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HIGH SPEED CLOCK GLITCHING 
 
 
 
 
 

 

SANTOSH DESIRAJU 
 
 
 
 

 

ABSTRACT 
 

 

In recent times, hardware security has drawn lot of interest in the research community. 

With physical proximity to the target devices, various fault injection hardware attack 

methods have been proposed and tested to alter their functionality and trigger behavior not 

intended by the design. There are various types of faults that can be injected depending 

on the parameters being used and the level at which the device is tampered with. The 

literature describes various fault models to inject faults in clock of the target but there 

are no publications on overclocking circuits for fault injection. The proposed method 

bridges this gap by conducting high-speed clock fault injection on latest high-speed 

micro-controller units where the target device is overclocked for a short duration in the 

range of 4-1000 ns. 

This thesis proposes a method of generating a high-speed clock and driving the 

target device using the same clock. The properties of the target devices for performing 

experiments in this research are: Externally accessible clock input line and GPIO line. 

The proposed method is to develop a high-speed clock using custom bit-stream sent to 

FPGA and subsequently using external analog circuitry to generate a clock-glitch which 

can inject fault on the target micro-controller. Communication coupled with glitching 

allows us to check the target’s response, which can result in information disclosure. 

This is a form of non-invasive and effective hardware attack. The required back- 

ground, methodology and experimental setup required to implement high-speed clock 

glitching has been discussed in this thesis. The impact of different overclock frequencies 

used in clock fault injection is explored. The preliminary results have been discussed and
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we show that even high-speed micro-controller units should consider countermeasures 

against clock fault injection. 

Influencing the execution of Tiva C Launchpad and STM32F4 micro-controller units 

has been shown in this thesis. The thesis details the method used for the testing and 

the parameters used in the process are included. The implementation and design of the 

clock-glitch prototype system on the FPGA-clock jitter cleaner platform is discussed in 

this research. Glitching the execution of high-frequency targets is the goal of this 

project.
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         CHAPTER I 
 

 
 

INTRODUCTION 
 
 
 
 
 

 
In this chapter, the scope of this research is discussed in section 1.1. Further, the 

motivation and the research question has been established in sections 1.2 and 1.3, 

respectively. Section 1.4 describes the proposed research work of this thesis. Finally, the 

organization of the thesis is outlined in section 1.5. 

 

 

1.1  Scope 
 

 
 
 
 

For computing devices to be secure, both the hardware and software has to be 

secure.  Since software builds up on hardware, ensuring and verifying that hardware 

does not have any weaknesses is of utmost importance in present day scenarios. The 

different categories involved in security research include injection or attack, detection, 

and prevention [33]. Further classifying the attack area of research, there are two main 

sub-categories: side-channel attacks, and, more important to this study, fault injection 

attacks. Fault injection can be performed in several ways, but there are two main types 

of fault injection. The types of attack are software and hardware fault injection [30]. 

Hardware fault injection is an expensive way of determining the robustness of the 

system. This is because hardware attacks require additional equipment to generate or 

replicate the source of the attack. Attackers interested in hardware fault injection utilize 

various intrinsic parameters of the target device and make changes in them via internal
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modification, for example voltage and clock, or via external perturbation, such as laser 

fault injection to test the device’s response. 

This thesis introduces a novel way of implementing high-speed clock glitches which 

is an important type of fault injection. This type of fault injection is a non-invasive type 

of attack in the purview that the attack does not attempt to alter the internal structure of 

the chip. The research conducted during this thesis implements a high-speed clock fault 

injection tool. This fault injection tool is designed to accommodate a high-degree of 

customization to cater to the required setting and target at hand. The underlying principle 

is overclock mode, which temporarily switches to a higher frequency. In other words, 

glitches were generated through a method of overclocking to a higher frequency and 

returning the clock to the normal frequency after a short duration. Clock glitch parameters 

have been varied to observe the impact on the target’s execution. By controlling these 

parameters, the observable effects on the output of the targets has been shown. 

The scope of the research is limited to overclocking the base clock for a short duration. 

This requires switching to a high frequency clock for a duration in the range of 4-1000ns 

and then returning to normal base clock frequency operation. The base clock and the 

high frequency clock are provided via external source to the target device. The focus of 

the research is on the parameters of the perturbation which causes impact on the target. 

 

 
 
 
 

1.2  Motivation 
 

 

With the advent of micro-controllers and embedded processors in consumer electron- 

ics, the ability to test them to meet certain standards of security is of prime importance. 

Various types of attacks have to be tried and tested which will indirectly result in the 

development of secure hardware in the future. 

The utilization of a high-speed clock in digital electronics has become more preva- 

lent in recent times.  Also, overclocking these devices to squeeze out the maximum 

performance has also been existent.  But, to make any feasible impact on this clock 

line using external circuitry requires generating a high-speed clock and making minor
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changes in the default parameters at which the system runs. Possible ways have been 

investigated for creating a setup which can deliver a configurable clock frequency to 

match the requirement of the target system. The research related to this thesis has been 

carried out during my internship at Riscure North America R&D laboratory. The main 

interest in this research is to extend an internal, unpublished project previously performed 

at Riscure North America R&D laboratory which successfully overclocked using custom 

FPGA bit-streams. Existing research on hardware attacks also do not provide an in-depth 

explanation on the setup and equipment used to present their results. Existing results 

depict the outcomes of clock glitching on micro-controllers or smart cards and other 

similar hardware but not on very high speed clock glitching. This thesis bridges this gap 

by describing the experimental setup involved in creating high-speed clock glitches. 

 

 

1.3  Research Question 
 

 

The challenge posed by this research is to find a method to introduce faults to the 

system while maintaining the original functionality it was designed for without making 

any observable modifications to the generated results.  The main research goal is to 

show that high speed clock glitches, greater than 150 MHz, are feasible. Ideally, the 

aim is to observe clock fault injection on a cryptographic algorithm or simple counter 

algorithm running on latest micro-controllers.  The selected cryptographic algorithm 

for the experiments performed in this thesis is RSA-CRT. Another goal of this work is 

to develop the clock fault injection setup which has the capability to overclock up to a 

~1GHz. This goal has been set keeping in mind the present-day high-speed electronic 

devices which might have built-in security features and also can be the subject for 

clock fault injection. The time duration for this overclock is in the range of 4-1000ns. 

Chip manufacturers usually have economic trade-offs during design stage for adding 

either security features or other latest features. The parameters and configuration of the 

system at which the correct observation mentioned above can be detected restates the 

susceptibility of the target. 
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1.4  Proposed Work 
 

 

This thesis proposes a high-speed clock glitch fault injection technique, which injects 

a clock glitch in the clock line of a target system/device. This technique utilizes mainly 

the external clock input of the target device.  In this thesis, the required background, 

methodology and setup to perform clock glitching has been described. Implementation 

of a Clock Fault Injection tool requires integration with a software package that can 

monitor the output and log results. The impact of different ranges of clock frequencies 

between which the switch takes place to attack the target, has been observed. Micro- 

controller boards which run on a clock frequency higher than 100MHz were selected and 

programmed to implement cryptographic operations: RSA-CRT. These targets have been 

selected in such a way that the clock lines can be externally supplied. This feature would 

enable the target board to be customized to work in bypass mode, where the internal 

Phase Locked Loop circuitry of the micro-controller clock tree can be bypassed. 

This thesis also illustrates a prototype system to implement the glitch on the target. 

The glitch can be generated by using either on-chip or external measures. Evaluation 

of the effective method of generation of a high-frequency clock would be the ultimate 

task.  A novel idea for the implementation of high-speed clocks is by using a clock 

multiplier which is configurable in real-time.  Firstly, a prototype which implements 

the reconfigurable high-speed clock generation has been designed. The steps involved 

are: generating a clock from the FPGA at the required voltage level which can be set 

as input for the clock multiplier.  The clock multiplier then produced multiple clock 

outputs at the required frequency. In this thesis, fault injection experiments have been 

performed on TM4C123GH6PM micro-controller manufactured by Texas Instruments 

and STM32F417IG micro-controller manufactured by STMicroelectronics. 

 

 

1.5  Organization 
 

 

The remaining chapters of the thesis are structured as follows. Chapter 2 provides 

the required background of the existing methodologies and tools involved in hardware



5 

 

 

attacks. Chapter 3 is the literature review of related works in the fault injection, clock 

glitching, and hardware security research. Chapter 4 details the proposed high speed 

clock glitching technique by explaining about the equipment used and analyzes the 

operation details of the clock glitcher module system on the Tiva C Series Launchpad 

(TM4C MCU) and Core 417I Development Board (STM32F MCU) micro-controllers. 

Chapter 5 evaluates and elaborates on the performance of the glitching prototype system 

on both targets. Finally, Chapter 6 gives a summary of the thesis and provides a base 

for potential future work using high-speed clock glitching. Samples of the applications 

running on the targets and other relevant observations made during experimentation are 

given in the Appendix Section. 



6 

 

 

 

 
 
 
 
 
 
 

           CHAPTER II 
 

 
 

BACKGROUND OF STUDY 
 
 
 
 
 

 
The first hardware attack was carried out in the 1970s [15]. The scientific community 

identified that hardware attacks could be used as a method of maliciously influencing 

a target system during the late 1990s.   In devices which implement cryptographic 

algorithms, injecting variations in parameters like time duration, power consumption, 

electromagnetic radiation etc., secret data is more likely to be leaked.  Later on with 

further analysis, it became well understood that faults are induced in a device by unusual 

conditions of the close, physical environment of the cryptographic implementation. 

This chapter presents the required background information about hardware attacks. A 

brief description of types of hardware attacks has been provided in section 2.1. Types of 

fault injection attacks is introduced in section 2.2. Section 2.3 focuses on clock glitching. 

Section 2.4 describes an example condition illustrating the theory in section 2.3. 

 

 
 
 
 

2.1  General description of hardware attack 
 

 

In this section classification of hardware attacks have been discussed. Figure 2.1 

shows the basic classification of hardware attacks. Sensitive information like pin codes in 

banking cards, ATM(debit cards), credit cards, subscriber identity in SIM-cards etc. are 

stored in secure micro-controllers [46]. Attackers can subvert these secure mechanisms 

in multiple ways. These attacks are generally categorized as active or passive. Active
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attacks are those in which the attacker alters the normal functionality of the target device. 

An attacker can inject faults into the device and obtain results which carry sensitive 

information. Whereas passive attacks work under normal conditions trying to find out 

the sensitive information. Passive attacks do not involve device tampering. Observing 

certain properties which the device exhibits can lead to results which have to be analyzed 

to get the required information. 

 
 

Figure 2.1: Classification of hardware attacks [37] 
 

 
 

By these above mentioned types of hardware attacks and also from the classification 

in the Figure 2.1, security measures and sensitive information are prone to threats such 

as the following [9], [39]: 

 

• Fault Injection attacks – Generating malfunction in the target device to cause error 

or break the security of the device. The main types of fault injection attacks are 

described in 2.2. The main theme of the research conducted in this thesis is this 

category of hardware attacks [14]. 

 

• Side Channel attacks/Eavesdropping – Side-channel information which includes 

time duration for certain operations, power consumed during execution of the 

program, electromagnetic radiation properties are observed and specific attacks 

are designed which manipulate these properties [17]. 

 

• Reverse Engineering - Most of the products which are available in the market 

are designed by making use of components provided with documentation by 

manufacturers. Hence, attackers can design specific methods to reach their goal,
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which can be either security-breach or for research-purposes. The main methods 

involved are analysis of hardware used and reconstruction. Specific components 

for each product, which do not include documentation are not usually manufactured 

and made available in the markets since it involves huge costs [36]. 

 

• Micro probing – These include Focused Ion Beam (FIB) attacks to gain in-

depth perception of the complex interconnections on the chip [29]. Invasive 

attacks start with the removal of the chip package.  Once the chip is opened, it 

is possible to perform probing or modification attacks. Accessing the chip 

surface directly results in obtaining information regarding the software used which 

leads to devising mechanisms to tamper with inferred security systems. These 

attacks can be repeated several times with the basic setup system which can be 

procured once and it can be configured to suit the target platform. 

 

 
 
 
 
 

2.2  Types of Fault Injection attacks 
 

 

There are various types of Fault based Injection attacks depending on the type of 

parameter being used in the attack or the level at which the device is tampered. Faults 

which are induced into the target devices help in maliciously exploiting the error which 

has been found or on the other hand to test the device dependability. Present day devices 

are expected to function normally even under the presence of faults or even extreme 

conditions.  Most manufacturers do not provide the public with the measures which 

have been used for the design of the device which the consumers end up using. Hence, 

subjecting these devices to fault injection has been the main direction of thought to 

understand the device rigidness. 

Primarily, there are two different types of faults: transient faults and intermittent 

faults [50]. The authors of [50] have compared the effects of these two types of faults. 

The occurrence of transient faults is comparatively more frequent in present day micro- 

processors. Fault injection attacks manipulate transient faults in the chips during execu-
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tion of various processes. 
 

In integrated circuit (IC) electronics, faults are actuated by fault injection.  Fault 

injection trigger mechanisms include glitches on the clock signal, voltage and photo-elec- 

tric effects which are caused by lasers or white light. Generally fault injection by laser is 

more expensive compared to clock signal or voltage glitch. Another aspect where these 

methods vary is the area they affect. Clock signal or voltage glitch affects the entire chip, 

whereas laser only allows stimulating specific regions of a chip [11]. 

Fault Injection attacks can further be classified as non-invasive, semi-invasive or 

fully invasive [14] which are briefly explained in this section: 

 

• Non-invasive attacks: These types of attacks involve bus snooping and pin-probing. 

The equipment required to perform these types of attacks requires tools such as 

oscilloscopes and probing stations. Pertinent knowledge relating both hardware 

and software stack is required in this case.  As the attacks can make the CPU 

execute different instructions than what it is intended for. These types of attacks 

can sometimes be subverted by the usage of hardware sensors and secure coding 

mechanisms [2]. 

 

• Invasive attacks: These types of attacks involve depackaging of chip and may 

sometimes include removing of the passivation layer [16]. This will subsequently 

lead to observing the internal circuitry by micro-probing and eventually plant 

changes in them.  The equipment required to perform these types of attacks is 

expensive and requires formal training.  The targets are usually custom-made 

ASICs. 

 

• Semi-invasive attacks: This is the bridge between the two types of attacks discussed 

above. It involves decapsulation of the chip. This step provides access to the surface 

of the chip. Removal of the passivation layer as mentioned in the previous method 

is not required. The best example for this type of attack is Optical fault injection. 

Several observations have been made by the authors of [41] on the impact of fault 

injection via various parameters. 
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The following is a list of semi-invasive attacks which are more valuable in generating 

research potential as the target does not get affected during these attacks [41]. The most 

common types of semi-invasive fault injection attack methods are listed below: 

 

• Clock glitching: Here, fault is injected by sudden increase in the clock frequency. 

The device clock is accelerated by one or multiple pulses for a short period of 

time in the external clock provided to the target.  This introduces fault in the 

execution of instructions.  This may introduce instability to the system and the 

current instruction may not be executed or executed incorrectly [34]. 

 

• Voltage glitching: In this method, faults are injected by sudden changes in the 

supply voltage [21]. This might result in incorrect values to be read from memory 

or program flow might get damaged. Standard power is required for reading and 

writing values to memory. Fluctuations in power during these operations lead to 

wrong values being read or written. 

 

• Optical glitching: A light beam is used to inject fault into hardware devices. It is 

also known as Laser fault injection. It is possible to switch the state of transistors 

as they are inherently sensitive to light by exposing them to an optical pulse. A 

focused laser beam can be used to accurately target specific regions of the chip [46]. 

Radiation fault injection is a type of optical glitching.  Different type of light 

beams like X-Rays, Gamma Rays Visible/UV/IR light etc. are used to inject faults 

targeting a minor region of the devices. 

 

• EM glitching: Electromagnetic Fault Injection is based on introducing fault into 

the target with a magnetic flux [49]. This type of attack is difficult to detect during 

run-time. The equipment cost for the setup used here is comparatively lower than 

optical fault injection. 

 

As shown in Figure2.2, observations have been made categorically between Semi- 

invasive and Non-invasive attacks. Further research is on the way towards implementing 

a combination of different types of attack methods. Lack of control during the execution 

of these fault injections using certain parameters other than clock has been observed.
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Clock glitching has been preferred due to ease of control and temporary effect on the 

target device [46]. Finally, as manufacturers are aware of fault injection threats to secure 

devices, various countermeasures are implemented to mitigate the risk posed by them. 

 

 

2.3  Clock Glitching 
 

 

Modern microprocessor and ICs are made up of millions of transistors which function 

synchronously or asynchronously and change states based on every clock cycle. Fault 

Injection using clock parameter is the process of actively attacking or influencing a 

device’s clock to make it malfunction or to generate results which deviate from the 

normal. So, during this attack process few or more gates switch incorrectly and also 

might enter into an unknown state. The primary goal of clock glitching is to corrupt the 

system in order to bypass the security measures and access secret information. 

 

 
Individual components on a micro-controller system which include CPU, RAM, 

GPIO pins and other peripherals are all synchronized to a global clock line. A clock 

glitch is a sudden rise in the clock frequency for a short period as shown in Figure 2.3. 

Typically, the maximum frequency is set by the manufacturer depending on the properties 

of individual components such as transistor gate length and internal clock distribution. 

At a given voltage and temperature: maximum clock frequency is directly proportional 

to maximum delay among its internal elements. The maximum frequency given by the 

manufacturer is the frequency it takes to reach all registers. A reliable frequency assures 

that the clock signal goes to every component properly. If there is any sudden glitch in 

this frequency, the system becomes unstable and operates abnormally. 

Forcing the IC to work beyond its design parameters for a particular period would 

prevent instructions from executing correctly in that period. Once the clock frequency is 

back to normal, the execution of further instructions continues. The author in [20] talks 

about integrated circuits like micro-controllers where pipe-lining is used. When attackers 

want to attack a particular instruction, glitching becomes difficult. This is because when 

pipeline is used, the CPU can decode the next instruction while current instruction is still
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Figure 2.2: Attack classification summary [41] 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 

Figure 2.3: General Idea
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in execution process increasing the system performance, saving time for fetching the 

next instruction. 

The efficiency of the glitching device, which is measured by the amount of successful 

faults injected is of prime importance, as any delay during the fault injection procedure 

could result in missing the instruction and attacking either the previous or the next one. 

Moreover, whether having a pipeline in the IC architecture exists is a disadvantage in the 

purview of the attacker. The basic theme behind high speed clock-glitching is to insert 

faults in the target device using short high-speed clock in the regular clock line. 

 

 

2.4  Example 
 

 
 
 
 

 
 

 

Figure 2.4: Types of clock glitching 
 

 
 

An example of clock glitching is discussed in this section. Figure 2.4 represents 

the example of overclocking and duty cycle change which are used as methods to inject 

faults. In the Figure 2.4, standard clock pulse at which the system is manufactured for 

is displayed. If this clock frequency is not tampered with, execution of instructions is 

observed according to the program for which it was built or developed. There are also
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other parameters which can be tampered with to achieve similar results. The two types 

which are displayed in the Figure are overclocking and duty-cycle change. In the case of 

short overclock i.e., glitched clock frequency input produces multiple rising edges in 

a single normal clock cycle, it results in irregular behavior of the device. During this 

overclocked duration, the instruction will not execute correctly due to incorrect read from 

memory. After this period, the next instructions would be executed. Similar outcome 

would be observed during the duty-cycle change.  Another observation could be the 

program counter increasing but write-back of the instruction does not occur. Another 

property of clock which can be varied is the phase-shift.  Phase-shift, like duty cycle  

can be modified to introduce temporary faults. 
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                              CHAPTER III 
 

 
 

LITERATURE REVIEW 
 
 
 
 
 

 
Hardware Security research involving both attack and the prevention of hardware 

attacks is currently a growing research area. As the latest technologies involve the use 

of cutting-edge hardware design, the research in this field helps in developing products 

which are secure against major fault attacks. Firstly, various fault injection mechanisms 

have been tried & classified to generate fault models [8]. This provided insight, allowing 

one to assess the effect of the attacks on devices. Literature review of research in the 

field of clock glitch attacks shows that secure micro-controllers and digital electronics 

like FPGA’s have been used as the target for experimentation [34]. Later on, experiments 

were streamlined to generate results for each individual glitching mechanism. Research 

in the domain of high speed clock glitching is in a nascent stage. 

In this chapter, existing works in fault injection techniques have been described in 

section 3.1, works related to high-frequency clock generation and clock glitching have 

been discussed in section 3.2. Finally, cryptographic algorithm response to fault injection 

and countermeasures to circumvent the fault injection attacks have been reviewed in 

section 3.3. 

 

 

3.1  Works in Fault Injection 
 

 

The authors of [46] give a good introduction about fault injection in general. Further, 

the authors of [23] proposed to deal with generating a high speed clock glitch using an
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FPGA for evaluating fault injection attacks and its counter measures on cryptographic 

modules.  Fault injection attacks are generally found in the fields of cryptographic 

hardware and embedded systems where the attackers inject faults into the cryptographic 

operations of the system where the secret key is computed from faulty cipher text 

(patterns).  After focusing on the public-key cryptosystem, the authors further delve 

into the fault attacks injected in a symmetric-key cryptosystem. In order to evaluate the 

possibility of such malicious attacks in practice, different fault injection techniques have 

been investigated by the authors. These faults are roughly categorized into two types: 

permanent faults and the transient faults. 

In a permanent fault, the target-circuit is damaged, and it is easy to detect and react 

to them using POST (power-on self-test). That is, when the target circuit is powered-on 

after the fault, the device will most likely not respond due to the damage. In contrast, a 

transient fault is induced during run-time. At the end of run-time, the target circuit can be 

recovered to its initial state. Hence it is more difficult to detect the exact occurrence of 

the fault. For both of the fault models, various injection techniques were described using 

glitches on power, clock signals, higher frequencies, laser shots, lower voltages, light 

illuminations on the surface of a depackaged chip. Among these techniques, a transient 

fault induced by a glitch clock is one of the feasible faults due to the vulnerability to 

invasion and lack of control. 

The authors in [23] showed how to generate a clock glitch using an FPGA. The 

proposed theory in this paper is based on the method initiated by the authors in [25], 

where a temporal voltage is injected into the clock by switching between two clock 

signals with the same frequency but with a difference in phase. When the clock source 

is switched from one to the other a glitch clock cycle is observed.  The authors then 

identified the basic characteristics of the proposed generator which is implemented on 

the Side-channel Attack Standard Evaluation Board (SASEBO) platform [32]. As the 

name suggests SASEBO was developed for performing security and evaluation against 

various threats, primarily side-channel attacks. 

The effectiveness of the proposed generator through safe error attack against RSA
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crypto-processing was demonstrated, where the faults are tested with the corresponding 

power traces instead of outputs, which resulted in successfully distinguishing between 

normal and dummy operations. The main difference between the research in this thesis 

and [23] is that, the authors in the above-mentioned paper have used constant Glitch 

delay (Td) versus the parameter Glitch width (Tw) while experimenting on the target. The 

experiments carried out in this thesis research were carried out based on varied parameter 

values involving Glitch length and Glitch offset. 

There have been results where the number of faults induced is directly related to 

the frequency of the faster clock [12]. A similar mechanism has been executed with a 

different non-invasive property, of voltage glitching, by the authors of [13]. This was 

performed by undervolting an ARM processor during cryptographic operation. 

Voltage glitching is chosen as an attack method for this research, and the paper 

discusses a methodology that can be used to gain insight into micro-controller faults. 

Generally glitching attacks can attain things that logically cannot be achieved in embedded 

systems. It is important for many attacks to gain access to the code or obtain run-time 

control before other attacks can be applied. In recent times, micro-controllers are designed 

to protect the internal code. JTAG or boot-loader interfaces are used to access the code. 

Glitching allows bypassing these features. Generally the power pin (Vcc), the reset pin 

or the clock pin is targeted when these faults are being induced. The pins can be attacked 

in a different ways like short voltage dips, short voltage spikes and prolonged voltage 

dips. For this research, short voltage dips in the Vcc line are discussed. The faults were 

categorized into memory and instruction faults where instruction faults encompasses 

errors which may be introduced during the stages of instruction execution [43]. 

 

 

3.2  Works related  to  high-frequency clock  generation & 

clock  glitching 

 

High frequency clock generation can be via several methods like ring oscillator, 

phase locked loop, voltage coupled oscillator coupled with PLL and clock frequency
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circuit or Crystal oscillators which are temperature compensated. These are few of the 

choices to achieve high frequencies and the choice of which type to use depends on the 

application for which it is being designed. Also, a stable high frequency yields reliable 

results. To achieve stability in such high frequency clock certain additional circuitry is 

employed. [42] describes a jitter removal circuit for frequencies ranging from 800 MHz 

to 5 GHz. 

One of the most important research contributions from the authors of [11] is the 

characterization of of the effects of clock glitching on 8-bit Microcontroller units (MCUs). 

The effects of clock glitch on the two-stage pipeline implemented by the chosen 8-bit 

AVR MCUs has been described. These MCUs used were based on modified Harvard 

architecture. Thereby both the data bus and instruction bus could be accessed in a single 

clock cycle and resulted in a two-stage pipeline. As a result fault injection had multiple, 

complex effects. The glitch period used was decreased from 125 ns (for which the target 

functioned correctly) until 15 ns. Glitch period, Tg, is as shown in Figure 3.1. Their 

work involved fixing the target device and fault induction mechanism. The analysis of 

the faults’ outcome was found to be an arduous task due to the two-stage pipeline and 

lack of access to the working of the MCU. The similarity between the research performed 

in this thesis and [11] is that the analysis on the target devices has been carried out on 

targets which had externally accessible clock line and in a black-box setting. That is, 

access to the information publicly is available via data-sheets. 

 
 

Figure 3.1: Glitch period illustration from [11] 
 

 
 

The results obtained from this paper can be summarized into: faults in data flow and 

program flow. When it came to single cycle instruction in data flow set of experimentation, 

the authors observed that a short glitch timing could impact both the program flow and
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data flow. On the other hand, in a two cycle instruction, the same experiment resulted in 

preventing the fetching of the next opcode and executing the same opcode twice. The 

results related to data flow were observed to be stable for multi-cycle instructions related 

to memory, example LD & LPM. Depending on the glitch period, the instruction loads 

the last value that has been transferred to/from memory. Finally, multi-cycle instructions 

were found to be most easy to glitch and it was concluded that these kinds of attacks can 

be combined with known attacks to inject a single or multiple faults in a single execution. 

The authors have thereby characterized their fault models as: The instructions could 

be replaced rather than skipped. Reproducible and deterministic faults were observed on 

data flow. More stale results for multi-cycle instructions were observed to be stuck-at-zero 

and set word faults. By this the authors have shown that theoretical fault models are 

possible to implement. 

Works which are related to generating a reusable high-frequency clock are also 

discussed in this section. Existing research was conducted by using multiple Digital Clock 

Managers (DCM) [4] and switching between the clock output frequencies generated as 

mentioned by the authors in [40]. There have been efforts in the open-source community 

to make equipment for side-channel analysis and fault injection attacks available to the 

general public. 

The DCMs provide flexibility in choosing the parameters of the clock used [24]. The 

authors in this work have demonstrated an embedded security analysis platform which 

deals with a side-channel attack inclusive of analog capture hardware, target device, 

capture software and analysis software. A synchronous capture method is used by the 

hardware which reduces the required sample rate, data storage requirement and improving 

the synchronization of traces. Synchronous capture mode is a sampling technique where 

the device clock is synchronous to the sample clock. Beyond side-channel attacks, the 

hardware also lends itself to glitch and fault attacks. A synchronous sampling technique 

is used whose underlying objective is to measure data on the edges of the system clock. 

Using two adjustable delay lines built into FPGA, a clock glitch module (present in the 

system) can insert glitches into a target clock. The target clock here can either come
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from the device under test or generated by FPGA itself. Here, the glitch width can be 

adjusted from about 3ns to 100ns and the offset from the clock edge from -50% to +50% 

of the clock period. A partial reconfiguration interface is provided to allow adjustments 

over a wider phase range. New attacks added to the system are simplified by the attack 

module as the leakage model, cryptographic model and attack algorithm are separate. 

The changes are simplified and re-usability is increased. When a new attack is added to 

the system, it can use the existing cryptographic and leakage models and automatically 

work with software and hardware. 

Cryptanalysis is a research field which deals in the meaning of encrypted information 

without any access of the secret information where only the “authorized parties” can 

decrypt it. Cryptographic algorithms are studied for extracting information for construct- 

ing and analyzing protocols that overcome the influence of the attackers. In this paper, 

the crypto analysis algorithms are based on clock violation and Meta stable condition 

of flip flops. Here the FPGA test bed is used for injecting faults through clock glitches 

and the UART acts as an interface which is used by the FPGA for controlling fault 

injections.  Clock frequencies are generated by the digital clock manager.  A Digital 

Clock Manager (DCM) solves common clocking issues especially in high performance 

and high frequency applications. To synthesize a new clock frequency DCMs optionally 

multiply or divide the incoming clock frequencies. The system performance is improved 

by DCM as it eliminates the Clock Skew and Phase-Shifts. Special signal ’Clock’ is 

used to implement logic level onto gates, flip-flops and store the values and evaluate the 

function in the Register Transfer Level [24][40]. 

 

 

3.3  Countermeasures & Summary 
 

 

As a protection mechanism there are several counter-measures which some target 

devices have as inbuilt properties [27], [19]. One of the types of countermeasures can be 

high-frequency clock detection. The main purpose of these counter-measures is to send 

the device into lock-down mode if there is any external input which it cannot accept. 

[35] describes a hash-based monitoring system which runs in parallel with the embedded
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processor to ensure safe processing. This monitoring system detects deviations from 

normal functioning within a single clock cycle. There have also been new cryptographic 

algorithm implementations and PIN based protection which are resistant to fault injection 

attacks [28]. The authors of [51] described a novel design of AES implementation on 

dual-rail chip which is clock-less. It was improvement over conventional AES design in 

terms of resistance to power, timing and clock glitch attacks. 

RSA-CRT algorithm has been implemented as an application on the target used in 

the research carried out in this thesis.  Previously, few authors have also considered 

various implementations of RSA to check its performance against fault injection attacks 

[38], [45], [18]. Common equipment used in most related research activities are mea- 

surement reading devices like a Pulse Generator, Oscillator, FPGA and a certain type 

communication mode with Computer and the target. 
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                                                                 CHAPTER IV 
 

 
 

DESIGN AND IMPLEMENTATION 
 
 
 
 
 

 
This chapter describes the details of the experiment environment.  Two different 

target systems from Texas Instruments and STM, both of which are based on ARM 

Cortex M4 processor core and have been used. Since the main subject of this thesis is 

clock glitch attack, external hardware is used for the generation of higher speed clock 

and controlled clock glitches to be sent to the target systems. Section 4.1 overviews the 

complete setup of the test environment, which is followed by detailed descriptions of 

each component. 

Section 4.2 discusses target microprocessor systems - Tiva C Series Launchpad Eval- 

uation Kit from Texas Instruments and Core 417I Development Board from Waveshare 

Electronics. Microprocessors incorporated in the two targets are TI TM4C123GH6PM 

and STM32F707IGT6, respectively.  Section 4.3 discusses a detailed description of 

clock generation and distribution in the two target systems. Section 4.2 explains test 

programs executed during the test – RSA-CRT and for-loop with complex mathematical 

expressions. These were chosen because simpler instructions would not be seriously 

affected, as they complete their execution earlier in a given cycle (e.g., execution stage in 

the pipelined architecture). Section 4.5 explains external hardware to provide controlled 

clock glitches. 
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4.1  Overview  of Test  Environment 
 

 

This section describes the setup used for fault injection of the two target devices. 

Figures 4.1 and 4.2 illustrate the outline of the entire test environment for the TM4C MCU 

and STM32F MCU, respectively. The connections between various devices mentioned 

has been described in more details in the following sections of this chapter. 

 

 

4.1.1  Tiva C Series Launchpad (TM4C  MCU) 
 

 

Figure 4.1 shows the overall experiment environment. The following points describe 

the individual components: 

 

• A target system based on TM4C MCU is on the right in the figure. 
 
 

• FPGA system, on the left, is configured to generate 25 MHz differential pair as 

well as 33 MHz or 40 MHz overclock. 

 

• The choice between the normal and the overclock is made depending on the 

selection lines from VCGlitcher, shown at the bottom of the figure. 

 

• This choice is triggered from the test program running on the target through GPIO 

pins.  In this test, Tiva C Series Launchpad is programmed to run RSA-CRT 

Encryption and Decryption algorithm. The analysis using Inspector is shown in 

Section 5.2. 

 

• Clock glitch parameters are set up using Inspector running on the PC, as shown on 

the bottom right. 

 

• Inspector observes and records the outcome of the test program execution for further 

analysis. Inspector recognizes the target as a composite device and communicates 

via the virtual com port. Inspector is connected to the target device via Virtual 

COM Port. 
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Figure 4.1: Setup Outline for Tiva MCU 
 
 
 
 
 
 
 

 

 
 

Figure 4.2: Setup Outline for STM32F MCU
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Table 4.1 summarizes software programs and additional equipment. 
 

The target was interfaced with the Inspector testing platform in order to perform initial 

 
Product name Description 

VCGlitcher Device to generate timed glitches 

PicoScope 5203 1GS/s oscilloscope 

Lenovo Thinkpad Workstation 

Inspector FI Fault injection software tool 

TI Code Composer Studio IDE 

LM Flash Programmer Programmer software 

Table 4.1: Setup Parameters for TM4C MCU Experimentation 
 

 
 
 

measurements and analysis of the effect of fault injection. In the case of Tiva MCU, 

Figure 4.3 depicts the setup used to run the experiments. The FPGA controls the clock 

to be sent to the target, based on the GPIO triggering handled in the target. When the 

selection line is left floating, then the default clock, which is 25 MHz is being generated. 

When the selection line is grounded, then the higher speed clock which is either 33 or 40 

MHz, is generated. 
 

 
 

4.1.2  Core 417I Development Board (STM32F MCU) 
 

 

Figure 4.2 shows the overall experiment environment for STM32F MCU. This is 

similar to Figure 4.1 except the target system and FPGA configuration. In this case, it 

uses three separate parts mainly to achieve higher speed than the setup in Figure 4.1 – 

Clock generator, Clock manager (multiplier), and Multiplexer.  Figure 4.3 shows the 

actual experimental setup. 

Table 4.2 summarizes software programs and additional equipment. First four are 

the same as in Table 4.1. 
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Figure 4.3: Clock Fault Injection Setup - Tiva Board with TI TM4C 
 
 
 

 

 
 

 

Figure 4.4: STM32F417 Experimental Setup
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4.2  Test Targets 
 

 

This section describes the two target microcomputer boards and the corresponding 

target microprocessors, both of which are based on ARM Cortex M4 core architecture. 

One important criteria behind the selection of a microcomputer board is accessibility of 

clock line - externally, which enables the target board to be customized to work in bypass 

mode, i.e., it uses external clock instead of an internal clock. This feature is important for 

this work because it allows us to manipulate the clock input and to insert clock glitches 

in a controlled manner (glitch offset, glitch duration, etc.). Firstly, in this section the 

description of the ARM Cortex M4 core is provided, followed by the description of the 

two microprocessors and the two target microcomputers. 

 
 
 

 

4.2.1  ARM Core Microprocessors 
 

 

ARM Cortex M4 core is a 32- bit RISC microprocessor [10]. Features of this core 

that are relevant to this study are: 

 

• Cortex-M4 implements the ARMv7E-M architecture 
 
 

• Only Thumb and Thumb-2 instructions, or the subsets are supported in Cortex-M 
 

architectures; the legacy 32-bit ARM instruction set is not supported 
 
 

• Hardware multiply and hardware divide take 1 and 2~12 cycles, respectively 
 
 

• It implements Harvard architecture, i.e., separate instruction bus and data bus 
 
 

• It implements 3-stage pipeline with branch speculation 
 
 

• It adds DSP instructions and an optional single-precision floating-point unit, which 

is known as Cortex-M4F, which the two target microprocessors employ. 

 

The main advantage of ARM based cores are power efficiency and cost-effective features 

to develop high-speed devices. It is noted that the ARM Core has no specification for 

Flash interface. That is, it depends on the IC manufacturer which use the ARM Core
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to either include or exclude the connection to the Instruction Bus. The Code, SRAM, 

and external RAM regions can hold the program code. However, it is recommended that 

programs always use the Code region because the Cortex-M4F has separate buses that 

can perform instruction fetches and data accesses simultaneously (Harvard architecture). 

The Cortex-M4F prefetches instructions ahead of execution and speculatively prefetches 

from branch target addresses. 

 

 

4.2.2  TI Tiva C Series Launchpad Evaluation Kit - TM4C[7]: 
 

 

Texas Instruments develop and manufacture the microprocessors based on ARM 

Cortex M4F core, which is called TM4C, more specifically, TM4C123GH6PM [7]. The 

corresponding evaluation board is Tiva C Series Launchpad. It is an inexpensive (less 

than $15), self-contained, single-board micro-controller, about the size of a credit card, 

directly competing with Arduino board with four times faster speed. It offers a wide 

range of peripherals, including motion control PWMs, 1-MSPS ADCs, eight UARTs, 

four SPIs, four I2Cs, USB H/D/OTG, and up to 27 timers. 

TM4C microcontroller includes 256KB Flash, 32KB RAM and 2-KB EEPROM. 

It does not have the cache capability. Therefore, there exists a set of memory region 

attributes which have to be followed for programming the MPU. Shareability and cache 

policy attributes do not make any impact on the system behavior. However, usage of 

these settings for MPU regions makes the application code portable. 

 

 

4.2.3  STM32F Development Board - STM32F417IGT6[5]: 
 

 

The distinguishing characteristic about the IC STM32F417IGT6 is that it embeds 

a cryptographic accelerator. This cryptographic accelerator provides a set of hardware 

acceleration for the advanced cryptographic algorithms usually needed to provide confi- 

dentiality, authentication, data integrity and non-repudiation when exchanging messages 

with a peer. These algorithms consists of AES 128, 192, 256; Triple DES, HASH (MD5, 

SHA-1), and HMAC. Additionally, it has a TRNG (True random number generator) 

based on ring oscillators, and has a flash controller that could be used for simulating
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secure boot. It has 1MB of internal flash memory and 192Kb SRAM. 
 

STM32F4 does not have processor cache. According to [5], there exists an ART 

accelerator cache (Adaptive real-time memory accelerator or ART Accelerator) which 

is connected to Flash array of size 1MB. The main purpose of the ART accelerator is 

to cache the lines which are frequently used. The other purpose of ART is to support 

the slow Flash interface which needs waitstates. For a cache hit, instructions would be 

delivered to the prefetch unit. On cache miss, it would take 5 clock cycles to fetch the 

flash line. 

The development board Core 417I (costs less than $30) is manufactured by Waveshare 

Electronics with the IC STM32F417IGT6. It is ideal for starting application development 

with STM32F family. As a minimal ready-to-run system, the Core417I integrates USB 

communication interface, JTAG/SWD programming/debugging interface, clock circuit, 

USB power management, boot mode selection, and so on. 

 

 
 
 
 

4.3  Clock Generation  and Distribution 
 

 

4.3.1  TI Tiva C Series Launchpad Evaluation Board and TM4C 
 

 

There are four clock sources for Tiva board as shown in Figure 4.4.  This figure 

provides detailed understanding about which clock source has to be used as input and 

which clock signals are driven. The four clock sources are: 

• Precision Internal Oscillator PISOC: The internal oscillator constitutes a16 MHz 

crystal with a (+/-) 3% deviation. This is the main internal clock circuit of Tiva. It 

contains an internal PLL which can be configured via software to multiply this 

clock. This configured clock can be used for peripheral and core timing. 

 

• Hibernation Module Clock Source: This module is clocked via an external 32.768 
 

KHz crystal. Its main purpose is to provide real-time clock source to the system. 
 

 

• Internal Oscillator (+/- 50%): The main purpose of this clock source is for deep- 

sleep operation for power-saving modes. 
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• Main Oscillator (MOSC): A frequency-accurate clock source by one of two means: 
 

 

– External single-ended clock source supports frequencies from 4 MHz to 25 MHz 

is connected to the OSC0 input pin 

 

– External oscillator is connected across the OSC0 input and OSC1 output pins. 
 

 
 
 
 

 
 

 

Figure 4.5: Clock Tree of Tiva MCU with highlighted external clock input 
 

 
 

The highlighted section (Main OSC) shows the clock source which has been chosen as 

input for our work of clock glitch. Board modifications have been made to accommodate 

the external clock source.  The modification was made in order to provide the clock 

through pin 38, on the TM4C123GH6PM chip, which is by default fed from the oscillator. 

Firstly, the wire on the PCB between OSCIN pin on the MCU and oscillator was cut 

using a fiber-glass pen or a sharp cutter. Then, a thin wire was soldered to the oscillator 

pad to use for connecting back to the OSCIN pin. In this way, the board was rendered 

useful in both external clock and internal clock conditions to suit the requirement. The 

exposed copper as shown in Figure 4.5 was then soldered to a thin microwire to use for 

providing external clock. Since, the external clock source is directly provided to the pin
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in the MCU, the target boots with clock frequency which is provided on this pin. Certain 

flags have to be set in software to bypass the PLL and provide this clock to the system 

directly. 
 

 
 
 

 
 

 

Figure 4.6: Board Modification for external clock input on Tiva Launchpad 
 

 
 
 
 

4.3.2  Core 417I Development Board and STM32F417IGT6 
 

 

Core 417I contains three main types of clocks sources to drive the system clock. 

Figure 4.6 represents the clock tree for Core 417I. It provides detailed understanding 

about which clock source has to be used as input and which clock signals are driven. The 

main Cortex clock is denoted by ’HCLK to AHB bus, core, memory and DMA’ signal. 

”SW” selector has to be set to HSE and set the AHB Prescaler to /1 to give to the core 

the HSE clock as directly as possible. 

 

 
The three types of clock sources can be switched on and off based upon the usage to 

reduce power consumption. They are listed as follows: 

 

• High-speed internal (HSI) clock: It is the default clock after reset and is rated
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Product name Description 

VCGlitcher Device to generate timed glitches 

PicoScope 5203 1GS/s oscilloscope 

Lenovo Thinkpad Workstation 

Inspector FI Fault injection software tool 

CoIDE IDE 

Busblaster/ST-Link v2 Debugger/Programmer 

Table 4.2: Setup Parameters for STM32F MCU Experimentation 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 

Figure 4.7: Clock Tree of STM32F4 with highlighted external clock input
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at 16MHz. It’s mainly used for general purpose applications, wherein it can be 

directly given as input to the system clock or as an input to the PLL. 

 

• High-speed external (HSE) clock: It can be generated by two possible means: 
 

 

– HSE external crystal/ceramic resonator: The main advantage of using this clock 

source is that it is very reliable and accurate. 

 

– HSE external user clock: This mode is called HSE bypass mode. This mode has 

been used for the experiments performed on this target. 

 

• PLL: This MCU contain two PLLs called main PLL and dedicated PLL (PLLI2S). 

The main PLL configuration cannot be changed once the PLL is enabled. The 

PLLs are disabled when HSE is used as system clock. 

 

Core 417I Board also contains the following two secondary clocks: 
 
 

• Low Speed Internal (LSI) clock: It is a 32 kHz low speed internal RC oscillator. 
 

Its main purpose is for providing real-time clock and watchdog timer. 
 
 

• Low Speed External (LSE) clock: It is a 32. 768 kHz external crystal which also 

has the capability to drive the real-time clock. 

 

On reset, the 16 MHz HIS (High speed Internal) is selected as the default CPU clock. The 

application can then select as system clock either HSI or an external 4-26 MHz clock 

source, which is called High speed external (HSE). Further, the external clock source can 

be monitored for failure. If a failure is detected, the system automatically switches back 

to HSI and a software interrupt is generated (if enabled). For the system clock generation, 

STMicroelectronics has a software tool that will generate the required clock system file. 

The maximum external clock input is rated at 50 MHz. If there is a problem with 

the board clock configuration, it either does not boot, or boots but with a different clock 

speed. This results in irregular behavior of the peripherals. For example, the USB port 

which has a standard rating of 48 MHz, according to the datasheet, has to receive stable 

clock input for proper communication to take place. 



34 

 

 

For the clock generation system the following steps have to be followed for the 

experiments performed in this research: 

 

• PLL Prescalers have to be set. 
 
 

• The flag to shift to HSE has to be set in RCC-CR register 
 
 

• If the flag is set, the switch to HSE to take place 
 

 

The Reset and Clock Control Register (RCC-CR) is used to switch on or off the on-chip 

clock peripherals. According to the External source (HSE bypass) section in the Reference 

Manual, it is explicitly mentioned that the external clock should be input via OSC_IN 

pin [6]. By setting the HSEON bit in the RCC_CR register, the pins PH0 and PH1 have 

been configured as OSC_IN and OSC_OUT respectively.  The preliminary property 

of PH0 and PH1 pins is GPIO functionality; but when the HSEON bit is set, the HSE 

functionality has higher priority than GPIO. 

Target hardware modifications to accommodate external clock: 
 

 

• Board cutter or fiberglass pen was used to make a cut on the board between the 
 

OSC_IN pin and resistor on the back side of the board. 
 
 

• It was made sure that there was no sensitive material near the area to cut. 
 
 

• Thin wire was soldered to the resistor pad and connected to the GPIO pin PH0. 
 
 

• Cut between OSC_IN (where the external clock was provided) and the resistor, 

add a microwire (thin wire) to the resistor side so it can be connected back later. 

 

 
 
 
 

4.3.3  VCGlitcher 
 

 

VCGlitcher is the Riscure’s proprietary device developed to inject voltage and clock 

fault (selection device) [47], which is shown in Figures 4.1 and 4.2. It takes an input from 

the target, which is the trigger for generating a Digital Glitch as selection signal. The 

digital glitch indicates the time at which the clock multiplexer should send the respective 

clock to the target. 
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4.3.4  Inspector 
 

 

Several parameters have to be tweaked and tested to generate an effective fault on the 

respective target. Different targets might respond to a certain set of parameters differently. 

One target example may give certain outcome to a parameter set, for which another 

target example might not output any useful observation.  The following provides the 

list of parameters which constituted the various experiments. They are categorized as 

time-dependent parameters and application specific parameters. 

 

Time dependent  parameters: 
 

The parameters dependent on time are: 
 

• Glitch Length - The duration of time for which the generated glitch remains in the 

On condition. The glitch length should preferably be of small magnitude and within a 

processor clock cycle; which is the amount of cycles of the chip from the start of its 

operation. It is used to time the attack to target a specific instruction on the chip. It can 

be set to a specific cycle or changed with each attack within specified boundaries. 

• Wait Cycles - It is the number of clock cycles of the chip when initiated. This value 

is used to time the attack at a particular duration from the start of operation of the chip. 

This is a very affective parameter when the target is running a known program and the 

time taken for a particular instruction to execute is known in advance. 

• Glitch offset - The attack is offset from the initial clock cycle by a magnitude equal 

to glitch offset. As frequency of different targets vary, this value has to be calibrated 

based on that property. Also, this value has to remain within one clock cycle of the target 

frequency. 

 

Application specific  parameters: 
 

The other properties include those which are application dependent they are listed as 

follows: 
 

• Vcc Voltage - It is the voltage value of the Vcc line of the target device. This value 

can be obtained from the amplitude of the clock cycle. 

• Time to wait before the glitch 
 

• Number of consecutive glitches in a single clock cycle
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• Number of consecutive clock cycles that contain a glitch 
 

• Voltages of the glitch 
 

• Glitch cycles - VCGlitcher is programmed to send glitches at constant intervals. 

These intervals are defined by glitch cycles. This value is the number of times in an attack 

the glitch is sent. 

 
  

Figure 4.8: Inspector parameters [31] 
 

 
 

Figure 4.8 illustrates the parameters being discussed in this section. When the target 

runs known source code, the information analyzed by the execution of a sample set of 

parameters can be used to choose certain parameters to make better impact on the target 

process execution. An example of this is the time duration at which the glitch should 

be generated. Inspector software logs the output from the target. This obtained output 

values can be compared to expected output. When the comparison does not yield positive 

result, that particular observation can be considered as a fault. 

 

 

4.4  Test  Programs 
 

 

4.4.1  RSA-CRT on Tiva Board with TI TM4C 
 

 

The test application programmed on TM4C MCU is RSA-CRT. RSA is a well-known 

public-key cryptosystem employed in, for example, OpenSSL and .NET. Brief description 

of the algorithm is as - For every message M, the algorithm creates a (Public, Private) key
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pair which are multiplicative inverses of each other. To send a message to Bob, message 

has to be encrypted with Bob’s public key. Then, only Bob has the capability to decrypt it 

using its private key. Multiplicative operations are computationally intensive operations. 

The Chinese Remainder Theorem (CRT) is an efficient way to compute the modulus 

operations, since smaller exponents and modulus values are used to make 2 exponentiation 

calculations at the risk of reduced security. The CRT implementation of RSA performs 

its execution in three steps: reduction, exponentiation and recombination. To achieve 

this, it needs a number of precomputed parameters. The total number of cycles consumed 

for the operations in encryption and decryption functions has been approximated to 20M. 

Figure 4.7 shows the code listing of RSA-CRT used in our experiment. 
 

 
 
 
 
 
 

v o i d   r s a _ c r t _ d e c r y p t ( ) { 
 

DIGIT_T  m1 [ MAX_FIXED_DIGITS / 2 ] ; 

DIGIT_T  m2 [ MAX_FIXED_DIGITS / 2 ] ; 

DIGIT_T  h [ MAX_FIXED_DIGITS / 2 ] ; 

DIGIT_T  tmp [ MAX_FIXED_DIGITS ] ; 

s i z e _ t   m a x _ l e n ; 
 

/ /   G e t   t h e   maximum  n u m b e r   o f   d i g i t s   f r o m 
 

/ /   p ,   q ,   dp ,   dq ,   q I n v ,   c i p h e r   t e x t 
 

m a x _ l e n  =   m a x _ d i g i t s _ o f _ i n p u t ( ) ; 
 

/ /    I n i t i a l i z e  M  t o   0 
 

m p S e t Z e r o ( m,   MAX_FIXED_DIGITS / 2 ) ; 
 

/ /   T r i g g e r   g o e s  HIGH 
 

s e t _ t r i g g e r ( ) ; 
 

/ /   m1  =  c ̂  dP  mod  p 
 

mpModExp ( m1 ,   c ,   p r i v _ k e y . dp ,   p r i v _ k e y . p ,   m a x _ l e n ) ; 
 

/ /   m2  =  c ̂  dQ  mod  q 
 

mpModExp ( m2 ,   c ,   p r i v _ k e y . dq ,   p r i v _ k e y . q ,   m a x _ l e n ) ; 
 

/ /   t m p  =  m1  +  p  − m2 
 

mpAdd ( tmp ,   m1 ,   p r i v _ k e y . p ,   m a x _ l e n ) ; 
 

m p S u b t r a c t ( tmp ,   tmp ,  m2 ,   m a x _ l e n ) ;
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/ /   h  =  t m p  *   q I n v  mod  p 
 

mpModMult ( h ,   tmp ,   p r i v _ k e y . q I n v ,   p r i v _ k e y . p ,   m a x _ l e n ) ; 
 

/ / b l i n k _ l e d ( ) ;      / /   t m p  =  q  *  h 
 

m p M u l t i p l y ( tmp ,   p r i v _ k e y . q ,   h ,   m a x _ l e n ) ; 
 

/ /   c l e a r _ t e x t  =  t m p  +  m2 
 

mpAdd ( m,  m2 ,   tmp ,   m a x _ l e n ) ; 
 

/ /   T r i g g e r   g o e s  LOW 
 

c l e a r _ t r i g g e r ( ) ; 
 

} 
 
 
 
 

As shown in Figure 4.1, Riscure’s proprietary Fault Injection and Side Channel 

Analysis test environment, Inspector 4.7 and 4.8 have been used for the experiments 

performed [31]. The main purpose of the Inspector is to set the parameters and config- 

uration required for the test environment, as well as receive the output response from 

the target.  The advantage with Inspector is that experimentation can be automated. 

This will directly result in carrying out several experimental observations with minimal 

interference.  When TM4C runs RSA-CRT, the decrypted text is being observed on 

Inspector. Inspector Protocol is set to recognize and compare the first few bytes sent 

from the “rsa_crt_decrypt” function which is shown in 4.4.1 program listing.  After 

the comparison, each response will be color coded into green, yellow or red based on 

protocol with which it is being programmed. When the decrypted response is the same as 

expected it will be marked green. Similarly for glitched or faulty response, red color will 

be logged. Sometimes, due to external disturbances in the setup or device being unable 

to respond, yellow response will be recorded. After completion of the experimentation 

the glitched responses which are in red can be used for carrying out fault analysis to 

retrieve the keys and obtain more information about the algorithm key or leakage. Due 

to limited time availability cryptanalysis has not been carried for the responses obtained 

in this research. 
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4.4.2  For loop 
 

The test application programmed on STM32F MCU is for-loop, which counts up 

after performing certain set of math instructions. The code used is as shown in 4.4.2 

program listing. The final counter value (which is a) is being observed on Inspector.  

Inspector Protocol is set to recognize and compare the final counter value sent from 

the for loop function performed on the STM32F MCU to the actual expected count 

value. The total number of cycles consumed for each iteration of the operations inside 

the for-loop used in the program has been approximated to 130. Most of these cycles are 

consumed by the complex math operations which use the Floating Point Unit 

calculations. 
 
 
 
 
 
 
 

f o r ( c o u n t e r = 0 ;   c o u n t e r < 1 0 0 ;   c o u n t e r + + ) 
 

{ 
 

c a l c   =   a s i n f ( num1 ) * 1 8 0 . 0 / P I ; 
 

c a l c   =   c a l c / 2 . 0 ; 
 

c a l c   =   c a l c   *  P I   / 1 8 0 . 0 ; 
 

c a l c   =   t a n f ( c a l c ) ; 
 

c a l c   =   c a l c   /   s q r t ( 3 ) ; 
 

c a l c   =   c a l c   *   6 . 0  +   9 . 9 ; 
 

a + + ;   / / V a r i a b l e   c o u n t i n g   u p 
 

} 
 
 
 
 

Again, as shown in Figure 4.2 and explained in Section 4.4.1, Inspector 4.7 and 
 

4.8 have been used for the experiments performed [31] while STM32F MCU runs the 

for-loop program. 

 

 

4.5  Additional Hardware 
 

 

This section describes the additional hardware to achieve clock glitch attack. Each 

component is inter-dependent on each other based on the connections mentioned in
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Figure 4.1. 
 
 
 

 
FPGA - Digilent Nexys 3 

 

As shown in Figures 4.1 and 4.2, the FPGA board called Digilent Nexys 3 equipped 

with Spartan-6 FPGA is used as the main source of clock generation for the experiments 

performed in this research. Figure 4.9 shows the Nexys 3 FPGA with the DCM clock 

outputs connections, from the pmod pins. 

 

• For the TM4C MCU setup, the FPGA controls the clock which is input to the 

target based on the trigger received via the pmod pins. 

 

• For the STM32F MCU setup, FPGA controls the clock, which is input to the 

clock multiplier as well as the target. It is programmed with Microwire protocol to 

send the registers required to configure the output clock from the clock multiplier. 

Microwire is a full-duplex protocol, similar to SPI protocol, but for the implemen- 

tation in this research, only half-duplex protocol was designed, as the registers 

have to set for programming.  Further details about the microwire protocol are 

discussed later in this chapter. 

 

• The generation of these clocks was performed by the usage of Digital Clock 

Manager (DCM) which is the Xilinx proprietary IP [4], as shown in Figures 4.1 

and 4.2. The main advantage of using DCM is the capability to control the phase 

shift, duty cycle and delay of the generated clock output. The Spartan-6 FPGA has 

four DCMs which is used in the TM4C experiment but not in STM32F experiment 

due to the requirement of a higher speed. 

 

 
 
 
 

• In case of TM4C experiment, the FPGA is configured to generate 25 MHz differ- 

ential clock pair and also provide 33 MHz or 40 MHz depending on the selection 

lines from VCGlicher. 
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• In case of STM32F experiment, the FPGA is configured to generate 50 MHz 

differential clock pair as output from two pmod pins. This clock was given as 

input to the clock multiplier. Then, the configuration registers of clock multiplier 

are programmed via EPP protocol from three dedicated pmod pins of FPGA. This 

register configuration is customizable to generate the required i.e. multiplied or 

divided clock output frequencies as output from the clock multiplier. Similarly, 

different set of registers were programmed for experimentation.  Firstly, basic 

overclocking from 50 MHZ to 81 MHz for a short duration was considered. Then, 

the higher end of this range was increased to 120 MHz and 300 MHz. The clock 

multiplier generates 4 clock outputs which are fed as inputs to the high speed 

multiplexer. Selection line is sent from VCGlitcher as digital glitch. The final 

clock is taken from the clock multiplexer output and given as input to the target 

which is STM32F MCU. 1 

 
 

Clock Multiplier IC - LMK04033 
 

For achieving a high-frequency, clock various trials have been carried out through 

existing equipment such as the FPGA/Digital Clock Manager, but the frequency was 

limited.  Since, generating a stable high frequency is the task, the Texas Instruments 

LMK04033 clock jitter cleaner IC was selected for experimentation. This IC is a low- 

noise clock jitter cleaner with cascaded PLLs. This IC takes in a valid signal of a certain 

frequency as input through the OSCin pin [3]. The existing FPGA setup described in 

section 4.5 can generate this required stable input clock.  Figure 4.10 illustrates the 

basic connection diagram of this clock multiplier IC. The initial test of LMK04033 IC 

after implementing the connections was to observe 81 MHz at the output of Clkout2 on 

power-up. This is the default state. 

 

 
The main feature of this clock IC is that it can generate up to 5 multiplied/divided 

 

 
1 One of the main problems observed with the FPGA Board has been with the USB controller.  The 

experimentation associated with this research involved programming the FPGA several times via 

the USB PROG port. This resulted in corruption of the USB controller. Reprogramming the USB 

controller using the DigilentFX2Repair tool solved the problem.
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clock outputs of various voltage levels after providing the required clock input [48]. 

These clock outputs are to be programmed via 15 registers using Microwire protocol into 

the pins 4, 5, 6 of the IC which correspond to CLKuWire, DATAuWire, LEuWire. This 

can be executed by either using CodeLoader4 software provided by Texas Instruments or 

by emulating Microwire protocol on the FPGA to load the register values from the pmod 

pins of FPGA. Texas Instruments also provides Clock Design Tool which is a simulator 

for testing the clock and other parameters like PLL, VCO and Loop filter settings for 

various Texas Instruments IC’s. 2
 

 

 
The CLKin pin was driven by a single-ended reference clock source from the FPGA. 

Which is either a sinewave or LVCMOS/LVTTL voltage value. AC Coupling was used 

in terminating the connections on the breadboard. Figure 4.11 shows the microwire clock 

synchronized register programming. The blue wave represents the microwire clock. Red 

wave represents the data being latched on the falling edge of microwire clock. 3
 

 

High Speed Differential Multiplexer - SY58029U 
 

The main advantage of using SY58029U High-speed multiplexer is that it has the 

high precision capability to select between multiple inputs with minimal crosstalk and 

very low jitter [1]. Two inputs have used for experimentation as clock inputs. The output 

of the multiplexer outputs the clock which is selected by the VCGlitcher, which serves 

the selection line. 

 

 

Figure 4.12 represents the Multiplexer IC as connected during breadboard prototype. 

Inputs 0 and 2 were used and switching between them was by using the selection line 0 
 
 

2 The falling edge of slow clock/microwire clock should be used to update/shift the data. Registers were 

programmed on each falling edge of CLKuWire signal. Register programming information on the 

DATAuWire is clocked into a shift register on rising edge of the signal. Each register is sent from shift 

register to the respective address. After programming is completed, all signals return to low state. The 

EPP protocol programmed on the FPGA has been used to program the registers required to configure 

the clock output of LMK04033 IC. 
3 One of the main hindrance when working with this IC could be the impedance of the oscilloscope 

probes. The 3 microwire lines should not be connected with oscilloscope probes. This was observed 

during debugging stage. Verification of functionality of the register programming was not successful 

and the reason was the impedance of the oscilloscope4.5 probes.
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which is controlled by VCGlitcher, the details about which are discussed in section 4.3.3. 
 

 

Oscilloscope 
 

Teledyne LeCroy Waverunner oscilloscope has been used to perform high frequency 

and amplitude measurements.   The observations related to the experiments on the 

STM32F417 were performed on the LeCroy.  The bandwidth of the scope is vital in 

measuring high frequency signals. 

The PicoScope 5200 series oscilloscope [44] is used to carry out internal debugging 

and register send and read observations from the FPGA to the LMK04033 Clock 

Multiplier.  Also, the impedance of the probes used was suitable only for a certain 

range of observations. In this case, the experiments performed with the Tiva C were 

observed using PicoScope. The attenuation curve of PicoScope is limited to 250-300 

MHz. 
 

 

External power supply 
 

The Clock Multiplier and High-speed Multiplexer have been connected to separate 

external power supplies to provide 3V3 supply.  The main purpose of using separate 

external power supplies is that there are chances of overheating the circuitry if only one 

power supply is provided. 

By the provision of these external power supply, whenever the current reaches a 

certain limit, the voltage can be limited for the respective IC. If it was connected to 

the same power supply, chances are high for both overheating as well as ground plane 

interference. The external power was manually configured and provides coarse and fine 

tuning control. The power supply and connections have been shown in Figure 4.4.



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 

Figure 4.9: Nexys 3 Spartan-6 FPGA Board 
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Figure 4.10: LMK04033 Clock Multiplier basic circuit connection with highlighted 

parts which have been described in section 4.5 
 

 
 
 

 
 

 

Figure 4.11: Microwire Register programming 
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Figure 4.12: SY58029U Differential LVPECL 4:1 MUX 
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    CHAPTER V  
 

 
 

PERFORMANCE STUDY 
 
 
 
 
 

 
This chapter explains the parameters related to the test environment and how these 

parameters were used in the analysis of the results. Section 5.1 discusses the influence 

of clock glitches on the target microprocessor systems. Section 5.2 explains test results 

obtained from the clock glitching on the programs executed during the test – RSA-CRT 

and for-loop with complex mathematical expressions. 

 

 

5.1  Influence of Clock Glitches 
 

 

The effect of different switching frequencies which can be generated from the setup 

as shown in section 5.2 have been discussed in the following sections. 

 

 

5.1.1  Measuring the influence of glitch on TI Tiva C 
 

 

The following Figure 5.1 shows the change in clock frequency from 25 to 33 MHz 

after the trigger being received. The base frequency (25 MHz) is observed on the left 

hand side of the figure and after the trigger is observed the frequency shifts to the higher 

33 MHz which has been illustrated on the right side of the figure. The frequency graph is 

measured with voltage (V) on the Y-axis and time in micro-seconds (ms) on the X-axis. 

The generic aspects of the analysis are described as follows: Overclocking from 
 

25Mhz to 33Mhz yielded distinguishable results when compared to the other overclock 

frequency of 40 MHz. Various glitch offset ranges have been experimented with and
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Glitch Offset Range - 1.7s to 2.2s was the setting which showed a maximum number 

of affected glitches. This glitch offset was set to the duration where the processor is 

performing the RSA decryption which has been described in Section 4.4.1. 

 

Measuring device response/decryption 
 

The following individual stages have been completed on the Micro-controller during 

the experimentation process:  MCU GPIO pin triggering waits until the decryption 

function has been completed to pull low. For the Tiva, the reset pin is active low and 

has to be pulled to the GND. The raw perturbation setting, which selects the required 

parameters to check the response to glitching was setup. Table 5.1 shows the statistics of 

the attacks on Tiva MCU. The table compares the glitch response observation during the 

experiments performed for both the frequencies used. First column in the table shows 

the various clock frequencies used to glitch the target. Second column is sub-divided 

into two categories of observations, i.e., glitched or reset. The glitched category is for 

observations where Inspector software denoted a red in the response, i.e., when the output 

obtained was not the same as expected. Third column displays the percentage of attempts 

corresponding to each type of output. 

 

Table 5.1: Statistics of the glitching attacks on Tiva MCU 
 
 
 
 

 
5.1.2  Measuring the effectiveness of glitch on STM32F417 

 

 

The following individual stages have been completed on the Micro-controller which 

is similar to the experimentation described for Tiva MCU: The MCU GPIO pin triggering 

waits until the for loop function has been completed to pull low. For the STM32F the 

reset pin is active low and Reset test of the MCU board, the reset is active low and has to 

be pulled to the GND. The raw perturbation setting which selects the required parameters 

to check the response to glitching was setup. 
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The following Figure 5.2 shows the change in clock frequency from 50 to 81 MHz 

after the trigger being received. Table 5.2 shows the statistics of the attacks on STM32F. 

First column in the table shows the various clock frequencies used to glitch the target. 

Second column is sub-divided into two categories of observations, i.e., glitched or reset. 

Third column displays the percentage of attempts corresponding to each type of output. 
 

 
 
 

 

Table 5.2: Statistics of the glitching attacks on STM32F MCU 
 
 
 
 
 
 

5.2  Test Results 
 

 

5.2.1  Tiva Board (TM4C  MCU) 
 

 

Several series of experiments resulted in the following observations.  To verify 

the communication challenge and response Inspector software was used. An Inspector 

protocol, which communicates with the MCU, with input length of 129 bytes and expected 

output length of 128 bytes was setup. The additional 1 byte was only part of overhead 

used by the protocol. Single ended external clock source range via pin 40 - OSCIN0 

as given in data-sheet is 4 MHz to 25 MHz. Table 5.6 represents the communication 

challenge and response from the target while performing the experiments. Figure 5.4 

represents the output with variable glitch offset and glitch length. Here, Green denotes 

that the data which was expected, i.e., decrypted output was obtained. Yellow means 

either the data was unknown or mis-communication happened as a result lead to time out 

and subsequent reset of the target. Red means the the data is not same as the expected 

data, which implies the data is obtained as a result of a fault.  Figure 5.3 details the 

observation of clock glitching. The bar graph 5.3 with glitch offset (s) on the X-axis and 

glitch amount on Y-axis i.e., number of experiments which yielded glitches, conveys the
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Figure 5.1: Clock Shift after Trigger 
 

 
 
 
 
 
 
 
 
 
 

                 
 

 

Figure 5.2: Clock shift from 50 MHz to 81 MHz
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information that majority of the glitches were observed at a certain range of glitch offsets, 

more precisely in the glitch offset range of 1.6 to 2.0 seconds. This is an indication of 

the certain computation during the RSA-CRT decryption function being glitched. The 

different parts in the graph as represented in the legend are Normal (green), Glitched 

(red) and Inconclusive (yellow) according to Inspector software. 

 
 

Figure 5.3: Observation of number of glitches at corresponding glitch offset for Tiva 

MCU at 33 MHz overclock 
 

 
 

            
 

Figure 5.4: Plot of Inspector Output data Observation with variable glitch offset for Tiva 

MCU at 33 MHz overclock 
 

 
The plot in 5.4 displays the results obtained from table B.2 from the Appendix. The 

observation made after successful glitching, as shown in Figure 5.6 is that feeding a 

clock greater than 40 MHz mutes the board. The red line shows when the target did not 

communicate the expected response. This required a hard reset by toggling the switch. 
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Figure 5.5: Plot of Inspector Output data Observation with constant glitch offset and 

constant glitch length of 200 ns for Tiva MCU at 33 MHz overclock 
 
 
 
 
 
 
 
 
 

 

 
 

 

Figure 5.6: Inspector output showing the data obtained for Tiva MCU experimentation 

for the corresponding Glitch Offset and Glitch Length values
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Figure 5.5 represents the output with constant glitch offset and glitch length. The 

observation made from this condition was that, even though the glitch offset parameters 

were left constant, the output obtained differed between yellow (inconclusive) or glitched 

(red). From the Figure 5.6 few iterations of test gave unknown state as output (which is in 

yellow). An iteration where the data was glitched was obtained, as shown with the data 

in red, which means that the response from the target was not what was expected. The 

following Parameter details in table 5.3 describes the most effective parameters which 

yielded the glitch on the target. 1
 

 
 

 
Parameter Values 

Total attempts 1000+ 

Glitch Offset Range 1,700,000,000ns to 2,200,000,000ns 

Supply voltage 3.3V 

Glitch length Random between 4ns and 1000ns 

Table 5.3: Parameter details 
 

 
 
 

 
 

Figure 5.7: Blank plot of Inspector Output data Observation with variable glitch offset 

for Tiva MCU at 40 MHz overclock. Since, the target device was not responding at this 

frequency. The board had to be reset after a certain timeout. As a result, there was no 

communication observed. 
 

 
 

Lastly, at an overclock of 40 MHz there was no communication observed. This is 

shown in the Figure 5.7. The RSA-CRT Decryption takes around 2.8 seconds to complete. 

The glitch was offset towards the closing end, which was glitch offset in the range of 

1.7s to 2.2s, of this process as that is when decryption is being handled by the processor. 
 

1 Due to time and resource constraints Differential Fault Analysis [2] on the RSA-CRT decryption 

results obtained has not been performed.  Differential Fault Analysis is the method of obtaining 

keys by comparison between the results from the target with the fault injected and without.
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The process involved pulling a trigger (GPIO pin) high and then the decryption process 

which was followed by clearing the trigger. The parameters discussed in Section 4.3.4 

have been tailored for Tiva MCU and tabulated in Table 5.3. 

 

 

5.2.2  Core 417I Board (STM32F MCU) 
 

 

Various ranges of clock was considered for the STM32F417 MCU. The base clock 

was kept at 50 MHz and a short overclock was made to 81 MHz, 120 MHz, 300 MHz. 

The duration for which overclocked clock frequency was active, which is defined as 

glitch length, was set to a random value in 4-1000 ns range. Figure B.5 in Section B is 

the default clock configuration of 50 MHz and 81 MHz when the glitch setup or trigger 

has not been initialized. 

Most observable results were in the range of 50-81 MHz.  The values which are 

shown and compared in the following plots are represented in hexadecimal values. The 

program on the target was made to return the counter value of 100 which in hexadecimal 

is 0x64. The values 0xC4, 0xCC which were received from the UART communication 

could be classified as garbage values or maybe due to a corruption in the output buffer 

of communication. The reason behind it is due to change in the communication baud 

rate to an unknown value which the software on the computer is not able to recognize, 

during the overclock. The change in baud rate resulted in receiving the value sent back 

but unable to recognize as valid counter value. The main observation was that at 81MHz, 

120 MHz to which it is overclocked the counter operation was corrupted and the glitched 

outputs are shown in Table 5.8. The other observation was that at higher frequency of 

300 MHz the system crashed and did not communicate. It required resetting the board 

and starting the experiment over again. 

The total time duration taken for the programmed application which involved sending 

and receiving of a character after counting up in a for loop took around 1.5 seconds to 

complete. The process involved pulling a trigger (GPIO pin) high and then the counting 

up to 100 within a for loop which was followed by clearing the trigger. The glitch was 

offset towards receiving end of this process as that is when, response from the counter
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will be received. 
 

 
 
 
 
 

The bar graph 5.9 representing Normal or Glitched responses with glitch offset (ns) 

on X-axis and glitch amount on Y-axis, conveys the information that majority of the 

glitches were observed at lower glitch offsets than when compared to higher glitch offset. 

Two different observations, with constant glitch offset and variable glitch glitch offset, 

have been shown in Figures 5.10 and 5.11. The graph in Figure 5.10 displays the results 

when the glitch offset parameters were set to constant at 582 ns for the overclock of 81 

MHz. In this setting, it was observed that in glitch length range of 10-15 ns the counter 

output was faulted to E4. Similarly, Figure 5.11 is the plot of the results obtained for 

variable glitch offset at 120 MHz overclock. Comparatively higher number of faults 

were obtained at lower glitch length ranges. The tables corresponding to the plots in this 

section are presented in Section B of Appendix. 

Lastly, at an overclock of 300 MHz there was no communication observed. The 

target had to be reset after a time-out of no response. This is shown in the Figure 5.12. 

There are several other observations during which the system does not respond back with 

the correct expected output and has to be reset. The above plots have been chosen from 

a range of experiments performed to show certain parameter settings had a considerable 

impact on the target. 
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Figure 5.8: Inspector log displaying response from STM32F417 MCU 
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Figure 5.9: Observation of number of glitches at corresponding glitch offset for 

STM32F MCU at 120 MHz (left) and 81 MHz (right) overclock 
 

 
 
 
 
 
 
 
 

 
 

 
Figure 5.10: Plot of Inspector Output data Observation with constant glitch offset for 

STM32F417 MCU at 81 MHz overclock
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Figure 5.11: Plot of Inspector Output data Observation with variable glitch offset for 

STM32F417 MCU at 120 MHz overclock 
 

 
 
 
 
 
 
 
 
 
 
 
 

                   
 

Figure 5.12: Blank plot of Inspector Output data Observation with variable glitch offset 

for STM32F417 MCU at 300 MHz overclock. Since, the target device was not 

responding at this frequency. The board had to be reset after a certain timeout. As a 

result, there was no communication observed.
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                                CHAPTER VI 
 

 
 

CONCLUSION AND FUTURE WORK 
 
 
 
 
 
 
 
 
 
 
 

6.1  Conclusions 
 

 

The research presented in this paper was performed to introduce a new technique for 

generating high speed clock glitching faults on target devices which are latest high speed 

micro-controllers. The motivation for this research was to develop methodologies for 

overclocking for clock fault injection, on which there are currently no publications. The 

targets used were programmed for running test code to observe unexpected behavior to 

faults. Both the targets returned output which was not expected around 20% of the test 

time. The main features of the setup established are that - it is capable of performing 

short overclocking up to a range of around 300 GHz as tested on the STM32F MCU. 

In addition, the target clock can be successfully overclocked up to ~1GHz range as it 

is the design capability of the clock multiplier used in this research. The existing setup 

is also capable of performing duty cycle glitching as it is an inbuilt feature of the clock 

multiplier or DCMs used in the setup. 

This thesis developed a prototype system on the FPGA and external circuitry platform 

with the collaboration of Inspector software. Experimental results verified the theoretical 

analysis and displayed the basic functions of the clock glitching technique have been 

successfully evaluated on the two target boards which have been chosen. The trade-off
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observed in this case was that more results were being observed at comparatively lower 

speed switching frequencies, not at very high speed switching frequencies. The steps 

involved in conducting high speed clock glitch fault injection with the required calibration 

and operational settings on a cryptographic implementation and counter program on 

micro-controllers have been presented. 

In Chapter 4, it has been shown how the configuration of the setup has been designed 

and built, through specific parameters, influencing the response from the target. Those 

measurements were supported by specific communication challenge-response pairs used 

to calculate the functioning of the processor. In Chapter 2, the background has been 

discussed related to the clock glitching and fault injection techniques. Comparing the 

results of attacks on the targets shown in frequency waveforms, we can clearly see that 

short overclocks to very high frequencies were making the targets not send any data back. 

The target needs to be reset. Most results were found in the 50-81MHz for the STM and 

25-33MHz for the Tiva C. Therefore, concluding that even high-speed micro-controller 

units should consider countermeasures against clock fault injection 

 

 

6.2  Future Work 
 

 

The experiments, in the research, were performed on the latest targets using a simple 

loop test. This implementation has to be extended to a cryptographic algorithm on other 

higher speed MCU or devices, and the effect of the high speed glitch has to be measured 

on the same. The clock multiplier selected in this research has limited capability: up-to 

~1 GHz.  This can be a bottleneck when the targets run in GHz range, like certain 

single-board computers or micro-controllers. Extensive research was performed to select 

the clock multiplier used in this research. Further fine-tuning would involve selecting 

a target which would function at a very high frequency and whose clock line can be 

externally controlled. These devices function on the high speed clock, some of them even 

greater than 1 GHz. A possible enhancement to extend this research would be to select a 

clock multiplier with greater range. This type of clock multiplier can future-proof the 

test setup for the required clock frequency range. The other options as targets include
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Beaglebone Black with a 1 GHz processor or pcDuino3 - Development Board. 
 

The prime importance has to be given to developing a printed circuit board design 

implementing the external analog circuitry used in this research. This will lead to better 

experimental observations in case of very high frequency clock settings. The PCB design 

would provide flexibility in developing multiple test setup environments to attack more 

targets at a given time. 

Phased-synchronous mode is where the switch happens the next time a particular 

phase is reached. For example, we can choose to switch at 75% of the normal clock 

cycle if we know both normal and glitch clocks will be low (equal). Transient faults are 

eliminated in this case. There is also an option to control the FPGA using the Inspector 

tool. This would eliminate the use of VCGlitcher, as the wait cycles and glitch cycles can 

be set directly on the FPGA pmod pins using the driver created in Inspector. It would also 

be interesting to observe the response of targets on which countermeasures are enabled 

for these types of high-speed clock glitch attacks. 
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APPENDIX A 
 

 
 

STM32F417 HSE Clock Bypass Conditions 
 

Implementation 
 
 
 
 
 

 
The SetSysClock call handles the clock conditions: 

 

//In the PLL parameters 
 

#define PLL_M 25 
 

#define PLL_N 336 
 

#define PLL_P 168 
 

#define PLL_Q 14 
 
 

 
//In the SetSysClock function 

 

RCC->CR |= (uint32_t)(RCC_CR_HSEON | RCC_CR_HSEBYP); 
 
 

 
In main.c 

 

#define HSE_VALUE((uint 32_t)50000000)
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APPENDIX B 
 

 
 

Output  Observations 
 
 
 
 
 
 
 
 
 

 
 

 

Figure B.1: LMK04033 generated 500 MHz clock 
 

 
 

Figure B.1 shows the oscilloscope shot of clock generated from ClkOut2 pin on 

the clock multiplier at 500 MHz frequency. This is just one of the possible high speed 

frequencies which this IC can be configured to generate. 

 

 
Figure B.2 is the accompanying observation in PC side as the microwire registers 

are programmed one after the other4.11. It shows the EPP protocol sending the 8 bit 

configuration to the corresponding address on the FPGA.
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Parameter 
 

Values 

 

Input 
 

02 00 80 12 53 
 

Expected output 
 

00 80 00 EB 7A 
 

Unknown output 
 

02 00 80 
 

Glitched output 
 

00 80 03 

 
 

Parameter Values 

Expected Output 64 

Glitched outputs E4 

 C4 

 CC 

Table B.1: Counter output observation from STM32F417 MCU Experiments 
 

 
 
 

 

Table B.2: Output Observation 
 

 
 
 

The following frequency graph in Figure B.6 shows the overclock to 120 MHz.
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Figure B.2: EPP protocol sending Microwire Protocol Registers 
 
 
 
 
 
 

 

 
 

Figure B.3: Inspector log displaying response from STM32F417 MCU
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Figure B.4: Inspector log displaying response from STM32F417 MCU 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure B.5: Normal condition clock observation (without glitch)
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Table B.3: Output Observation with constant glitch offset and glitch length 
 
 
 
 
 
 
 
 
 

 

 
Table B.4: Counter program output data observation from STM32F MCU Experiments 

at 81 MHz overclock
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Table B.5: Successful fault injections 
 
 
 

 

 
 

 

Figure B.6: Clock glitch frequency Observation from LeCroy 
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