresponding node v in the LDG. Two

172

nodes of an LDG are connected if and only if their corresponding lines in the DAG
are transitively dependent, i.e., there exists a path in the DAG from any source to
any sink that contains both edges. Consequently, if an edge in DAG is transitively
dependent on another edge, by definition the corresponding nodes in LDG will be
neighbors. Since LDGs are by definition transitively oriented, they are also compara-
bility graphs (Golumbic, 2004).

An independent set (IS) in a graph G(V,E) is a set S of vertices no two of which
share an edge. A maximal independent set (MIS) is an independent set which is not
a proper subset of any other independent set in the graph.

Lemma 2. (From (Kagaris and Tragoudas, 1999b)) A strong line cut of a DAG
forms a maximal independent set (MIS) in its corresponding LDG.

Fig. A.4 illustrates the relation between DAGs and LDGs established by Lemma
2, on an example that we will use throughout this chapter for illustration. The direct
consequence of this lemma is that enumerating all k-feasible strong line cuts in a DAG
is equivalent to enumerating all maximal independent sets of size ≤ k in the LDG.

A B C

ED

F

p q r
s

ut
p

ut

q

s

r

M

v v

(a) (b)

Figure A.4: a) a DAG with Strong Cuts Annotated. b) The Corresponding
Maximal Independent Sets in LDG.

A.3.1 Relationship between Unidirectional Node Cuts and Strong Line Cuts

In this section, we show the equivalence between unidirectional node cuts and
strong line cuts. We also establish the fact that if the cut space is restricted to
unidirectional node cuts then the quality of technology mapping for minimizing delay
remains same.

In the following we restrict the DAG to be a transitive fan-in cone of some gate
in a circuit, since in TM only transitive fan-in cones of gates/nodes are considered
for enumerating cuts. v refers to the root node whose transitive fan-in cone is being
considered.

173

Lemma 3. A strong line cut corresponds to a unidirectional set of edges crossing an
S − T partition.

Proof. For an arbitrary node u ∈ S, there exists a path u v. This is straightforward
from the definition of DAG considered here which is the transitive fan-in cone of the
node v. Assume that the S − T partition corresponding to a strong line cut Cv is
bidirectional, i.e., there exists a directed edge (p, q) such that p ∈ T and q ∈ S. Then
for some x ∈ S and y ∈ T , (x, y) ∈ Cv, there must exist a path x → y p. Since
edge (p, q) exists, there must exist a path x→ y p→ q. Since q ∈ S, the root node
v must be reachable from q through another edge in the cut Cv, say (r, s). Therefore
we have a complete path that looks like x → y p → q r → s v. Note that
edges (x, y) and (r, s) both belong to the cut. This is clearly a contradiction, since
no two lines in the cut Cv should lie on same path. Also (x, y) 6= (r, s) because that
would lead to a directed cycle x → y p → q x in the directed acyclic graph
under consideration.

Conversely, assume a unidirectional node cut in which all the edges are from S to
T , and suppose the corresponding line cut is not a strong line cut. Then there must
exist at least edges e1 = (x, y) and e2 = (u,w) in the line cut that are on the same
path to node v (the output). Assume e1 precedes e2 in the path. By definition of a
S − T partition, x ∈ S, y ∈ T , u ∈ S and w ∈ T . However, since y u, we have an
edge starting from T and ending in S, which contradicts the assumption that it is a
unidirectional node cut.

Lemma 3 confirms that a strong line cut must be unidirectional and a unidirec-
tional cut must be a strong line cut. Note that the cardinality of a strong line cut
and the unidirectional node cut can be different. The reason we convert back from a
strong line cut to a node cut (which is unidirectional) is that eventually a node cut
is what is mapped onto a cell. A node cut form of a line cut would always require
smaller library cell whether mapping is done using standard Boolean functions or
threshold functions.

Next we show that restricting node cuts to unidirectional node cuts will not in-
crease the critical path delay when that is the objective function being minimized by
TM. Note that in TM, the delay of path is the sum of the delays of gates in the path.
We show that the set of paths to the output node v in a bidirectional cut is the same
as those in the corresponding unidirectional cut.

Figure A.5(a) shows a classification of the edges in a bidirectional cut. T = X∪Y ,
where X is the set of logic cones (node and all nodes in its fanin cone) whose output
has a directed edge to some node in S, and Y is the set of nodes with no paths to S.
Note v ∈ Y . TM would replicate X in S and then replace T with some appropriate
cell in the library. This is depicted in Figure A.5(b). Four types of edges can be
identified in the S−T partition: (1) E1 are edges from S to X, (2) E2 are edges from
X to S, (3) E3 are edges from S to Y , and (4) E4 are edges from X to Y .

Now a path from input node in S to the output node v ∈ T can be one three
types:

1. S© E1=⇒ X
E4=⇒ Y =⇒ v.

2. S© E2=⇒ S
E3=⇒ Y =⇒ v.

174

3. S© E3=⇒ Y =⇒ v.

Note that every one of the above paths (sequence of nodes) in the graph of Fig-
ure A.5(a) also exists in the graph shown in Figure A.5(b). Now consider the cor-
responding unidirectional cut shown in Figure A.5(c). Every path that exists in
Figure A.5(a) also exists in Figure A.5(c), and visa versa. This shows that there is
no disadvantage to retaining only unidirectional cuts.

A.4 Cut enumeration

Enumerating MISs is a key step in many computational graph theory prob-
lems (Eppstein, 2001b; Byskov, 2003, 2004). In TM, because there is a fixed library
of functions, MIS enumeration needs to be restricted to sets of size ≤ k. Without any
restrictions, the number of MISs in arbitrary graphs grows exponentially in the size
of the graph (Byskov, 2004). However, in TM, the size k of the MIS is bounded above
by some constant, and independent of n, which is the size of the graph. Therefore the
number of MISs of size ≤ k is ≤ nk. A brute force approach in which all subsets of
size ≤ k are examined and those that are not an MIS are discarded, is not practical
for even realistic values of n and k. Existing algorithms exploit specific properties of
small MISs to facilitate enumeration (Eppstein, 2001b). We now describe a method
that can significantly speedup existing MIS enumeration algorithms by pruning away
many MISs that will not be part of the final solution.

A.4.1 MIS Pruning

The LDG of a DAG encodes MISs, many of which have sizes > k. The basic idea
in the pruning algorithm is to (efficiently) transform an LDG into a new, smaller, and
denser graph G′ which contains all the MISs of size ≤ k of the original LDG, and as
few other (parasitic) MISs as possible. The objective is to construct a transforma-
tion which is computationally efficient and would significantly reduce the runtime of
enumeration.

The graph G′ to be constructed must satisfy the following conditions: every vertex
v of G′ as well as every disconnected pair of vertices in G′ must independently be a
part of some MIS of size ≤ k of the original graph G. This condition translates into
two steps of the pruning algorithm. In the first step, for each vertex v we attempt to
determine the size of the smallest MIS to which v belongs. If this MIS is of size ≤ k
then v is included in G′. The second step decides if any two disconnected vertices in
G may safely share an edge in G′, implying that they will not be part of any MIS.
Again for each pair of disconnected vertices (u, v) we attempt to determine the size
of the smallest MIS containing both of the vertices. If such MIS is of size > k then an
edge (u, v) is added to G′. This is the key step in the of following pruning algorithm.

There is no known polynomial procedure to compute the size of the smallest MIS
that contains a given vertex or a pair of vertices for comparability graphs (Corneil
and Perl, 1984). Hence we approximate the size of the minimum MIS containing a
vertex v or a pair of vertices (u, v) of a given LDG by exploiting the duality between
MISs in LDGs and strong line cuts in DAGs. The minimum MIS in an LDG is the
minimum strong cut in the DAG. We use this fact to approximate the minimum MIS
size in an LDG by means of a flow computation in its corresponding DAG.

175

Input: A DAG D(VN , EN), An LDG G = (V,E) and an integer k
Output: Graph G′ = (V ′, E ′) characterized above

dl = Φ, el = Φ;
for vertex v in G do

λ = Min-MIS(D,G, v);
if λ > k then

dl = dl
⋃

v;
end

end
for disconnected pair (u, v) in G such that u /∈ dl and v /∈ dl do

λ = Min-MIS(D,G, u, v);
if λ > k then

el = el
⋃

(u, v);
end

end
E ′ = E

⋃
el;

V ′ = V − dl;
return G′(V ′, E ′);

Algorithm 5: Algorithm to prune MISs of an LDG

It is well known that a minimum s-t cut (min-cut) is equivalent to the maximum
flow the sink t receives from the source s (Cormen et al., 2001; Ford and Fulkerson,
1962). The size of a cut is a sum of capacities of edges involved in it. If unit edge
capacities are assigned, then the size of a cut is equivalent to number of edges. We
note that an edge with a capacity of∞ can never be part of a finite size cut. The size
of the minimum MIS in an LDG containing a vertex v or a pair of vertices (u, v) is
approximated by computing the min-cut in the DAG with unit edge capacities. The
procedure (Alg. 6) assigns a capacity of ∞ to the dependent lines of the given line
(e.g. corresponding to node v) and a capacity of 1 to all other lines. The capacities
of edges attached to s and t are always ∞. This is because a min-cut must consist of
circuit lines only. Finally it returns the size of the minimum s-t cut of the network
(λ).

Input: A DAG D(VN , EN), LDG G and a line v
Output: Approximate size of minimum MIS (strong cut) containing v

for u in G do
capacity[u] = 1;

end
for neighbor w of v in G do

capacity[w] =∞;
end
return Min-cut(D,capacity);

Algorithm 6: Min-MIS procedure for single edge in DAG

176

Lemma 4. Let Smin be the minimum strong cut containing line v. Let λ be the size
of a min-cut of the network with capacities modified based on line v. Then λ ≤ |Smin|.

Proof. The Min-MIS procedure never assigns a capacity of ∞ to any line l ∈ Smin.
Thus |Smin| is finite. It immediately follows that Smin is an arbitrary s-t cut, and
cannot be smaller than the min-cut of the network.

Lemma 4 states that the size of the minimum strong cut is guaranteed to be
greater than or equal to the size of a min-cut. Hence if the result of Min-MIS is > k
then the size of a minimum strong cut is also > k. Consequently, the vertex in G
for which Min-MIS was computed to be > k can be safely discarded from G′, or an
unconnected pair of vertices for which Min-MIS was computed can be connected in
G′.

As an example, consider the LDG in Fig. A.4(b), and suppose we wish to check
whether vertex p belongs to an MIS of size ≤ 2. This is equivalent to determining
if line p belongs to minimum strong cut of size at most 2 in the DAG. We assign
capacities to the edges, as shown in Fig. A.6(a). Line p is assigned a capacity of 1
and its dependent lines, t and v, are assigned a capacity of ∞. After this, the s-t
minimum cut size (λ) is determined. In this example, it is lines p, q and u, and its
size is 3 — i.e. λ = 3.

Theorem 5. Let S be an MIS in G such that |S| ≤ k. Then S is also an MIS in G′.

Proof. From Lemma 4 every vertex of S must be present in G′ and that no edge was
added between any two of its vertices. Thus S is an independent set in G′. Assuming
S is not a MIS in G′, there exists an independent set S ′ in G′ such that S ⊂ S ′. It
follows that S ′ is also an independent set in G contradicting the fact that S is an MIS
in G.

Lemma 6. Pruning algorithm runs in O(n3).

Proof. Let n be the number of nodes, m be the number of edges in DAG. The second
for loop in pruning algorithm runs in O(m2) and dominates the overall complexity.
Determining the min-cut takes O(km) time (Cormen et al., 2001). Since k ≤ n and is
independent of n, the pruning has fixed complexity of O(m3). We know that m ≤ ∆n
where ∆ is maximum degree found in the DAG. For most of the circuits with limited
fanin (and fanout) capacities ∆ can be regarded as a small constant independent of
n. Hence the time complexity of the pruning procedure is O(n3).

As a result of the pruning transformation we perform MIS enumeration on G′

instead of G. Note that not all MISs in G′ are of size k in G. However, our ex-
periments demonstrate that using G′ instead of G to enumerate MISs significantly
reduces the enumeration time. In fact, the enumeration runtimes we observe in our
experiments are practical for all of the evaluated benchmark circuits, suggesting that
the approximation of a Min-MIS used in pruning must be quite accurate.

177

A.4.2 Enumerating MISs

As stated earlier, there are many known MIS enumeration techniques in compu-
tational graph theory. In fact, the choice of enumeration algorithm is independent
of MISs pruning. In our experiments, we used a recursive procedure that is basically
a simplified form of the algorithm presented in (Byskov, 2003). The idea is to re-
cursively enumerate MISs that contain a specific node and then those that do not
contain that same node.

Note, that due to the pruning transformation being approximate, G′ may still
contain some MISs of size > k. Since we are interested only in maximal independent
sets of size ≤ k, we simply discard, on the fly, the MISs whose size is greater than k.

Unfortunately, the number of MISs of a graph increases exponentially as a function
of its size (Moon and Moser, 1965). However in practice we found that while running it
on a pruned graph G′, enumeration time is dominated by pruning time for sufficiently
small k. Hence, even the simple recursive algorithm that we used is still efficient. More
sophisticated approaches to enumerate MISs of size ≤ k (Byskov, 2003; Eppstein,
2001b) could be used to improve runtime for with values of k. Their application on
the transformed graph may further improve total runtimes as well as scalability of
the solution.

A.4.3 Results

The procedures described in this chapter were implemented in C++ and run on
a 2GHz PC with 2 GB of RAM. The results of these runs are summarized in Table
A.1. We ran the simple cut enumeration algorithm after pruning the MISs, and
enumerated all cuts in the ISCAS benchmark circuits. The starting point was an
AND-INVERTER Graph (AIG) obtained from (Mishchenko et al., 2007). Note that
MIS enumeration is not possible with any of the existing MIS enumeration schemes.
In fact, even a graph with as few as a hundred nodes would not be practical.

The proposed pruning procedure makes it possible to exhaustively enumerate large
numbers of strong line cuts in reasonable time. We also evaluated the combined effect
of constraining the cone size and increasing the value of k. The results demonstrate
that for sufficiently small k, line cut enumeration is dominated by our pruning trans-
formation and as such is practically polynomial. For larger values of k however the
procedure could however benefit from a more efficient MIS enumeration procedures.

This chapter presented a novel cut enumeration framework that exploits dual-
ity between enumerable entities in DAGs and LDGs. Apart from resource efficient
computational procedure, it also introduces into the area of technology mapping, the
concept of k-feasible strong line cuts (or unidirectional cuts) that are distinct from
conventional node cuts. The advantages are two-fold. On one hand they are enu-
merable with low per-unit computational effort. On the other hand they potentially
open up a new space available to be explored by the technology mapper without de-
grading the quality of the mapping. Line cuts provide choices not available to node
cut based technology mappers. More importantly line cuts inherently mitigate some
of the structural bias of node cuts and unlike node cuts they guarantee a mappable
cut of a circuit.

178

TS

Logic cones
with paths to S

Nodes with no
paths to S

X

Y

E1

E2

E3

E4

TS

Logic cones
with paths to S

Nodes with no
paths to S

X

Y

E1

E3

E4

*

X
*

E1

E2 v

TS

Nodes with no
paths to S

Y

E3

X
*

E1

E2

v

E4

(a)

(b)

(c)

Figure A.5: a) Classification of Edges in a Bidirectional Cut b) Replication after
TM, (c) Classification of Edges in Corresponding Unidirectional Cut.

179

A B C

ED

F

G

S

1

v

t u

q
r s

u

T

p

t

v

∞ ∞ ∞

∞

1
1

1

1∞

(a) (b)

∞

Figure A.6: a) Formation of s− t Boolean Network for Determination of a Cut
Containing Line p. b) LDG from Fig. A.4 Pruned for k ≤ 2.

180

T
a
b
le

A
.1

:
R

u
n
n
in

g
T

im
es

fo
r

E
n
u
m

er
at

io
n

K
=

6,
co

n
e

si
ze

=
n

o
li

m
it

K
=

6
,

co
n

e
si

ze
=

3
0
0

K
=

1
0
,

co
n

e
si

ze
=

1
0
0

ci
rc

u
it

#
in

p
u

ts
#

n
o
d

es
#

cu
ts

p
ru

n
in

g
en

u
m

.
#

cu
ts

p
ru

n
in

g
en

u
m

.
#

cu
ts

p
ru

n
in

g
en

u
m

.
af

te
r

p
ru

n
in

g
ti

m
e

(s
)

ti
m

e
(s

)
a
ft

er
p

ru
n

in
g

ti
m

e
(s

)
ti

m
e

(s
)

a
ft

er
p

ru
n

in
g

ti
m

e
(s

)
ti

m
e

(s
)

c4
32

36
35

6
43

1
7

0
.9

3
0
.0

2
4
2
5
3

0
.9

8
0
.0

2
3
8
2
,6

9
7

2
.2

2
1
.6

0
c1

35
5

41
11

33
22

8,
95

0
4
9
.0

4
3
.2

2
1
2
9
,9

9
4

1
5

2
.5

2
6
,1

9
4
,4

5
8

2
9
.2

5
2
8
6
.0

6
c1

90
8

33
17

93
9,

51
9,

18
2

4
8
.1

2
9
.4

3
2
,0

9
9
,3

7
5

1
8
.4

9
5
.0

2
1
,3

1
1
,4

4
2
,7

5
9

3
6
.4

6
6
5
1
0
.5

c6
28

8
32

48
64

1,
49

4,
63

6
6
0
8
5
.0

6
1
9
0
.8

6
7
3
7
,5

8
7

4
8
0
.8

3
6
3
.9

6
1
5
0
,9

2
1
,8

5
0

3
7
9
.7

5
4
5
7
0
.2

6
c7

55
2

20
7

72
33

5,
94

9,
01

6
1
8
2
.9

6
1
7
.4

3
2
,5

2
1
,0

3
9

5
5
.4

8
1
0
.7

5
3
,1

1
3
,2

6
8
,9

9
1

1
9
3
.5

9
7
0
4
6
.6

8

181

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	BACKGROUND
	Necessity for Low Power
	Dynamic Power Reduction Methods
	Static Power Reduction Methods
	Threshold Logic: A New Approach
	Threshold Logic Gates
	Synthesis and Mapping using Threshold Logic
	Threshold Logic in Field Programmable Environment

	THRESHOLD LOGIC FLIPFLOP
	Architecture
	Asynchronous Preset, Clear and Scan implementations
	Threshold Functions Realized by a PNAND
	PNAND Delay Characteristics
	Robustness
	Comparison with TLL

	PNAND-1 (KVFF) Design
	Scan & Asynchronous Preset and Clear Architecture

	TECHNOLOGY MAPPING WITH THRESHOLD GATES
	PNAND vs Conventional Circuits
	BDD Based Decomposition using Cut Enumeration
	Enumeration of Cuts
	Threshold Decomposition
	Necessary Conditions
	Threshold Decomposition Heuristic

	ILP Based Decomposition
	0-1 ILP formulation
	Speeding up the 0-1 ILP
	Unate Function Enumeration
	Hybridization Procedure

	Experimental Results
	Methodology
	Circuits
	Results
	Advantages due to KVFF

	FIELD PROGRAMMABLE THRESHOLD GATE ARRAY
	Overview
	PNAND as a Majority Gate
	FPTLA Architecture
	Synthesis of Nanopipelined Threshold Networks
	Area Minimization Algorithm
	Buffer Insertion

	Robustness and Temperature Monotonicity
	Temperature Monotonicity

	Experimental Results
	Parameters for VPR
	Circuit Comparison Results
	Leakage Power and Glitching
	Circuit Yield

	NEW CLOCK SKEWING STRATEGY
	Introduction
	Overview of Clock Skewing
	KVFF with Completion Detection
	Clock Skewing using KVFF with Completion Detection

	Optimal Clock Assignment
	Notations
	ILP Formulation

	Experimental Results
	Duty Cycle Considerations
	Elimination of Hold Violations
	Power-on Initialization

	FUTURE WORK
	Retiming
	Retiming for Minimum Clock Period
	Retiming for Minimum Area

	Novel Clock Distribution
	Asynchronous Circuit Design
	Dual Rail Circuits
	Comparison with CMOS based Asynchronous Implementations
	Relaxing Delay Insensitivity
	Comparison with Null Convention Logic
	Implementing DI Primitive using PNANDs
	Implementing DI Primitive using NCL Majorities

	Novel Scanning Mechanism
	Flipflop Architecture
	Proposed Scan Architecture
	Scan Chain Operation
	Advantages of the Proposed Scan Mechanism
	Flipflop Implementation

	REFERENCES
	CUT ENUMERATION
	Introduction
	Related Work
	Strong line cuts
	Relationship between Unidirectional Node Cuts and Strong Line Cuts

	Cut enumeration
	MIS Pruning
	Enumerating MISs
	Results

