
INVESTIGATING REMOTE
DYNAMIC POWER ATTACKS FOR

SECURING FPGA SYSTEMS

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF ENGINEERING

IN THE FACULTY OF SCIENCE AND ENGINEERING

2023

Tuan M. La
School of Engineering

Department of Computer Science

Contents

Abstract 10

Declaration 11

Copyright 12

Acknowledgements 13

1 Introduction 14
1.1 Motivation . 14

1.2 Objectives and challenges . 16

1.3 Contributions . 17

1.4 Thesis outline . 19

1.5 Publications . 20

1.6 List of Abbreviations . 21

2 Background 22
2.1 Security of FPGA systems . 24

2.1.1 Power analysis . 25

2.1.2 Electromagnetic analysis . 26

2.1.3 Thermal channel . 27

2.1.4 Crosstalk coupling . 28

2.1.5 Differential fault analysis . 29

2.1.6 Bitstream fault injection . 30

2.1.7 Configuration data leakage 32

2.1.8 Attacks on system availability 32

2.2 Attacks and defence on power aspect 34

2

3 FPGA power-hammering characterisation 35
3.1 Study on self-oscillators . 35

3.1.1 Experimental setup . 36

3.1.2 Combinatorial self-oscillator variants 39

3.1.3 Non-combinatorial self-oscillator variants 45

3.1.4 Quantifying the risk of power-hammering 46

3.2 Power consumption on wiring resources 50

3.2.1 How to generate test signals that toggle at GHz regime? . . . 52

3.2.2 Experiments on wiring resources 57

3.3 Chapter summary . 64

4 Case study on attacking AWS F1 FPGA instances 66
4.1 The AWS FPGA security architecture 68

4.1.1 Fence 1 – Design inspection 68

4.1.2 Fence 2 – Bitstream generation 69

4.1.3 Fence 3 – FPGA API . 70

4.1.4 Fence 4 – FPGA monitoring 70

4.2 Power-hammering attacks on AWS EC2 F1 instances 71

4.3 Bypassing Fence 4 – FPGA monitoring 73

4.4 FPGA fingerprinting on AWS EC2 F1 74

4.5 Mounting a DoS attack on AWS EC2 F1 instances 76

4.6 Chapter summary . 77

5 FPGA netlist scanner for malicious circuits 78
5.1 Malicious circuits scanning mechanism 79

5.1.1 Hardware versus software virus scanning 79

5.1.2 Modelling the FPGA virus scanning problem 81

5.1.3 Detecting self-oscillating circuits 83

5.1.4 Detecting short-circuits . 86

5.1.5 Netlist bounding-box tests 87

5.1.6 Detecting wire-tapping . 87

5.1.7 Interface sanity check . 88

5.2 FPGA Scanner: Implementation and evaluation 88

5.2.1 Architecture graph generation for FPGADEFENDER 89

5.2.2 Design evaluation . 92

5.2.3 TCL implementation of FPGADEFENDER 96

3

5.3 Chapter summary . 96

6 Conclusion 97
6.1 Contribution summary . 97

6.1.1 Literature review of FPGA self-oscillating circuits 97
6.1.2 A dynamic power model for wiring resources 97
6.1.3 Quantifying the risk of power-hammering 98
6.1.4 Real-world power-hammering attack on FPGA-based infras-

tructure of Amazon Web Services 98
6.1.5 A contribution to FPGADEFENDER and API for detecting ma-

licious circuits . 98
6.1.6 A contribution to a study on a countermeasure for glitch am-

plification . 98
6.2 Future Works . 99

6.2.1 FPGA Power Verification 99
6.2.2 FPGA Timing Verification 99

6.3 Impact . 99

Bibliography 100

A FPGA Technology and Implementation of FPGA designs 113
A.1 FPGA technology . 113
A.2 Implementation of FPGA designs 115
A.3 Registering of user designs on AWS 116
A.4 Deployment of user designs on AWS 116

Word Count: 22765

4

List of Tables

2.1 Advantages and disadvantages of countermeasures to power analysis
attacks . 27

2.2 Some possible defense mechanism for fault analysis attacks 30
2.3 Advantages and disadvantages of countermeasures to power analysis

attacks . 34

3.1 Configurable resources of Ultra96 compared with the data centre FPGA
Alveo U200 . 36

3.2 Variants of self-oscillating circuits studied on Xilinx UltraScale+ FPGAs.

The results of power consumption are measured on the Ultra96 platform

equipping with a Zynq UltraScale+ MPSoC ZU3EG. 43
3.3 Power-hammering evaluation between Xilinx Power Estimator, Mea-

sured Power Consumption on Ultra96, and Speculation Power Con-
sumption on Alveo U200. 48

3.4 Wiring resources of a switch matrix in Xilinx UltraScale+ devices . . 52
3.5 Estimated WPP of a legal design that only uses normal wires as the

power wasting medium in Alveo U200 at 500MHz. This excludes
static power and power wasting on connecting wires and other compo-
nents. 64

4.1 Current AWS protection fences: Fence 1 – Design Inspection; Fence 2 – Bit-

stream Generation; Fence 3 – FPGA low-level API; Fence 4 – FPGA runtime

monitoring . 67
4.2 Malicious designs that are currently deployable on AWS. 69

5.1 Pros and cons of approaches to prevent power attacks for FPGA-based
infrastructures . 79

5.2 Contrasting protection mechanisms: software versus FPGA hardware
techniques. 80

5

5.3 Evaluation results for malicious designs circuits. 93
5.4 Evaluation results for benchmarking circuits. 95

6

List of Figures

1.1 The main figure is taken from a survey in [99] where it showed the
timeline of the key research contributions (not an exhaustive list). Gray
horizontal bars start at the earliest reported successful attack. The
added information are markers when Amazon introduced FPGAs on
the cloud and when this project was started. 15

1.2 Attacks on system availability and system confidentiality. 15

2.1 An illustration of the eavesdropping scenario in an FPGA. 25

2.2 An illustration of the bitstream fault injection threat model in a multi-
tenant computing environment. 31

2.3 An illustration of the denial-of-service scenario. A user may try to
shutdown an FPGA service in a data centre by sending malicious cir-
cuits such that legitimate requests from other users cannot use the
FPGA resources. Short-circuits and power-hammering designs can be
utilised for such attacks on the system availability. Furthermore, this
kind of attack may potentially age or damage the equipment. 33

3.1 Time To Digital construction. 37

3.2 Time-to-Digital Converter (TDC) waveform. 37

3.3 a) Dual-RO from LUT6 primitive; b) RO design from Carry Logic; c)
RO design from DSP; d) Glitch amplification. 38

3.4 Tentative internal combinatorial loop inside DSP. This figure is adopted
from [129]. 40

3.5 BRAM cascade functional diagram. This figure is adopted from [130]. 41

3.6 Enhanced ROs grid for power-hammering: a) schematic; b) implemen-
tation with 2000 ROs. 44

3.7 Logical view of a Lookup Table 6-input primitive with timing infor-
mation taken from Vivado. 44

7

3.8 ROs Frequency versus Waste Power Gain (measured for 2000 ROs)
for all 8 LUT6 primitives inside a CLB for all corresponding different
cases that implement the fastest possible loop from output O6 to an
input of the same LUT (resulting in 8×6 = 48 individual experiments). 47

3.9 Power-hammering Evaluation for Power over Core Voltage on Ultra96. 48

3.10 Power-hammering Evaluation for Power over Temperature on Ultra96. 49

3.11 High-speed clock distribution on an FPGA using glitch amplification
of multiple phase shifted clocks. 53

3.12 Detailed block diagram of the Mixed-Mode Clock Manager [123] . . 54

3.13 Time-to-Digital Converter (TDC) for logging a clock amplifier output. 54

3.14 High-speed clock distribution on an FPGA using glitch amplification
of multiple phase shifted clocks. a, b, c, d are clock inputs; f is the
clock output. 55

3.15 FPGA Floorplan of the experimental setup. 57

3.16 Local routing wires of a CLB in Xilinx UltraScale+ FPGAs. 58

3.17 Energy per toggle for characterised by wire directions. 60

3.18 Energy per toggle for characterised wire lengths (SINGLE type and
DOUBLE type). 61

3.19 Energy per toggle for characterised wire lengths (QUAD type and
LONG type). 62

3.20 Power consumption versus duty cycle. This experiment was conducted
with 1260 glitch amplifiers producing 1GHz routing to its local wires. 63

4.1 Oscillator designs deployable on AWS F1 instances: (a) transparent latch, (b)

flip-flop with asynchronous preset, (c) ring-oscillators implemented through

carry-chain logic, (d) a self-oscillating circuit using glitch amplification. . . 71

4.2 Power-hammering designs and power evaluation on AWS. a) Self-clocked

design to bypass the clock gating protection. b) One carry-chain primitive

forms 8 combinatorial loops. c) Evaluation using 81920 carry-chain primi-

tives. The continuous red line is the recorded power measurement. The linear

dotted blue line shows the expected power consumption when leaving the

experiment running freely. 72

4.3 AWS F1 FPGA PUF responses. 74

4.4 AWS attack flow. 74

4.5 Time interval between two running instances. 76

8

4.6 Estimated attack cost and loss after 100 attacks with an attack time of
5 minutes and downtime of 52 minutes. 76

5.1 a) Switch matrix multiplexer implementation on Xilinx 7-series FPGA;
b) ditto for UltraScale+ FPGAs. 86

5.2 Envisioned system with a virus scanner for detecting malicious FPGA
designs. 89

5.3 FPGA scanning flowchart. 90
5.4 Example of a path that closes in LUT A but that does not form a cycle

or RO. 91

A.1 a) Illustration of an FPGA fabric with configurable logic blocks (CLBs) and

routing channels, b) CLB details. The red path in b) shows a controllable

ring-oscillator. 113
A.2 FPGA development for AWS F1 instances. 114
A.3 Lifecycle of an Amazon EBS-backed EC2 instance. This figure is adopted

from [16]. 117

9

Abstract

INVESTIGATING REMOTE DYNAMIC POWER ATTACKS FOR

SECURING FPGA SYSTEMS

Tuan M. La
A thesis submitted to The University of Manchester

for the degree of Doctor of Engineering, 2023

As FPGAs are now offered on the cloud, this exposes many potential security is-
sues. This project investigates current security issues and challenges when deploying
FPGAs in the cloud as well as using FPGAs in a multi-tenancy scenario. An in-depth
investigation of recent FPGA architectures has been carried out to study the possibility
to create and customise malicious circuits to exploit power side-channel and denial-
of-service attacks on FPGAs. This thesis identified that self-toggling circuits such as
ring-oscillators and glitch amplifiers not only pose a threat to the confidentiality but
also to the reliability of an FPGA system. On the one hand, ring-oscillators could be
used to sense electrical activities due to their sensitivity to voltage fluctuation. On the
other hand, when the self-toggling circuit is tuned, it could draw excessive power to ef-
fectively overwhelm the power supply circuit of a system in case of a denial-of-service
attack.

Therefore, it is of paramount importance to assess the power attack potential of a
design as early as possible. With the detailed information studied, we could accurately
detect malicious sources at a very early stage before the design is programmed onto the
FPGA board. Moreover, this thesis provides a characterisation of waste power poten-
tial on modern data centre FPGAs to assist in analysing the level of power attack threat
which could also come from the abuse of power-hungry circuits such as cryptographic
algorithm calculation.

10

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institute
of learning.

11

Copyright

i. The author of this thesis (including any appendices and/or schedules to this the-
sis) owns certain copyright or related rights in it (the “Copyright”) and s/he has
given The University of Manchester certain rights to use such Copyright, includ-
ing for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate,
in accordance with licensing agreements which the University has from time to
time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions”), which
may be described in this thesis, may not be owned by the author and may be
owned by third parties. Such Intellectual Property and Reproductions cannot
and must not be made available for use without the prior written permission of
the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Univer-
sity IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?
DocID=24420), in any relevant Thesis restriction declarations deposited in the
University Library, The University Library’s regulations (see http://www.library.
manchester.ac.uk/about/regulations/) and in The University’s policy on
presentation of Theses

12

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://www.library.manchester.ac.uk/about/regulations/
http://www.library.manchester.ac.uk/about/regulations/

Acknowledgements

First of all, I would like to express my deep gratitude to my supervisor, Dr. Dirk Koch,
for his guidance, enthusiastic support, and encouragement. He has been guiding me
since the beginning with his long-term vision, invaluable experience and expertise. I
also thank Dr. James Garside, my co-supervisor, for his valuable support.

I would like to thank my friends Khoa Dang Pham, Kaspar Matas, Anuj Vaishnav,
and Joseph Powell for their help, support, encouragement, deep insights, thorough
discussions, and collaborations during my study. People from our APT group are also
thankful for the positive and professional research environment.

Finally, I would like to thank my parents, my family, and my Vietnamese friends
who helped me to achieve this milestone.

This work is kindly supported by the UK National Cyber Security Centre through
the project rFAS (grant agreement 4212204/RFA 15971). We also thank the Xilinx
University Program for providing tools and boards.

13

Chapter 1

Introduction

1.1 Motivation

FPGAs are widely offered in cloud data centres (e.g., [13]), and there is consequently a
strong need to investigate FPGA hardware security in the remote environment. This is
because of the difference in the environment where FPGAs are utilised. Traditionally,
FPGAs are used by individual entities so FPGA security was related to IP theft and
attacks that could be done with sophisticated lab equipment such as oscilloscopes [20]
and electromagnetic-field sensors [41]. In the cloud environment, virtually anybody
can access an FPGA as an accelerator. In 2016, Amazon rolled out F1 instances which
are the FPGA-based cloud computing services. From that, there has been an increase of
studies on remote security of FPGAs. Figure 1.1 clearly depicts the movement of stud-
ies on security of FPGAs from physical proximity to remote deployment. Crosstalk
coupling is a distinctive example where the crosstalk effect has been known for a long
time but only when FPGAs are deployed remotely, the security aspect of the effect is
starting to emerge. On the other hand, we have not seen electromagnetic vulnerabili-
ties on the cloud because it usually requires the electromagnetic-field sensor to be in
close contact with the FPGA fabric.

In the cloud, registered users are allowed to run their FPGA designs on the cloud
hardware. This may enable someone to cause potential harm to the FPGA equip-
ment [99] (see Figure 1.2). To prevent potential malicious designs from being deployed
on an FPGA instance, Cloud Service Providers (CSP) commonly demand uploading
netlists to run Design Rule Checks (DRCs). Tests mostly include static timing anal-
ysis and detecting Combinatorial feedback paths. These violations are currently used
for FPGA attacks [99]. For example, the FPGA vendor Xilinx has a DRC to indicate

14

1.1. MOTIVATION 15

This project
started

AWS rolled out
FPGA instances

Nov 2016 Mar 2019

Figure 1.1: The main figure is taken from a survey in [99] where it showed the timeline
of the key research contributions (not an exhaustive list). Gray horizontal bars start
at the earliest reported successful attack. The added information are markers when
Amazon introduced FPGAs on the cloud and when this project was started.

Shutdowns the
victim with

malicious circuits

Legitimate
requests can’t
get resources

to execute

Attackers put
on on-chip
sensor core

Users put on
crypto-graphic core

Logic isolation

Static
shell

User A

User B

Figure 1.2: Attacks on system availability and system confidentiality.

16 CHAPTER 1. INTRODUCTION

when a LUT-based combinatorial loop is used to prevent implementing free-running
oscillators in the design (DRC LUTLP-1) which can be used to leak information or en-
vironmental parameters of a system. Additionally, accepting netlists only ensures that
generated bitstreams are not corrupted through any post-processing step. During oper-
ation, power monitoring can be used to warn or stop potential malicious activities (e.g.,
through clock gating if the supply power consumption reaches a critical level [12]).

Current DRCs provided by the FPGA vendors are insufficient for security, as will
be described later in Chapter 3 with several examples of malicious FPGA designs that
can be deployed on AWS instances. Moreover, monitoring is passive as it only detects
malicious circuits after these circuits are deployed.

This thesis will survey current security issues of using FPGAs in the cloud, char-
acterise power-hammering threats relating to self-oscillating circuits, and propose ad-
ditional countermeasures to mitigate power-hammering attacks. The thesis will later
focus on the availability property especially in Denial-of-Service attacks. This work
not only aims to provide the base for potential multi-tenancy scenarios but also to move
FPGA usage from the present FPGA-enabled Acceleration-as-a-Service (AaaS) offer-
ings [13] to full FPGA-as-a-Service (FaaS) offerings [94, 11], where users may upload
their own bitstreams without the risk that user IPs are possibly leaked by CSPs. Pro-
viding a holistic study on the power-hammering potential is the key to deciding what
level of detection and mitigation strategies are needed in order to allow that FaaS.

1.2 Objectives and challenges

This project aims to characterise the risk of power-hammering, which is the process of
damaging equipment, denying services, or introducing faults through imposed exces-
sive waste power consumption. In detail, this project aims at providing a holistic view
of power-hammering on FPGAs by providing a model to detect and evaluate the threat
of various scenarios an attacker may use for wasting power.

This research includes an in-depth investigation into FPGA resources such as Look-
Up Tables (LUT), Switch Matrices (SWBOX), Cascading Multiplexers (MUX), Digi-
tal Signal Processing Blocks (DSP), Carry Chain logic (CARRY), Block RAMs (BRAM),
routing resources, and clock generation and distribution resources. A common source
of power in a digital circuit is dynamic power which results from the switching activ-
ity of a circuit. The most excessive sources of switching possible on an FPGA result
from oscillators. Oscillators are not used in digital circuits that follow the Register

1.3. CONTRIBUTIONS 17

Transfer Level (RTL) model. In order to catch any kind of oscillator, this work does
not only consider ring-oscillators (as the FPGA vendor DRCs are limited to) but we
will explore any possible combination to create self-oscillating circuits on FPGAs.
Throughout the exploration, related information is obtained from the circuits such as
frequency and power consumption. This is then used to establish a way to quantify the
power-hammering potential.

To emphasise the importance of the problem, we not only need to conduct experi-
ments in a lab-controlled environment but also need to demonstrate real-world attacks
in a responsible manner. Using public knowledge, we need to investigate the imple-
mentation of FPGA security infrastructure implemented by cloud providers and derive
an attack plan accordingly. It should be noted that we do not use social engineering to
gain advantages to infiltrate the cloud infrastructure.

In order to propose an effective countermeasure, this work will investigate holes in
present power-hammering mitigation strategies and will develop complementary tech-
niques that provide substantially better protection and that can, for example, prevent an
attacker from deploying any kind of self-oscillating circuits. It should be emphasised
that the primary countermeasure should be preventing the malicious circuits from be-
ing loaded on the FPGA fabric, not just monitoring after loading it. This project aims
at providing flexible security checks that could be implemented either before or after
the bitstream generation stage. The former could be done by embedding a custom
DRC to the existing Xilinx FPGA design flow. The latter is implemented as an addi-
tional step that scans the bitstream before it is being loaded onto the FPGA fabric. Our
solution enables cloud service providers to easily and flexibly integrate the checks into
the existing FPGA design flow.

1.3 Contributions

Throughout the course of the research, this project has made the following contribu-
tions:

• In-depth study on self-oscillators in FPGAs: We provide an in-depth study
on self-oscillating circuits for the most commonly used FPGA devices provided
by the vendor Xilinx (now AMD) for data centre acceleration. It not only ex-
tends the known variants of possible self-oscillating sources but also examines
individual self-oscillators in terms of frequency, power consumption, and power-
hammering potential. The study contributes to the publication [110].

18 CHAPTER 1. INTRODUCTION

• Dynamic power model for wiring resources: We examine the energy con-
sumed for each toggle on the main wiring resources in Xilinx UltraScale+ FP-
GAs. This reveals that by using enough routing resources, a power-hammering
attack could be mounted using standard RTL designs.

• Real-world case study of power-hammering attacks: We provide a demon-
stration of the vulnerability of FPGA-based cloud infrastructures by deploying
carefully designed malicious circuits. The results show that the current defence
mechanisms are not adequate to protect the cloud infrastructure from the new
type of Denial-of-Service attack. Moreover, our attacks demonstrated that it
is possible to leak sensitive information, such as the cloud service providers
scheduling decisions. The study contributes to the publication [109].

• FPGA malicious scanning mechanism: Given the severity of current security
issues in FPGA-based cloud systems, we propose a scanning mechanism that
can effectively detect all currently known self-oscillating circuits among other
malicious circuits as well as easily maintain, update, and embedded into FPGA-
based cloud infrastructure. The Python implementation of the scanning mecha-
nism was done by the PhD Student Kaspar Matas. My main contribution is the
bitstream decoding for generating the FPGA architecture graph and TCL imple-
mentation of the FPGA virus scanner to embed it as a custom DRC. This study
contributes to the publication [110]. The FPGA virus scanner can detect:

– Combinatorial feedback loops which include more complex oscillators
which were not discovered previously.

– Abnormal fanouts which could be used to draw extra power through branch-
ing one oscillator to multiple routing resources.

– Prohibited ports and antennas which could indicate misused connection
such as restricted IO ports.

– Prohibited paths indicate the potential use of the crosstalk coupling effect.

– Short-circuit is another way to draw extra power through static power con-
sumption.

1.4. THESIS OUTLINE 19

1.4 Thesis outline

The rest of this thesis is organised into the following chapters:

• Chapter 1: provides the introduction, motivation, and context for this project.

• Chapter 2: describes the background and related works of current security is-
sues of FPGAs at the electrical level. We especially focus on attacks and defence
related to power-hammering.

• Chapter 3: characterises the FPGA power-hammering potential. This chapter
describes and discusses the study on self-oscillating circuits. We also explore
the contribution of routing resources to the total dynamic power consumption.
Furthermore, we provide a way to quantify the power-hammering potential.

• Chapter 4: demonstrates a case study of a Denial-of-Service attack on Amazon
Cloud Service F1 instances which are equipped with FPGAs.

• Chapter 5: describes a malicious circuit scanning mechanism. In this chapter,
we also evaluate our system and discuss interesting results when scanning both
legitimate and malicious circuits. Additionally, we integrate the malicious scan-
ning mechanism into the existing FPGA development flow via a custom DRC.

• Chapter 6: summarises this thesis and discusses future work, which has been
enabled by this project.

20 CHAPTER 1. INTRODUCTION

1.5 Publications

The research conducted throughout this project has been produced through the three
research articles listed below.

1. K. Matas, T. M. La, K. D. Pham, and D. Koch, Power-hammering through
Glitch Amplification - Attacks and Mitigation, in IEEE International Sympo-

sium on Field-Programmable Custom Computing Machines (FCCM), 2020

2. T. M. La, K. Matas, N. Grunchevski, K. D. Pham, and D. Koch, FPGADe-
fender: Malicious Self-Oscillator Scanning for Xilinx UltraScale+ FPGAs,
in ACM Transaction Reconfigurable Technology (TRETS), 2020

3. T. M. La, K. D. Pham, J. Powell, and D. Koch, Denial-of-Service on FPGA-
based Cloud Infrastructure - Attack and Defense, in IACR Transactions on

Cryptographic Hardware and Embedded Systems (TCHES), 2021

Additionally, this project also contributes abstracts and demos to several venues
listed below.

1. K. Matas, T. M. La, N. Grunchevski, K. D. Pham, and D. Koch, Invited Tuto-
rial: FPGA Hardware Security for Datacenters and Beyond, in ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays (FPGA), 2019

2. T. M. La, K. Matas, K. D. Pham, and D. Koch, Securing FPGA Accelerators at
the Electrical Level for Multi-tenant Platforms, in International Conference

on Field-Programmable Logic and Applications (FPL), 2020

3. T. M. La, K. Matas, J. Powell, K. D. Pham, and D. Koch, Demo: A Closer Look
at Malicious Bitstreams, in International Conference on Field-Programmable

Logic and Applications (FPL), 2020

1.6. LIST OF ABBREVIATIONS 21

1.6 List of Abbreviations

Abbreviation Meaning

AWS Amazon Web Service
AaaS Acceleration as a Service
BRAM Block Random Access Memory
CARRY Carry Chain logic
CLA Carry Look Ahead
CSP Cloud Service Provider
DFA Differential Fault Analysis
DPA Differential Power Analysis
DRC Design Rule Check
DSP Digital Signal Processing block
DoS Denial of Service
EM Electromagnetic
FaaS FPGA as a Service
HALT Higher Abstraction Level Threat
IP Intellectual Property
LUT Look Up Table
MELT Malicious Electrical Level Threat
MUX Multiplexer
RO Ring Oscillator
SPA Simple Power Analysis
SWBOX switch box/switch matrix
TDC Time-to-Digital Converter

Chapter 2

Background and related works

The flexibility and power efficiency provided by hardware configuration have led to
the integration of FPGAs on cloud infrastructures. Studies have shown that FPGA-
based hardware acceleration can achieve up to 25X better performance per watt and
50-70x latency improvement compared to CPU/GPU implementations in some appli-
cations [118]. This has led to the start of FPGA-enabled Cloud Computing Services
(e.g., Amazon F1 instances [59]). The introduction of FPGA instances by Amazon
Web Service has caused a large body of related FPGA security research which we
could identify as the ”Amazon Effect”.

In the dawn of the FPGA era, vendors believed that the security of an FPGA was
primarily about protecting designs in terms of the Intellectual Property (IP) in con-
figuration data (bitstream) in commercial electronic equipment [116]. Attack require-
ments vary from less physical modifications (such as bitstream manipulation in Mali-
cious Electrical Level Threat (MELT) [53]) to more complicated setups that analyse
electromagnetic fields [41]. However, as FPGAs become popular, research showed
that FPGAs are exposed to more severe threats than unauthorised uses of an IP. For
instance, when a bitstream is manipulated, it can cause short-circuit and lead to irre-
versible damage [53]. Due to their low-level programmability, FPGAs introduce new
threats far beyond what is commonly known from traditional CPU/GPU systems. For
instance, modules running on an FPGA may include circuits being able to measure
system states at high accuracy which may open physical side-channels that are not
available in commonly used attack scenarios.

Before FPGAs emerged in cloud computing, those who wanted to explore FPGAs
required physical access and mostly used them locally. In that scenario, owners have
full accessibility and responsibility to the data that is processed inside FPGAs, thus

22

23

it is virtually impossible for others to steal the IP or compromise the processed data.
However, this usage scenario also omits the advantages of resource pooling which
is commonly used in the cloud environment. After the integration of FPGAs into
the cloud, clients who want to utilise FPGAs are not required to possess an FPGA
board physically. Scheduling policies allow cloud service providers to assign FPGA
instances to individual clients. Therefore, clients do not have physical accessibility nor
can take full responsibility to protect their IPs and data. Moreover, future multi-tenant
scenarios are expected to provide better utilisation and power efficiency compared to
a single user per fabric scheme. As a result, attack scenarios gradually change from
local attacks to remote attacks as a reflection of the FPGA’s immigration to the cloud.

Previous research has established the foundation for FPGA security [95] and also
specifically focused on the implementation of cryptographic algorithms on FPGAs [113].
In response to the threats, FPGA vendors have been providing solutions to hinder and
mitigate the attack channels in order to balance the cost of investing in countermea-
sures and the cost of breaking the system [96, 98, 104]. For instance, the Device DNA
was introduced with Xilinx Spartan-3A for tracking purposes and preventing design
cloning [117]. However, as a consequence of the Amazon Effect, new vulnerabilities
give attackers less dependence on expensive equipment to perform attacks which low-
ers the cost of breaking the system. Therefore, the security in FPGAs needs to be rein-
vestigated and addressed again. This chapter aims to classify security threats focusing
on exploiting the uniqueness of FPGAs’ natures that makes them more vulnerable in
the cloud compared to other hardware platforms.

In personal computing devices (e.g., PCs, laptops, smartphones), cyber security
usually refers to reducing the threats of stealing, exposing, altering, disabling, or de-
stroying information through unauthorised access to computer systems [81]. To ensure
the security of a hardware system, administrators need to ensure an infrastructure to
be trustworthy. In FPGA-based systems, configuration data - whether or not created
by users - is considered as a part of the infrastructure then that must be protected.
It should be noted that although social engineering remains the most prominent way
of committing cyber crimes [74], trustworthy infrastructure plays an equally impor-
tant role before putting any secure applications on top of that. Therefore, we will not
discuss social engineering in this thesis.

There are several ways to categorise physical side-channel attacks. Either by phys-
ical phenomena such as power, electromagnetic, thermal, sound, crosstalk coupling,
photonic emission or by proximity [99]. Regarding power attacks, we classify them

24 CHAPTER 2. BACKGROUND

based on the aggression of the attacks.

• Aggressive attacks are designed to cause damage and severe breach of integrity
and availability of the whole system.

• Nonaggressive attacks are designed to stealthily capture useful information and
ultimately cause a breach of confidentiality.

In this chapter, we will discuss attacks and countermeasures on FPGA-based sys-
tems with a focus on power attacks

2.1 Security of FPGA systems

In terms of confidentiality in FPGA systems, most attacks are originated from imple-
mentation threats of security elements itself such as side-channel attacks. Currently,
compromising confidentiality such as leaking information is drawing special attention
(e.g., [72, 102, 112]). Side-channel attacks are well-known attacks in FPGAs in which
attackers gain information from the implementation of a system instead of striking the
weaknesses of the implemented algorithm. In addition to side-channels to the shared
memory location (e.g., rowhammer in [132]), various further physical effects have
been used to implement side-channels on FPGAs, including power analysis, electro-
magnetic analysis, thermal channel, fault analysis, and crosstalk coupling.

In terms of compromising the integrity of a system, it can be classified into two
types: data integrity and system integrity. Data integrity refers to the accuracy and
consistency of data over its entire life cycle. A system is said to have system integrity if
it can be trusted to correctly execute its desired functions [82]. In FPGAs, we focus on
the most current attacks that are related to improper data modification or fault injection
in order to reveal a secret key that eventually affects the confidentiality of a system.
For a classification of fault injection attacks in general hardware implementation, we
refer to the study in [55].

Regarding the availability of a system, there has not been a remote attack that
specifically affects the stability and reliability of an FPGA-based cloud infrastructure.
However, in this thesis, we will discuss the possibility of altering power consumption
to deploy an attack on availability.

2.1. SECURITY OF FPGA SYSTEMS 25

Attackers put on
on-chip sensor core

Users put on
crypto-graphic

core

Logic isolation

Static shell

User A

User B

Figure 2.1: An illustration of the eavesdropping scenario in an FPGA.

2.1.1 Power analysis

Power side-channel attacks which exploit the inherited power patterns of typically a
cryptographic core was first introduced by Kocher in 1999 [86]. The research was
based on the fact that most operations in a CPU or a custom accelerator have data-
dependent or operation-dependent power consumption. For instance, a Flip-Flop (in a
CPU register file or an accelerator running on an FPGA) will consume more power if its
state changes as compared to if the state does not change. Additionally, regarding static
power, driving a stable value on a wire also consumes different level of power. This is
because different transistors are active to hold the value of a wire. When driving a wire
high, the parasitic capacitance of a wire gets charged from PMOS but when driving a
wire low, it gets discharged through NMOS. Thus, the different in the characteristics
of the transistors causes the different in static power consumption even when the state
does not change. The research had shown two attack scenarios that are effective to two
different cryptographic implementations. In Simple Power Analysis (SPA), attackers
use just one power trace to exploit the operation profile of a system. However, SPA
may not be practical if there is significant noise in the system. When the power con-
sumption difference is small and interfered with other power-consuming blocks, Dif-
ferential Power Analysis (DPA) yields better results compared to SPA. DPA requires
more power traces through longer observation windows. Correlation analysis is then
applied to retrieve information (e.g., an AES key). Moreover, DPA can also be applied

26 CHAPTER 2. BACKGROUND

to almost any symmetric or asymmetric cryptographic algorithm including DES [46]
and AES [45], RSA [111] and elliptic curve based public key encryption [20]. There-
fore, attackers can perform the DPA attack to cryptographic implementations on any
hardware platform without exception to FPGAs. The first experimental results of DPA
on FPGAs were published by Ors in 2003 [20]. In general, power consumption can be
measured directly by using a shunt resistor with an oscilloscope in the original work
of Kocher, but it can also be measured indirectly through the supply voltage fluctua-
tion as shown in recent research [44]. We would like to stress that this type of attack
is fundamentally based on correlation analysis instead of precise power measurement.
Therefore, attackers can use any means of correlating power traces in order to perform
the attack such as current variances, voltage variances or even electromagnetic emis-
sions. A scenario where two tenants share the same FPGA is indicated in Figure 2.1.
Moreover, if attackers can exploit indirect power measurements, they can potentially
carry out remote attacks which are threatening the trustworthiness of the FPGA-based
system in cloud computing. A study in [80] constructs an on-chip power monitor us-
ing ring-oscillators and demonstrates a successful power analysis attack running on an
RSA cryptomodule on an FPGA fabric. This is based on the fact that ring-oscillators,
a variant of the self-oscillating circuit, oscillate in a frequency regime defined by the
delay line which constructs them; and the delay line is dependent on physical param-
eters such as temperature and voltage drops. This property makes ring-oscillators an
ideal tool to sense voltage drops and temperature remotely.

Countermeasures for power analysis attacks could be divided into passive and ac-
tive strategies. Active actions include upgrading encrypting modules to mask or hide
the power patterns, as shown in [97]. On the other hand, passive actions include mon-
itoring and detecting when a power attack is happening in the system [2, 70]. In a
cloud configuration, we summarise the advantages and disadvantages of those coun-
termeasures in Table 2.1. Additionally, since physical access to the FPGA board is
not permitted on the cloud, we think it could be easier to take preventative measures
to identify the potential voltage sensing circuits such as ring-oscillators and reject the
design.

2.1.2 Electromagnetic analysis

Physically, a movement of electric charges creates a current that induces an electro-
magnetic field. The electromagnetic (EM) emanation may be intentional as a result of

2.1. SECURITY OF FPGA SYSTEMS 27

Advantages Disadvantages
Active actions Normalise or obfuscate power pat-

terns caused by cryptographic core
such that power analysis attacks
cannot be deployed.

Either costly or risky to modify
the standard cryptographic core de-
signs. Moreover, it could add more
power consumption.

Passive actions No need to change the crypto-
graphic core designs.

Further actions need to be per-
formed after detection. It may com-
promise the availability of system if
an administrator decides to power
cycle the system.

Table 2.1: Advantages and disadvantages of countermeasures to power analysis attacks

short bursts of current flow or unintentional as a consequence of electrical and electro-
magnetic coupling between components in close proximity [30]. Thus, currents flow-
ing on internal FPGA routes can be used to characterise components inside the FPGA
fabric. The measured signature can be used to analyse the intentional operation of a
module in the same manner as power analysis attacks such as Simple Electromagnetic
Attacks (SEMA) and Differential Electromagnetic Attacks (DEMA). The feasibility of
EM attacks in FPGA has been proved in [41]. However, in order to capture emitted
signals, electromagnetic probes are required to be placed close to the device (ideally
no more than a wavelength away from the die). This makes those attacks infeasible to
deploy remotely in the cloud.

Due to the same correlation analysis principle with power analysis attacks, counter-
measures for power analysis attacks could be used for protection against EM attacks.
Additionally, physical shielding such as additional metal layers can offer further resis-
tance to EM attacks at extra cost. These physical countermeasures can be applied to
any chip manufacturing process as described in [84]. Further investigation on mag-
netic shielding [79] showed to reduce as much as 6dB of EM emission. However, chip
manufacturers need to balance the induced cost with the effectiveness of shielding.

2.1.3 Thermal channel

Thermal radiation is another physical effect that correlates with a running electronic
device. It can be used to implement a covert channel for data communication, as shown
in 2009 [60]. The following research shows that the channel enables bidirectional
transmission and exchange of an arbitrary bitstream between two electrically separated
parts of an FPGA circuit during its normal operation [108]. By taking advantage of the
thermal sensitivity of ring-oscillators [73], temperature sensors can be created to form

28 CHAPTER 2. BACKGROUND

a covert channel [102]. Not only does it transfer data at a slow speed of 1bps, but we
also believe this attack is difficult to deploy and unfeasible for information leakage of
states inside a module. It is because warming up and cooling down a device takes time
as well as other modules could possibly heat up the FPGA die and create thermal noise.
Nevertheless, thermal coupling allows reverse-engineering of the physical proximity of
FPGA cloud instances, which may be used for coordinated attacks involving multiple
instances simultaneously.

As we discussed above, the thermal attack is likely impractical. A countermeasure
for it could align with heat dissipation which is also essential in server cooling systems.
On the other hand, another approach can be preventing circuits from being deployed
in data centres that are sensitive to temperature such as ring-oscillators.

2.1.4 Crosstalk coupling

Crosstalk is a physical issue studied in the design of integrated circuits for a long time.
Crosstalks occur due to capacitive coupling between adjacent wires on a chip. The
phenomenon was first noticed for FPGAs in 2001 by Wilton [105]. They showed that
by acknowledging crosstalk in FPGAs, the average routing delay in the presence of
crosstalk can be reduced by 7.1% in a representative FPGA architecture implemented
in a 0.18µm technology. Therefore, the effect was initially considered as it would only
affect performance and data integrity. In 2018, an experiment on FPGA routing re-
sources showed that a long wire carrying a logical 1 reduces the propagation delay
of other adjacent, but unconnected, long wires more than if that wire carries a log-
ical 0 [51]. As a result, by detecting the propagation delay of a long wire, we can
identify the state of a corresponding adjacent wire. To detect the propagation delay,
ring-oscillators had been used once again because the frequency of a ring-oscillator
fundamentally depends on the total propagation delay of components constructing the
ring which includes wire segment delays and look-up-table delays (represent for a
combinatorial logic element). This type of attack has been successfully deployed to
recover the encryption key from an AES circuit on Intel Cyclone IV and Stratix V FP-
GAs [28]. However, this attack strictly requires both an attack wire and a victim wire
to be located directly adjacent because the signal will be 20x weaker if the wires are
separated by another wire [51]. This makes the attack sometimes impractical in the
cloud as attackers may not be able to do the place and route freely.

2.1. SECURITY OF FPGA SYSTEMS 29

Possible countermeasures for this type of attack can be using guard wires to sep-
arate sensitive signals from other adjacent wires or routing the sensitive module sep-
arately. Although it may come with area costs, it could be a reasonable trade-off if
security is out weighted. On the other hand, preventing unreasonable circuits that can
be used to exploit the difference in propagation delays such as ring-oscillators and
enforcing strict bounding boxes can be a feasible solution.

2.1.5 Differential fault analysis

Fault attacks have long been an active area of research in cryptography. Those at-
tacks exploit faults that are introduced during computation such as in key-scheduling
or encrypting periods. The attack mechanism deeply depends on understanding the
cryptography algorithms (refer to [76]). Differential Fault Analysis (DFA) was first
introduced in 1997 by Eli Biham [40]. It can be considered as the most popular fault
analysis method targeting cryptographic implementations. Originally, they used physi-
cal stimuli to directly interfere with the implementation of cryptography modules such
as applying gentle physical stress to leak electric charges from memory cells which are
assumed to hold the secret key or even using a narrow laser beam to cut wires or to
manipulate the state inside a chip. On an FPGA, even though such kinds of physical
interference are possible as shown in recent researches [21, 100], attackers can use a
more gentle way to inject faults into an FPGA fabric by exploiting critical timing paths
as shown in [63]. The study shows that ring-oscillators were used again to cause the
voltage drops to increase the propagation delay in a controllable way by an attacker in
order to create timing failure on critical paths. This attack has been demonstrated on
a cryptographic core running at 111MHz. Compared with 20MHz of the recent attack
using power analysis [80], it effectively shows the practicality of DFA attacks in FPGA
systems.

Similar to EM attacks, physical protection methods during the manufacturing pro-
cess could enhance the FPGA fabric’s robustness so that it is less susceptible to voltage
drops. Other countermeasures such as module redundancy, dual rail encoding, and er-
ror detection methods can be explored further in [76]. We present the most relevant
defence mechanisms that can be applied in FPGAs in Table 2.2.

30 CHAPTER 2. BACKGROUND

Description
Increasing timing
margins

This is to reduce the risk of timing failure but it may come with the cost
of reducing operating frequency.

Module redun-
dancy

This can be done by executing encryption/decryption several times in
parallel or sequential and compare the results. If the results are equal,
the computation is assumed to be correct. However, it may come with
performance and/or area cost.

Detecting possi-
ble timing fault
injection

We can use the same techniques to detect voltage drops that caused
timing violations in power analysis section.

Dual rail imple-
mentation

To make it difficult for attacker, one could implement dual rail encod-
ing. That is one wire always carries the inverted value of the other.
Therefore, an attacker needs to flip the signal values of both rails simul-
taneously in order to induce a fault signal.

Table 2.2: Some possible defense mechanism for fault analysis attacks

2.1.6 Bitstream fault injection

Instead of generic hardware attacks like fault injection as discussed previously, bit-
stream fault injection (BiFI) is a new class of attack that can in particular be deployed
on FPGAs. In general, one would reveal the secret key when having full knowl-
edge about the internal bitstream structure. Many studies have been trying to reverse-
engineer the proprietary bitstream structure of FPGAs such as [23, 39, 58, 43, 107, 67].
However, as vendors change the bitstream configuration together with the development
of FPGAs, fully reverse-engineering the whole netlist from bitstream is still considered
to be a difficult problem. Xilinx and Intel consider that the non-documented bitstream
serves as a type of design obfuscation [98]. Therefore, instead of attempting to recover
the entire netlist, current research focuses on specific parts of the bitstream. Studies
in [89] and [1] target on modifying the substitution table used in AES cryptographic
cores which provides the confusion operation - one of the two primitive operations in
which a strong encryption algorithm should be built on according to Claude Shannon
- in a cryptographic algorithm [27]. If an attacker can tamper with the substitution
table (S-box), they can either decrypt the data without a secret key as it becomes a
key-independent permutation in the DES or turn any cryptographic algorithms to be
a linear function. This results in a weakened, less secure substitution which gives a
wrong impression of security provided by a cryptographic core.

Although that type of attack is feasible, identifying the S-box in a bitstream requires
major effort and calibration on different devices. A later study in [88] shows that
manipulating the bitstream targeting LUT values only is not only easier to perform for

2.1. SECURITY OF FPGA SYSTEMS 31

Attackers put on
compromised

crypto-graphic core

Users put on
crypto-graphic

core

Logic isolation

Static shell

User A

User B

111

Bitstream fault
injection

Figure 2.2: An illustration of the bitstream fault injection threat model in a multi-tenant
computing environment.

a variety of FPGAs but also powerful and it does not require any reverse-engineering.
In this research, a set of 15 bitstream manipulation rules to pollute the bitstream had
been proposed. Then the collected ciphertexts are analysed by 11 hypotheses such
as the ciphertext is simply the plaintext XORed with the key, therefore the secret key
can be extracted with only a single pair of plaintext-ciphertext. Based on a Spartan-6
with 16 different AES encryption designs including the standard design on the NSA
homepage, it shows promising results as some rules only need a few thousand random
manipulations to get an exploitable faulty ciphertext. It corresponds to approximately
1.8 hours on average of bitstream manipulations to retrieve an exploitable ciphertext.
Although the attack time varies dramatically depending on the targeted design, the
maximum attack time in 16 different attacks is 20.82 hours (6.33 hours to attack the
AES implementation from NSA) which makes the attack to be a severe problem in
many practical realistic scenarios.

Additionally, S-boxes are often implemented with BRAMs to optimise the logic
resource utilisation or performance. However, this still exposes the design to the fault
injection vulnerability and it requires extremely low effort to extract the secret key.
Study in [38] shows that the key from BRAM-based AES implementations can be
extracted even faster than from LUT-based implementations, as shown in [88].

Although there is no evidence that these attacks could be deployed remotely as it
normally requires more accessibility to manipulate the bitstream, these attacks could
be prevented by checking the integrity of the bitstreams before programming them to

32 CHAPTER 2. BACKGROUND

the FPGA fabric. It should be noted that bitstream encryption would not necessar-
ily prevent this kind of attack because there have even been attacks on the integrated
bitstream protection engine (e.g., Xilinx Virtex-II Pro [3], Xilinx Virtex-4 and Virtex-
5 [6], Altera Stratix II and Stratix III [5, 87], Xilinx 5, 6, 7 series [4, 101], and Xilinx
UltraScale [50]).

2.1.7 Configuration data leakage

Currently, cloud service providers introduced dedicated policies to protect the FPGA
configuration data. Although there has not been a leak of user configuration data, it is
possible for the cloud service provider to extract the configuration data. Study [106]
proposed the idea of establishing a trustworthy development environment for FPGA-
based cloud infrastructure. According to the study, by establishing a trusted execution
environment (including the trusted configuration shell), configuration data from clients
will be protected from leaking while cloud service providers could be assured that the
bitstreams are thoroughly examined for illegal designs and malicious circuits.

2.1.8 Attacks on system availability

Denial-of-service (DoS) attacks are used to bring down operating infrastructures or
to compromise states in other system components that stay outside the scope of an
attacking module. An illustration of the DoS attack on an FPGA-based system is
shown in Figure 2.3. At the electrical level, two means for DoS attacks had been
utilised: short-circuits and power-hammering.

Short-circuits on FPGAs have a long history [53, 92, 91]. In 1999, a study shows
that there are three levels of attacks on system availability: 1) electrical conflicts
(MELT - Malicious Electrical Level Threat), 2) logical signals or corner case be-
haviours (SALT - Signal Alteration Logic Threat), and 3) software attacks (HALT
- Higher Abstraction Level Threat) [53]. While SALT and HALT can be deployed
on any hardware platform, electrical conflicts (MELT) are easier to deploy on FPGA
platforms. The electrical conflict was caused by internal conflicts through shared col-
umn interconnect routing resources via pass transistors in the Altera Flex 8000 family.
As it is a short-circuit attack, it could exceed the current limitation of a device and
result in accelerated wear or the physical destruction of the whole system. Another re-
search [22] demonstrated short-circuits within the multiplexers inside a switch matrix
using a manipulated configuration bitstream resulting in a substantial current increase

2.1. SECURITY OF FPGA SYSTEMS 33

Shutdowns the
victim with

malicious circuits

Legitimate
requests can’t
get resources

to execute

Figure 2.3: An illustration of the denial-of-service scenario. A user may try to shut-
down an FPGA service in a data centre by sending malicious circuits such that legit-
imate requests from other users cannot use the FPGA resources. Short-circuits and
power-hammering designs can be utilised for such attacks on the system availability.
Furthermore, this kind of attack may potentially age or damage the equipment.

(with several mA extra current for a single routing multiplexer [22]).

Alternatively, power-hammering is another mechanism to carry out DoS attacks.
All current power-hammering attacks [36] are based on fast toggling circuits in or-
der to draw a substantial amount of dynamic power. As we will show in Chapter 3,
it is possible to implement self-oscillating circuits running in the GHz frequency do-
main with a corresponding dynamic power footprint. In [36], a grid of ring-oscillators
could be activated at an adjustable rate to stimulate resonance effects in the power
supply regulation circuit. With this, several FPGA platforms such as Xilinx Virtex 6,
Kintex 7, and Zynq-7000 FPGAs were crashed and, in some cases, required power
cycling for bringing up boards back into service. Although ring-oscillators are usually
flagged with a warning by the vendor design tool flows and hence, are not allowed
to be deployed on common cloud or data centre infrastructures, recent research [52]
has reported new ring-oscillator designs which can bypass such a Design Rule Check
(DRC).

A proposed countermeasure like a bitstream antivirus scanner was implemented in
Lattice iCE40 FPGAs [37]. We will discuss this concept in detail later in Chapter 5. On
the other hand, we can monitor the system’s health by analysing voltage parameters.
For instance, Xilinx provides a way to monitor system temperature and voltage with

34 CHAPTER 2. BACKGROUND

Aggressive Nonaggressive
Examples Power-hammering, Fault

Analysis
Power Analysis

Main Target Integrity and Availability Confidentiality
Countermeasure Voltage Monitoring Design Scanning, Power

Trace Obfuscation

Table 2.3: Advantages and disadvantages of countermeasures to power analysis attacks

a resolution of 10-bit and a sample rate of 1 MSPS as in the UltraScale+ devices.
However, voltage transient speed can be relatively high depending on attack scale,
electrical characteristics, and process variation; therefore, the system monitor may
not be able to capture the change. A novel soft-logic implemented voltage sensor
is believed to be better than built-in ADCs as stated in [70]. The principle in the
study is that voltage drops can increase the propagation delay of a delay chain. We
can use that to detect the latency difference and therefore spot the correlation with
voltage transients. The experimental results show that the monitoring is 500x faster
than the 28nm Xilinx ADC, thus it can be a potential monitoring method to detect
power attacks.

2.2 Attacks and defence on power aspect

As discussed above, the power attack can be categorised by aggression. Table 2.3
summarises power-related attacks that have been discussed above.

From all the studies, we clearly see the common pattern that recent remote attacks
mostly involve the usage of self-oscillators one way or the other. In aggressive attacks,
attackers take advantage of the high running frequency of self-oscillators to draw a
substantial amount of dynamic power. This additional power consumption is then
used either to abuse the system power supply in power-hammering attacks or to inject
faults for DFA attacks. On the other hand, nonaggressive attacks take advantage of
the sensitivity of self-oscillators like ring-oscillators to capture and analyse changes
in their frequency. In the next chapters, we will provide an in-depth investigation of
self-oscillating circuits and provide a case study from a Denial-of-Service attack to an
FPGA-based cloud service.

Chapter 3

Characterisation of the FPGA
power-hammering potential

In this chapter, we will answer two questions 1. what is the exact FPGA power-

hammering potential? and 2. how can these attacks be deployed?

In this chapter, we focus on exploring power-hammering attacks in FPGAs and
studying if the FPGA-based cloud infrastructure is resistant to power-hammering at-
tacks. We will provide an in-depth study about the crucial part of power-hammering
attacks – self-oscillators. Additionally, we will analyse the contribution of routing
resources to the net power consumption.

DoS for internet-connected devices have been studied for a long time. With the
integration of FPGAs on cloud infrastructure, we need to assess if FPGAs could be
abused to deploy DoS attacks. From the previous chapter, we believe that there should
be a systematic study on self-oscillating circuits to check if and how they could be used
maliciously. We will investigate a large number of known as well as newly developed
oscillator variants that can be built from FPGA primitives, including LUTs, carry chain
logic, and DSPs.

3.1 Study on self-oscillators

In this section, we will provide an in-depth study on a wide range of self-oscillating
circuits to quantity their potential threats with a focus on power-hammering. This
insight is essential as this is the foundation for our countermeasures (as presented in
Chapter 5). Different effects can be used to design self-oscillators. Since the actual
oscillator speed depends on the supply voltage and temperature (which, in turn, relates

35

36 CHAPTER 3. FPGA POWER-HAMMERING CHARACTERISATION

Primitive count ZU3EG Alveo U200
LUTs 70,560 1,182,240
LUTMs1 57,600 591,840
CLB flip-flops 141,120 2,364,480
DSP Slices 360 6,840
BRAM Slices 648 6,480
Carry Chains 8,820 147,780

1 Look-up tables with memory functionality. These are a subset of the LUTs

Table 3.1: Configurable resources of Ultra96 compared with the data centre FPGA
Alveo U200

to the current operation state of the FPGA), any oscillator is probably a potential path
for a side-channel. Therefore, even focusing on power-hammering in this section, by
preventing those oscillators, we will further prevent the most critical side-channels that
are deployable remotely.

There are three major principles to designing self-oscillating circuits on FPGAs:

• Using low latency combinatorial feedback loops: This is the most fundamental
type of self-oscillators which is commonly referred to as ring-oscillators (ROs).

• Setting up race conditions for asynchronous reset/preset: This is done by having
a feedback loop to a reset or preset pin of a flip-flop.

• Amplifying glitches: This is the most sophisticated circuit utilising XOR gates
to multiply the toggling rate from a toggle flip-flop to produce a self-propelled
oscillation of that flip-flop.

The following section describes how we set up the experiments to analyse each type of
self-oscillators in detail.

3.1.1 Experimental setup

Our experiments are conducted on an Ultra96 board, which is equipped with a Xilinx
Zynq UltraScale+ MPSoC ZU3EG. The primitive resources count for Ultra96 in com-
parison with a data centre FPGA Alveo U200 [83] is shown in Table 3.1. We created
15 different RO variants and evaluated them in Table 3.2. To generate the RO circuits,
the PathSearch function of the GoAhead tool [23] was used. That tool can perform a
breadth-first search between arbitrary ports of the FPGA fabric and rank the resulting
paths by their latency. The expected frequency is based on timing reports generated by

3.1. STUDY ON SELF-OSCILLATORS 37

Free
Oscillator

Time to digital chain

....
tdelay

TDC_value[31:0]

tdelay tdelay tdelay

[0] [1] [2] [3] [31]

Figure 3.1: Time To Digital construction.

TDC_value[31]
TDC_value[30]

...

TDC_value[4]
TDC_value[3]
TDC_value[2]
TDC_value[1]
TDC_value[0]

Sample rate

sample i

snapshot window

[0] [1] [2] [3] ... [29] [30] [31]
TDC_value

sa
m

pl
es

i
i+

1
i+

2

... tdelay

tRO

time

Figure 3.2: Time-to-Digital Converter (TDC) waveform.

the Xilinx Vivado tool [127], and the measured frequency on the FPGA is determined
by using a Time-to-Digital Converter (TDC), as shown in Figure 3.1. Our TDC is a de-
lay chain that allows us to take a snapshot of a signal propagating down the chain finely.
By using NFF = 32 flip-flops (FFs) and tdelay ≈ 70ps (between two adjacent sample
flip-flops), we can capture a signal with a snapshot window of ≈ 2170ps (Equation 3.1)
and with a resolution of 70ps approximately (see Figure 3.2 for details). This latency
corresponds to a frequency range from 246MHz to 7142MHz (see Equation 3.2 where
NHIGH and NLOW are the number of consecutive FFs that have registered HIGH-state
and LOW -state respectively). Figure 3.2 shows how the samples of a TDC are read out
to measure the frequency. The advantage of using TDCs is that it allows us to sample
a very high-frequency signal with a relatively low sampling rate.

It should be noted that the clock buffer primitives inside a programmable logic (PL)
region of the FPGA fabric are rated for a maximum clock frequency of 891MHz [131].

38 CHAPTER 3. FPGA POWER-HAMMERING CHARACTERISATION

MUXCY
0 1

Carry Input
Carry-MUX
data input

Carry-out

Carry-MUX
select line

1'b1

1'b0

CARRY8

X

C

0 48

5'h11
0

Wide
XOR

DSP48E2

Y

Z

48

48

5'h1

5'h1
5'h1

5'h1
5'h1

5'h1
5'h1

1

1
1

1
1

1
1

I5

I3

I2
I1
I0
I4

LUT6_2

1
0

LUT5

LUT5

1'b1

O5

O6

FDCE

D Q

CLK

delay

external
trigger

a) b)

c) d)

Figure 3.3: a) Dual-RO from LUT6 primitive; b) RO design from Carry Logic; c) RO
design from DSP; d) Glitch amplification.

Therefore, in order to ensure stable TDC measurements, we operate the TDC sampling
FFs at a moderate clock frequency of 100MHz. This is a difference from other clock
measurement designs used for FPGA side-channel attacks, which feed the RO’s output
directly to clock inputs of some FFs to form a counter [28, 51, 52]. Because we aim
for generating frequencies in the GHz regime, simple counter designs cannot be used.

snapshot window = NFF × tdelay (3.1)

fRO =
1

tRO
=

1
2× cycle path delay

≈ 1
tdelay × (NHIGH +NLOW)

(3.2)

TDCs are subject to temperature changes, and we used heater circuits (circuits
that waste power) to heat the chip to 90◦C before actually taking any measurements.
The temperature is within the maximum operating temperature of the FPGA, which
is 100◦C [131]. The heaters are not running for a short period of time to take the

3.1. STUDY ON SELF-OSCILLATORS 39

(typically below one ms) measurements, and we use the temperature sensor that is
built into the FPGA to implement the temperature control. Additionally, we took the
median from 1000 measurements for each frequency reported in order to reduce the
impact of quantization errors and noise.

3.1.2 Combinatorial self-oscillator variants

The simplest self-oscillator is a combinatorial loop, which is a circuit that consists of
an odd number of chained inverters. We will refer to this basic oscillator as Ring-
Oscillator (RO). The frequency of an RO can be calculated by the propagation delay
of the whole combinatorial loop which includes the propagation delay of all logic
elements tlogic (e.g., LUTs or DSP blocks) and the net delay tnet (i.e. the routing delay)
as given in Equation 3.3.

fRO =
1

tRO
=

1
2× (tlogic + tnet)

(3.3)

We performed a literature review on RO designs and found that previous stud-
ies [36, 51, 52, 63, 64, 112] mostly use LUT primitives and transparent latches to
implement ROs (Design 1-6 and Design 13 in Table 3.2) or create race condition us-
ing flip-flops (Design 14 in Table 3.2). To capture any possible oscillator design, we
analyzed the exact internal architectures of the logic (i.e. SliceL/SliceM), arithmetic
(i.e. DSP48E2), and BRAM primitives available in UltraScale+ FPGAs. And for each
of these primitives, we asked the question if there exists a configurable combinatorial

path from any of the primary inputs to any of the primary outputs because this is a fun-
damental requirement for designing ROs. This study has to incorporate all the different
modes each primitive can be configured, and we found:

• Slices: We examined known RO designs through LUTs [36, 63, 51, 52, 112] as
well as transparent latches [64, 52, 112] and self-oscillating circuits based on
glitch amplification or asynchronous reset/preset [112, 64, 52]. In addition to
these designs using FPGA slices, we found combinatorial paths that have not
been previously reported by the community, but that can be used for ROs in-
cluding 1) paths through MUX primitives (i.e. F7Mux and F8Mux multiplexers)
inside the slices and 2) paths through the carry logic (i.e. the Carry Look Ahead

(CLA) logic introduced in UltraScale+ FPGAs) (see Figure 3.3b).

• DSPs had not been considered in previous research for building oscillators.

40 CHAPTER 3. FPGA POWER-HAMMERING CHARACTERISATION

Output Register

Figure 3.4: Tentative internal combinatorial loop inside DSP. This figure is adopted
from [129].

However, DSPs can be used in many different configuration options, and there
are many possibilities for designing ROs. This is possible because DSP blocks
can be used purely combinatorial without any pipeline registers between the pri-
mary inputs and outputs that would prevent self-oscillation. For instance, an RO
can be formed by feeding the output of a DSP primitive back to the input for
implementing a counter without using any register in the feedback path. The
DSP48E2 primitives include not only multipliers but a tiny ALU that can per-
form bit-level operations that execute faster than arithmetic operations, and for
the remainder of this section, we will only report results for the wide-XOR in-
struction that was found oscillating the fastest (see also Figure 3.3c).

It is worth mentioning that we tried building an internal loop inside the DSPs,
which may exist in accumulator mode. We investigated this path because the
accumulator register can be bypassed to the output (as shown in Figure 3.4),
and the documentation [129] does not state if the bypass may eventually be used
together with the accumulator mode. However, we have not detected any switch-
ing activity or abnormal increase in power when configuring this option. This
fact implies that the flip-flop output is fed back to the accumulator input rather
than the output of the bypass multiplexer (see the top right box in Figure 3.4).
Thus, the DSP accumulator mode can be considered as secure from possible
combinatorial cycles in DSP48E2 primitives.

In regard to other types of oscillating circuits, DSPs use synchronous reset reg-
isters so that it is unlikely to create a race condition to the reset or preset pin

3.1. STUDY ON SELF-OSCILLATORS 41

cascade
output signals

cascade input
signals

Figure 3.5: BRAM cascade functional diagram. This figure is adopted from [130].

to oscillate the state of a flip-flop. However, the integrated 48-bit wide XOR
unit could possibly be used for glitch amplification. This expresses the need to
suppress any self-oscillating circuit and we should ensure that DSP primitives in
combinatorial mode do not have high fanouts.

• BRAMs are mostly comprised of synchronous components (i.e. memory cells)
that are working on a clock basis with synchronous reset signals [130]. With
this, we cannot implement any ROs directly through internal BRAM compo-
nents. The only existing combinatorial part that we found is located inside the
cascading logic, which is used to build larger memories from multiple consecu-
tive BRAM primitives. However, the cascading chains have dedicated bottom-up
routing resources that cannot be controlled by user logic, and cascade multiplex-
ers are controlled by flip-flops, as shown in Figure 3.5. Therefore, BRAMs are
considered to be RO-free.

• IOBUF was considered to be a new type of ROs that can bypass DRCs [61].
This circuit takes advantage of a bidirectional IO buffer that forms a combinato-
rial loop with an inverter (i.e., LUT-based). With a toggling frequency of around
100MHz and a limited number of IO primitives [126], it appears to be inade-
quate to create enormous power consumption by itself. However, if the toggling
signal is amplified by glitch amplification [71], the net power consumption could
be enough for an aggressive attack such as the power-hammering attack. Addi-
tionally, it could be used to create a thermal channel or crosstalk coupling for

42 CHAPTER 3. FPGA POWER-HAMMERING CHARACTERISATION

covert communication [61]. To protect against this, cloud service providers have
already implemented restrictions to access IO ports. Therefore, we will cover
IOBUFs only through surveying the related work.

We like to stress that most new oscillator designs do not throw any DRC crit-
ical warning/error message in the vendor tool Xilinx Vivado 2019.1, which means
that these oscillators are possibly deployable, for example, on Amazon F1 cloud in-
stances [112]. Table 3.2 provides an overview of most oscillator designs examined in
this thesis.

While there are papers discussing self-oscillators for FPGAs [64, 112, 52], we have
not found a comprehensive study on performance tuning for improving the power-
hammering potential as well as a corresponding evaluation of such oscillators on real
FPGA hardware. For differential power analysis (DPA) attacks, an attacker typically
seeks the fastest oscillator. In contrast, for a denial-of-service attack, the waste power
efficiency (power drawn per unit resources) is more important. Even for a basic RO
using LUT primitives, we found that the different LUT6 primitives inside a CLB (i.e.
a cluster of 8 LUT6 primitives sharing a switch matrix) as well as using different
LUT inputs for implementing the fastest possible ROs result in a wide range for both
frequency and waste power (see Figure 3.8). We have discovered frequencies ranging
from 1GHz to 6GHz approximately as a result of the internal architecture of the LUTs
(see Figure 3.7) and a variance in the routing path delay for implementing the fastest
possible loop. The corresponding waste power does not necessarily correlate to the
oscillator speed. Because we do not have access to the low-level ASIC details of any
Xilinx FPGA, we cannot fully explain this behaviour. Still, one possible explanation
could be that longer paths are slower and have therefore a lower RO frequency; but
because there are longer wires (with more capacitive load), more switching elements,
and drivers involved per oscillator round-trip the overall waste power may still be high
(or even higher).

Figure 3.7 shows the internal hierarchical architecture of a LUT, which is built
from a tree structure of multiplexers where the inputs I0 to I5 are equal in their logical
behaviour but not in their timing. There are 64 memory elements which are a part of the
bitstream and are static after programming the FPGA fabric. However, input I0 to I6
are fed to different level of multiplexers and they can be dynamically changed during
runtime. Therefore, the effect of input signals propagating to outputs will be different.
For example, the effect of input I0 needs to travel through 6 levels of multiplexing to
propagate to O6 which results in a primitive latency of 177ps, while the effect of input

3.1. STUDY ON SELF-OSCILLATORS 43

No Variants Schematics
Number
of
loops

Loop
Type

DRC Warning
Report
Net
Delay

Report
Prim-
itive
Delay

Expected
Frequency

Measured
Frequency

Power WPP

0 Empty design ø ø ø ø ø ø ø ø 2.94W ø

1
RO using LUT6
(I5)

1
0

0
1

I5
I4
I3
I2
I1
I0 LUT6

MUXCY
0 1

Carry Input
Carry-MUX
data input

Carry-out

Carry-MUX
select line

1'b1
1'b0

CARRY8

X

C

0 48

5'h11
0

Wide
XOR

DSP48E2

LDCE
D
GE
CLR

Q

G

1
0

1

FDPE

PRE
D

C

Q0

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5

I3

I2
I1
I0
I4

LUT6_2

1
0LUT5

LUT5

1'b1

Y

Z

48

48

5'h1

5'h1
5'h1

5'h1
5'h1

5'h1
5'h1

1

1
1

1
1

1
1

O5

O6

FDCE
D

Q

CLK
delay

external
trigger

2000 Comb ✓

(LUTLP-1**)
49ps 41ps 5556MHz 5882MHz

7.32W
(+4.38W)

26.63

2
RO using LUT6
(I4)

1
0

0
1

I5
I4
I3
I2
I1
I0 LUT6

MUXCY
0 1

Carry Input
Carry-MUX
data input

Carry-out

Carry-MUX
select line

1'b1
1'b0

CARRY8

X

C

0 48

5'h11
0

Wide
XOR

DSP48E2

LDCE
D
GE
CLR

Q

G

1
0

1

FDPE

PRE
D

C

Q0

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5

I3

I2
I1
I0
I4

LUT6_2

1
0LUT5

LUT5

1'b1

Y

Z

48

48

5'h1

5'h1
5'h1

5'h1
5'h1

5'h1
5'h1

1

1
1

1
1

1
1

O5

O6

FDCE
D

Q

CLK
delay

external
trigger

2000 Comb ✓

(LUTLP-1**)
51ps 66ps 4274MHz 3937MHz

6.84W
(+3.90W)

23.69

3
RO using LUT6
(I3)

1
0

0
1

I5
I4
I3
I2
I1
I0 LUT6

MUXCY
0 1

Carry Input
Carry-MUX
data input

Carry-out

Carry-MUX
select line

1'b1
1'b0

CARRY8

X

C

0 48

5'h11
0

Wide
XOR

DSP48E2

LDCE
D
GE
CLR

Q

G

1
0

1

FDPE

PRE
D

C

Q0

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5

I3

I2
I1
I0
I4

LUT6_2

1
0LUT5

LUT5

1'b1

Y

Z

48

48

5'h1

5'h1
5'h1

5'h1
5'h1

5'h1
5'h1

1

1
1

1
1

1
1

O5

O6

FDCE
D

Q

CLK
delay

external
trigger

2000 Comb ✓

(LUTLP-1**)
46ps 100ps 3425MHz 3012MHz

5.99W
(+3.05W)

18.52

4
RO using LUT6
(I2)

1
0

0
1

I5
I4
I3
I2
I1
I0 LUT6

MUXCY
0 1

Carry Input
Carry-MUX
data input

Carry-out

Carry-MUX
select line

1'b1
1'b0

CARRY8

X

C

0 48

5'h11
0

Wide
XOR

DSP48E2

LDCE
D
GE
CLR

Q

G

1
0

1

FDPE

PRE
D

C

Q0

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5

I3

I2
I1
I0
I4

LUT6_2

1
0LUT5

LUT5

1'b1

Y

Z

48

48

5'h1

5'h1
5'h1

5'h1
5'h1

5'h1
5'h1

1

1
1

1
1

1
1

O5

O6

FDCE
D

Q

CLK
delay

external
trigger

2000 Comb ✓

(LUTLP-1**)
50ps 116ps 3012MHz 2488MHz

5.63W
(+2.68W)

16.32

5
RO using LUT6
(I1)

1
0

0
1

I5
I4
I3
I2
I1
I0 LUT6

MUXCY
0 1

Carry Input
Carry-MUX
data input

Carry-out

Carry-MUX
select line

1'b1
1'b0

CARRY8

X

C

0 48

5'h11
0

Wide
XOR

DSP48E2

LDCE
D
GE
CLR

Q

G

1
0

1

FDPE

PRE
D

C

Q0

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5

I3

I2
I1
I0
I4

LUT6_2

1
0LUT5

LUT5

1'b1

Y

Z

48

48

5'h1

5'h1
5'h1

5'h1
5'h1

5'h1
5'h1

1

1
1

1
1

1
1

O5

O6

FDCE
D

Q

CLK
delay

external
trigger

2000 Comb ✓

(LUTLP-1**)
62ps 150ps 2358MHz 2320MHz

6.59W
(+3.65W)

22.21

6
RO using LUT6
(I0)

1
0

0
1

I5
I4
I3
I2
I1
I0 LUT6

MUXCY
0 1

Carry Input
Carry-MUX
data input

Carry-out

Carry-MUX
select line

1'b1
1'b0

CARRY8

X

C

0 48

5'h11
0

Wide
XOR

DSP48E2

LDCE
D
GE
CLR

Q

G

1
0

1

FDPE

PRE
D

C

Q0

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5

I3

I2
I1
I0
I4

LUT6_2

1
0LUT5

LUT5

1'b1

Y

Z

48

48

5'h1

5'h1
5'h1

5'h1
5'h1

5'h1
5'h1

1

1
1

1
1

1
1

O5

O6

FDCE
D

Q

CLK
delay

external
trigger

2000 Comb ✓

(LUTLP-1**)
71ps 177ps 2016MHz 1927MHz

6.35W
(+3.41W)

20.75

7
Dual-RO from
LUT6 primitive

Refer to Figure 3.3a 2000×2 Comb ✓

(LUTLP-1**)
O5: 308ps
O6: 54ps

O5: 85ps
O6: 100ps

O5: 1272MHz
O6: 3247MHz

O5: 1235MHz
O6: 2439MHz

8.04W
(+5.10W)

31.00

8

Enhanced ROs
design for power-
hammering using
high fanout to
waste power on
routing resources

Refer to Figure 3.6 2000 Comb ✓

(LUTLP-1**)
64ps 66ps 3846MHz 1779MHz

9.61W
(+6.66W)

40.54

9 RO using MUX7
1
0

0
1

I5
I4
I3
I2
I1
I0 LUT6

MUXCY
0 1

Carry Input
Carry-MUX
data input

Carry-out

Carry-MUX
select line

1'b1
1'b0

CARRY8

X

C

0 48

5'h11
0

Wide
XOR

DSP48E2

LDCE
D
GE
CLR

Q

G

1
0

1

FDPE

PRE
D

C

Q0

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5

I3

I2
I1
I0
I4

LUT6_2

1
0LUT5

LUT5

1'b1

Y

Z

48

48

5'h1

5'h1
5'h1

5'h1
5'h1

5'h1
5'h1

1

1
1

1
1

1
1

O5

O6

FDCE
D

Q

CLK
delay

external
trigger

2000 Comb ✗ 353ps 112ps 1075MHz 1126MHz
5.01W
(+2.07W)

6.30

10 RO using MUX8
1
0

0
1

I5
I4
I3
I2
I1
I0 LUT6

MUXCY
0 1

Carry Input
Carry-MUX
data input

Carry-out

Carry-MUX
select line

1'b1
1'b0

CARRY8

X

C

0 48

5'h11
0

Wide
XOR

DSP48E2

LDCE
D
GE
CLR

Q

G

1
0

1

FDPE

PRE
D

C

Q0

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5

I3

I2
I1
I0
I4

LUT6_2

1
0LUT5

LUT5

1'b1

Y

Z

48

48

5'h1

5'h1
5'h1

5'h1
5'h1

5'h1
5'h1

1

1
1

1
1

1
1

O5

O6

FDCE
D

Q

CLK
delay

external
trigger

2000 Comb ✗ 211ps 109ps 1563MHz 1681MHz
4.04W
(+1.10W)

1.67

11
RO using Carry
Logic

Refer to Figure 3.3b 2000 Comb ✗ 381ps 104ps 1031MHz 1109MHz
5.14W
(+2.19W)

1.67

12 RO using DSP Refer to Figure 3.3c 360x8 Comb
✓

(DPIP-2*,
DPOP-3*)

251ps 994ps 402MHz 585MHz
4.53W
(+1.59W)

0.27

13
RO using
latch [112, 64]

1
0

0
1

I5
I4
I3
I2
I1
I0 LUT6

MUXCY
0 1

Carry Input
Carry-MUX
data input

Carry-out

Carry-MUX
select line

1'b1
1'b0

CARRY8

X

C

0 48

5'h11
0

Wide
XOR

DSP48E2

LDCE
D
GE
CLR

Q

G

1
0

1

FDPE

PRE
D

C

Q0

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5

I3

I2
I1
I0
I4

LUT6_2

1
0LUT5

LUT5

1'b1

Y

Z

48

48

5'h1

5'h1
5'h1

5'h1
5'h1

5'h1
5'h1

1

1
1

1
1

1
1

O5

O6

FDCE
D

Q

CLK
delay

external
trigger

2000
Non-
Comb

✗ 173ps 96ps 1859MHz 1706MHz
5.14W
(+2.19W)

13.35

14
RO using flip-
flop [52, 64]

1
0

0
1

I5
I4
I3
I2
I1
I0 LUT6

MUXCY
0 1

Carry Input
Carry-MUX
data input

Carry-out

Carry-MUX
select line

1'b1
1'b0

CARRY8

X

C

0 48

5'h11
0

Wide
XOR

DSP48E2

LDCE
D
GE
CLR

Q

G

1
0

1

FDPE

PRE
D

C

Q0

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5
I4
I3
I2
I1
I0 LUT6

I5

I3

I2
I1
I0
I4

LUT6_2

1
0LUT5

LUT5

1'b1

Y

Z

48

48

5'h1

5'h1
5'h1

5'h1
5'h1

5'h1
5'h1

1

1
1

1
1

1
1

O5

O6

FDCE
D

Q

CLK
delay

external
trigger

2000
Non-
Comb

✓

(PDRC-153*,
PLHOLDVIO-2*)

✗ ✗ ✗ 555MHz
5.26W
(+2.32W)

7.05

15
Glitch amplifica-
tion

Refer to Figure 3.3d 2000
Non-
Comb

✓

(PDRC-153*,
PLHOLDVIO-2*)

✗ ✗ ✗ 481MHz
8.05W
(+5.10W)

10.35

Designs 7, 8, 9, 10, 11, 12, 15 have not been previously reported.
Comb: Combinatorial
*: DRC warning
**: DRC critical warning

Table 3.2: Variants of self-oscillating circuits studied on Xilinx UltraScale+ FPGAs. The
results of power consumption are measured on the Ultra96 platform equipping with a Zynq
UltraScale+ MPSoC ZU3EG.

44 CHAPTER 3. FPGA POWER-HAMMERING CHARACTERISATION

enable

I5

I4

I3

I2

I1

I0 RO_2

enable

RO_1

enable

RO_0

enable

RO_3

I5

I4

I3

I2

I1

I0

I5

I4

I3

I2

I1

I0

I5

I4

I3

I2

I1

I0

a) b)

Figure 3.6: Enhanced ROs grid for power-hammering: a) schematic; b) implementa-
tion with 2000 ROs.

I0
I1
I2

I3
I4
I5

O6

O5

. . .

LUT6

tI0-O6 ≈ 177ps
tI1-O6 ≈ 150ps
tI2-O6 ≈ 116ps
tI3-O6 ≈ 100ps
tI4-O6 ≈ 66ps
tI5-O6 ≈ 41ps

Figure 3.7: Logical view of a Lookup Table 6-input primitive with timing information
taken from Vivado.

3.1. STUDY ON SELF-OSCILLATORS 45

I5 only needs to propagate one level resulting in 41ps latency. Moreover, because the
adjacency of UltraScale+ switch matrices is relatively sparse (as usual for FPGAs),
the fastest possible loop routing has a relatively high variance in latency depending
on which specific LUT input is used for the loop. With this, we examined the fastest
possible ROs where the loop routing can be implemented in just a single hop1. For
these ROs, Vivado reported a path delay for the external routing ranging from ≈ 46ps

to ≈ 71ps. For having full control of the implementation throughout the experiments,
we constrained the routing using the GoAhead tool [23]. Comparing the single-hop
routing RO variants against each other is interesting because the variance in frequency
is now mostly related to the internal latency inside the LUT itself (see Figure 5.1). The
corresponding results are listed in Table 3.2.

3.1.3 Non-combinatorial self-oscillator variants

In addition to combinatorial loop-based ROs, non-combinatorial loops had been pro-
posed in recent papers [112, 52, 64]. These designs use transparent latches, glitch
amplification [52, 112, 64], or asynchronous reset/preset to create oscillators [52].

We repeated the experiments in [112, 52, 64] and confirmed that all designs could
implement oscillators. Moreover, we manually optimized these oscillators for maxi-
mum speed by using different local routing options to fine-tune routing latencies.

In our experiment using glitch amplification (see Design 15 in Table 3.2), we cre-
ated glitches by creating routing paths with different signal propagation delays from a
single T-flip-flop output to a LUT, which implements an XOR gate to create a glitch
which is fed back to the clock input pin of the T-flip-flop. With a timing difference
of 218ps between the two paths, we measured a frequency of 481MHz. It should be
noted that this oscillator requires an external signal to kick-start the oscillator.

A common property shared among the here presented non-combinatorial loops is
that they rely on local clock routing resources rather than on the global clock distribu-
tion network. We have not seen any use of clock routing resources for implementing
the internal routing of High-Level Synthesis (HLS) generated circuits, and the clock
distribution network is entirely used for clock signal routing. For the oscillator based
on glitch amplification, the Vivado tool reported a gated clock (DRC warning code:
PDRC-153) and a warning indicating a possible hold-time violation (DRC warning
code: PLHOLDVIO-2).

1Here, a hop is actually passing two switch matrix multiplexers that together act as a pair to form a
larger two-level multiplexer, similar as used for older Xilnix FPGA architectures (see also Figure 5.1).

46 CHAPTER 3. FPGA POWER-HAMMERING CHARACTERISATION

3.1.4 Quantifying the risk of power-hammering

So far, we reported timing characteristics of self-oscillating circuits and if the Xilinx
vendor tools throw DRC error or warning messages that may or may not allow de-
tecting oscillators in a design. In this section, we report our results on waste power
that was drawn from the different oscillator designs, as shown in Table 3.2. From that
table, we took the three most power-wasting designs (Design 7, 8, 15 in Table 3.2) to
highlight their suitability for power-hammering attacks (see Table 3.3). To quantify the
risk of power-hammering, we introduce the term Waste Power Potential (WPP), which
we define as:

WPP =
possible waste power when using the whole FPGA

total FPGA power budget

=
PWP
T P

(3.4)

Where PWP (Possible Waste Power) denotes the assumed power consumed when a
power-hammering circuit is occupying the entire FPGA and where T P (Total Power)
refers to the power envelope typically defined by the power supply, the thermal design
of the system, and the maximum power rating of individual components, including
the FPGA. Depending on the system’s power envelope, PWP may not be reachable in
a particular system, and PWP is essentially expressing the potentially possible waste
power. WPP reveals how a power-wasting circuit performs per unit resources and
unit power budget available in a particular system. WPP < 1 expresses that a power-
wasting circuit is likely not to be able to crash/harm the FPGA or system, while WPP>

1 expresses a potential risk to crash the FPGA. Moreover, the value of WPP denotes
the number of resources needed to crash an FPGA. For example, with WPP = 5, an
attacker can crash an FPGA by using at least 20% of the available resources. In reality,
the threat will likely be even higher for power-hammering circuits that have a WPP> 1
because there will be other parts of the FPGA drawing some additional power (which
could be incorporated by subtracting other power contributors from T P). Nevertheless,
WPP is a good measure to quantify if a system is at risk of power-hammering. Please
note that WPP assumes a steady waste power consumption and that even WPPs below
one may cause harm due to dynamic voltage (IR) drops and other dynamic effects (e.g.,
resonance effects triggered in a power regulation circuit). However, the lower WPP,
the lower the harm possible due to IR drops.

To maximize WPP, we amplified the power-wasting effect caused by fast toggling
ROs to additionally drive a large amount of local routing and logic elements for wasting

3.1. STUDY ON SELF-OSCILLATORS 47

Figure 3.8: ROs Frequency versus Waste Power Gain (measured for 2000 ROs) for all
8 LUT6 primitives inside a CLB for all corresponding different cases that implement
the fastest possible loop from output O6 to an input of the same LUT (resulting in
8×6 = 48 individual experiments).

even more power. Figure 3.6 shows the idea and implementation of our experiment. As
shown, we intentionally connect each of the RO loops to some unused inputs of other
ROs. These other ROs are placed in different CLBs to use more routing resources (e.g.,
wires, multiplexers, etc.) along the routing paths, which in turn wastes more power.

Figure 3.9 shows the power-hammering evaluation results on an Ultra96 board.
VCCINT is the core voltage of the FPGA which is recommended to be 0.85V [131];
VCC SMPS is the voltage measured at the output of the power supply regulator circuit
for the FPGA; and BoardPower is measured at the 12V input to the Ultra96 board.
From the result, we can see a gap between VCC SMPS and VCCINT which relates
to the voltage drop of the board’s power supply network between the power supply
regulator circuit to the FPGA. The increasing gap indicates a rise in the current until
the power supply cannot compensate any longer and the board is eventually crashed.
We analyzed the schematic of the used Ultra96 board [19]. While the actual power
regulator circuit and power drivers should be able to deliver over 10A to the FPGA,
there is a TPS22920 load switch in the power network path which is rated for 4A and
which has an on-resistance of ≈ 10mΩ (at working temperature), which explains most
of the VCC SMPS - VCCINT gap.

Design 8 has a WPP = 40.54, and our experiments revealed that with only 6% of

48 CHAPTER 3. FPGA POWER-HAMMERING CHARACTERISATION

0.74

0.79

0.84

0.89

0.94

0.99

1.04

2.5

3.5

4.5

5.5

6.5

7.5

8.5

9.5

10.5

11.5

12.5

0.0% 1.0% 2.0% 3.0% 4.0% 5.0%
LUT Utilization for ROs (%)

Board Power VCCINT VCC_SMPS

0.85*

*Recommended core voltage

5.2%**

**Board crashes at this value

P
o

w
e

r
(W

)

V
o

lt
ag

e
 (

V
)

Figure 3.9: Power-hammering Evaluation for Power over Core Voltage on Ultra96.

Designs from Table 3.2
LUT6
used

Power/Primitive

Xilinx
Power
Estima-
tion

Power
Gain
in Ul-
tra96

Provisioned Power
Gain in Alveo U200
(with 50% LUTs
utilization)

WPP

Design 7 - Dual-RO 2000
2.55 mW/Primi-
tive

0.227W 5.10W 1507W 13.39

Design 8 - Enhanced ROs 2000
3.33 mW/Primi-
tive

2.067W 6.66W 1968W 17.51

Design 15 - Glitch Ampli-
fication

6000
0.64 mW/Primi-
tive

0.351W 5.10W 502W 4.47

Table 3.3: Power-hammering evaluation between Xilinx Power Estimator, Measured
Power Consumption on Ultra96, and Speculation Power Consumption on Alveo U200.

the available LUT resources (4000 LUTs of a ZU3EG FPGA), the used Ultra96 board
crashed immediately. This number is higher than what is suggested by WPP where
1/WPP would be enough to impose a threat (which is 70k LUT s/40 ≈ 1750LUT s or
2.5% LUT resource for the used ZU3EG FPGA on an Ultra96 board). However, when
studying Figure 3.9, we see that at ≈ 2.7% of the total LUT resources (≈ 2000 LUTs),
the core voltage starts to drop below the recommended core voltage, and the power sup-
ply starts to struggle to keep up with the demand resulting from the power-hammering.
After that point, the power regulator circuit is unable to sustain the current demand re-
sulting in a drop of VCC SMPS. The tipping point when the core voltage drops below
its nominal value matches quite closely to the resources indicated by WPP.

The here presented results are even more significant when considering a data centre
FPGA card such as the Alveo U200 board from Xilinx. When assuming that our Zynq
UltraScale+ power-hammering results can be directly transferred to the Xilinx Virtex

3.1. STUDY ON SELF-OSCILLATORS 49

35

45

55

65

75

85

95

2

4

6

8

10

12

14

0.0% 1.0% 2.0% 3.0% 4.0% 5.0%

LUT Utilization for ROs (%)

Board Power Board Temperature

5.2%*

*Board crashes at this value

P
o

w
e

r
(W

)

Te
m

p
er

at
u

re
 (

o
C

)

Figure 3.10: Power-hammering Evaluation for Power over Temperature on Ultra96.

UltraScale+ VU9P FPGA (because they use the exact same fabric architecture and the
same 16nm FinFET process [128]), this would be equivalent to a WPP of 17.51 which
translates into a total possible waste power of PWP ≈ 3940W, when deploying Design

8 on the entire VU9P of an Alveo U200 board (see also Table 3.2 and Table 3.3 for
more results). This estimation is far beyond anything that the FPGA, the board, or the
system would ever sustain, hence expressing the importance of preventing such circuits
from getting configured on the FPGA in the first place.

Figure 3.10 shows the temperature of the board, corresponding to the number of
deployed ROs Although cooling mechanisms (i.e. heatsinks, fans) keep the tempera-
ture below the maximum junction temperature, intensively heating the fabric may have
a long-term impact on the FPGA. This phenomenon is in particular dangerous if the
heat is generated in a hot spot and not evenly spread across the entire FPGA die.

Additionally, we also implemented a ”Dual-RO” (Figure 3.3a) exploiting the fact
that a LUT6 primitive in UltraScale+ devices can be split into two individual LUT5
with shared inputs, as shown in Design 7 of Table 3.2. Thus, we can use both outputs
of a fractural LUT to implement two independent oscillators. For 2000 LUTs (4000
ROs), which corresponds to less than 3% of the device capacity, we measured a waste
power of 5.10W . Please note that this is an increment in power, and the total power of
the board was close to 8W and already close to the total power envelope of an Ultra96
board [18]. With this, the total possible waste power PWP is over 180W , considering
all the available 70K LUTs would be used for power-hammering.

50 CHAPTER 3. FPGA POWER-HAMMERING CHARACTERISATION

3.2 Power consumption on wiring resources

In the last section, we explored the power-hammering potential based on the ability
to construct self-toggling circuits on FPGA fabrics. However, the number of self-
oscillators in a design may not necessarily be proportional to the total waste power
consumption. For example, comparing Design 8 and Design 1 to Design 6, we could
see that the number of LUT primitives is the same (2000 LUTs) but the WPP are
substantially different. Despite running at a lower frequency, Design 8 has a WPP
number of 1.5X to 2.5X greater than the group of Design 1 to Design 6. The difference
in power consumption mostly comes from the additional power consumption on the
wiring resources in Design 8. Thus, as much important as investigating self-oscillating
circuits, we need to analyse the contribution of wiring resources to the total waste
power consumption. In this section, we will analyse the power contribution of the
main wiring resources in FPGAs and establish a power model for them.

A typical power-hammering attack will consist of circuits that have higher switch-
ing activity than usual FPGA designs. For example, an n-bit counter has an average
toggle rate of:

r =
1
n

n−1

∑
k=0

100%
2k

This equals to an average toggle rate of 25% for an 8-bit counter (12.5% for a 16-
bit counter). If a 16-bit counter runs at 400MHz then it has an average toggle rate
of 50MHz (per bit). As a reference, the power estimation tool in the Xilinx EDA
tool assumes a default flip-flop toggle rate of 12.5%. The previous section has shown
that ring-oscillators can run at close to 6GHz. This is more than 100x faster than
the average toggle rate of our 16-bit counter example. Additionally, FPGAs contain
far more routing resources compared to ASICs. Together with significant parasitic
capacitance and high-speed toggling, these routing wires dominate the dynamic power
consumption of the whole FPGA fabric.

There are two power sources in FPGAs: static and dynamic power. The dynamic
power of a wire is proportional to [133]:

Pdyn ∼ α fCLV 2
DD︸ ︷︷ ︸

switch power

+kτ f (VDD −2Vth)
3︸ ︷︷ ︸

short power

(3.5)

Where CL is a technology-specific wire capacitance, VDD is the chip core supply
voltage, f is the operational frequency, and α is the ratio of how often the average wire

3.2. POWER CONSUMPTION ON WIRING RESOURCES 51

toggles per cycle. Additionally, k is a technology specific constant, τ the time to switch
a wire, and Vth is the technology specific threshold voltage. In this work, we mostly
investigate the impact of f and α (and to some extent of τ) because all other parameters
are defined through the FPGA and the board.

Pdyn comprises of switch power and short power. Switch power is the power used
for charging and discharging a wire while a signal is toggling. Short power is the
power resulting from the crosscurrent when both transistors of a buffer pair are active
during the actual switch transition causing short-circuit in a short interval.

In most digital circuits and virtually in all common FPGA designs, the switch

power is dominating Pdyn. However, when it comes to a higher frequency regime,
we may leave the full digital operation in such a way that wires will not have the time
for a full voltage swing (meaning that switch power per swing decreases) and where a
rising τ will finally result in short power dominating Pdyn.

We do not want to further speculate about the exact behaviour of the power model
as this information is commonly not available and also not needed by FPGA users.
This is because FPGA circuits operate in a regime where the power consumption of the
wires is mostly proportional to their respective toggle rates. However, we should still
be aware that when running wires at very high toggle rates, the analogue effects could
dominate and power consumption will eventually max out limited by the resistance of
driver pairs and reduced voltage swing.

In Xilinx FPGAs, there are four main routing types which are categorised by length
(SINGLE, DOUBLE, QUAD, and LONG) and direction (horizontal and vertical). In
UltraScale+ architecture, two combinatorial logic blocks share one switch matrix.
Switch matrices act as routing hubs to connect between FPGA resources. From each
switch matrix, we could route up (north), down (south), left (west), and right (east)
with the four different steps mentioned above. Table 3.4 shows the wiring resources of
an individual switch matrix of a Xilinx UltraScale+ device and its naming.

Therefore, we are going to explore the wire power as a function of the toggle rate
into the GHz domain. Without having to know detailed physical design information of
the FPGA, we could use the information to better estimate the maximum power of a
circuit prior to loading it onto the FPGA fabric. With this work, we distinguish from
other approaches that are examining the accuracy of the estimated FPGA power versus
the measured FPGA power for some benchmark circuits running typically within safe
operational margins (e.g., [34, 57]).

52 CHAPTER 3. FPGA POWER-HAMMERING CHARACTERISATION

Type Naming Number of wire

Single Horizontal
EE1 * BEG*

WW1 * BEG* 16 (8+8)

Double Horizontal
EE2 * BEG*

WW2 * BEG* 32 (16+16)

Quad Horizontal
EE4 * BEG*

WW4 * BEG* 32 (16+16)

Long Horizontal
EE12 BEG*

WW12 BEG* 16 (8+8)

Single Vertical
NN1 * BEG*
SS1 * BEG* 32 (16+16)

Double Vertical
NN2 * BEG*
SS2 * BEG* 32 (16+16)

Quad Vertical
NN4 * BEG*
SS4 * BEG* 32 (16+16)

Long Vertical
NN12 BEG*
SS12 BEG* 16 (8+8)

Table 3.4: Wiring resources of a switch matrix in Xilinx UltraScale+ devices

3.2.1 Test infrastructure – How to generate test signals that toggle
at GHz regime?

As dynamic power caused by a single wire is very small to detect, we have to use a
larger number of wires in parallel to perform the measurement for practical reasons (at
least 1000 wires and up to the sustainable power budget of the board). Here, we are
using the fact that an FPGA fabric layout is mostly regular. Therefore, we require a test
infrastructure that can distribute and generate fast toggling signals to a large number
of switch matrices across the FPGA fabric.

Generation and distribution of high-speed clocks

A trivial way to provide such a test infrastructure would be using a self-oscillator to
supply toggling signal. However, the frequency of self-oscillators cannot be easily
tuned and their speed depends on chip process variations and varies dramatically by
temperature. That impacts the accuracy and reproducibility of experiments. Therefore,
we are using global clock trees to reliably distribute a clock signal that is generated and
tuned by a Digital Clock Manager (DCM) of the FPGA (see Figure 3.12). However,
the DCM and clock distribution network on Zync UltraScale+ FPGA maxes out at
891MHz [131]. This limits our experiments to a wider frequency range.

To overcome this limitation, we are using multiple global clock trees that are fed

3.2. POWER CONSUMPTION ON WIRING RESOURCES 53

Δt1

Δt2

Δt
3

f

DCM

BUFG +

global clock
routing

routing path
under test

gets disconnected for
measuring base

power consumption

test macro
(replicated)XOR

clock
amplifier

a

b

c

d

f

Figure 3.11: High-speed clock distribution on an FPGA using glitch amplification of
multiple phase shifted clocks.

with the same frequency generated by a DCM but phase shifted. Then, by XORing the
different (phase shifted) clock trees in a LUT, we can generate a fast toggling signal (at
the LUT output). The principle is shown in Figure 3.11. For p used global clock trees,
the clock amplified frequency is p× higher than the actual frequency on the clock trees.
In order to distribute this signal to many switch matrices, we are replicating the XOR
LUT to the regions used for the experiments. In order to use the same phase shift for
all the clock amplifier LUTs, we are using exactly the same LUT in each used CLB. In
our experiments, this is the A-LUT. In addition, we are constraining the routing to the
LUTs to be identical for all clock amplifiers. This uses the fact that global clock trees
distribute clock signals across the fabric with low skew.

For our experiments, we are aiming for a 50% duty cycle. This requires adjusting
separately the phases for each source frequency generated by the DCM. The phases of
the DCM outputs of Xilinx UltraScale+ FPGAs can be shifted statically through the
configuration bitstream or dynamically through DCM’s interface [123]. However, it
should be noted that with this setup, we are not only able to fine-tune the frequency but
also able to adjust the duty cycle of the output signal.

For our implementation, we first tried the static phase shifting approach by com-
puting the required phase shifting latencies as reported by the Vivado design tool. We
also considered the latency of the LUT used for clock amplification. As shown previ-
ously in Figure 3.7, this incorporates the internal physical implementation of the LUT
that results in different input-to-output propagation delays for different inputs.

54 CHAPTER 3. FPGA POWER-HAMMERING CHARACTERISATION

Figure 3.12: Detailed block diagram of the Mixed-Mode Clock Manager [123]

The static phase shift (SPS) resolution in time units is defined as:

SPS =
1

8FVCO

As the Voltage-Controlled Oscillator (VCO) provides eight fixed phase shifted clocks
at 45◦ each, there are eight possible phase shift settings to choose from: 0◦, 45◦, 90◦,
135◦, 180◦, 225◦, 270◦, and 315◦.

We verified the clock amplified output with the help of a TDC (refer to Sec-
tion 3.1.1). Because the clock is distributed through the dedicated global clock trees
of the FPGA, one TDC is sufficient to characterise all clock amplification output. This
is due to the fact that clocks are propagated with low skew and the local routing is
identical for each glitch generator (see also Figure 3.15). With this setup, we had been

...

+
f

Δt=70 ps

a
b
c
d

TDC

Figure 3.13: Time-to-Digital Converter (TDC) for logging a clock amplifier output.

3.2. POWER CONSUMPTION ON WIRING RESOURCES 55

a

b

c

d

a

b

c

d

f

f

a

b

c

d

f

a

b
c

d

f

step 1

(start)

step 2

step 3

step 4

Figure 3.14: High-speed clock distribution on an FPGA using glitch amplification of
multiple phase shifted clocks. a, b, c, d are clock inputs; f is the clock output.

56 CHAPTER 3. FPGA POWER-HAMMERING CHARACTERISATION

able to distribute reliably frequencies to the clock amplifier to about 800MHz. Beyond
that frequency, duty cycles drifted away and the XOR clock amplification stop work-
ing. We believe that the static phase shifting may not be accurate enough and that we
incorporated glitch cancellation effects.

Automatic dynamic phase shifting for higher toggle rates and finer adjustment

To support higher frequencies and finer-tuned phase-shifting for our experiments, we
also used the dynamic phase shifting approach, which is provided by the clock genera-
tion primitives on Xilinx UltraScale+ FPGAs. For adjusting the phase, we brought up
one global clock phase after the other, as shown in Figure 3.14. In step 2, we are shift-
ing a second phase (c in the figure) through. The phase shifting runs from 0◦ to 360◦ in
the smallest step size provided by the DCM. On Xilinx UltraScale+ devices, there are
56 steps of phase shifting with the phase resolution of 1

56FVCO
. In each phase shifting

step, we use a circuit to automatically read the TDC and we are recording the phase
shift that showed the best duty cycle match. In order to deal with meta-stability effects
in the TDC readings, our automatic phase shifting tuning circuit used 64 measurements
for each phase shift step before moving to the next step. This process is repeated for
the other DCM outputs until all phases are aligned to provide a high-speed amplified
clock signal with a 50% duty cycle rate. Additionally, in order to examine the effect of
the duty cycle on power, we only use two clock inputs (a and c) and shift the second
phase (c) through until we get the desired value (step 2 in Figure 3.14). This acts like
a Pulse Width Modulation (PWM) circuit.

Further applications for clock amplification

The here presented infrastructure may be used for other applications that can benefit
from high-speed clocks that exceed the supported abilities of the DCMs and clock dis-
tribution resources. An interesting property for such an approach is that the amplified
clocks are in phase with the DCM source clock.

Clock amplification may also reduce power consumption for the clock distribution
network. For example, in some applications, only a certain part of the design is re-
quired to run at a higher frequency to improve overall performance such as reading
operands from BRAM or other non-timing critical blocks. In that case, a clock can be
derived from the output of a 2-input XOR gate that is fed from the lower frequency
clock tree; and instead of phase shifting through a DCM, the phase could be shifted
using routing delays. We believe this would dramatically reduce the power consumed

3.2. POWER CONSUMPTION ON WIRING RESOURCES 57

Figure 3.15: FPGA Floorplan of the experimental setup.

by running another DCM and distributing the additional clock. The implementation
could be done with the support of the tool GoAhead [23] which can search for paths
between arbitrary ports and rank the results by latency.

3.2.2 Experiments on wiring resources

All experiments had been conducted on the same Ultra96 board as in previous Sec-
tion 3.1 as it is using the same FPGA fabric as available in major data centre FPGA
cards, including the FPGAs available on AWS. Figure 3.15 shows details of the phys-
ical implementation. We used 1260 clock amplifiers for all experiments. The phase
shift control is only active before recording a measurement to adjust the phases for
generating the high-speed toggling signals in the experiment area. Because the Ultra96
board is a small system, its total power budget is bound to be about 12W. Therefore,
we need to adjust the number of wires used correspondingly so that it would not ex-
ceed the power budget. The Ultra96 board provides a fan that draws about 600mW.
Because that fan is regulated by the FPGA temperature, the fan power is creating some

58 CHAPTER 3. FPGA POWER-HAMMERING CHARACTERISATION

LUTA

LUTH

LUTA

LUTH

SliceM

SliceL

...

...

.....
.

W2_E(8)

W4_E(8)

W12(8)

W
1
_
E

(8
)

W2_W(8)

W4_W(8)

W1_W(8)

E12(8)

E2_E(8)

E4_E(8)

E1_E(8)

_E
(east)

_W
(west)

E
1
_
W

(8
)

E2_W(8)

E4_W(8)

N1_W(8)

N2_W(8)

N4_W(8)

N1_E(8)

N2_E(8)

N4_E(8)

N12(8)

S1_W(8)

S2_W(8)

S4_W(8)

S1_E(8)

S2_E(8)

S4_E(8)
S12(8)

c
e
n

te
r

(s
h

a
re

d
)

Figure 3.16: Local routing wires of a CLB in Xilinx UltraScale+ FPGAs.

fluctuation, so we decided to power the fan through an external power supply to min-
imise the effect. We measured board power with a multimeter because we do not want
to modify the board itself. This may cause a small systematic error in the results due
to a loss in the power regulation circuit. However, the trends that we are reporting are
not significantly impacted by this.

Experiment results

Xilinx UltraScale+ devices provide SINGLE, DOUBLE, QUAD, and LONG wires
that route respectively 1, 2, 4, and 12 switch matrices far. However, the distance in
terms of switch matrices considers two sub-switch matrices in the horizontal direction
per CLB, as shown in Figure 3.16. Originally, Xilinx FPGAs consisted of columns of
resources (e.g., logic CLBs or BRAMs) connected to switch matrices that provide local
routing and access to the clock backbone. Starting with 7-series FPGAs, this model
stays the same except that two adjacent columns share the same clock splines. This
was shown to the user in the graphical chip editor tool by placing two separate switch

3.2. POWER CONSUMPTION ON WIRING RESOURCES 59

matrices (similarly shown for the two separate sub-switch matrices in Figure 3.16).
UltraScale+ FPGAs share this part with 7-series FPGAs, but the switch matrices are
now shown as one, even though they are logically and physically separated. This holds
with one exception, which is the long wires, which are shared between the west and
east sub-switch matrix.

We have not seen a significant impact on the power consumption if we drive the
particular wire lengths in the west or the east half of a CLB. Similarly, the power in
the north direction was the same as in the south direction for a particular wire length.
Therefore, we are reporting only the power consumption of horizontal and vertical
local wires.

Figure 3.17 shows the results of energy consumed per each toggle for each wire
characterised by direction. Figure 3.18 and Figure 3.19 show the results of energy
consumed per each toggle for each wire characterised by its length. Regarding length,
we can clearly see that the results match our expectation that is the longer the wire, the
more power it consumes. This could be explained that a longer wire has more parasitic
capacitance than a shorter one. We also see that horizontal wires consume more power
than vertical wires of the same type. That could be explained by the position of vertical
slices being physically closer than that of horizontal slices. As a result, a vertical wire
has less parasitic capacitance than a horizontal wire of the same length type. This also
correlates with the latency model that comprises longer delays on horizontal than on
vertical wires. In terms of frequency, ideally the energy per toggle should be constant
over the whole frequency range. However, there seems to be a downward trend of the
energy per toggle as the frequency increases. This is expected as we have discussed
above, when running wires at very high toggle rates, we may experience a cancelling
effect as the signal does not have enough time to transit through a full voltage swing.
Therefore, the analogue effects could dominate and power consumption will eventually
stabilise at a much lower value regardless of the frequency.

Additionally, our setup also allows us to conduct an experiment to show the de-
pendency of power on the duty cycle of a signal. Figure 3.20 shows the result when
we sweep through the duty cycle on 1260 clock amplifiers. The amplifier output is set
to 1GHz. By fine-tuning the phase, we could effectively adjust the duty cycle of the
amplifiers’ output. The asymmetric figure could be explained by the characteristic dif-
ference between N-channel MOSFET and P-channel MOSFET or by some asymmetry
induced through level restorers at the end of the pass-gate switch matrix multipliers.
However, we are not able to provide credible details as the underlying technology is

60 CHAPTER 3. FPGA POWER-HAMMERING CHARACTERISATION

10

40

70

100

130

160

50 200 350 500 650 800 950 1100 1250

fJ/
to

gg
le

Frequency (MHz)

Energy per toggle for each horizontal wire

Single Horizontal Double Horizontal

Quad Horizontal Long Horizontal

10

30

50

70

90

110

50 200 350 500 650 800 950 1100 1250

fJ/
to

gg
le

Frequency (MHz)

Energy per toggle for each vertical wire

Single Vertical Double Vertical

Quad Vertical Long Vertical

Figure 3.17: Energy per toggle for characterised by wire directions.

3.2. POWER CONSUMPTION ON WIRING RESOURCES 61

10

20

30

40

50 200 350 500 650 800 950 1100 1250

fJ/
to

gg
le

Frequency (MHz)

Energy per toggle for SINGLE wire type

Single Horizontal Single Vertical

20

30
40

50

50 200 350 500 650 800 950 1100 1250

fJ/
to

gg
le

Frequency (MHz)

Energy per toggle for DOUBLE wire type

Double Horizontal Double Vertical

Figure 3.18: Energy per toggle for characterised wire lengths (SINGLE type and DOU-
BLE type).

62 CHAPTER 3. FPGA POWER-HAMMERING CHARACTERISATION

20
35

50

65

50 200 350 500 650 800 950 1100 1250

fJ/
to

gg
le

Frequency (MHz)

Energy per toggle for QUAD wire type

Quad Horizontal Quad Vertical

40

80

120
160

50 200 350 500 650 800 950 1100 1250

fJ/
to

gg
le

Frequency (MHz)

Energy per toggle for LONG wire type

Long Horizontal Long Vertical

Figure 3.19: Energy per toggle for characterised wire lengths (QUAD type and LONG
type).

3.2. POWER CONSUMPTION ON WIRING RESOURCES 63

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1

In
cr

em
en

ta
l P

ow
er

 C
on

su
m

pt
io

n
(W

)

Duty Cycle

Figure 3.20: Power consumption versus duty cycle. This experiment was conducted
with 1260 glitch amplifiers producing 1GHz routing to its local wires.

not publicly available. When going toward both extremes, we believe the MOSFET’s
strength does not allow the signal to have a full voltage swing, therefore, lowering the
Vpeak−to−peak and consequently lowering the dynamic power consumption.

Vendor power estimator tool

The Vivado suite provides a power estimator tool. Using the following TCL command
allows us to set the switching activity for a specific wire:

set_switching_activity -static_probability 0.5 -signal_rate 200

[get_nets single_horizontal*]

The example would set the switching activity for all single horizontal wires to
100MHz and a duty cycle of 50%. Please note that the tool alternatively allows set-
ting a parameter toggle_rate, which describes the percentage of which a signal
changes related to the clock frequency. However, in this work, we use the toggle
rate for denoting the frequency at which we drive our different local wires. We found
that the reported power is scaling linearly with the toggle rate (which we set with
-signal_rate). Interestingly, there is no upper bound and it is possible to set the
toggle rate in the THz range and Vivado is reporting the corresponding power con-
sumption that is in the kW range just for a small subset of the wires.

64 CHAPTER 3. FPGA POWER-HAMMERING CHARACTERISATION

Wire Types
Number
of Wires

Energy /
toggle

Dynamic
Power/wire

Theoretical
maximum
power con-
sumption

WPP

Theoretical
maximum
number of
wires can
be used

Single Horizontal 1555200 31 fJ 31 uW 48 W 0.21 7259499
Double Horizontal 3110400 39 fJ 39 uW 122 W 0.54 5750677
Quad Horizontal 3110400 50 fJ 50 uW 155 W 0.69 4522156
Long Horizontal 1555200 150 fJ 150 uW 233 W 1.04 1500575
Single Vertical 3110400 19 fJ 19 uW 58 W 0.26 12003813
Double Vertical 3110400 26 fJ 26 uW 80 W 0.35 8790665
Quad Vertical 3110400 31 fJ 31 uW 98 W 0.44 7143214
Long Vertical 1555200 95 fJ 95 uW 148 W 0.66 2357909

Table 3.5: Estimated WPP of a legal design that only uses normal wires as the power
wasting medium in Alveo U200 at 500MHz. This excludes static power and power
wasting on connecting wires and other components.

Power-hammering potential

With the results we have in the last section, it is possible to estimate the portion of
power wasting through wires of a malicious circuit running at a standard frequency
range that does not violate any digital design rules. We selectively use 500MHz as this
is relatively easily achievable without the risk of timing violation. Moreover, that speed
can be distributed through a high-fanout net across the chip, meaning that a single
fast toggling signal (such as an oscillator) is sufficient for excessive power-hammering
potentials.

From Table 3.5, we can see that at 500MHz, power wasting on different wire types
could contribute from 21% (Single Horizontal Wires) up to 104% (Long Horizontal
Wires) of the total power budget. It should be noted that this does not include power
wasting through other components and clock distribution networks. In reality, these
wire types cannot be arbitrarily and individually used. For example, a LONG wire must
be used with a QUAD wire. Therefore, it is much easier to exceed the power budget of
an FPGA board by driving wires using fast toggling signals generated through standard
RTL designs.

3.3 Chapter summary

In this chapter, we have provided a study about self-oscillators that could be created
using FPGA resources. The study focuses on the oscillating frequency and dynamic

3.3. CHAPTER SUMMARY 65

power aspect. We also provided a unit to quantify power-hammering potential - Waste
Power Potential. It was found that the power-hammering potential of a data centre
FPGA could reach up to 17x the rated power consumption if no countermeasures are
taken. Additionally, we have provided an estimation of energy that is consumed for
each toggle for the main wiring resources in Xilinx UltraScale+ FPGAs. This not only
shows that a power-hammering attack is possible with a standard RTL design but also
enables us to better detect the risk of such attacks. Based on the knowledge studied,
we will investigate if we could mount an attack on AWS, a big Cloud Service Provider
offering FPGA-accelerated services.

Chapter 4

Case study on attacking AWS F1
FPGA instances

In this chapter, we will reveal the general security implementation of an FPGA-based
Cloud Infrastructure. This is important to assess if cloud service providers are more
exposed to vulnerability when integrating FPGAs into their infrastructure. This study
focuses on attacking AWS F1 because these instances are widely used and had been
among the first public offerings. The CSPs Alibaba, Huawei, and Nimbix offer FPGA
instances featuring the same Xilinx-VU9P device that is used for AWS F1, and these
CSPs use the same Xilinx vendor DRC checks and provide an equivalent security
architecture to AWS. Therefore, the here presented attacks and countermeasures are
deployable in other FPGA cloud settings. Microsoft Azure uses both Xilinx and Intel
FPGAs. Xilinx and Intel FPGAs are similar and share fundamentally the same vulner-
abilities. For instance, power-hammering on Intel Stratix-10 was researched in [48].

We assume a scenario where an attacker (eventually using a counterfeit identity)
deploys power-hammering designs on AWS F1 instances. This scenario cannot be
prevented through protocols for secure remote reconfiguration of FPGAs that prevent
tampering with configurations, as shown in [7]. Such approaches are useful for closed
systems, but cannot be used by a CSP who wants to provide an easily usable service to
a large customer base. Therefore, CSPs are using a security infrastructure that inspects
user designs before FPGA deployment and monitors the FPGA board at runtime, as
will be presented in the next section.

We would like to acknowledge that we asked Amazon Web Services to authorise
us to use their equipment for our security related experiments before running any ex-
periments on their instances.

66

67

Measures Description

Fe
nc

e
1

Integrity Check Checks for design tampering (*.dcp)
Unrouted-Net
Check

Checks for completeness of the design implementa-
tion

AWS Shell
Check

Checks compatibility with AWS Shell

Device DNA
Check

prevent user designs to access DNA PORT (device
ID)

DRCs Checks for unrouted nets, dangling nets, timing vio-
lations, combinatorial loops, and other design errors

Fe
nc

e
2

CSP-side Bit-
stream Genera-
tion

FPGA bitstreams are generated by AWS (users cannot
use their own bitstreams)

Fe
nc

e
3

Virtual Program-
ming

AWS restricts access to bitstreams and programming
of FPGA through a custom (hypervisor) API

Fe
nc

e
4 Power Warning Power monitoring and assertion of power warnings

Clock Gating Gate user clock if power consumption reaches a
threshold

Over-
Temperature
Shutdown

Triggers shutdown sequence when temperature ex-
ceeds the critical value to prevent permanent damages

Table 4.1: Current AWS protection fences: Fence 1 – Design Inspection; Fence 2 – Bitstream
Generation; Fence 3 – FPGA low-level API; Fence 4 – FPGA runtime monitoring

68 CHAPTER 4. CASE STUDY ON ATTACKING AWS F1 FPGA INSTANCES

4.1 The AWS FPGA security architecture

AWS (like all other cloud service providers that are offering FPGA instances) has
implemented multiple security fences to protect its equipment and to ensure stable
operation for all users. The following sections introduce these fences in more detail.

4.1.1 Fence 1 – Design inspection

Design inspection is executed during accelerator registration, where a design is made
available to be later used in the deployment phase. To implement any designs on AWS,
users must follow a strict design flow (see Appendix A). All designs have to pass the
DRCs, as listed in Table 4.1. The input to the registration process is a netlist in the
vendor propriety design checkpoint format (DCP).1

First, an integrity check (an SHA-256 hash) confirms that the DCP file has not been
corrupted. Then a scan for unrouted nets detects malicious designs that try tapping
into other parts of the system (e.g., the cloud shell). The PR region check confirms
that the static shell (AWS shell) will not be compromised [119]. This check is done by
analysing the user DCP, which includes both the shell (provided by AWS) and the user
logic. The Device DNA check prevents users from accessing an FPGA-specific ID.
The device DNA is normally used for access control or cryptography protocols [124].
Without access to the device DNA, users have no trivial way to identify their allocated
FPGAs.

The FPGA vendor Design Rule Checks scan for design violations, including un-
routed nets, dangling nets, combinatorial loops, etc. The design tool Vivado 2019.1.3
provides more than 5000 DRCs with the severity of critical warnings and errors, which
would prohibit the flow from generating bitstreams if used. The severity level (e.g.,
error) of many DRCs can be changed, and it is the duty of the CSP to use the right
DRC receipt. Note that only 3 DRCs scan for combinatorial loops (which allows im-
plementing fast ring-oscillators and soft logic voltage/temperature sensors). The DRCs
include:

• LUTLP-1 and LUTLP-2 check for LUT-based combinatorial loops.

• RPCL-1 detects ”any” combinatorial loops in the design. Here, ”any” refers to

1Users can provide encrypted DCP files to protect their IP. However, the CSP could break the cryp-
tographic mechanism. For example, attackers can generate the bitstream from the DCP and annotate the
logic functions back to the DCP netlist [43, 67]. Therefore, users have to trust the CSP for IP protection.
This aspect is covered in [106].

4.1. THE AWS FPGA SECURITY ARCHITECTURE 69

Design
Side-
channel
Attacks

DoS At-
tacks

Suited for
sensors
& PUFs

Provisional
power
gain (W)

WPP

1: MUX7 ROs ✓ ✓ ✓ 463 2.06
2: MUX8 ROs ✓ ✕∗ ✓ 123 0.55
3: CARRY8 ROs ✓ ✕∗ ✓ 123 0.54
4: DSP ROs ✓ ✕∗ ✓ 25 0.11
5: Latch ROs ✓ ✓ ✓ 980 4.36
6: FF Glitch Gen-
erator

✓ ✓ ✕ 519 2.31

7: LUT Glitch
Gen.

✓ ✓ ✕ 1141 5.07

8: Glitch Ampli-
fication

✓ ✓ ✕ 2721 1.84

9: Enhanced
CARRY8

✓ ✓ ✓ 369 1.64

Designs 1,2,3,4,5,6,7 are taken from Table 3.2. Design 8 is taken from [71]. Design 9 is an
enhancement of Design 3 (see Figure 4.2b). ∗: On their own, Designs 2,3,4 are not well suited for DoS
attacks. However, DOS is possible using additional glitch amplification.

Table 4.2: Malicious designs that are currently deployable on AWS.

the vendor information. However, this test fails to detect several combinatorial
loop designs, as listed in Table 4.2.

Additionally, the design inspection checks for timing, IO, and power violations.
However, this step only provides reports and violations will not prevent the AFI gen-
eration. This allows an attacker to deploy overclocked designs for implementing side-
channel attacks [109].

AWS provides a few default clocks for a user to choose from. However, using
these clocks is not enforced and users can generate their own clocks with higher clock
speeds than the default clocks. This is a security threat for both power-hammering and
implementing voltage/temperature sensors.

4.1.2 Fence 2 – Bitstream generation

After passing the design inspection, the Amazon FPGA Image (AFI) is generated. This
is a file consisting of the configuration bitstream and some metadata (that we ignore
here). The FPGA vendor bitstream generation tool ensures the correct translation of the
netlist (given as a DCP file) into a bitstream. It is important to understand that, due to

70 CHAPTER 4. CASE STUDY ON ATTACKING AWS F1 FPGA INSTANCES

the low-level implementation of the actual FPGA fabric, it is possible to create short-
circuit situations that can draw excessive current. While an individual short-circuit
is not a concern (about a few mA per short-circuit) [22], an attacker could possibly
deploy hundreds of thousands of shorts with corresponding consequences.

Because attackers cannot inject their own bitstreams, we cannot bypass this fence.
Consequently, we have not been able to attack a cloud FPGA with short-circuits (as
this requires bitstream manipulations). All designs passing Fence 1 will pass Fence 2
and 3.

4.1.3 Fence 3 – FPGA API

After the AFI is generated, it can be loaded onto the FPGA fabric. However, AWS
blocks any direct access to the generated AFI as well as the programming and de-
bugging processes. AWS is providing a set of command-line tools to program and
debug the FPGA [14], and programming is only possible through an AWS-provided
API. For programming, the command fpga-load-local-image is encapsulating the ven-
dor programming mechanism [121]. For debugging, AWS provides users with virtual
LEDs, virtual DIP switches, and virtual JTAG [14]. This is available through the PCIe
connection.

Like with the bitstream generation, we cannot bypass Fence 3, which is active
when deploying a design. Security Fence 3 prevents attackers from directly accessing
the configuration bitstream (AFI) and the configuration port.

4.1.4 Fence 4 – FPGA monitoring

At runtime, AWS uses three safety mechanisms. The first one is power monitoring and

condition monitoring. The Xilinx VU9P data centre FPGAs provide a system monitor
mechanism featuring three 10-bit 200kSPS ADCs to read FPGA temperature sensors
and core voltages [120]. Related work suggests that the available sampling rate is
insufficient to detect quick voltage transients [70] and to generate power warnings if
excessive power is ramped up rapidly. While the present mechanism is sufficient for
virtually all practical benign designs, it is insufficient for the malicious circuits that we
deployed in this work.

The second safety mechanism allows slowing down a user design to limit power
consumption below a certain threshold (≈ 100W). When exceeding this power budget,
the shell will gate all user clocks to stop switching activity and corresponding dynamic

4.2. POWER-HAMMERING ATTACKS ON AWS EC2 F1 INSTANCES 71

a) c)b) d)

LDCE
D

GE

CLR

Q

G

1’b1

1’b0

1’b1

FDPE

PRE

D

C

Q1’b0 MUXCY
0 1

CIN

DI0

CO0

S0

1’b1

1’b0

CARRY8
…

FDCE

D Q

CLK

external
trigger

buffers

Figure 4.1: Oscillator designs deployable on AWS F1 instances: (a) transparent latch, (b)
flip-flop with asynchronous preset, (c) ring-oscillators implemented through carry-chain logic,
(d) a self-oscillating circuit using glitch amplification.

power.

As the last safety mechanism, AWS uses a failsafe mechanism that is built into the
FPGA for protecting the device from overheating. AWS has set the critical temperature
to 125◦C (which is the default value). When exceeding this temperature threshold,
the FPGA is triggering the shutdown sequence, which deactivates all drivers of the
FPGA (including all drivers for clock nets and most other resources). This is activated
globally and will cut off the PCIe connection between the FPGA and the host.

4.2 Power-hammering attacks on AWS EC2 F1 instances

Since AWS F1 instances are equipped with Xilinx UltraScale+ VU9P FPGAs, we ran
experiments under lab conditions using an FPGA board featuring the same FPGA (we
used an Alveo U200 data centre card) to measure power increments caused by different
power-hammering circuits. This allows us to calibrate our power-hammering attacks
without the need to measure power on AWS hardware. Furthermore, we used the AWS
tool flow for tuning our designs to pass the design inspection (Fence 1).

Chip power dissipation consists of both static and dynamic power. In benign de-
signs, the dynamic power can contribute from 20% to 70% of the total power dissi-
pation [8]. The dynamic power consumption depends on switching activity which is
expressed by the activity factor α that denotes how often a signal can toggle within one
clock period. Because α is data-dependent, estimates are commonly used to model this
effect. E.g., the power estimator from Xilinx sets α to 12.5% by default [122]. How-
ever, malicious circuits can switch 100× faster as investigated in Chapter 3, and the
power estimator is not well suited to catch such designs.

Figure 4.2 and Table 4.2 show attacks that bypass the security Fences 1-3. The
reported power gains had been derived on a small region of the FPGA (≈ 10% of the
total resources) and then scaled up according to the user FPGA resources available

72 CHAPTER 4. CASE STUDY ON ATTACKING AWS F1 FPGA INSTANCES

MUXCY
0 1

CARRY8

MUXCY
0 1

MUXCY
0 1

…

S7

DI7

S1

DI1

S0

DI0

CIN

O0

O1

O7

enable

C
O
U
T

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 (W
)

% CARRY8 used

Power Hammering Evaluation on AWSb) c)

Clock Gating

Power Warning

105W

85W

Terminal Freezing
134W

a)

Latch
D

GE

CLR

Q

G

1’b1

1’b0

1’b1
...1’b1

FF

D Q

CLK

FF

D Q

CLK

FF

D Q

CLK

CARRY8

enable

CARRY8

enable

CARRY8

enable

CARRY8

enable

CARRY8

enable

32-bit counter

FF

D Q

CLK

PRE-
SCALER

Figure 4.2: Power-hammering designs and power evaluation on AWS. a) Self-clocked de-
sign to bypass the clock gating protection. b) One carry-chain primitive forms 8 combinato-
rial loops. c) Evaluation using 81920 carry-chain primitives. The continuous red line is the
recorded power measurement. The linear dotted blue line shows the expected power consump-
tion when leaving the experiment running freely.

4.3. BYPASSING FENCE 4 – FPGA MONITORING 73

on AWS F1 instances. We divided the malicious designs into two groups: 1) designs
using combinatorial loops and 2) designs creating glitches. The latter is shown in Fig-
ure 4.1d, which uses a toggle flip-flop where the output is routed to an XOR, but with
different latencies in order to create glitching at double the frequency of the toggle flop
itself. This amplified clock is fed back to the flop, causing a self-propelled oscillation.
We used this concept to amplify the glitching of signals, which are then used to drive
a large number of routing wires. This results in the 2.7 KW power gain level and WPP
of 1.84 as reported for design 8 of Table 4.2. Amplifying switching activity is a pattern
that allows boosting slow oscillators to much higher frequencies with corresponding
power-hammering potential.

For the denial-of-service experiments deployed on AWS F1 instances, we used a
variant of design 3 using the carry-chain primitive (CARRY8) and modify it to imple-
ment 8 combinatorial loops for each primitive (see Figure 4.2b). The enable signal is
used to control the oscillation.

4.3 Bypassing Fence 4 – FPGA monitoring

When exceeding certain power levels, F1 instances trigger different exceptions. We
observed a power warning when power consumption reached 85W. When reaching
about 105W, the shell stops all user clocks. To bypass this clock gating mechanism,
we implement a clock source using a ring-oscillator using a transparent latch. As
shown in Figure 4.2a), this oscillator was used to sequentially activate a chain of
power-hammering circuits, see Figure 4.2b). This was slowed down using a prescaler
resulting in a power rising level of 0.4W/sec. With this, we linearly increase dy-
namic power over time such that the time corresponds to the power consumed. This
allows us to observe the FPGA monitoring behaviour even if the shell applies clock
gating. For the experiment, we instantiated a chain with 81,920 CARRY8 primitives
for power-hammering. We have deployed this design on AWS, and the result is shown
in Figure 4.2c. We observed that when increasing power beyond the clock gating point
(105W), the SSH terminal freezes at about 134W, which may have triggered an over-
temperature shutdown. All power levels had been measured indirectly by measuring
the time. For improving accuracy, we used a reference counter to measure the speed
at which the power-hammering circuits are activated. Our experiments confirm that 1)
the clock gating can be bypassed and 2) exceeding 134W can freeze an instance with
a loss of the SSH connection.

74 CHAPTER 4. CASE STUDY ON ATTACKING AWS F1 FPGA INSTANCES

4.4 FPGA fingerprinting on AWS EC2 F1

3900

3950

4000

4050

4100

4150

4200

4250

4300

4350

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

1
6

-b
it

 C
o

u
n

te
r

V
al

u
e

Counter

PUF Responses of two FPGA instances

Instance #1 @7W Instance #1 @67W Instance #2 @7W

Figure 4.3: AWS F1 FPGA PUF responses.

Create f1.2xlarge
instance

Load PUF design then
Get PUF response

Crash instance by
power-hammering

design

Restart
Instance

Step 2:

Step 3:

Step 4:

Start/Launch
Instance

Step 1:

Figure 4.4: AWS attack flow.

In the last paragraph, we presented an experiment that crashed an AWS F1 FPGA
instance. In order to investigate the behaviour of an instance after being crashed,
we need to identify individual FPGAs (or corresponding instances) to determine their
availability for measuring that a DoS attack was mounted successfully. AWS does not
provide an identifier that could be used to identify a specific physical instance or FPGA
(e.g., a serial number, MAC, etc.). Additionally, AWS prevents users from access-
ing factory-programmed keys on the FPGA, including the 96-bit factory-programmed
unique DNA (Device DNA) or the 32-bit user-defined eFUSE [124]. Therefore, we
implemented a PUF for fingerprinting the FPGAs. From the fingerprint database we
collect, we will know exactly which FPGA fabric we are currently connected to. Note
that these PUFs are not used for any security protocols, and security concerns against
PUFs would not apply in our context. PUF implementations on FPGAs are well stud-
ied [62] and our contribution is providing an implementation that is deployable on
AWS F1 instances where the traditional LUT-based combinatorial feedback loop can-
not be used (see also 4.1.1).

Recently, a group from Yale University used DRAM decay to fingerprint AWS F1
instances [103]. That approach uses the fact that each FPGA chip has access to four
dedicated DRAM modules. However, we have not considered this method because
1) DRAMs are removable; 2) the method requires three AFI loading steps, which
means tripling the time for experiments; and 3) it is trivial to be mitigated by AWS.
This is because the attack uses two different user designs, one with a memory controller

4.4. FPGA FINGERPRINTING ON AWS EC2 F1 75

and one without. The second design is used to temporarily disable DRAM refreshes,
with the resulting decay being the fingerprint signature. However, AWS could mitigate
this in Fence 3 by i) simply not allowing to change between designs that once use
and once not use memory, which would be a rather unusual case and therefore not
affecting benign customers or ii) including a memory blanking phase that could be
applied transparently to the user.

As an alternative, we implemented an oscillator-based PUF for fingerprinting. We
implemented 60 ROs using transparent latches. We constrained all ROs with the same
physical routing paths and the cycle path delay was reported to be 456ps each (by
the Xilinx Vivado tool). For the fingerprinting, we counted the response of each RO
separately over a time period of 2048ns. Since the VU9P FPGA used in AWS has
3 super-logic regions (SLRs), which are separate dies integrated together on an inter-
poser, we used 3 identical PUFs (one per SLR) to increase the confidence level of our
fingerprinting. The unique ID of each SLR is represented through a set of 60-counter
values. We identify the match of two PUF responses by calculating the Pearson Cor-
relation Coefficient between two counter value sets. In our experiments, we defined
that two sets match if the correlation coefficient is larger than 85%. The coefficient is
selected after trials on the same FPGA board by placing ROs randomly on the FPGA
layout to introduce local heat spots. According to Evans, the coefficient is categorised
as a very strong correlation [42]. We acknowledge that the PUF will need more de-
tailed evaluation and calibration in order to be used for security application because in
some conditions such as hotspots or busy adjacent wires, the PUF may not yield accu-
rate results. However, as the PUF circuit and therefore the proximity of wires used for
the PUF implementation is fixed, the impact is estimated to be low.

Figure 4.3 shows three PUF responses where the orange and blue traces were de-
rived from the same FPGA but at different power levels (7W and 67W). These traces
show a very strong correlation (94%) in the shape of the count values and the gap be-
tween values is due to the temperature difference. Therefore, the PUF responses are
robust to temperature changes. The top grey trace was derived from a different FPGA
as a reference. These experiments allow 1) measuring the temperature of an FPGA
(which could, for example, reveal information about a previous design) and 2) finger-
printing an FPGA to derive secrets of the cloud service provider. This can include the
number of total instances or scheduling policies.

76 CHAPTER 4. CASE STUDY ON ATTACKING AWS F1 FPGA INSTANCES

4.5 Mounting a DoS attack on AWS EC2 F1 instances

0

0.2

0.4

0.6

0.8

1

0-5 0-10 10-30 30-60 60-720 > 720

P
ro

b
ab

ili
ty

Time interval (minutes)

Time between continuous
running instances

: Without crashing (Step 3)
: With crashing

Figure 4.5: Time interval between two
running instances.

$14 $28
$110$129

$259

$1,034

$0

$200

$400

$600

$800

$1,000

$1,200

f1.2xlarge f1.4xlarge f1.16xlarge

C
o

st
 (

U
SD

)

F1 instances

Monetary comparison between attack
cost and consequences

: Attacker cost
: Downtime lost

Figure 4.6: Estimated attack cost and
loss after 100 attacks with an attack
time of 5 minutes and downtime of 52
minutes.

We conducted experiments on the on-demand f1.2xlarge instances in the North
Virginia us-east-1 region. The attack was mounted from Apr 17, 2020 to Apr 28,
2020. For the power-hammering experiments, we used a moderate power level of
396W to crash the FPGAs (ramped-up rapidly) as our intention was not to damage
equipment. It is worth mentioning that we applied this power constant and that by
creating resonance effects in the power regulation circuit (by using a pulsed stimulus
of defined frequency and duty cycle), less power is likely sufficient to crash the board
or to cause potential damages [36].

The attack was performed, as shown in Figure 4.4 (see Appendix A for more de-
tails about the lifecycle of an Amazon Instance). After creating an instance, we first
fingerprinted the FPGA and then crashed it using power-hammering. After this, we
started the attack with the next instance. As a reference, we ran experiments without
crashing the instance (without Step 3) to measure the time it takes under normal con-
ditions to receive the same FPGA instance again. With this, we confirmed that an F1
instance stays on the same host computer if it is left running [16]. After five tries, we
observed that without crashing, it took less than five minutes to i) establish an instance,
ii) fingerprint it, and iii) shut it down, and we always got the same FPGA instance or
one belonging to a small pool of instances. After this, we run another 96 experiments
including the crashing of the instance. As shown in Figure 4.5, we observed that, on
average, it took about an hour before we were able to start a new instance after a crash
and the longest waiting time was up to 22 hours.

Interestingly, when comparing the PUF responses, we found that the minimum time

4.6. CHAPTER SUMMARY 77

to get a previously crashed F1 instance re-allocated is about 52 minutes. And we
found only one occasion where the same FPGA was allocated in two consecutive ex-
periments. This value is much below the rates reported in [103] with 25% and our
reference experiments. This is a strong indication that the host machine needs to re-
initialize the crashed FPGA and the minimum downtime is close to one hour. Our
experiments also show that the crash behaviour is not consistent. This could be an
indicator that it required a human operator to bring up an attacked instance.

The here presented DoS attack can potentially be deployed in different scenarios.
In one, a malicious design is placed in the AWS marketplace, and after a forced crash,
users will experience extensive delays to receive new instances. Note that because we
can use routing resources that are left unused in a particular design to build power-
hammering circuits, the extra cost for embedding this attack would be neglectable.
Alternatively, an attacker could temporarily prevent AWS from selling the service of
crashed F1 instances. Given the service is billed in each second (if it runs for less than
a minute, then the cost is rounded up to the next minute) [56], we can estimate the
monetary loss. Figure 4.6 shows the estimated cost and possible loss when running
100 attacks. As we can see, the downtime loss is about an order of magnitude greater
than the attacking cost. The ratio could potentially be higher if an attacker can prevent
AWS from fulfilling quality of service agreements.

Because we do not want to cause potential damage to AWS equipment, we have
not conducted experiments with greater power-hammering potential (e.g., using glitch
amplification). With higher power-hammering potentials, there is a potential loss in
customer confidence and possible loss of equipment, which states a greater financial
risk.

4.6 Chapter summary

In this chapter, we provided a real-world example of a Denial-of-Service attack using
power-hammering on an FPGA cloud provider. This demonstrates the profound effects
of power-hammering on cloud computing and the necessity of having an effective tool
to prevent the attack before the malicious circuit is even mounted to the FPGA board.
The following chapter presents countermeasures to prevent such attacks.

Chapter 5

FPGA netlist scanner for malicious
circuits

Having discussed the security issues and case study of FPGA-based infrastructure in
previous chapters, we strongly believe there is a need to ensure a secure environment
for using FPGAs in the cloud. Current countermeasures could be separated into the
reactive group and the proactive group. Reactive approaches are based on responding
to the early-stage effects of the attack. For example, a study in [70] shows a mecha-
nism to detect voltage transients which are caused by power-hammering attacks with
a resolution up to the nanosecond range. On the other hand, proactive approaches aim
to prevent attacks before they actually happen. Proactive countermeasures could be
further divided into intrusive and non-intrusive methods. Intrusive methods involve
changing the design in order to hide or mask power signatures [97]. Non-intrusive
methods require design examination instead of modification. A typical example of de-
sign examination is Design Rule Checks (DRCs) embedded in almost any Electronic
Design Automation (EDA) tool. The pros and cons of each approach are summarised
in Table 5.1.

We believe that non-intrusive proactive countermeasures are more effective with-
out exposing potential risks compared to the other. In this chapter, we will present a
scanning mechanism that is able to detect malicious circuits in an FPGA design. Our
scanner could be embedded as DRCs for EDA tools or it could be used separately
as third-party virus scanning software for FPGAs. The Python implementation of the
scanning mechanism was done by the PhD Student Kaspar Matas. This thesis con-
tributes to building an FPGA virus scanner. The specific ingredients provided through
this project include:

78

5.1. MALICIOUS CIRCUITS SCANNING MECHANISM 79

Advantages Disadvantages

R
ea

ct
iv

e
A

pp
ro

ac
he

s IPs can be reused develop-
ment flow can be unchanged

Potential hardware damages
before detection, potential
false positive results in
power-noisy environment,
potential false negative re-
sults in side-channel attacks

Pr
oa

ct
iv

e
A

pp
ro

ac
he

s Intrusive Improve security robustness
of designs

Potential area and perfor-
mance trade-offs, legacy IPs
needs re-design

Non-intrusive No affects on area or perfor-
mance, prevent attacks before
any potential damages

Checks need frequent update
to keep pace with new attacks

Reactive approaches: [70]
Intrusive proactive approaches: [97]
Non-intrusive proactive approaches: [37, 125]

Table 5.1: Pros and cons of approaches to prevent power attacks for FPGA-based
infrastructures

1. defining the FPGA virus signatures;

2. decoding the architecture graph for Xilinx UltraScale+ FPGAs;

3. creating a custom DRC to integrate the scanning mechanism into the FPGA
design flow;

4. generate testing circuits to evaluate the FPGA virus scanner.

5.1 Malicious circuits scanning mechanism

In this section, we will introduce the malicious circuit scanning mechanism for FPGAs
that could be effectively embedded into existing Xilinx DRC.

5.1.1 Hardware versus software virus scanning

In software systems, the confidentiality of data and task integrity are usually protected
by different layers that may go beyond what a software virus scanner is testing. This in-
cludes protection mechanisms provided by the software operating system (OS) or run-
time environments. Software binaries encode the functionality of a program primarily
as sequences of instructions. Consequently, a virus scanner for software binaries will

80 CHAPTER 5. FPGA NETLIST SCANNER FOR MALICIOUS CIRCUITS

Software Hardware
Check software binaries using
regular expressions and crypto-
graphic hash matches

Analyse netlists and check graph
properties

Check address ranges to prevent
executing malicious code

Check location information of
primitives and wires

Bounds checking and memory
randomisation to prevent buffer
overflows (eventually by an OS)

Check volume of netlist written
to prevent configuring adjacent re-
gions

Table 5.2: Contrasting protection mechanisms: software versus FPGA hardware tech-
niques.

include a pattern-matching engine, typically searching for regular expressions, which
are also known as virus signatures.

Contrarily, the functionality of a module is encoded as a netlist - whether in the
form of a bitstream or a design checkpoint - which in turn is a structural represen-
tation given as configured FPGA primitives and configured switching elements (i.e.
multiplexers). A netlist can be modelled as a graph, and the whole physical FPGA
implementation process can be described by graph transformations, as summarised in
Section 5.1.2. Consequently, a virus scanner for FPGAs needs a checker engine for

graph properties. For example, in Chapter 3, we examined ring-oscillators in more
detail that in one variant are implemented as cyclic combinatorial circuits (e.g., a LUT
that has an output connected to its input without passing a flip-flop). By scanning a
netlist (i.e. its corresponding graph representation), we can spot such oscillators.

A software OS and most software virus scanners commonly check memory ad-
dresses (or memory ranges) used by programs to ensure that data is not corrupted in
malicious ways or that, for example, data segments are not executed as code. Similarly,
a virus scanner for FPGAs has to check that a configuration bitstream is not corrupting
the configuration context of other parts of the system, including other configurations or
states of other parts of the system (e.g., the surrounding shell that commonly provides
DDR memory and PCIe access). Consequently, a virus scanner needs a netlist parser
that ensures that a module will only change the configuration context of resources al-
located to that module. This requirement includes parsing addressing information that
encodes locations of primitives on the FPGA fabric as well as tracking the volume of
configuration data that is written to the device. The latter tracking prevents a kind of

5.1. MALICIOUS CIRCUITS SCANNING MECHANISM 81

a buffer overflow that can arise when configuring Xilinx FPGAs1. This attack would
exploit that Xilinx FPGAs perform something similar to an auto-increment that keeps
configuring an FPGA as long as it receives configuration data through a configuration
port. As a consequence, this could overwrite the configuration of the fabric outside an
intended module bounding box.

To some extent, the tracking of the configuration bitstream length is equivalent to
buffer overflow detection and prevention techniques (e.g., bounds checking) as embed-
ded into some compilers like the Clang frontend for LLVM [26].

We summarised the main differences between software and hardware virus scan-
ning in Table 5.2. For full system security, it requires hardware support from the
runtime system. For instance, systems commonly provide memory management units
(MMUs) that can protect memory regions against malicious accesses. These units are
also available in CPU-FPGA hybrids such as Xilinx Zynq UltraScale+ devices or In-
tel Stratix-10 SX SoC devices; and these chips include dedicated IOMMUs to protect
the memory subsystem from malicious accesses initiated from the FPGA side (e.g.,
by an accelerator module). Alternatively, MMU functionality can be implemented in
the FPGA’s soft logic (commonly as part of a shell [10]). In this study, we are, in
particular, focusing on FPGA vulnerabilities at the electrical level because protecting a
system at the system level is very well studied and, therefore, not further covered here.

5.1.2 Modelling the FPGA virus scanning problem

Formally, any FPGA architecture can be modelled by its architecture graph GA =

(VA,EA) which includes as its node primitives V P
A and switches V S

A with VA =V P
A ∪V S

A as
well as directed edges EA between the nodes representing wires or connections2. When
a module is implemented for an FPGA, its specification (e.g., some RTL code) will un-
dergo several transformation steps, including logic compilation, technology mapping,
placement of primitives, routing, and ultimately the generation of the configuration
bitstream. Concisely, we can say that the technology mapping is an allocation and
mapping of primitive Boolean functions (the result of the logic synthesis step) to a set
of connected primitives (including their internal configurations). The result of this step
is a netlist, which is a graph GN = (VN ,EN), where the nodes are FPGA primitives.

1Please note that this problem is not necessarily bound to a specific vendor but that this problem is
best understood for Xilinx FPGAs which dominate the research on runtime reconfigurable systems and
the commercial cloud providers.

2For the sake of clarity, we deliberately omit a discussion about bidirectional wires that had been
available in older FPGA architectures.

82 CHAPTER 5. FPGA NETLIST SCANNER FOR MALICIOUS CIRCUITS

During placement, the nodes get placed on the architecture graph GA, which is a
binding β of the netlist nodes VN → V P

A . In practice, this means that we annotate for
each node in GN the location coordinate L of the corresponding primitive of the FPGA:

VN → L(V P
A),∀V P

A ∈VN

The process of routing can be defined as computing a binding of the netlist edges
EN to switches V S

A and wires EA. In general, this is a quite complicated process, and the
actual routing has, among other things, to find spanning trees (for multiple edges en ∈
EN that have the same source node in VN). Primitive nodes commonly have multiple
input and output ports p ∈ Pt , where Pt is the set of ports for a specific primitive type
t. The routing information can be seen as a set of switches (a list of nodes in V S

A) and
wires (a list of edges in EA) that are used to implement each connection in EN . The
configuration of a switch is given by none (if the switch is not used) or exactly one
edge from another node (or port in the case the source is a primitive node), which in
turn represents the selected routing multiplexer input (e.g., in a switch matrix).

A placed and routed netlist can be directly mapped to a bitstream and encodes the
exact configuration of each element V P

A ,V S
A ∈ VA. It is essential to understand that

this mapping is reversible, meaning that a bitstream can be mapped back to a placed
and routed netlist. However, this mapping needs the architecture graph to rebuild the
routing, which is only encoded as segments in the bitstream, rather than as complete
paths. On the contrary, a netlist generated through the implementation flow still pro-
vides a substantially higher level of abstraction than the bitstream. This is because a
netlist typically includes information such as hierarchies, symbolic names of nets and
logic blocks, and information on signal vectors, which cannot be easily decompiled
from an FPGA configuration binary. This fact is similar to software compilation into
obfuscated program binaries that also do not allow to decompile symbolic names and
hierarchies.

This project uses the reversible correspondence between bitstream and netlist to
rebuild flat netlists that provide all primitives V P

N and all switching multiplexers V S
N ,

but that will not offer any higher level information (such as symbol names or Boolean
equations). For the remainder of this thesis, we will use GN to refer to a netlist that is
rebuilt from a bitstream for detecting virus signatures.

Please note that the goal of this work is not to provide or offer a reverse-engineering
tool for FPGAs but to show that configuration bitstreams are well suited to detect ma-
licious circuit constructs in a module. Related work that focuses explicitly on reverse-
engineering includes [107, 43, 114].

5.1. MALICIOUS CIRCUITS SCANNING MECHANISM 83

5.1.3 Detecting self-oscillating circuits

As mentioned in Section 2.1, it is of paramount importance to identify self-oscillating
circuits in a design to be deployed. The following paragraphs are devoted to different
classes of self-oscillating designs.

Ring-oscillators

Ring-Oscillators break the fundamental model of register-transfer level (RTL) descrip-
tions where a circuit is described by

1. registers, including FPGA slice flip-flops, pipeline registers (e.g., inside DSP
primitives), or memories, and

2. transforming logic that is forming acyclic combinatorial paths.

These paths can be described by a network of elementary Boolean functions im-
plemented by look-up tables (LUTs), or DSP blocks3 that are located between the
registers.

It is a good design practice to follow the RTL design principle on FPGAs [115], and
this is also the model commonly generated by High-Level Synthesis (HLS) tools [32].
In this study, we assume that all states are stored in flip-flops or other synchronous
memory elements (which is the typical case for FPGA designs). Circuit analysis using
latches (which are sometimes used in ASIC netlists) is a well-studied topic, and there
is no fundamental obstacle to transfer the here presented methodology to circuits based
on latches.

To perform a search for cycles, we have to refine our netlist model so that each port
p ∈ Pt of a primitive VN can be either a register PR

t or a combinatorial element PL
t for

routing or logic. With this, we expand ∀p ∈ PR
t a path search that terminates at any

other register port ∈ PR
t or that recursively explores all paths while keeping track of

duplicate ports visited in PL
t , which would indicate a cycle.

In general, it requires an odd number of inverters in a cycle to form a Ring-
Oscillator. The FPGA scanner is not interpreting the logic blocks for the existence
of inverters, and we deliberately scan for acyclic paths only. The reason for this is
that if a combinatorial block (e.g., a LUT or DSP block) implements an inverter be-
tween an input and an output can depend on other inputs and consequently on a state

3For a sake of clarity, we are omitting a deeper discussion on pipeline registers in DSP blocks for the
remainder of this chapter, even an FPGA scanner can deal with all internal registers and pipeline stages
in the DSP48 primitives which are available on Xilinx UltraScale+ FPGAs.

84 CHAPTER 5. FPGA NETLIST SCANNER FOR MALICIOUS CIRCUITS

that is only known when running a module. The philosophy of the FPGA scanner is
to flag any possible oscillator while not reporting a false positive for any design that
is following RTL design principles. Moreover, the FPGA scanner is stricter than the
Xilinx vendor DRC checks, which can also detect some cycles, but there are situations
where the vendor DRC fails. For example, an enabled transparent latch can be part of
a Ring-Oscillator, and due to the latch (which is logically a wire), this cycle would not
be flagged by the Xilinx vendor DRC but by the FPGA scanner. More examples are
provided in Chapter 3.

For our implementation, we used Xilinx Vivado for generating a report file contain-
ing the full architecture graph for the used Zynq UltraScale+ XCZU3 FPGA. However,
that model does not explicitly distinguish between PR

t and PL
t , and we added this anno-

tation through a regular expression replacement. Furthermore, the path search inside
the virus scanner incorporates all combinatorial primitives, including LUTs, DSPs,
carry logic, cascading multiplexers (i.e. F7Mux and F8Mux in Xilinx nomenclature),
which requires an understanding of the bitstream encoding of primitive control bits.
However, the actual search does not have to distinguish between different types of
primitives. This scan will identify the oscillator Design 1 to 12, which are reported in
Chapter 3.

It should be noted that although we want to flag all the possible combinatorial
loops, some of them may be beneficial. For example, ROs can be genuinely used for
security applications such as for a True Random Number Generator or for Physical
Unclonable Functions [54, 35]. In these cases, we can allow to implement ROs in a
designated location and use a filter to exclude the path that has the RO from the final
result. By doing this, we will have control over the usage of ROs and therefore we can
avoid misusing them for malicious purposes.

Self-clocking oscillators

In our oscillator evaluation section (Chapter 3), we evaluated an oscillator circuit that
is based on glitches that are generated by an XOR gate with different input routing
latencies and where the resulting glitches are fed back into the clock input of a toggle
flip-flop for a self-propelled oscillation (see variant 15 in Table 3.2). In order to de-
tect this kind of oscillator, we examine for each used flip-flop the corresponding clock
source. If the source is a global clock network, the netlist is considered clean. If the
clock source cannot be considered to be stable (e.g., a combinatorial LUT output), the
netlist is rejected. In our systems [69, 10], we block configuration access to global

5.1. MALICIOUS CIRCUITS SCANNING MECHANISM 85

clock resources for any partially reconfigurable module by using BitMan [67] for pre-
venting this kind of attack and the FPGA scanner will detect if partially reconfigurable
modules try driving global clock resources.

Other oscillators

In Chapter 3, we presented further self-oscillating designs that allow bypassing the
default Vivado design rule checks (DRCs); therefore, this allows an attacker to imple-
ment oscillators which can be deployed in cloud data centres. To confirm this, we ran
experiments on Amazon F1 instances for all Oscillator designs listed in Table 3.2 and
all designs that do not throw any warning by the vendor tools can be deployed. The
remainder of this paragraph will present the corresponding detection mechanisms.

The self-oscillator detection mechanism in Section 5.1.3 scanned for the origin of a
clock source, and we use a very similar mechanism to handle asynchronous reset/preset
inputs of slice flip-flops which can also be used for creating self-oscillating circuits (see
variant 14 in Table 3.2). To detect this, we query the asynchronous mode flag from the
netlist for each used flip-flop, and in case any asynchronous reset/preset mode is used,
we search from the control input (i.e. the reset/preset primitive input) backwards to
find the origin of the corresponding control signal. If the origin is a combinatorial
primitive pin PL

t , the netlist is rejected while we flag a warning for registers PR
t .

In order to prevent the Vivado tool from flagging a combinatorial feedback loop,
a transparent latch can be incorporated in the loop (see variant 13 in Table 3.2). We,
therefore, treat latches as combinatorial elements (essentially like a wire) and carry out
a loop search as described for ring-oscillators. We also report a warning in case latches
are used.

Regarding IOBUF-based oscillators, a similar approach to treat latches could be
implemented. That is an IOBUF primitive which has both input and output used can be
incorporated in the loop. And we could treat those IOBUF primitives as combinatorial
elements. For stricter security (which has already been implemented on AWS), we
could report a warning in case IOBUFs are utilised.

The here presented tests allow detecting any FPGA implemented self-oscillating
circuits that have been reported in the literature, including all further variants reported
in Chapter 3.

86 CHAPTER 5. FPGA NETLIST SCANNER FOR MALICIOUS CIRCUITS

C1C1C1C1C1C0 C1C1C1C1C1C1 C1C1C1C1C1C2 C1C1
C1C1C1C3 C1 C1 C1 C1 C1C4 C5 C6 C7 C8

Inputs Pass transistors Output

a) b)
C1 C1 C1 C1 C1C0 C1 C2 C3 C4

Figure 5.1: a) Switch matrix multiplexer implementation on Xilinx 7-series FPGA; b)
ditto for UltraScale+ FPGAs.

5.1.4 Detecting short-circuits

In [53, 22, 92, 91], short-circuits had been reported that were implemented directly in
the soft-logic on an FPGA. In older FPGA families (e.g., Xilinx Virtex-II), the fab-
ric included some long-distance wires that could be accessed through tristate drivers
at different positions, which could be used to create short-circuits inside the fabric.
The deployable attack for short-circuits in modern FPGAs is based on the way switch
matrix multiplexers are commonly implemented. In SRAM-based FPGAs, the multi-
plexers are implemented with transmission gates or pass-transistors [24] and by acti-
vating multiple inputs (i.e. switching on multiple transmission gates or pass-transistors
within the same multiplexer), a short-circuit situation arises when the corresponding
multiplexer inputs carry different logic levels. Therefore, by changing the input logic
levels to the switch matrix multiplexers, it is possible to control the power that a shorted
multiplexer is drawing precisely in time. This configuration provides the potential for
DoS attacks.

As shown in Figure 5.1, 7-Series FPGAs from the vendor Xilinx implement a
switch matrix multiplexer by cascading two levels of switching, each controlled through
a one-hot coded configuration word (see [33, 22] for more details on FPGA switch ma-
trix multiplexer implementations). In contrast, the multiplexers in UltraScale+ devices
are smaller and use only one multiplexing level that is again one-hot encoded in the
configuration bitstream. Consequently, for UltraScale+ devices, a used multiplexer
input port corresponds directly to one specific configuration bit. Therefore, we re-
ject bitstreams where a switch matrix multiplexer encoding contains more than one bit
among the set of bits that control that particular multiplexer.

Please note that a vast amount of UltraScale+ switch matrix multiplexers are used

5.1. MALICIOUS CIRCUITS SCANNING MECHANISM 87

as pairs. Consequently, UltraScale+ multiplexers are similar to 7-Series multiplexers,
with the main difference being that internal multiplexer details are made visible to the
user. This organization simplifies the short-circuit detection for UltraScale+ devices
as it is not necessary to determine the sets of configuration bits that control a specific
multiplexing level, as performed in [22] using graph algorithms (e.g., the configuration
bits C0, . . . ,C3 in Figure 5.1a) form a set of configuration bits).

5.1.5 Netlist bounding-box tests

Testing if a netlist is exceeding its allocated (partial) region during configuration was
examined in several projects before. For example, the configuration manager for the
Erlangen Slot Machine project evaluated start address information and scanned the
length of the bitstream written to the device [77]. The REPLICA project parsed con-
figuration bitstreams directly in hardware as part of the configuration controller that
connects to the configuration port of the FPGA [49]. A full overview of partial recon-
figuration techniques is provided in [31]. For the virus scanning implemented in this
study, we use BitMan [67], which supports parsing of all Xilinx UltraScale+ FPGA
configuration bitstreams. BitMan is used inside the FPGA scanner flow for bounding
box testing and for converting FPGA bitstreams to the required netlist for further graph
search, as illustrated in Figure 5.2.

5.1.6 Detecting wire-tapping

The wire-tapping test checks if a partial module is connected to ports that belong to the
static system or another module outside the circuit boundary (i.e. the region allocated
to a reconfigurable module). However, a static signal may have to cross a reconfig-
urable region, like, for example, in order to access a gigabit transceiver (as part of
the shell), and a module placed into this region should not be allowed to access this
crossing signal. We define therefore prohibited ports/nodes in the architecture graph
p− ∈ GA (i.e. a negative filter) that are not allowed to exist in the netlist GN which
is corresponding to the circuit encoded by the design to be examined: p− /∈ GN . For
convenience, we allow defining prohibited ports by regular expressions, which, for ex-
ample, allows the definition of a bounding-box. This definition would be the same
bounding-box as defined during system floorplanning when reconfigurable regions are
defined (i.e. a P-block in Xilinx terminology). Because static routes may cross the area
of a partial module differently in different systems, it is necessary to define the port list

88 CHAPTER 5. FPGA NETLIST SCANNER FOR MALICIOUS CIRCUITS

individually for each system. The port list for a static route can be easily derived auto-
matically using the TCL interface in Vivado using the get property command on the
specific signals to be protected.

5.1.7 Interface sanity check

As mentioned in the previous section, we defined a negative filter for a set of ports
(p− ∈ GA). FPGA scanner can also search for port connections that must exist in a
netlist, which implements a positive filter (p+ ∈ GN). This filter is, in particular, used
for partially reconfigurable modules to check if the module connects to the foreseen
wires between the static system and the module such that no interface wires are left
over as antennas. Only such interface wires implement the communication between
a partial module and the surrounding, while all other signals are strictly separated for
both the surround (static) system and the partially reconfigurable module, as imple-
mented in systems [78, 66]. An interface wire antenna may not necessarily indicate
a malicious circuit but flags that a reconfigurable module may have an incompatible
interface.

5.2 FPGA Scanner: Implementation and evaluation

This section is devoted to the implementation and evaluation of our FPGA virus scan-
ner. Currently, there are two implementations of the FPGA scanner. The original one -
which is known as FPGADEFENDER - is implemented entirely in Python by the PhD
Student Kaspar Matas. The other implementation using TCL is implemented as a part
of this thesis and can be embedded as additional checks in parallel to the Xilinx ven-
dor DRCs. The mechanisms used in both implementations are mostly similar and the
main difference is how we extract the netlist GN from the different input formats (see
Figure 5.2). Therefore, as a part of this thesis, we will describe how we could get the
architecture graph GA and the TCL implementation of the netlist generator. However,
we can refer to the scanning mechanism in Figure 5.3 with the implementation details
in a separate research article [110].

The existing circuits studied in Chapter 3 were used and tested on an Ultra96 board,
but because the scanner operates on models that are automatically derived from the
Xilinx Vivado tool suite, the approach is portable to all other Xilinx UltraScale+ FPGA
platforms.

5.2. FPGA SCANNER: IMPLEMENTATION AND EVALUATION 89

AWS Shell

User Logic

Configuration Manager

Netlist Generator
(BitMan)

Virus Scanner
(FPGADefender)

Bitstream
(.bit)

Netlist GN

Architecture
Graph GA

Virus
Signatures

Pos./Neg.
Filter

Netlist Transformer
Netlist
(.DCP)

FPGA

Figure 5.2: Envisioned system with a virus scanner for detecting malicious FPGA
designs.

5.2.1 Architecture graph generation for FPGADEFENDER

In order to provide the architecture graph GA for FPGADEFENDER, we need to decode
the bitstream format using Xilinx Vivado tool and the BitMan FPGA bitstream parser
(BitMan was developed by Khoa Pham in the research [67]).

The FPGA bitstream consists of the configuration commands and the configuration
data [67]. The configuration data includes the actual configuration bits for every prim-
itive and every reconfigurable routing resource. The configuration data format was
studied in depth in [65]. In the study, the configuration bits are addressed by their row
addresses, frame addresses, and frame offsets. Therefore, in order to find the architec-
ture graph GA, we need to locate the configuration bits for the FPGA resources of in-
terest. The investigation in Chapter 3 helps us to narrow down the reverse-engineering
effort so that it is not necessary to find all the configuration bits for all the FPGA
resources due to the regularity of the fabric.

Firstly, we need to generate a bitstream from a blank design with the help of the
Vivado tool in which we know Gbase ∈ /0. Then we need to create a bitstream with the
instance of an interested resource which could be either a wire or a primitive. From
these bitstreams, we can find the corresponding configuration bits which represent the
directed edge Ex ∈ EA. The configuration bits are then saved into a JSON dictionary.
Listing 5.1 shows the snippet of the decoded configuration information for a wire in the

90 CHAPTER 5. FPGA NETLIST SCANNER FOR MALICIOUS CIRCUITS
Virus Scanner flow

parse implementation graph

parse scanning options

execute virus scanning

Result represented
in text file

netlist GN

● Signature options
● Positive filter lists
● Connection attribute adding

Virus detector engines:
●Combinational loop detector
●Attribute detector
●Port detector
●Path detector
●Antenna detector
●Short circuit detector
●Unspecified path detector
●Fanout detector

Figure 5.3: FPGA scanning flowchart.

JSON dictionary. Further, Listing 5.2 shows the snippet of the decoded configuration
bit for a flip-flop which is configured as a latch. Finally, the edge information EA can
be directly extracted from get * TCL commands.

{

"begin": "INT_NODE_SDQ_34_INT_OUT0",

"end": "WW2_E_END6",

"offset": 12, "frame": 54, "eo": 0, "row": 1

},

Listing 5.1: A snippet of the decoded configuration information for a wire.

{

"flop": "AFF",

"mode": "LATCH",

"offset": 18, "frame": 14, "eo": 0, "row": 0

},

Listing 5.2: A snippet of the decoded configuration information for a flip-flop
configured as a latch.

When analysing the fracturable LUTs, we found that it is possible that a combina-
torial path runs through one of the fracturable LUTs and later runs through the entire
other fracturable LUT without forming a cycle or any RO (see Figure 5.4). In this
example for LUT A, the top inputs of the LUT affect only the top LUT output, and
this LUT output routes through LUT B and back to a bottom input of the same LUT A.
However, in this example the bottom output of LUT A is only depending on the bottom

5.2. FPGA SCANNER: IMPLEMENTATION AND EVALUATION 91

LUT_A

LUT_B

false positive cycle path

Q
A

QB

Figure 5.4: Example of a path that closes in LUT A but that does not form a cycle or
RO.

inputs, hence, this situation is not forming a loop. For such situations, it is not suffi-
cient to analyse just the routing to decide if a netlist contains cycles or not. The scanner
solves this problem by analysing the LUT function table (i.e. the LUT init values in the
bitstream) using the Espresso logic minimiser [93] implemented in PyEDA library for
Python [25]. Therefore, we also need to decode the LUT’s configuration data. Similar
to decoding other resources, we compare the blank bitstream to the bitstream that has a
LUT initialised with different init values. The configuration for a 6-input LUT requires
64 bits of configuration data (see Listing 5.3).

"1": {"LUT": "A6LUT", "bit": 0, "offset": 16, "frame": 11, "eo": 0,

"row": 0},

"2": {"LUT": "A6LUT", "bit": 1, "offset": 16, "frame": 10, "eo": 0,

"row": 0},

"3": {"LUT": "A6LUT", "bit": 2, "offset": 16, "frame": 9, "eo": 0, "

row": 0},

...

"64": {"LUT": "A6LUT", "bit": 63, "offset": 31, "frame": 8, "eo": 0,

"row": 0}

Listing 5.3: A snippet of the decoded configuration information for a LUT init value.

With the architecture graph GA and a bitstream input, we can generate the netlist
graph accordingly. Listing 5.4 shows a snippet of the final netlist graph GN .

92 CHAPTER 5. FPGA NETLIST SCANNER FOR MALICIOUS CIRCUITS

{

"begin": {"tile": {"name": "INT", "x": 18, "y": 19}, "name": "

WW2_E_END6"},

"end": {"tile": {"name": "INT", "x": 18, "y": 19}, "name": "

INT_NODE_SDQ_34_INT_OUT0"},

"attributes": []

},

Listing 5.4: A snippet of a single edge of a netlist graph.

After parsing a netlist graph GN , scanning options are parsed to provide inputs for
the virus detector engines as well as a set of positive filters p+ ∈ GN and negative
filters p− ∈ GN . Then the scanning process is executed based on a set of virus detector
engines:

• Combinatorial cycle detector: Detect combinatorial cycles and transparent
latch cycles.

• Attribute detector: Detect unusual synchronous design elements such as the
use of latches.

• Port detector: Detect prohibited ports that are used in the netlist. For example,
IOBUFs could be used to create combinatorial loops or listen to IO transactions.

• Path detector: Detect prohibited paths that are used in the netlist.

• Antenna detector: Detect dangling paths in the netlist (which indicate physical
interface mismatches).

• Short-circuit detector: Detect short-circuits caused by possible bitstream ma-
nipulations (FPGADEFENDER rejects bitstreams with invalid encodings for the
routing).

• Fanout detector: Detect and report the maximum fanout of the examined mod-
ule.

5.2.2 Design evaluation

In order to test and evaluate the FPGA scanner, we developed several test cases includ-
ing 1) 15 malicious designs from Table 3.2 as well as a short-circuit design; and 2)
28 reference designs including the Spector OpenCL benchmark [90], soft-core CPUs

5.2. FPGA SCANNER: IMPLEMENTATION AND EVALUATION 93

Designs LUT used Comb Cycle Latch Short-Circuit Fanout
Malicious Circuits

Design 1 2000 2000 0 No 1
Design 2 2000 2000 0 No 1
Design 3 2000 2000 0 No 1
Design 4 2000 2000 0 No 1
Design 5 2000 2000 0 No 1
Design 6 2000 2000 0 No 1
Design 7 2000 4000 0 No 2
Design 8 2000 2000 0 No 10
Design 9 0 2000 0 No 1
Design 10 0 2000 0 No 1
Design 11 0 2000 0 No 1
Design 12 0 2880 0 No 1
Design 13 2000 2000 2000 No 1
Design 14 * 4000 0 0 No 3
Design 15 * 6000 0 0 No 4
Short-circuit 15974 11669 12 Yes 5223

* Designs are flagged as flip-flop clock input violation.

Table 5.3: Evaluation results for malicious designs circuits.

(MIPS and RISC-V [29]), crypto cores (AES, DES [9], and SHA3 [68]) and other pe-
ripheral circuits [85], which all do not contain any malicious circuits (see Table 5.3 for
the list of malicious circuits and Table 5.4 for list of all normal test cases).

The FPGA scanner found all malicious circuits and the short-circuits in our test
cases. For the experiments, each malicious circuit from Design 1 to 15 was imple-
mented 2000 times spread out across the FPGA. The short-circuit design was created
directly at the bitstream level. This was implemented with the help of BitMan, which
features a low-level API to access LUT values and switch matrix multiplexer config-
urations. To inject short-circuits, we looked for valid one-hot encoded switch matrix
multiplexer configurations and randomly toggled some of the zero bits (to create ran-
domly more hots in the multiplexer configurations). Note that the Vivado design tool
does not allow to create a bitstream that contains short-circuits. This restriction means
that short-circuits can be prevented if, for example, a cloud service provider generates
the bitstream at the provider side rather than accepting a bitstream binary from a user.

However, this also implies that users have to share their design with the cloud

94 CHAPTER 5. FPGA NETLIST SCANNER FOR MALICIOUS CIRCUITS

service provider (at least to some extent through design checkpoints - DCPs), which
in turn is an IP protection issue. In contrast to this, FPGADEFENDER would allow a
cloud service provider to directly accept FPGA configuration bitstreams while being
able to detect short-circuits.

It should be noted that the FPGA vendor Xilinx does currently not provide any tool
or mechanism to scan a bitstream for any malicious construct or any manipulation. The
only requirement FPGADEFENDER imposes to perform its virus scanning is a plain
(i.e. non-encrypted) bitstream.

So far, we tested each threat in isolation. For more rigid testing, we created de-
signs that mix different threats and tested each time if FPGADEFENDER finds all
threats correctly just by scanning the configuration bitstream. In these experiments,
FPGADEFENDER correctly flagged all threats in all test cases.

We compared FPGADEFENDER combinatorial cycle detection with the Xilinx
DRC checker (see Table 3.2). Here, FPGADEFENDER did not only detected correctly
Design 1 to 8 but also detected the hidden combinatorial cycles from MUX primitives
in Design 9 and 10, an oscillator through the CLA primitive in Design 11, and even
cycles through the DSP primitive, as in Design 12, where the Xilinx tool fails.

In Design 13, ROs are implemented through transparent latches. While Xilinx
failed to flag those ROs (even if the latch enable is activated by a constant), FPGADE-
FENDER found all cyclic paths that run through latches.

In Design 14 and 15, combinatorial logic paths are used to drive the clock input of
flip-flops instead of global clock sources. This will be flagged using the path detector
engine in FPGADEFENDER.

As a sanity check, we used FPGADEFENDER to scan all the 28 bitstreams of the
test cases that are not intentionally designed with malicious constructs (Table 5.4).
FPGADEFENDER has not detected malicious constructs except for one case, the true
random number generator (TRNG). The TRNG uses ring-oscillators as a source of
randomness, which all got flagged by FPGADEFENDER. This case is a dilemma
that could be solved by providing primitives by a system vendor (e.g., a cloud ser-
vice provider) for exceptional use cases like TRNGs or PUFs (Physical Unclonable
Functions). For the True Random Number Generator using ROs, we found exact 128
combinatorial cycles corresponding to the 128-bit random number generated.

5.2. FPGA SCANNER: IMPLEMENTATION AND EVALUATION 95

Designs LUT used Comb Cycle Latch Short-Circuit Fanout

Normal Circuits
8b10b EncDec * 72 0 0 No 15
CAN Controller * 1310 0 0 No 146
BCD Adder * 68 0 0 No 6
PRNG * 237 0 0 No 107
Cordic * 1312 0 0 No 99
I2C * 307 0 0 No 87
Parallel Scrambler * 66 0 0 No 11
RS232 UART * 102 0 0 No 19
SPI * 988 0 0 No 174
Stepper Motor * 69 0 0 No 9
Breadth First Search † 604 0 0 No 204
DCT † 10085 0 16 No 418
FIR Filter † 3842 0 4 No 749
Histogram † 2409 0 0 No 217
Merge Sort † 2905 0 1 No 235
Matrix Multiplication † 8116 0 9 No 1782
Normal Estimation † 8504 0 6 No 620
Sobel Filter † 14045 0 0 No 272
SPMV † 10670 0 9 No 1552
Black-Scholes ‡ 12326 0 10 No 259
RISC-V CPU ‡ 3556 0 0 No 170
AES § 4520 0 0 No 162
DES § 278 0 0 No 20
Mandelbrot § 1716 0 42 No 183
MIPS CPU § 4163 0 0 No 572
SHA3 § 10662 0 0 No 262
Skin Color Detection § 2022 0 0 No 147
TRNG § 1069 128 0 No 61

* Peripheral IP designs from OpenCores [85].
† Open-source OpenCL designs from Spector benchmark [90].
‡ Other open source designs [75, 29].
§ Academic handcrafted RTL designs [9, 68].

Table 5.4: Evaluation results for benchmarking circuits.

96 CHAPTER 5. FPGA NETLIST SCANNER FOR MALICIOUS CIRCUITS

5.2.3 TCL implementation of FPGADEFENDER

The input to FPGADEFENDER was originally a bitstream to generate the netlist graph
GN . While this provides the advantage of a standalone scanner, it requires the netlist
generation from reversing the bitstream to run the scanner, which is time consuming.
For that reason, it would be beneficial to have a custom DRC that reads the DCP file
netlist as input and then runs the scanning engine to produce security reports in the
form of Warnings and Errors [47]. From Figure 5.2, the netlist graph GN for the scan-
ner could be extracted from a DCP netlist using a netlist transformer which basically
utilises the built-in TCL commands. The custom DRC subsequently triggers the scan-
ning engine to give results similar to the aforementioned bitstream scanning approach.
Thus, FPGADEFENDER could be integrated seamlessly into current FPGA EDA tools.
However, it should be noted that the disadvantage of the current TCL implementation
is that the process of extracting netlist graph GN is considerably slower than decoding
a corresponding bitstream. This is likely because the built-in TCL command interface
to the vendor tools is too slow for our purpose. A TCL command normally returns an
object with redundant data that consumes a large amount of memory. Without a way
to flush the unused data, the tool will eventually get crashed resulting in an unfinished
netlist GN for larger problems.

5.3 Chapter summary

In this chapter, we have introduced an FPGA scanner which can perform malicious
design scanning from either bitstreams or DCP netlists. The FPGA scanner can ef-
fectively detect all currently known self-oscillators which are mainly used to mount
power-hammering and side-channel attacks. In addition, the scanning engine can de-
tect short-circuits, tapping wires, the use of prohibited FPGA resources, antennas, and
bounding boxes which are also common in other side-channel attacks. Moreover, the
FPGA scanner could be embedded as a custom DRC into the vendor tools such as
Xilinx Vivado. This provides great flexibility and practicality to be quickly adapted to
current FPGA development and deployment flows on the cloud.

Chapter 6

Conclusion

This chapter summarises the contributions of this thesis. Moreover, future research
directions enabled by this thesis are discussed.

6.1 Contribution summary

6.1.1 Literature review of FPGA self-oscillating circuits

An in-depth study on FPGA self-oscillators was provided in Section 3.1. The study
focused on 1) finding all possible classes of self-oscillators which can be built from
FPGA resources, 2) analysing self-oscillating frequencies, and 3) measuring incre-
mental dynamic power caused by the oscillation. This work contributed to publica-
tion [110].

6.1.2 A dynamic power model for wiring resources

A dynamic power model for routing resources was introduced in Section 3.2. We
have investigated and quantified the energy required for each toggle on the primary
wiring resources of Xilinx UltraScale+ FPGAs. This reveals that 1) even a standard
RTL design could create a fast toggling signal by creating glitches, and 2) a power-
hammering attack can be deployed with a limited number of oscillating sources which
fan-outs to a huge number of routing resources. The study emphasises the necessity
of applying countermeasures to prevent such types of attacks on FPGA-based cloud
infrastructures. Additionally, the dynamic power model can be further extended to
cover other FPGA resources. This enables future studies on building a more realistic

97

98 CHAPTER 6. CONCLUSION

power estimation tool that not only helps in FPGA power analysis but also detects
potential power-hammering circuits.

6.1.3 Quantifying the risk of power-hammering

The Waste Power Potential (WPP) was introduced in Section 3.1 to quantify the risk
of power-hammering. While power estimation indicates how much power a circuit can
consume, WPP suggests if a system or an FPGA could sustainability provide enough
power to a circuit. Thus, it could effectively indicate if a design is at risk of power-
hammering attacks. This work was also published in [110].

6.1.4 Real-world power-hammering attack on FPGA-based infras-
tructure of Amazon Web Services

With the permission of Amazon Web Services, a Denial-of-Service attack was con-
ducted successfully on their FPGA instances using the power-hammering method. The
security implementation of AWS F1 instances as well as attacking techniques were
studied in Chapter 4 and Appendix A. A real-world DoS attack and mitigation strategy
had been published in [109].

6.1.5 A contribution to FPGADEFENDER and API for detecting
malicious circuits

An FPGA architecture graph was created and described in Chapter 5. This enables
the creation of FPGADEFENDER - an FPGA bitstream scanner tool that detects ma-
licious FPGA designs. Moreover, various virus signatures had been developed for the
FPGADEFENDER virus scanner engine, including the detection of self-oscillating cir-
cuits using glitch amplification, DSPs, CARRY, or cascading multiplexer primitives.
This work was also published in [110].

6.1.6 A contribution to a study on a countermeasure for glitch am-
plification

Glitch amplification is a method to boost the switching activity for more intense power-
hammering (refer to Chapter 3). However, power-hammering through glitch amplifica-
tion has not been studied before. In collaboration with the PhD student Kaspar Matas,

6.2. FUTURE WORKS 99

the investigation on attacks and mitigation methods was conducted resulting in the
publication [71].

6.2 Future Works

6.2.1 FPGA Power Verification

It had been proven that the Xilinx vendor tools are not reliable in providing power
consumption estimation in designs which have self-oscillators [71]. Therefore, it is
important to verify the power consumption of a design to make sure it is within the
power budget. The method needs to take self-oscillation and glitches into account.
Also, the dynamic power model for wiring resources mentioned in Section 3.2 could
be used.

6.2.2 FPGA Timing Verification

The FPGA architecture model used for FPGADEFENDER could also be embedded
with timing information. A timing model allows a more accurate prediction of power
consumption on glitches. Also, it ensures that no flip-flop is overclocked so that it
eliminates possible side-channels or PUFs.

6.3 Impact

This thesis has demonstrated that FPGAs are hugely vulnerable to power-hammering
attacks and that the theoretical waste power requirement can easily reach kilowatts of
waste power. Even worse, these attacks can be deployed on existing cloud infrastruc-
tures. Most importantly, this project contributed to building a virus scanner as a key
defence mechanism that can circumvent the most severe effects of power-hammering
to a level that other defence mechanisms (e.g., power monitoring) can actually work.
We believe that such tests are essential in an FPGA-as-a-Service model and that this
work is therefore enabling this model and therefore a more widespread adaptation of
FPGA technology.

Bibliography

[1] A. C. Aldaya, A. J. C. Sarmiento, and S. Sanchez-Solano. AES T-Box tampering
attack. Journal of Cryptographic Engineering, 6(1):31–48, 2016.

[2] A. L. Masle and W. Luk. Detecting power attacks on reconfigurable hardware.
In 22nd International Conference on Field Programmable Logic and Applica-

tions (FPL), pages 14–19. IEEE, 2012.

[3] A. Moradi, A. Barenghi, T. Kasper, and C. Paar. On the vulnerability of FPGA
bitstream encryption against power analysis attacks: extracting keys from xilinx
Virtex-II FPGAs. In Proceedings of the 18th ACM Conference on Computer

and Communications Security, Ccs, pages 111–124. ACM, 2011.

[4] A. Moradi and T. Schneider. Improved side-channel analysis attacks on Xil-
inx bitstream encryption of 5, 6, and 7 series. In International Workshop on

Constructive Side-Channel Analysis and Secure Design, pages 71–87. Springer,
2016.

[5] A. Moradi, D. Oswald, C. Paar, and P. Swierczynski. Side-channel attacks on
the bitstream encryption mechanism of Altera Stratix II: facilitating black-box
analysis using software reverse-engineering. In Proceedings of the ACM/SIGDA

International Symposium on Field Programmable Gate Arrays, pages 91–100.
ACM, 2013.

[6] A. Moradi, M. Kasper, and C. Paar. Black-box side-channel attacks highlight the
importance of countermeasures: An analysis of the Xilinx Virtex-4 and Virtex-5
bitstream encryption mechanism. In Cryptographers’ Track at the RSA Confer-

ence, volume 7178, pages 1–18, 2012.

[7] A. P. Johnson, R. Chakraborty, and D. Mukhopadhyay. A PUF-enabled secure
architecture for FPGA-based IoT applications. IEEE Transactions on Multi-

Scale Computing Systems, 1:110–122, 2015.

100

BIBLIOGRAPHY 101

[8] A. Shen, A. Ghosh, S. Devadas, and K. Keutzer. On average power dissipa-
tion and random pattern testability of CMOS combinational logic networks. In
Iccad, 1992.

[9] A. Vaishnav, J. R. G. Ordaz, and D. Koch. A security library for FPGA interlays.
In International Conference on Field Programmable Logic and Applications

(FPL), pages 1–4, 2017.

[10] A. Vaishnav, K. D. Pham, K. Manev, and D. Koch. The FOS (FPGA Operating
System) demo, 2019. https://github.com/khoapham/fos.

[11] Alibaba Cloud ECS. Deep dive into Alibaba Cloud F3 FPGA-
as-a-Service instances. https://www.alibabacloud.com/blog/

deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances_

594057.

[12] Amazon. AFI Power. https://github.com/aws/aws-fpga/blob/master/

hdk/docs/afi_power.md.

[13] Amazon. Amazon EC2 F1 Instances. https://aws.amazon.com/ec2/

instance-types/f1/.

[14] Amazon. Amazon FPGA Image (AFI) Management Tools, 2019.
https://github.com/aws/aws-fpga/blob/master/sdk/userspace/

fpga_mgmt_tools/README.md.

[15] Amazon Inc. AWS EC2 AFI Creation, 2020. https://github.com/aws/

aws-fpga/blob/master/SDAccel/docs/Setup_AWS_CLI_and_S3_Bucket.

md.

[16] Amazon Inc. AWS EC2 Instance Lifecycle, 2020. https://docs.aws.

amazon.com/AWSEC2/latest/UserGuide/ec2-instance-lifecycle.

html.

[17] Amazon Inc. AWS EC2 Storage, 2020. https://docs.aws.amazon.com/

AWSEC2/latest/UserGuide/Storage.html.

[18] Avnet. Ultra96 Hardware User Guide, 2018. http:

//zedboard.org/sites/default/files/documentations/

Ultra96-HW-User-Guide-rev-1-0-V0_9_preliminary.pdf.

https://github.com/khoapham/fos
https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances_594057
https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances_594057
https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances_594057
https://github.com/aws/aws-fpga/blob/master/hdk/docs/afi_power.md
https://github.com/aws/aws-fpga/blob/master/hdk/docs/afi_power.md
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://github.com/aws/aws-fpga/blob/master/sdk/userspace/fpga_mgmt_tools/README.md
https://github.com/aws/aws-fpga/blob/master/sdk/userspace/fpga_mgmt_tools/README.md
https://github.com/aws/aws-fpga/blob/master/SDAccel/docs/Setup_AWS_CLI_and_S3_Bucket.md
https://github.com/aws/aws-fpga/blob/master/SDAccel/docs/Setup_AWS_CLI_and_S3_Bucket.md
https://github.com/aws/aws-fpga/blob/master/SDAccel/docs/Setup_AWS_CLI_and_S3_Bucket.md
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-lifecycle.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-lifecycle.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-lifecycle.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
http://zedboard.org/sites/default/files/documentations/Ultra96-HW-User-Guide-rev-1-0-V0_9_preliminary.pdf
http://zedboard.org/sites/default/files/documentations/Ultra96-HW-User-Guide-rev-1-0-V0_9_preliminary.pdf
http://zedboard.org/sites/default/files/documentations/Ultra96-HW-User-Guide-rev-1-0-V0_9_preliminary.pdf

102 BIBLIOGRAPHY

[19] Avnet. Ultra96 Schematics, 2018. https://github.com/96boards/

documentation/blob/master/consumer/ultra96/ultra96-v1/

hardware-docs/files/ultra96-schematics.pdf.

[20] B. Ors, E. Oswald, and B. Preneel. Power-analysis attacks on an FPGA - first ex-
perimental results. In Cryptographic Hardware and Embedded Systems - CHES,
volume 2779, pages 35–50, 2003.

[21] B. Selmke, J. Heyszl, and G. Sigl. Attack on a DFA protected AES by simulta-
neous laser fault injections. In Workshop on Fault Diagnosis and Tolerance in

Cryptography (FDTC), pages 36–46. IEEE, 2016.

[22] C. Beckhoff, D. Koch, and J. Torresen. Short-circuits on FPGAs caused by
partial runtime reconfiguration. In International Conference on Field Pro-

grammable Logic and Applications, pages 596–601. IEEE, 2010.

[23] C. Beckhoff, D. Koch, and J. Torresen. Go Ahead: A partial reconfiguration
framework. In IEEE International Symposium on Field-Programmable Custom

Computing Machines, pages 37–44, 2012.

[24] C. Chiasson and V. Betz. Should FPGAs abandon the pass-gate? In Interna-

tional Conference on Field programmable Logic and Applications, pages 1–8,
2013.

[25] C. Drake. Python electronic design automation, 2018. https://pyeda.

readthedocs.io/en/latest/2llm.html.

[26] C. Lattner. Clang: a C Language family frontend for LLVM, 2019. https:

//clang.llvm.org/.

[27] C. Paar. Understanding cryptography: A textbook for students and practition-

ers. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[28] C. Ramesh, S. B. Patil, S. N. Dhanuskodi, G. Provelengios, S. Pillement, D. Hol-
comb, and R. Tessier. FPGA side channel attacks without physical access. In
IEEE Annual International Symposium on Field-Programmable Custom Com-

puting Machines (FCCM), pages 45–52. IEEE, 2018.

[29] C. Wolf. PicoRV32, 2019. https://github.com/cliffordwolf/picorv32.

https://github.com/96boards/documentation/blob/master/consumer/ultra96/ultra96-v1/hardware-docs/files/ultra96-schematics.pdf
https://github.com/96boards/documentation/blob/master/consumer/ultra96/ultra96-v1/hardware-docs/files/ultra96-schematics.pdf
https://github.com/96boards/documentation/blob/master/consumer/ultra96/ultra96-v1/hardware-docs/files/ultra96-schematics.pdf
https://pyeda.readthedocs.io/en/latest/2llm.html
https://pyeda.readthedocs.io/en/latest/2llm.html
https://clang.llvm.org/
https://clang.llvm.org/
https://github.com/cliffordwolf/picorv32

BIBLIOGRAPHY 103

[30] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi. The EM side-channel
(s). In International Workshop on Cryptographic Hardware and Embedded Sys-

tems, pages 29–45. Springer, 2002.

[31] D. Koch. Partial Reconfiguration on FPGAs: Architectures, Tools and Applica-

tions, volume 153. Springer Science & Business Media, 2012.

[32] D. Koch, F. Hannig, and D. Ziener. FPGAs for Software Programmers. Springer
Publishing Company, Incorporated, 1st edition, 2016.

[33] D. Lewis, E. Ahmed, G. Baeckler, V. Betz, M. Bourgeault, D. Cashman, D.
Galloway, M. Hutton, C. Lane, A. Lee, P. Leventis, S. Marquardt, C. McClin-
tock, K. Padalia, B. Pedersen, G. Powell, B. Ratchev, S. Reddy, J. Schleicher,
K. Stevens, R. Yuan, R. Cliff, and J. Rose. The Stratix II logic and routing ar-
chitecture. In International Symposium on Field-Programmable Gate Arrays,
pages 14–20, New York, NY, USA, 2005. ACM.

[34] D. Meidanis, K. Georgopoulos, and I. Papaefstathiou. FPGA power consump-
tion measurements and estimations under different implementation parameters.
In International Conference on Field-Programmable Technology, pages 1–6,
2011.

[35] D. Merli, F. Stumpf, and C. Eckert. Improving the Quality of Ring Oscillator
PUFs on FPGAs. In Proceedings of the 5th Workshop on Embedded Systems

Security, WESS ’10. Association for Computing Machinery, 2010.

[36] D. R. E. Gnad, F. Oboril, and M. B. Tahoori. Voltage drop-based fault attacks
on FPGAs using valid bitstreams. In International Conference on Field Pro-

grammable Logic and Applications (FPL), pages 1–7. IEEE, 2017.

[37] D. R. E. Gnad, S. Rapp, J. Krautter, and M. B. Tahoori. Checking for electri-
cal level security threats in bitstreams for multi-tenant FPGAs. International

Conference on Field-Programmable Technology (FPT), 2018.

[38] D. Ziener, and J. Pirkl, and J. Teich. Configuration Tampering of BRAM-based
AES Implementations on FPGAs. In 2018 International Conference on ReCon-

Figurable Computing and FPGAs (ReConFig), pages 1–7, 2018.

104 BIBLIOGRAPHY

[39] D. Ziener, S. Assmus, and J. Teich. Identifying FPGA IP-cores based on lookup
table content analysis. In International Conference on Field Programmable

Logic and Applications, pages 1–6. IEEE, 2006-08.

[40] E. Biham and A. Shamir. Differential fault analysis of secret key cryptosystems.
In Annual international cryptology conference, pages 513–525. Springer, 1997.

[41] E. De Mulder, P. Buysschaert, S. B. Ore, P. Delmotte, B. Preneel, G. Vanden-
bosch, and I. Verbauwhede. Electromagnetic analysis attack on an FPGA im-
plementation of an elliptic curve cryptosystem. In The International Conference

on Computer as a Tool, volume 2, pages 1879–1883, 2005.

[42] Evans, J.D. Straightforward Statistics for the Behavioral Sciences. Brooks/Cole
Publishing Company, 1996.

[43] F. Benz, A. Seffrin, and S. A. Huss. Bil: A tool-chain for bitstream reverse-
engineering. In International Conference on Field Programmable Logic and

Applications (FPL), pages 735–738. IEEE, 2012.

[44] F. Schellenberg, D. R. E. Gnad, A. Moradi, and M. B. Tahoori. An inside job:
Remote power analysis attacks on FPGAs. In Design, Automation & Test in

Europe Conference & Exhibition (DATE), pages 1111–1116. IEEE, 2018.

[45] F. X. Standaert, F. Mace, E. Peeters, and J. J. Quisquater. Updates on the se-
curity of FPGAs against power analysis attacks. In Reconfigurable Computing:

Architectures and Applications, volume 3985, pages 335–346. Springer Verlag,
2006.

[46] F. X. Standaert, S. B. Ors, J. J. Quisquater, and B. Preneel. Power analysis
attacks against FPGA implementations of the DES. In Jürgen Becker, Marco
Platzner, and Serge Vernalde, editors, Field Programmable Logic and Applica-

tion, pages 84–94, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[47] FPGA Researchers at The University of Manchester. FPGADefender Github
Repository, 2020. https://github.com/FPGA-Research-Manchester.

[48] G. Provelengios, D. Holcomb, and R. Tessier. Power distribution attacks in
multitenant FPGAs. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 28(12):2685–2698, 2020.

https://github.com/FPGA-Research-Manchester

BIBLIOGRAPHY 105

[49] H. Kalte, G. Lee, M. Porrmann, and U. Ruckert. REPLICA: A bitstream manip-
ulation filter for module relocation in partial reconfigurable systems. In IEEE

International Parallel and Distributed Processing Symposium, 2005.

[50] H. Lohrke, S. Tajik, T. Krachenfels, C. Boit, and J. P. Seifert. Key extraction
using thermal laser stimulation. IACR Transactions on Cryptographic Hardware

and Embedded Systems, pages 573–595, 2018.

[51] I. Giechaskiel, K. B. Rasmussen, and K. Eguro. Leaky wires: Information leak-
age and covert communication between FPGA long wires. In Asia Conference

on Computer and Communications Security, pages 15–27. ACM, 2018.

[52] I. Giechaskiel, K. Rasmussen, and J. Szefer. Measuring long wire leakage with
ring oscillators in cloud FPGAs. In Proceedings of the International Conference

on Field-Programmable Logic and Applications, Fpl, 2019.

[53] I. Hadzic, S. Udani, and J. M. Smith. FPGA viruses. In International Work-

shop on Field Programmable Logic and Applications, pages 291–300. Springer,
1999.

[54] I. Vasyltsov, E. Hambardzumyan, Y. S. Kim, and B. Karpinskyy. Fast Digital
TRNG Based on Metastable Ring Oscillator. In Cryptographic Hardware and

Embedded Systems – CHES 2008, pages 164–180, 2008.

[55] I. Verbauwhede, D. Karaklajic, and J. Schmidt. The fault attack jungle - a clas-
sification model to guide you. In Workshop on Fault Diagnosis and Tolerance

in Cryptography, pages 3–8. IEEE, 2011.

[56] Intel. Stop and Start Your Instance, 2020. https://docs.aws.amazon.com/

AWSEC2/latest/UserGuide/Stop_Start.html.

[57] J. Acle, J. Oliver, and E. Boemo. Power estimations vs. power measurements
in Spartan-6 devices. In Southern Conference on Programmable Logic (SPL),
2014.

[58] J. B. Note and E. Rannaud. From the bitstream to the netlist. In ACM/SIGDA

Symposium on Field Programmable Gate Arrays, FPGA, page 264. ACM, 2008.

[59] J. Barr. Developer Preview - EC2 Instances (F1) with Pro-
grammable Hardware, 2016. https://aws.amazon.com/blogs/aws/

developer-preview-ec2-instances-f1-with-programmable-hardware/.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Stop_Start.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Stop_Start.html
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/

106 BIBLIOGRAPHY

[60] J. Brouchier, T. Kean, C. Marsh, and D. Naccache. Temperature attacks. IEEE

Security & Privacy, 7(2):79–82, 2009.

[61] J. Burgiel, D. Esguerra, I. Giechaskiel, S. Tian, and J. Szefer. Characteriza-
tion of IOBUF-based ring oscillators. In International Conference on Field-

Programmable Technology (ICFPT), pages 1–4, 2021.

[62] J. Delvaux, R. Peeters, D. Gu, and I. Verbauwhede. A survey on lightweight
entity authentication with strong PUFs. ACM Comput. Surv., 48(2), 2015.

[63] J. Krautter, D. R. E. Gnad, and M. B. Tahoori. FPGAhammer: Remote voltage
fault attacks on shared FPGAs, suitable for DFA on AES. IACR Transactions

on Cryptographic Hardware and Embedded Systems, pages 44–68, 2018.

[64] J. Krautter, D. R. E. Gnad, and M. B. Tahoori. Mitigating electrical-level attacks
towards secure multi-tenant FPGAs in the cloud. ACM Trans. Reconfigurable

Technol. Syst., 12(3):12:1–12:26, 2019.

[65] K. D. Pham. FPGA virtualisation on heterogeneous computing systems: Model,

tools, and systems. University of Manchester, 2020.

[66] K. D. Pham, A. Vaishnav, M. Vesper, and D. Koch. ZUCL: A ZYNQ Ultra-
Scale+ framework for OpenCL HLS applications. In International Workshop

on FPGAs for Software Programmers (FSP), 2018.

[67] K. D. Pham, E. Horta, and D. Koch. BITMAN: A tool and API for FPGA
bitstream manipulations. In Design, Automation & Test in Europe Conference

& Exhibition (DATE), pages 894–897. IEEE, 2017.

[68] K. D. Pham, E. Horta, D. Koch, A. Vaishnav, and T. Kuhn. IPRDF: An isolated
partial reconfiguration design flow for Xilinx FPGAs. In International Sym-

posium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC), pages
36–43, 2018.

[69] K. Georgopoulos, K. Bakanov, I. Mavroidis, I. Papaefstathiou, A. Ioannou, P.
Malakonakis, K. D. Pham, D. Koch, and L. Lavagno. A novel framework for

utilising multi-FPGAs in HPC systems, pages 153–189. Taylor & Francis, 2019.

[70] K. M. Zick, M. Srivastav, W. Zhang, and M. French. Sensing nanosecond-scale
voltage attacks and natural transients in FPGAs. In ACM/SIGDA International

Symposium on Field Programmable Gate Arrays, pages 101–104. ACM, 2013.

BIBLIOGRAPHY 107

[71] K. Matas, T. M. La, K. D. Pham, and D. Koch. Power-hammering through glitch
amplification â attacks and mitigation. In International Symposium on Field-

Programmable Custom Computing Machines (FCCM), pages 65–69, 2020.

[72] K. Rasmussen, I. Giechaskiel, and K. Eguro. Leakier wires: Exploiting FPGA
long wires for covert and side-channel attacks. ACM Transactions on Reconfig-

urable Technology and Systems, 2019.

[73] K. Zick and J. Hayes. Low-cost sensing with ring oscillator arrays for healthier
reconfigurable systems. ACM Transactions on Reconfigurable Technology and

Systems (TRETS), 5(1):1–26, 2012.

[74] Kaspersky. Social engineering in 2021, 2021. https://go.kaspersky.com/

rs/802-IJN-240/images/NJ_Social_Engineering_KFP.pdf.

[75] L. Ma, F. B. Muslim, and L. Lavagno. High performance and low power Monte
Carlo methods to option pricing models via high level design and synthesis. In
Ems, pages 157–162, 2016.

[76] M. Joye and M. Tunstall. Fault analysis in cryptography. Information Security
and Cryptography. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[77] M. Majer, J. Teich, A. Ahmadinia, and C. Bobda. The Erlangen slot machine:
A dynamically reconfigurable FPGA-based computer. J. VLSI Signal Process.

Syst., 47(1):15–31, 2007.

[78] M. Vesper, D. Koch, and K. D. Pham. PCIeHLS: an OpenCL HLS framework.
In Fourth International Workshop on FPGAs for Software Programmers, pages
1–6, 2017.

[79] M. Yamaguchi, H. Toriduka, S. Kobayashi, T. Sugawara, N. Hommaa, A. Satoh,
T. Aoki. Development of an on-chip micro shielded-loop probe to evaluate per-
formance of magnetic film to protect a cryptographic LSI from electromagnetic
analysis. In International Symposium on Electromagnetic Compatibility, pages
103–108, 2010.

[80] M. Zhao and G. E. Suh. FPGA-based remote power side-channel attacks. In
IEEE Symposium on Security and Privacy (SP), pages 229–244. IEEE, 2018.

https://go.kaspersky.com/rs/802-IJN-240/images/NJ_Social_Engineering_KFP.pdf
https://go.kaspersky.com/rs/802-IJN-240/images/NJ_Social_Engineering_KFP.pdf

108 BIBLIOGRAPHY

[81] National Cyber Security Centre. What is cyber security? https://www.ncsc.

gov.uk/section/about-ncsc/what-is-cyber-security.

[82] National Institute of Standard and Technology. What is system integrity?
https://csrc.nist.gov/glossary/term/system_integrity.

[83] Nimbix Inc. Xilinx Alveo Accelerator Cards, 2020. https://www.nimbix.

net/alveo.

[84] O. Kommerling and M. G. Kuhn. Design principles for tamper-resistant smart-
card processors. Smartcard, 99:9–20, 1999.

[85] OpenCores. Free and open source gateware IP cores, 2020. https://

opencores.org/.

[86] P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Annual Interna-

tional Cryptology Conference, pages 388–397. Springer, 1999.

[87] P. Swierczynski, A. Moradi, D. Oswald, and C. Paar. Physical security eval-
uation of the bitstream encryption mechanism of Altera Stratix II and Stratix
III FPGAs. ACM Transactions on Reconfigurable Technology and Systems

(TRETS), 7(4):1–23, 2014.

[88] P. Swierczynski, G. T. Becker, A. Moradi, and C. Paar. Bitstream Fault Injec-
tions (BiFI)-automated fault attacks against SRAM-based FPGAs. IEEE Trans-

actions on Computers, 67(3):348–360, 2018.

[89] P. Swierczynski, M. Fyrbiak, P. Koppe, and C. Paar. FPGA trojans through
detecting and weakening of cryptographic primitives. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 34(8):1236–1249,
2015.

[90] Q. Gautier, A. Althoff, P. Meng, and R. Kastner. Spector: An OpenCL FPGA
benchmark suite. In International Conference on Field-Programmable Technol-

ogy (FPT), 2016.

[91] R. Amerson, R. Carter, W. Culbertson, P. Kuekes, G. Snider, and L. Albertson.
Plasma: An FPGA for million gate systems. In International ACM Symposium

on Field-Programmable Gate Arrays, pages 10–16, 1996.

https://www.ncsc.gov.uk/section/about-ncsc/what-is-cyber-security
https://www.ncsc.gov.uk/section/about-ncsc/what-is-cyber-security
https://csrc.nist.gov/glossary/term/system_integrity
https://www.nimbix.net/alveo
https://www.nimbix.net/alveo
https://opencores.org/
https://opencores.org/

BIBLIOGRAPHY 109

[92] R. Amerson, R. J. Carter, W. B. Culbertson, P. Kuekes, and G. Snider. Teramac-
Configurable custom computing. In Proceedings IEEE Symposium on FPGAs

for Custom Computing Machines, pages 32–38, 1995.

[93] R. K. Brayton, G. D. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli.
Logic minimization algorithms for VLSI synthesis, volume 2. Springer Science
& Business Media, 1984.

[94] R. Watanabe, S. Ura, Q. Zhao, and T. Yoshida. Implementation of FPGA build-
ing platform as a cloud service. In HEART, 2019.

[95] S. Drimer. Volatile FPGA design security–a survey. IEEE Computer Society

Annual Volume, pages 292–297, 2008.

[96] S. M. Trimberger and J. J. Moore. FPGA Security: Motivations, features, and
applications. Proceedings of the IEEE, 102(8):1248–1265, 2014-08.

[97] S. Mangard. Power analysis attacks : Revealing the secrets of smart cards.
Springer US, Boston, MA, 2007.

[98] S. McNeil. Solving today’s design security concerns. Xilinx Corporation, 2010.

[99] S. S. Mirzargar and M. Stojilovic. Physical side-channel attacks and covert
communication on FPGAs: A survey. In International Conference on Field-

Programmable Logic and Applications, FPL, 2019.

[100] S. Tajik, F. Ganji, J. P. Seifert, H. Lohrke, and C. Boit. Laser fault attack on
Physically Unclonable Functions. In Fault Diagnosis and Tolerance in Cryp-

tography (FDTC), pages 85–96. IEEE, 2015.

[101] S. Tajik, H. Lohrke, J. P. Seifert, and C. Boit. On the power of optical contactless
probing: Attacking bitstream encryption of FPGAs. In Conference on Computer

and Communications Security, pages 1661–1674. Association for Computing
Machinery, 2017.

[102] S. Tian and J. Szefer. Temporal thermal covert channels in cloud FPGAs. In
International Symposium on Field-Programmable Gate Arrays, pages 298–303.
ACM, 2019.

110 BIBLIOGRAPHY

[103] S. Tian, W. Xiong, I. Giechaskiel, K. Rasmussen, and J. Szefer. Finger-
printing cloud FPGA infrastructures. In International Symposium on Field-

Programmable Gate Arrays, Fpga ’20, pages 58–64, New York, NY, USA,
2020. Association for Computing Machinery.

[104] S. Trimberger and S. McNeil. Security of FPGAs in data centers. In Interna-

tional Verification and Security Workshop (IVSW), pages 117–122. IEEE, 2017.

[105] S. Wilton. A crosstalk-aware timing-driven router for FPGAs. In International

Symposium on Field Programmable Gate Arrays, pages 21–28. ACM, 2001.

[106] S. Zeitouni, J. Vliegen, T. Frassetto, D. Koch, A. R. Sadeghi, and N. Mentens.
Trusted configuration in cloud FPGAs. In International Symposium on Field-

Programmable Custom Computing Machines (FCCM), pages 233–241, 2021.

[107] SymbiFlow. Project X-Ray, 2019. https://github.com/SymbiFlow/

prjxray.

[108] T. Iakymchuk, M. Nikodem, and K. Kepa. Temperature-based covert channel
in FPGA systems. In Reconfigurable Communication-Centric Systems-on-Chip

(ReCoSoC), pages 1–7. IEEE, 2011.

[109] T. M. La, K. D. Pham, J. Powell, and D. Koch. Denial-of-Service on FPGA-
based cloud infrastructures – attack and defense. IACR Transactions on Cryp-

tographic Hardware and Embedded Systems, 2021(3):441–464, 2021.

[110] T. M. La, K. Matas, N. Grunchevski, K. D. Pham, and D. Koch. FPGADefender:
Malicious self-oscillator scanning for Xilinx UltraScale+ FPGAs. ACM TRETS,
2020.

[111] T. S. Messerges, E. A. Dabbish, and R. H. Sloan. Power analysis attacks of mod-
ular exponentiation in smartcards. In International Workshop on Cryptographic

Hardware and Embedded Systems, pages 144–157. Springer, 1999.

[112] T. Sugawara, K. Sakiyama, S. Nashimoto, D. Suzuki, and T. Nagatsuka. Oscil-
lator without a combinatorial loop and its threat to FPGA in data centre. Elec-

tronics Letters, 55(11):640–642, 2019.

[113] T. Wollinger, J. Guajardo, and C. Paar. Security on FPGAs: State-of-the-art
implementations and attacks. ACM Transactions on Embedded Computing Sys-

tems (TECS), 3(3):534–574, 2004.

https://github.com/SymbiFlow/prjxray
https://github.com/SymbiFlow/prjxray

BIBLIOGRAPHY 111

[114] T. Zhang, J. Wang, S. Guo, and Z. Chen. A comprehensive FPGA reverse
engineering tool-chain: From bitstream to RTL code. IEEE Access, 7:38379–
38389, 2019.

[115] V. Taraate. Advanced HDL synthesis and SOC prototyping. Springer US, 2019.

[116] Xilinx. Configuration Issues: Power-up, Volatility, Security, Battery Back-up,
1997. https://www.xilinx.com/support/documentation/application_
notes/xapp092.pdf.

[117] Xilinx. Extended Spartan-3A Family Overview, 2011. https://docs.

xilinx.com/v/u/en-US/ds706.

[118] Xilinx. The Xilinx SDAccel Development Environment - Bringing The Best
Performance/Watt to the Data Center, 2014. https://www.xilinx.com/

support/documentation/backgrounders/sdaccel-backgrounder.pdf.

[119] Xilinx. Partial Reconfiguration, 2019. https://www.xilinx.

com/support/documentation/sw_manuals/xilinx2019_1/

ug947-vivado-partial-reconfiguration-tutorial.pdf.

[120] Xilinx. UltraScale Architecture System Monitor, 2019. https://www.xilinx.
com/support/documentation/user_guides/ug580-ultrascale-sysmon.

pdf.

[121] Xilinx. Vivado User Guide: Programming and Debugging, 2019.
https://www.xilinx.com/support/documentation/sw_manuals/

xilinx2019_1/ug908-vivado-programming-debugging.pdf.

[122] Xilinx. Xilinx Power Analysis and Optimization, 2019. https:

//www.xilinx.com/support/documentation/sw_manuals/xilinx2019_

2/ug907-vivado-power-analysis-optimization.pdf.

[123] Xilinx. UltraScale Architecture Clocking Resources, 2020. https://docs.

xilinx.com/v/u/en-US/ug572-ultrascale-clocking.

[124] Xilinx. UltraScale Architecture Configuration, 2020. https:

//www.xilinx.com/support/documentation/user_guides/

ug570-ultrascale-configuration.pdf.

https://www.xilinx.com/support/documentation/application_notes/xapp092.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp092.pdf
https://docs.xilinx.com/v/u/en-US/ds706
https://docs.xilinx.com/v/u/en-US/ds706
https://www.xilinx.com/support/documentation/backgrounders/sdaccel-backgrounder.pdf
https://www.xilinx.com/support/documentation/backgrounders/sdaccel-backgrounder.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug947-vivado-partial-reconfiguration-tutorial.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug947-vivado-partial-reconfiguration-tutorial.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug947-vivado-partial-reconfiguration-tutorial.pdf
https://www.xilinx.com/support/documentation/user_guides/ug580-ultrascale-sysmon.pdf
https://www.xilinx.com/support/documentation/user_guides/ug580-ultrascale-sysmon.pdf
https://www.xilinx.com/support/documentation/user_guides/ug580-ultrascale-sysmon.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug907-vivado-power-analysis-optimization.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug907-vivado-power-analysis-optimization.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug907-vivado-power-analysis-optimization.pdf
https://docs.xilinx.com/v/u/en-US/ug572-ultrascale-clocking
https://docs.xilinx.com/v/u/en-US/ug572-ultrascale-clocking
https://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf
https://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf
https://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf

112 BIBLIOGRAPHY

[125] Xilinx. Vivado Design Suite Tcl Command Reference Guide
(UG835), 2021. https://docs.xilinx.com/r/2021.2-English/

ug835-vivado-tcl-commands/report_drc.

[126] Xilinx. UltraScale Architecture and Product Data Sheet: Overview, 2022.
https://docs.xilinx.com/v/u/en-US/ds890-ultrascale-overview.

[127] Xilinx Inc. Vivado 2018.02, 2018. https://www.xilinx.com/products/

design-tools/vivado.html.

[128] Xilinx Inc. Delivering a Generation Ahead at 20nm and 16nm, 2019. https:

//www.xilinx.com/about/generation-ahead-16nm.html.

[129] Xilinx Inc. UltraScale Architecture DSP Slice, 2019. https://www.xilinx.

com/support/documentation/user_guides/ug579-ultrascale-dsp.

pdf.

[130] Xilinx Inc. UltraScale Architecture Memory Resources, 2019.
https://www.xilinx.com/support/documentation/user_guides/

ug573-ultrascale-memory-resources.pdf.

[131] Xilinx Inc. Zynq UltraScale+ MPSoC Data Sheet: DC and AC Switching Char-
acteristics, 2019. https://www.xilinx.com/support/documentation/

data_sheets/ds925-zynq-ultrascale-plus.pdf.

[132] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and
O. Mutlu. Flipping bits in memory without accessing them: An experimental
study of DRAM disturbance errors. In International Symposium on Computer

Architecture (ISCA), pages 361–372. Institute of Electrical and Electronics En-
gineers Inc., 2014.

[133] Y. Nasser and J. Lorandel and J. C. Prevotet and M. Helard. RTL to transistor
level power modeling and estimation techniques for FPGA and ASIC: A sur-
vey. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 40(3):479–493, 2021.

https://docs.xilinx.com/r/2021.2-English/ug835-vivado-tcl-commands/report_drc
https://docs.xilinx.com/r/2021.2-English/ug835-vivado-tcl-commands/report_drc
https://docs.xilinx.com/v/u/en-US/ds890-ultrascale-overview
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/about/generation-ahead-16nm.html
https://www.xilinx.com/about/generation-ahead-16nm.html
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds925-zynq-ultrascale-plus.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds925-zynq-ultrascale-plus.pdf

Appendix A

FPGA Technology and
Implementation of FPGA designs

This section provides backgrounds on FPGA technology, the tool flow to implement
user circuits on FPGAs, and the basics required to register and run user FPGA ap-
plications on AWS with respect to FPGA security vulnerabilities related to AWS F1
instances.

A.1 FPGA technology

As illustrated in Figure A.1, an FPGA consists of a regular fabric with configurable
logic blocks (CLBs) connected by routing channels. The CLBs provide a switch matrix
with programmable multiplexers for setting connections (for implementing the routing
of a user circuit running on an FPGA). Inside a CLB, there are one or more look-up

a b c f

b f q

a

c

0 0 - 0
0 1 - 0
1 0 - 1
1 1 - 0

LUT

clock
(global)

switch
matrix

flip
flop

multiplexerCLB

CLB

CLB

CLB

CLB

CLB

a) b)

routing channel

Figure A.1: a) Illustration of an FPGA fabric with configurable logic blocks (CLBs) and
routing channels, b) CLB details. The red path in b) shows a controllable ring-oscillator.

113

114APPENDIX A. FPGA TECHNOLOGY AND IMPLEMENTATION OF FPGA DESIGNS

RTL
Synthesis/

Implementation
Netlist

Bitstream
Generation

Bitstream
(*.bit)

FPGA Image
Creation

Amazon FPGA
Image (*.afi)

Design Rule
Checks

Design Rule
Checks

EC2 F1
Instance

Launch Instance and
Load Applications

Host CPU
Application

AWS
Shell

Custom
Logic

FPGA

FPGA

PCIe
DRAMDDR

Amazon Machine
Image (AMI)

Deployment
phase

Optional

High-level
Languages

(C/C++/OpenCL)

High-level
Synthesize

Logic Design Resource Mapping Configuration Data Generation

User Hypervisor
Sen

d
 to

 clo
u

d

Design
phase

Figure A.2: FPGA development for AWS F1 instances.

tables (LUTs) to implement Boolean functions as a truth table. The LUTs are small
memories that are written when configuring the FPGA (along with the multiplexer con-
figuration information) and read when using the LUT as a Boolean function generator.
Therefore, a LUT can implement any Boolean function limited only by the size of the
LUT. Data centre FPGAs commonly use 6-input LUTs that can alternatively be used
as two independent 5-input LUTs with shared inputs. Typically, each LUT output can
be passed through a flip-flop, which stores the states of a digital circuit.

The red path in Figure A.1b) shows a ring-oscillator. If input a of the LUT is ’1’
then output f = NOT b, otherwise the output is ’0’ (here input c is unused ’-’). Such
oscillators can run at a few GHz with a corresponding power footprint. Because of
the programmable routing, FPGAs are slower than dedicated ASICs where routing is
carried out through direct metal wire connections without any switching on the paths.
Therefore, FPGA designs usually run at a few hundred MHz and are certainly much
slower than the previously described ring-oscillator. Because data centre FPGAs pro-
vide over a million LUTs, and by driving the fast switching oscillator signal to the
routing wires, dynamic power demand could scale to over a kilowatt. However, this
demand is a theoretical value because no system could deliver or sustain such power
levels.

We use the term power-hammering potential P to express this theoretical value.
User designs with a large P may break down the power supply and can leave the safe
operational supply voltage margins. Power-hammering creates voltage drops in the
FPGA itself but also in neighbouring pieces of equipment. This is a possible risk if an

A.2. IMPLEMENTATION OF FPGA DESIGNS 115

FPGA board under attack shares some hardware infrastructure, like power supplies or
cooling facilities.

Because the speed of a ring-oscillator depends on the supply voltage and device
temperature, such circuit can measure voltage fluctuations (e.g., for power analysis
attacks) or the device’s temperature. Such sensors can be implemented in cloud FP-
GAs. Moreover, ring-oscillator frequencies may vary at different positions inside an
FPGA and across different FPGAs due to process variations, which we used for FPGA
fingerprinting.

FPGAs provide further blocks, including I/O blocks (for the communication to
the outside world), memory blocks (to provide small on-chip caches/memories), and
arithmetic blocks (called DSPs). Typically, a cloud FPGA configuration provides some
basic infrastructure (commonly called a shell) that is in charge of all off-chip commu-
nication. User logic will only connect to ports provided by the shell, but never directly
to I/O (such as PCIe). A cloud user cannot access to any configuration port. Therefore,
users will only use logic cells, memory blocks, and DSPs that are not occupied by the
shell. This is enforced and verified by the FPGA design tools.

The CLBs of data centre FPGAs commonly provide dedicated carry logic to im-
plement fast adders and counters. Other features in CLBs include multiplexers to build
larger function generators from a set of adjacent LUTs. Consequently, there are many
possibilities to implement ring-oscillators and circuits that can draw excessive power.

A.2 Implementation of FPGA designs

This paragraph describes the design process for FPGA designs all the way to a config-
uration bitstream that can be loaded onto an FPGA for acceleration. The basic flow is
shown in Figure A.2 and includes three major stages:

1. Logic Design: Here, users specify the hardware functionality of the FPGA (us-
ing Hardware Description Languages (HDL) like Verilog or VHDL or a high-
level programming language such as C, C++, OpenCL).

2. Resource Mapping: At this step, the logic design is synthesized into Boolean
logic functions, which are mapped into the available FPGA primitives (e.g., the
LUTs and DSP blocks). The result forms a graph called netlist where the nodes
represent the primitives and the edges model connections. This graph is then
mapped onto the physical FPGA by placing the primitives and computing the

116APPENDIX A. FPGA TECHNOLOGY AND IMPLEMENTATION OF FPGA DESIGNS

routing (i.e. the multiplexers settings, as shown in Figure A.1). The result of this
process is again a netlist that includes the placement and routing information.

3. Configuration Data (Bitstream) Generation: This step generates the configu-
ration binary to be used for programming the FPGA. There exists a one-to-one
correspondence between the netlist and the bitstream.

The top row in Figure A.2 shows a path where the entire tool-chain is executed at
the user-side. Alternatively, AWS provides cloud instances for running the flow. For
executing a design on AWS F1 instances, users have to provide a netlist to AWS for
the final configuration data generation.

A.3 Registering of user designs on AWS

AWS does not allow clients to upload their own bitstreams and instead requires a
netlist. During a registering phase, a user netlist is translated into a configuration
bitstream. As can be seen in Figure A.2, registering includes the steps Design Rule
Checking (DRC) and FPGA Image Generation. The latter process generates a config-
uration bitstream and some metadata (e.g., the shell version), which is packaged into
an Amazon FPGA Image (AFI) [15]. Note that the netlist provides user design details,
which force clients to share their IP with AWS. Users can upload their own netlist in
an encrypted format, but that is only obfuscating a netlist, as shown in Section 4.1.

All user bitstreams are generated by AWS to guarantee the compatibility with the
shell, and, most importantly, to perform checks (see Section 4.1) to ensure that the
bitstream is not damaging the FPGA hardware (e.g., through short-circuits [22, 92,
91, 53]). A more comprehensive overview of FPGA security aspects is discussed in
Section 4.1. Once an AFI-image is created, it will be stored by AWS.

A.4 Deployment of user designs on AWS

Before running an AFI on a cloud FPGA, a user needs to create an F1 instance and
accesses it through a hypervisor to program the FPGA and load the software applica-
tion stack. AWS F1 instances use Elastic Block Store (EBS) instances which mount
external disks for storage [17]. Therefore, an EBS-backed instance can preserve user
data after instance termination or stop. We use this feature to log system states even in
the case an attack may result in a connection drop to the client.

A.4. DEPLOYMENT OF USER DESIGNS ON AWS 117

Pending

running

shutting-down

terminated

stopping stoppedrebooting

Create an
instance

Start Start

Stop
Reboot

Terminate

Stop-Hibernate

Terminate

Figure A.3: Lifecycle of an Amazon EBS-backed EC2 instance. This figure is adopted
from [16].

Throughout its lifecycle, an AWS instance will go through several states, as shown
in Figure A.3. In the pending state, the hypervisor finds an instance and boots the
machine. After the instance is ready, it enters the state running where a user can load
the AFI file with the user configuration.

Users are only billed when the instance is in the running state or preparing to hi-
bernate. Other states are not billed. This is of interest for mounting denial-of-service
attacks where the goal is to use minimum cost to maximize the time an instance is
occupied without billing.

	Abstract
	Declaration
	Copyright
	Acknowledgements
	Introduction
	Motivation
	Objectives and challenges
	Contributions
	Thesis outline
	Publications
	List of Abbreviations

	Background
	Security of FPGA systems
	Power analysis
	Electromagnetic analysis
	Thermal channel
	Crosstalk coupling
	Differential fault analysis
	Bitstream fault injection
	Configuration data leakage
	Attacks on system availability

	Attacks and defence on power aspect

	FPGA power-hammering characterisation
	Study on self-oscillators
	Experimental setup
	Combinatorial self-oscillator variants
	Non-combinatorial self-oscillator variants
	Quantifying the risk of power-hammering

	Power consumption on wiring resources
	How to generate test signals that toggle at GHz regime?
	Experiments on wiring resources

	Chapter summary

	Case study on attacking AWS F1 FPGA instances
	The AWS FPGA security architecture
	Fence 1 – Design inspection
	Fence 2 – Bitstream generation
	Fence 3 – FPGA API
	Fence 4 – FPGA monitoring

	Power-hammering attacks on AWS EC2 F1 instances
	Bypassing Fence 4 – FPGA monitoring
	FPGA fingerprinting on AWS EC2 F1
	Mounting a DoS attack on AWS EC2 F1 instances
	Chapter summary

	FPGA netlist scanner for malicious circuits
	Malicious circuits scanning mechanism
	Hardware versus software virus scanning
	Modelling the FPGA virus scanning problem
	Detecting self-oscillating circuits
	Detecting short-circuits
	Netlist bounding-box tests
	Detecting wire-tapping
	Interface sanity check

	FPGA Scanner: Implementation and evaluation
	Architecture graph generation for FPGADefender
	Design evaluation
	TCL implementation of FPGADefender

	Chapter summary

	Conclusion
	Contribution summary
	Literature review of FPGA self-oscillating circuits
	A dynamic power model for wiring resources
	Quantifying the risk of power-hammering
	Real-world power-hammering attack on FPGA-based infrastructure of Amazon Web Services
	A contribution to FPGADefender and API for detecting malicious circuits
	A contribution to a study on a countermeasure for glitch amplification

	Future Works
	FPGA Power Verification
	FPGA Timing Verification

	Impact

	Bibliography
	FPGA Technology and Implementation of FPGA designs
	FPGA technology
	Implementation of FPGA designs
	Registering of user designs on AWS
	Deployment of user designs on AWS

