
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

9-4-2013

A hardware-embedded, delay-based PUF engine
designed for use in cryptographic and
authentication applications
James C. Aarestad

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Aarestad, James C.. "A hardware-embedded, delay-based PUF engine designed for use in cryptographic and authentication
applications." (2013). https://digitalrepository.unm.edu/ece_etds/2

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/2?utm_source=digitalrepository.unm.edu%2Fece_etds%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

James C. Aarestad
Candidate

Electrical and Computer Engineering
Department

This dissertation is approved, and it is acceptable in quality and form for publication:

Approved by the Dissertation Committee:

Dr. James Pluquellic, Chairperson

Dr. Payman Zarkesh-Ha

Dr. Jedidiah Crandall

Dr. Todd Bauer

i

A Hardware-Embedded, Delay-based PUF
Engine Designed for Use in Cryptographic

and Authentication Applications

by

James C. Aarestad

B.S., Computer Engineering, University of New Mexico, 2009

M.S., Computer Engineering, University of New Mexico, 2011

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Engineering

The University of New Mexico

Albuquerque, New Mexico

July, 2013

ii

Dedication

This work is dedicated to my loving and devoted parents, Wilfred (“W.C.”) and
Thelma Aarestad, who taught and demonstrated the true meaning of unconditional love,
and showed me through example the value of living a worthy life. Dad, you have my
unwavering respect, and Mom, you have my undying devotion.

iii

Acknowledgments

As I culminate my years of education with the writing of this dissertation, I am
acutely conscious of the many individuals who have helped to make this possible.

I am forever grateful and beholden to my advisor and mentor, Dr. Jim Plusquellic,
whose academic support and guidance, research direction, and financial backing have
enabled me to achieve this remarkable milestone. His exemplary integrity, research
acumen, and industry insight have been powerful influences to me during my graduate
education. Also, to the remaining members of my dissertation committee, Dr. Payman
Zarkesh-Ha and Dr. Jedidiah Crandall of the University of New Mexico, and Dr. Todd
Bauer of Sandia National Labs, I extend my heartfelt appreciation for contributing so
graciously to my educational career.

In addition, my good friend, Dr. Charles Lamech, has been a tireless source of
learning, inspiration, and excellence in research to me throughout the last four years, as
have Dr. Ryan Helinki, Mitch Martin and Raj Chakraborty. Current and former members
of Dr. Plusquellic’s research team, including Greg Feucht, Jing Ju, Fareena Saqib, and
Dylan Ismari, have provided a sense of camaraderie that has fueled my passion for
research.

Dr. Howard Pollard, I thank you for the many hours of pertinent classroom
instruction and for all the knowledge that you shared when we worked together during
the summer of 2010. And I, and everyone else who has walked the halls of ECE, have
also benefited greatly from the fastidiously detailed work of ECE graduate coordinator,
Elmyra Grelle.

iv

A Hardware-Embedded, Delay-Based PUF Engine
Designed for Use in Cryptographic and

Authentication Applications

By

James C. Aarestad

ABSTRACT OF DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Engineering

The University of New Mexico

Albuquerque, New Mexico

July, 2013

v

A Hardware-Embedded, Delay-Based PUF Engine
Designed for Use in Cryptographic and

Authentication Applications

by

James Charles Aarestad

B.S., Computer Engineering, University of New Mexico, 2009

M.S., Computer Engineering, University of New Mexico, 2011

Ph.D., Engineering, University of New Mexico, 2013

Abstract

Cryptographic and authentication applications in application-specific integrated

circuits (ASICs) and field-programmable gate arrays (FPGAs), as well as codes for the

activation of on-chip features, require the use of embedded secret information. The

generation of secret bitstrings using physical unclonable functions, or PUFs, provides

several distinct advantages over conventional methods, including the elimination of

costly non-volatile memory, and the potential to increase the random bits available to

applications.

In this dissertation, a Hardware-Embedded Delay PUF (HELP) is proposed that is

designed to leverage path delay variations that occur in the core logic macros of a chip to

create random bitstrings. A thorough discussion is provided of the operational details of

vi

an embedded path timing structure called REBEL that is used by HELP to provide the

timing functionality upon which HELP relies for the entropy source for the cryptographic

quality of the bitstrings. Further details of the FPGA-based implementation used to prove

the viability of the HELP PUF concept are included, along with a discussion of the

evolution of the techniques employed in realizing the final PUF engine design.

The bitstrings produced by a set of 30 FPGA boards are evaluated with regard to

several statistical quality metrics including uniqueness, randomness, and stability. The

stability characteristics of the bitstrings are evaluated by subjecting the FPGAs to

commercial-grade temperature and power supply voltage variations. In particular, this

work evaluates the reproducibility of the bitstrings generated at 0C, 25C, and 70C, and

10% of the rated supply voltage.

A pair of error avoidance schemes are proposed and presented that provide

significant improvements to the HELP PUF's resiliency against bit-flip errors in the

bitstrings.

vii

Table of Contents

Chapter 1: Introduction..1

Chapter 2: Background..5

2.1 PUF Classification and Types ..7

2.1.1 Bistable Element PUFs ...7

2.1.1.1. SRAM/Butterfly PUFs..7

2.1.1.2. The BusKeeper PUF...8

2.1.2. Delay-Based PUFs ...9

2.1.2.1. The Arbiter PUF ...9

2.1.2.2. The Ring Oscillator (RO) PUF ..10

2.1.3. The Power Grid PUF (PG-PUF) ..10

2.2. PUF Design – Challenges..12

Chapter 3: The Hardware-Embedded Delay PUF...14

Chapter 4: REBEL Test Structure..15

4.1. REBEL for LSSD Scan..16

4.2. REBEL For Mux-D-Style Scan..24

4.3. PUT Delay Analysis Process..26

Chapter 5: Preliminary HELP PUF Research..28

Chapter 6: FPGA-based HELP PUF Engine..30

6.1. Macro-Under-Test..33

6.2. Data Collection Engine (DCE)...34

viii

6.2.1. Clock Generator ...34

6.2.2. PN Memory..35

6.2.3. LC LFSR Controller ..36

6.2.4. REBEL Controller..36

6.2.5. Sample Analysis Engine (SAE)..36

6.2.6. Valid Path Memory...37

6.3. Bit Generation Engine..37

Chapter 7: Bit Generation Techniques...38

7.1. Modulus..38

7.2. Dual P/N (DPN) Path Delay Binning Method. ...40

7.3. The Dual-PN Count (DPNC) Bit Generation Method...42

7.3.1. Bit Generation using DPNC...43

7.3.2. DPNC Example ...44

7.4. Universal/No-Modulus Bit Generation Technique..46

7.4.1. Weakness of the Universal/No-Modulus Method..48

7.5. Universal/No-Modulus Difference (UNMD) Bit Generation................................49

7.5.1. Bit Generation Process and Procedure...50

7.6. Thresholding Technique...50

7.7. TMR-Based Error Correction Scheme...51

Chapter 8: Reliability Enhancement Techniques...54

8.1. Temperature/Voltage Compensation (TVCOMP)..55

8.2. Path Distribution (PDIST) Characterization..57

ix

Chapter 9: Experimental Results and Analysis..60

9.1. Hamming Distance (HD)...60

9.1.1. UNM...61

9.1.2. DPNC...62

9.1.3. UNMD..62

9.2. NIST Statistical Analysis of Randomness..62

9.2.1. UNM...62

9.2.2. DPNC...63

9.3. Analysis of Running Time..63

9.3.1. UNM...63

9.3.2. DPNC...63

9.3.3. UNMD..64

9.4. Probability of Failure: Results and Analysis..64

9.4.1. UNM...64

9.4.2. DPNC...65

9.4.3. UNMD..65

9.5. UNMD Security Vulnerability and Mitigation...66

Chapter 10: Future Work..68

10.1. ASIC Implementation...68

10.2. Aging: A Study of the PUF Performance Over Time...69

10.3. The Use of Voltage Scaling to Improve Reliability...70

10.4. Attack Threat Analysis and Mitigation...72

x

Chapter 11: Conclusion..74

References..75

xi

List of Figures

REBEL Implementation Strategy..15

REBEL Row Control Logic (RCL)...16

REBEL Cell Modification Logic (LSSD)..19

REBEL Support Logic for MUX Scan..25

HELP Experimental Test Setup...31

HELP Structural Block Diagram...32

Launch/Capture Timing Diagram..35

Modulus-Based Path Delay Comparison (deprecated)..40

Results of Uncertainty (Noise) Analysis..41

Dual-PN Path Binning Method..42

Dual-PN/Count Example...45

Universal/No-Modulus Bit Generation Technique..48

Bit Gen Engine (UNMD)...50

Illustration – UNMD Technique..51

Effect of Thresholding Technique on Reliability...52

Jump Behavior vs. Path Length...55

Distributions of Path Lengths across FPGA Boards..58

Hamming Distance (HD) for UNM Method..61

Hamming Distance (HD)...61

Probability of Failure (UNMD)...66

xii

Index of Tables

Table 1: Configuration States for Row Control Logic...23

xiii

Chapter 1: Introduction

Recent years have seen a decline in the vertically-integrated nature of the

semiconductor industry. One effect of this change has been a heightened concern over the

issues of hardware security and trust in the VLSI design/manufacturing/distribution

cycle. Threats of such activities as the unauthorized cloning of integrated circuits and the

placement of key components in sensitive electronic systems that may have been

compromised or altered are serious, real, and difficult to thwart using only procedural and

policy methods. Additionally, the security weaknesses imposed by the storage of secret

keys and identification in non-volatile storage in an IC make these techniques

unattractive as well. As a result, the emergence of these threats is causing designers to

search for effective measures to counter the security risks that they present. One

technique that has shown promise is the physical unclonable function (PUF); the

exploitation of repeatedly random device properties to distinguish one instance of a

device from another.

PUFs enjoy a key advantage over other techniques for establishing unique

identification for individual integrated circuits, particularly over storage-based solutions

such as eFUSE and EEPROM technologies; because their uniquely identifying

characteristics derive from naturally-varying physical properties within the die, they do

not require, nor do they permit, the impression of an identification mark from the outside

world.

1

Physical unclonable functions (PUFs) are becoming increasingly attractive for

generating random bitstrings for a wide range of security-related applications. PUFs are

designed to reliably differentiate one chip from another by leveraging the naturally-

occurring random process variations which occur when the chips are fabricated. Process

variations are increasing as layout geometries shrink across technology generations.

Although undesirable from a design perspective, the electrical variations introduced by

process variations define the entropy source on which PUFs are based. PUFs are designed

to measure and 'digitize' these electrical variations to create random bitstrings. The most

common sources of variations that PUFs leverage include path delay, metal resistance

and SRAM power-up patterns.

The quality of the bitstrings produced by a PUF are typically evaluated using a

suite of statistical tests. Generally, three criteria are considered essential for a PUF to be

used for applications such as encryption: 1) the bitstrings produced for each chip must be

sufficiently unique to distinguish each chip in the population, 2) the bitstrings must be

random, making them difficult for an adversary to model and predict, and 3) the bitstring

for any one chip must be stable over time and across varying environmental conditions.

In this thesis, we present a detailed examination of a PUF, called HELP, that is

based on path delay variations. The novel features that differentiate HELP from other

delay-based PUFs include: 1) the capability of comparing paths of different lengths

without adding bias, 2) elimination of specialized test structures, 3) a minimally invasive

design with low per-bit area and performance impact, and 4) a PUF engine that is

integrated into the existing functional units of the chips and requires no external testing

2

resources. The integration of HELP into an existing functional unit, such as an

implementation of the Advanced Encryption Standard (AES), allows it to leverage a large

source of entropy while minimizing its overall footprint. This large source of entropy

allows HELP to generate long bitstrings, while being conservative in the paths selected

for bit generation. The large availability of paths also enables unique opportunities for

avoiding bit-flip errors.

The HELP PUF introduced in this thesis presents a new concept in path delay PUFs

and includes experimental results, performance analysis against a set of established PUF

evaluation criteria, and a complete PUF primitive and an associated on-chip PUF engine.

The term “hardware-embedded” refers, in this context, to PUFs that generate repeatedly

random digital bit strings which can subsequently be supplied to encryption circuitry for

use in its functional operation. Because the chip is able, internally, both to generate and

consume the PUF bit string (e.g., as a private key for an encryption engine), the bit string

does not need to be transmitted off-chip.

HELP is based upon path delay, and takes advantage of manufacturing variations

which alter the propagation delays in a target design. By eliminating the magnitudes of

path lengths and accounting for timing and measurement uncertainties, this PUF enables

the comparison of logic paths whose actual path delays might vary widely. Because I am

not constrained to only comparing paths with similar lengths, this approach permits an

exponential number of delay comparisons, and consequently, the generation of PUF bit

strings the lengths of which grow exponentially with increasingly long challenge vectors.

Using data that was generated during prior experimentation using an on-chip path delay

3

measurement structure, we examine the resulting comparisons using several standard

statistical metrics to determine the effectiveness of our PUF strategy, including analyses

of numeric distribution, Hamming distance, Euclidean distance, and tests of the

randomness of the resulting bit string.

As with all PUFs, we have found that uncertainty in our delay measurements has a

direct bearing on the amount of the variability that can be used to create separation

between devices. As a result, we have performed an analysis of the uncertainty that is

present in the data, and that information is presented here as well.

There is a growing set of advanced statistical analysis tools and techniques that are

being commonly applied to the data generated by any random or pseudo-random number

generator (RNG/PRNG); these include a battery of statistical tests from the National

Institute of Standards and Technology (NIST) [2]. We have included a discussion of our

ongoing work with these and other tools, such as the use of helper data and error

correction to improve the utility of PUF bit strings.

4

Chapter 2: Background

The PUF first appeared as a mechanism for generating secure bitstrings in [3] and

[4]. The PUF as a chip identifier, however, was introduced earlier in [5]. Proposed PUF

designs generally fall into one of the following classifications: SRAM PUFS [6], ring

oscillators [7][8], MOS drive-current PUFs [9], delay line and arbiter PUFs [10], and

PUFs based upon variations in a chip's metal wires [11]. Delay-based PUFs also include

such designs as the Glitch PUF, which leverages variation in glitch behavior and is

presented in [12]. Each of these PUFs takes advantage of one or more naturally-varying

properties, and nearly all PUFs share a common set of challenges such as measurement

error and uncertainty, and fluctuations in voltage or temperature. The degree to which a

given PUF can tolerate or mitigate these challenges is an important indicator of its utility

for generating secret data.

The HELP PUF proposed in this dissertation, is to the best of our knowledge the

only delay-based PUF that combines the following features:

• The HELP PUF is entangled with the hardware in which it is embedded, in the sense

that the path delays measured in, e.g., an AES core logic macro, can be used to

generate a bitstring that is subsequently used as the key for use by AES in functional

mode. The proximity of the bit generation to the hardware that uses the bitstring

improves robustness against invasive or probing attacks designed to steal the key.

• The bit flip avoidance scheme proposed in this thesis significantly reduces the

probability of bit-flip errors during regeneration.

5

• The physical implementation of HELP uses standard hardware resources commonly

available in the fabric of an FPGA, including an on-chip digital clock manager

(DCM). (Note: the authors of [13] also leverage the high timing resolution provided

by a DCM for Trojan detection and IC authentication, although they did so using an

earlier version of the same FPGA. They used a Virtex-II device from Xilinx [14],

with a DCM capable of timing increments of 160 ps, while our experiments utilize a

Virtex-II Pro, which has the capability of phase adjustments of just under 80 ps when

used with a 50-MHz clock like that used in our experiments. Additionally, the

applications most directly targeted by their research were authentication and

hardware Trojan Horse (HTH) detection.)

• By using the core logic of AES itself, a large source of existing entropy is leveraged.

The area of hardware security research that is concerned with developing methods

of security based upon a device's unclonable properties can be coarsely divided into two

categories: 1) methods that make use of those properties which are purely physical in

nature, and 2) methods which rely upon those physical properties which in some way

impinge on the electrical behavior or performance of an individual component or device.

The first category, referred to in Chapter 4 of [15] as Unique Objects (UNOs),

encompasses a number of interesting and potentially viable identification methods,

including, for example, the unique scattering patterns created by light passing through, or

reflecting from, the surface of an object under consideration. However, these UNOs

typically require specialized external measurement equipment, are fundamentally

different in kind than those involving the electrical properties of electronic circuits and,

6

as such, are not considered further in this work.

2.1 PUF Classification and Types

In recent years, as PUFs have gained attention in hardware security research,

developments in the field have crystallized into a handful of architectural classes. Most

proposed PUFs fall into one of several categories: so-called “bistable element PUFs”,

ring oscillators (ROs), MOS drive-current differences, and delay line and arbiter PUFs, as

well as PUFs based upon variations in back-end-of-line (BEOL) properties, such as metal

thickness and via resistance.

2.1.1 Bistable Element PUFs

2.1.1.1. SRAM/Butterfly PUFs

SRAM PUFs are based upon a traditional six-transistor static RAM cell, and make

use of the mismatched threshold voltages in small inverter transistors caused by

variations in the manufacturing process [16]. Proponents of the SRAM PUF claim that

the combined effects of common-mode process variations and common-mode

temperature and power supply fluctuations are effectively eliminated by the differential

nature of the SRAM PUF. These PUFs have less of an advantage in those devices without

SRAM cells, as an important design feature of this PUF type is the regularity and

symmetry of the layout which must be present in the cells to prevent adverse biasing

effects from degrading the performance of the PUF. A similar PUF concept, known as the

Butterfly PUF [17], is based upon two opposing NAND gates that interact in much the

same way as an SRAM cell and has been proposed for use in those designs which do not

7

use SRAM memory cells as a standard cell library component. As in the SRAM PUF, the

stable state of each Butterfly PUF cell is determined randomly by mismatches between

the threshold voltages and drive strengths of the component transistors.

This PUF is also heavily dependent upon consistent layout to eliminate bias. SRAM

PUFs and Butterfly PUFs are examples of a class known as “weak PUFs”, characterized

by a relatively small number of challenge-response pairs (CRPs). Strong PUFs, such as

those described in the upcoming paragraphs, generally are marked by a large, often

exponential, number of CRPs.

2.1.1.2. The BusKeeper PUF.

This PUF concept was proposed as an area-efficient alternative to the use of D-

Flipflop (DFF)-styled and traditional 6T-style SRAM PUFs.

The buskeeper, also known as a weak keeper, is a small, inputless cross-coupled

latch made from minimum- (or less-than-minimum-) sized transistors that is used to help

to preserve a bus-attached (tri-stated) register's state. The small size of the device is

designed to be easily overwritten by changes in the state of the register itself.

Beyond the savings in area and power, there is little difference between the

fundamental operation of the PUF itself and that of other bistable element PUFs. The

authors of [6] present the details of a PUF implementation using the buskeeper in a 65-

nm TSMC bulk technology. The analysis includes a discussion of the PUF's performance

across an industrial range of temperatures. No voltage analysis is provided, and while this

could be considered a weakness of the research, it was shown in [18] that SRAM PUFs

are, in relative terms, not significantly subject to changes in supply voltage. Given that

8

the final state of the Buskeeper PUF is also arbitrated during the power supply ramp to its

final value, it is reasonable to conclude that the Buskeeper PUF is not adversely affected

by changes in supply voltage, it would have strengthened the research to demonstrate this

immunity in the paper.

2.1.2. Delay-Based PUFs

Two examples of strong PUFs are the arbiter PUF [19] and the ring oscillator PUF

[20]. These delay-based PUFs make use of variations in device characteristics which alter

the path delays through these PUFs. These PUFs are of particular interest to the work that

I have done, as HELP is also a type of delay-based PUF.

2.1.2.1. The Arbiter PUF

The Arbiter PUF makes use of a pair of configurable, identically laid-out paths

through a set of path-switching elements, terminating at an arbitration element. In many

such designs, the arbiter is a 'D' flip-flop with one path connected to the 'D' input and the

other path driving the D-FF's clock input. A positive-going edge is asserted onto both

paths simultaneously, setting up a race condition between the propagating edges which is

determined by the random variations in the path design. In some devices, the path which

is connected to the clock input of the arbiter will be faster, and a transition will occur at

the clock input ahead of the 'D' input, and a '0' will be stored in the arbiter. In other

devices, the 'D' transition will occur ahead of the clock, and a '1' will be stored. Multiple

arbiters PUF structures, with large numbers of switching elements in each, can be

implemented to increase the number of resulting bits in the PUF bit string, and the size of

the challenge vector space is determined by the number of switching elements in each

9

PUF.

While arbiter PUFs have been demonstrated to be effective and realizable, there are

several significant drawbacks, as well: they impose heavy area and power penalties, and

they require a high degree of regularity to prevent bias. Additionally, as the length of an

arbiter PUF increases, the Central Limit Theorem dictates that the aggregate path length

tends to converge to a mean value, and there is often not sufficient difference in the path

delays to overcome the setup and hold time of the arbiter, resulting in many unstable,

unusable CRPs.

2.1.2.2. The Ring Oscillator (RO) PUF

Another delay-based PUF is the RO PUF which, as the name implies, uses a large

number of ring oscillators and pulse counters. The ROs are enabled and used to increment

counter values for a fixed period; the values in the counters are then compared and the

results of the comparisons are used to generate binary digits in the PUF bit string. This

PUF also imposes a high area cost, and in addition, the large number of oscillating

devices incurs large dynamic power consumption.

RO PUFs are used heavily in the research of PUFs because they are easily

understood and can be easily implemented in FPGA-based hardware experiments. Their

widespread adoption in commercial PUF applications could be unlikely, however, as their

high area cost and large dynamic power footprint will remain a liability throughout the

lifetime of the chip.

2.1.3. The Power Grid PUF (PG-PUF)

The PG-PUF is an example of a PUF based upon the electrical characteristics of a

10

power distribution system (PDS) such as that found in a traditional IC design. This PUF

belongs to a class of PUFs that leverage physical properties in an existing chip (as

contrasted with front-end-of-line (FEOL) variations in transistors); as such, the

performance of this PUF will depend more upon the types and magnitudes of variations

that occur in post-metal manufacturing operations. The PG- PUF relies on comparisons

between the voltage drops that occur at different points in the multi-level metal grid of a

PDS when current flow is induced at a point in the network. Process variations result in

localized changes in the resistance of the metal lines and the vias between the metal

layers. An alternate method is to combine the voltage and current measurements to

compute an equivalent resistance (REQ). Regardless of the method used, the binary

evaluations that result from these comparisons are used to create a unique digital bit

string for a given device.

Although no formal study on the impact of aging has been completed at the time of

this writing, the PG-PUF may offer a significantly reduced sensitivity to changes in PUF

response over time. This is because, unlike the classification of PUFs that draw on

variations in the front-end-of-line (FEOL) processes that produce the transistor devices,

the only significant aging effect related to the entropy source upon which the PUF draws

is electromigration, the physical displacement of metal molecules caused by extremely

localized areas of high current (such as in corners and jogs in the metal lines). The

temperature effects related the FEOL, in contrast, will be related more to the readout

circuitry, and therefore appear as common-mode changes that affect the individual

measurements equally. (Note: the author concedes that this is assertion amounts to little

11

more than informed speculation.)

2.2. PUF Design – Challenges

Each of the PUFs that have been proposed or implemented attempts to leverage one

or more naturally varying properties. These PUFs share, to varying degrees, the

challenges that arise from a number of sensitivities, including measurement error and

uncertainty, fluctuations in process, voltage, or temperature (PVT) conditions, and

instability over time [21], among other factors. Devising methods and techniques for the

mitigation of these sensitivities is equally as important to the development of robust and

reliable PUFs as the underlying PUF design itself. Regardless of the type of PUF that is

considered, the ability to attain perfection in terms of robustness and randomness remains

an elusive goal. As a result, some PUF designers have come to rely on the use of “helper

data”, which is information concerning the PUF bit string that is made externally

available to help to identify those bits that are not stable enough to be included in a PUF

bit string. This information, however, “leaks” or reduces the amount of entropy that a

PUF can leverage. As such, one desirable characteristic of a robust PUF is the avoidance

of the need to rely on the use of helper data.

One technique for improving PUF performance without the need for helper data is

the use of hardware redundancy to create a voting scheme, which reduces the probability

of single-bit instability in a PUF bit string. This technique necessarily incurs a penalty in

terms of area and power consumption, while maximizing the use of available entropy in

the PUF design.

The HELP PUF is, to the best of my knowledge, the only delay-based PUF that

12

offers the following combination of characteristics; it is hardware-entangled, which

means that 'secret' information is derived from the core-logic components themselves and

therefore secrets remain localized on-chip to those components that use that information,

it takes advantage of an existing REBEL path-delay measurement structure (discussed

thoroughly in the following chapter), and it is 'all-digital', which means that it can be

implemented using standard library components, i.e., there is no need for a specialized

on-chip PUF structure outside of the PUF engine that controls its operation.

13

Chapter 3: The Hardware-Embedded Delay PUF

The Hardware-Embedded Delay PUF, or HELP, is a physical unclonable function

that draws on the variations in path delay found in an existing combinational logic block.

The actual path delay measurements are carried out by an embedded test structure called

REBEL [22]. This test structure was developed primarily for adding the ability to do on-

chip path delay timing measurements in Design-For-Testability (DFT) applications, but

which offers a convenient mechanism for providing path timing functionality for the

HELP PUF as well. The REBEL embedded timing structure is discussed in greater detail

in the following chapter.

14

Chapter 4: REBEL Test Structure

In [22], we proposed an embedded test structure (ETS), called REBEL, which is

designed to measure regional path delays in macros while minimizing these types of

adverse effects. This test structure is designed to serve applications such as model-to-

hardware correlation, detection of hardware Trojans [13], design debug processes,

detection of small delay defects [23], and, especially relevant for this work, physical

unclonable functions. Each of these areas requires accurate measurements of path delays

and/or the ability to differentiate at high resolutions between delays of neighboring paths.

15

Fig. 1: REBEL Implementation Strategy

The REBEL ETS leverages the scan chain architecture to measure delay variations;

in particular, it uses a special configuration of flush delay mode that is available in level-

sensitive scan design (LSSD) scan chains and in modified Mux-D scan designs. We

demonstrated in a previous work [24] the promise of capturing regional delay variations

using a special launch-capture timing sequence applied while in flush delay mode. We

extend this technique here by allowing output signals from design macros to be inserted

into the flush delay chain for path delay measurements.

4.1. REBEL for LSSD Scan

As indicated previously, REBEL is integrated into the scan chain directly, as shown

in Fig. 2 for a clocked-LSSD-style scan architecture. Here, the regions labeled ‘Product

16

Fig. 2: REBEL Row Control Logic (RCL)

Macro’ are functional units composed of combinational logic. Three scan chain segments

are shown that serve to deliver input and capture output from these macros. The three

blocks labeled Row Control Logic identify components of the REBEL ETS, and are

described below. Beyond these three ‘header’ blocks, smaller blocks are also needed for

local scan signal control for each of the scan FFs. The basic idea is to generate a

transition on the inputs to the macro using a standard launch-off-capture transition fault

test. In this scenario, the scan chain is loaded with the initial pattern of the 2-pattern test

and the system clock (CLK) is used to generate a transition in the core logic by capturing

the output of a previous block, or by capturing the PI values, as shown in the figure. One

or more transitions are propagated through the macro, as shown by the dotted line labeled

“PUT” (for “path-under-test”). The PUT’s transition emerges on an output of the macro,

and drives the D input of a scan FF in the second row. Special control logic associated

with the scan FF (to be described) allows the transition to propagate along the scan chain,

as shown by the dotted line in Fig. 2. CLK is then reasserted to halt the propagation,

which effectively ‘takes a digital snapshot’ of the signal propagation behavior along the

scan chain, including any glitching that may have occurred. This digital snapshot is then

scanned out for analysis.

For designs that make use of LSSD-style scan, propagation along the scan chain is

relatively straightforward to implement. This is true because LSSD inherently supports a

flush-delay (FD) mode of operation. In FD mode, both the 'Scan A' clock (SCA) and

'Scan B' clock (SCB) are held high, effectively making both latches of the FF transparent,

i.e., any transition generated on D propagates to Q after a ∆t that represents the delay

17

through the FF. FD mode effectively makes the scan chain a combinational inverter

chain.

However, the configuration in Fig. 2 differs from the traditional definition of FD

mode because only a portion of the scan chain is configured in FD mode. In particular,

the scan FFs along the top row and those along the middle row to the point of insertion of

the PUT operate in functional mode, and only those to the right (and below) of this point

operate in FD mode. In order to realize this configuration, several changes are required to

the logic implementing the scan operation.

One of the components to support this dual mode of operation is labeled Row

Control Logic (RCL) on the left side of Fig. 2. These blocks, in combination with a scan

chain encoding scheme and localized scan FF logic, enable this dual mode of operation

and provide a mechanism to specify a PUT’s output to direct into the scan chain. This is

accomplished by configuring several state bits in the RCL, and by loading a specific

pattern into the scan chain before the launch-capture (LC) timing sequence (REBEL test)

is applied, as described below.

Each RCL block controls a ‘row’ of scan FFs, called row-FFs, in the following

description. Fig. 2 shows a schematic diagram of the RCL. The top portion of the

diagram controls local (row-specific) scan clock signals, labeled SCA_L and SCB_L (_L

for local) while the bottom portion contains two shift registers (Shift Reg) and mode

select logic. A large portion of the RCL logic is in place to allow different sections of the

row FFs to operate in either of the traditional functional or scan modes of operation. The

global (chip-wide) scan signals (labeled ‘global SCA’ and ‘global SCB’) are used to

18

specify one of the three possible global operational states. When both are low, the entire

row is set to operate in functional mode, with CLK controlling the launch-capture activity

in the row FFs. Non-overlapping assertion of these signals causes all scan FFs to act as a

shift register, implementing scan mode. The timing mode used by REBEL is specified

when both of these signals are asserted. This is illustrated by the ‘1’s on global SCA and

SCB in Fig. 2.

Note that the two shift registers in the RCL block are conditionally inserted into the

scan chain during a scan operation and can therefore be configured prior to a REBEL test.

The shift registers’ scan clock inputs (SCA/SCB) are also gated to prevent them from

19

Fig. 3: REBEL Cell Modification Logic (LSSD)

entering FD mode, thereby destroying the state information, when both global SCA and

SCB signals are asserted. The state of the two shift registers defines the mode of

operation for the row when REBEL mode is activated. Two control bits (as opposed to

one) are needed to implement the simultaneous functional and FD modes discussed above

because there are actually four possible conditions that need to be handled. The three

rows of scan FFs in Fig. 1 illustrate three of the four conditions. For example, the scan

FFs in the top row need to be in functional mode throughout the REBEL test. In contrast,

the scan FFs in the bottom row need to be in FD mode to extend the propagation path of

the PUT signal captured in the middle row. Finally, the middle row contains scan FFs in

both of these modes, i.e., the scan FFs to the left of the PUT insertion point are in

function mode while those to the right are in FD mode. The fourth condition is just a

special case of this third condition where the insertion point is the left-most scan FF in

the row. Table 1 identifies the bit configurations that handle these four conditions.

RCL Shift Reg Functionality

00 All scan FFs in Row are in functional mode

01 All scan FFs in row are in FD mode

11/10 Left scan FFs in functional mode, right scan FFs in FD mode
(10: Insertion Point is leftmost scan FF)

Table 1: Configuration States for Row Control Logic

Before describing the annotations in Fig. 4, we turn to the configuration of the scan

FFs. Fig. 4(a) shows a clocked LSSD FF (CLSSD), which consists of three latches. The

two latches on the left implement the functional path, and are controlled by the system

20

clock (Clk). The center latch is dually ported and serves both as the slave for the

functional path and as the master in the LSSD pair. The right-most latch is the slave latch

of the LSSD pair. The top pass-gate of the dual port latch is highlighted to indicate that it

has been modified. In the following paragraphs, it will become apparent that during the

REBEL test, both CLK and SCA will be asserted simultaneously during a portion of the

test. This creates a potential shorting condition in the dual port latch, i.e., both the master

of the functional path and the SI input paths are enabled. To prevent this from happening,

we modified the single input pass gate connected to the master’s output to include a

second input. The second input contains a “wired-AND” configuration, and prevents the

master’s output from driving the dual port latch when both CLK and SCA are asserted

simultaneously.

Fig. 4(b) shows the additional logic required to integrate REBEL into a design with

CLSSD-style scan. The functional path’s D-input is fanned out to a 2-to-1 MUX. This

will allow for the insertion of a macro’s PUT into the scan chain during the REBEL test.

The local scan signals (SCA_L and SCB_L) are gated by mode select logic shown along

the bottom of the figure. The mode select logic incorporates the normal scan path

(SOPrev to the SI input), as well as a propagating mode bit (ModePrev to ModeNext).

The mode select logic is responsible for selecting the insertion point. This is

accomplished by preloading the row-FFs with a pattern of all ‘1’s followed by a ‘0’ from

left to right along the row-FFs. The ‘0’ in this sequence causes the next scan FF to be

configured in a special way, i.e., it allows the PUF output signal to drive the SI pin. The

annotation and dotted line in the figure illustrates this case, and assumes the scan FF on

21

the left (not shown) is configured with a ‘0’ bit. Given the scan chain connects the SO

output of each scan FF to the SOPrev of the next scan FF, this arrangement allows the

scan chain encoding to specify the PUT insertion point. Moreover, the split mode of

operation required for this row is implemented using a propagating mode bit (ModePrev

and ModeNext), which is ‘1’ for all scan FFs to the left of the insertion point and ‘0’ to

the right. The left-most scan FFs in the middle row of Fig. 1 are annotated with a bit

configuration that enables the insertion of the PUT at the position shown.

The mode select logic also participates in controlling the local scan signals (SCA_L

and SCB_L), and completes the implementing of the four conditions described above in

reference to the RCL. The shift registers in Fig. 2 are annotated with four states (for the

four conditions). The ‘00’ state, which forces functional mode for the row-FFs (row 1 in

Fig. 1), sets both SCA_L and SCB_L to ‘1’. Given that these signal connect to the inputs

of the two NOR gates in instances of the scan FFs (as shown in Fig. 4(b)), and ‘1’ is the

dominate value for a NOR gate, this condition effectively disables FD mode for the entire

row. In this case, the ModeNext and SONext output signals of the RCL, which connect to

the left-most scan FF’s ModePrev and SOPrev signals, are irrelevant.

The ‘01’ state, as discussed earlier, forces the row-FFs into FD mode (row 3 in Fig.

1). This requires both of the SCA_L and SCB_L signals to be set to ‘0’. However, the

annotation in Fig. 2 indicates that the value of SCA_L is ‘Q’, which is the inverted output

value of the negative-edge-triggered FF (N-FF) in the RCL. In the implementation flow

for a REBEL test, the initial value of the N-FF is set to ‘1’ by virtue of strobing the

SET_B signal low prior to the REBEL test. The REBEL test is defined as a rising edge on

22

CLK (which effectively launches a transition(s) into the macro-under- test), followed by a

falling edge on CLK that acts to capture a snapshot of the PUT’s behavior in the scan

chain. The snapshot is realized by deasserting the Q output of the N-FF, which occurs

when CLK goes low. This in turn causes the SCA_L output signal from the RCL to

transition from ‘0’ (initial value) to ‘1’. From Fig. 4(b), the arrival of the ‘1’ on SCA_L

signals of the scan FFs deasserts the SCA input and turns off FD mode. This action

captures the snapshot of the PUT’s voltage behavior in the scan chain.

The ModeNext output signal of the RCL configured in the ‘01’ state is ‘0’. The ‘0’

propagates along the mode select logic of the row and forces all row FFs to operate in

scan mode, i.e., SO to SI to SO, and so on. This condition allows for the propagation of

the PUT’s signal along the scan chain. The SONext signal’s value for state ‘01’ is given

as ‘SI’ to indicate that this signal is driven from the SI input of the RCL. Therefore, the

scan chain bypasses (and preserves the contents of) the state elements in the RCL. The SI

input in turn connects to the SO signal from the right-most scan FF of the previous row,

effectively extending the scan path across rows (see Fig. 1).

Finally, the ‘11’ state in the RCL configures a split mode of operation in the row

FFs and connects a specific PUT output into the scan chain (row 2 in Fig. 1). The mode

select logic in the scan FFs work together with the RCL block to implement this split

mode of operation. The behavior of the SCA_L and SCB_L outputs are identical to those

described above for state ‘01’. The difference lies in the state of the ModeNext and

SONext output signals in Fig. 2. As noted above, a string of ‘1’s followed by a ‘0’ are

preloaded into the scan chain to specify the PUT insertion point. The ‘1’ on the

23

ModeNext output propagates along the mode select logic, described earlier in reference

to Fig. 4(b) until a ‘0’ is encountered in scan FFs of the row. This causes the next scan FF

to be configured as the insertion point. The remaining scan FFs in the row are configured

in FD mode because the mode bit is inverted to a ‘0’ after the insertion point. RCL state

‘10’ behaves identically but allows the insertion point to be the left-most scan FF in the

row.

We have designed the REBEL support logic such that it minimizes the impact on

the functional behavior of the design. There are two components of REBEL that impact

the functional operation. The first is the change of the CLSSD as shown in Fig. 4(a), and

the second is the fanout of the D input to the 2-to-1 MUX as shown in Fig. 4(b). Each of

these changes adds a small delay (∆t) to the functional path.

4.2. REBEL For Mux-D-Style Scan

Although we integrate and demonstrate REBEL in a CLSSD- style scan chain

(which is the style used in the design flow of our 90-nm test chip), MUX scan is the

industry standard and is the design generally required for FPGA-based implementations

such as has been used for the majority of this research. Integration of REBEL into MUX

scan is easy and even less invasive than it is for CLSSD. The overall operation of REBEL

for MUX scan is very similar to that described for CLSSD. The main difference is that

the launch and capture is accomplished using rising edges of CLK (as opposed to a rising

and falling edge for CLSSD). Also, an additional primary input is required to specify FD

mode. This global signal is routed to the RCL blocks (not shown). A RCL block for MUX

scan is similar in function to the CLSSD version except that all logic in reference to

24

SCA_L and SCB_L of Fig. 2 can be eliminated. The key objective in the MUX scan

implementation is to implement a FD mode, i.e., a combinational path, using the latches

within the MUX scan FFs. This can be achieved by adding a ‘tappoint’ to the master

latch, called QMNext in Fig. 4, and routing this signal to a 2-to-1 MUX in the next scan

FF of the scan path (labeled QMPrev in Fig. 4). The SE input in Fig. 4 refers to the

globally routed scan enable signal (already required for MUX scan). SE is set to ‘1’ when

we are in scan mode, and ‘0’ when in functional or FD (REBEL test) mode. The

remaining logic gates are inserted to implement the four conditions described earlier.

For example, to configure a row in functional mode (row 1 in Fig. 1), the RCL

block places a ‘0’ on the FD_L wire. To configure a row in FD mode (row 3 in Fig. 1),

the RCL block sets FD_L to ‘1’ and ModePrev to ‘0’. For a split mode row (row 2 in Fig.

1), the same scan FF encoding method described for CLSSD is used. In addition, the

RCL block forces a ‘1’ onto FD_L and sets ModePrev to a ‘1’ for insertion points other

25

Fig. 4: REBEL Support Logic for MUX Scan

than the left-most scan FF in the row or ‘0’ otherwise. The annotation in Fig. 4 shows the

values of the scan FF at the point of PUT insertion for a split mode row. The REBEL

implementation using MUX scan is actually smaller in overhead and is less invasive to

the functional path (only one capacitive load is added at the tap-point in the master latch)

than it is for CLSSD.

4.3. PUT Delay Analysis Process

The Launch/Capture delay in REBEL is controlled by CLK, as described earlier,

and therefore REBEL leverages the CLK tree for critical timing events.

A REBEL test is carried out as follows:

1. Configuration data is scanned in.

2. The global SCA and SCB signals are asserted.

3. CLK is asserted to launch a transition into the PUT.

4. CLK is deasserted after a specific ∆t, sufficiently long to allow the transitions on

the PUT to propagate along the scan chain.

5. The global SCA/SCB signals are deasserted, and the values in the scan chain are

scanned out.

The delay in the combinational path is computed using Eq. 1.

TPATH = TLC - TSC Eq. 1

where:

TPATH = Delay in the combinational path

TLC = Launch/Capture Delay

26

TSC = Delay in the Scan Chain

The scan chain delay, TSC, can be calculated from the number of scan cells that are

set by the propagating edge(s), and the data obtained from a set of calibration tests1.

1 The calibration of the scan chain propagation delay is straightforward and performed
by performing repeated timing tests with successively longer Launch/Capture
intervals, recording the intervals in which a transition reaches each FF in turn.
However, for the purposes of the HELP PUF, this calibration is not required; in this
case, we are only concerned with the interval required to propagate to a known point
in the scan chain, and not with the actual delay of a path in the MUT (as we would be
for a DFT application).

27

Chapter 5: Preliminary HELP PUF Research

As noted in Chapter 4, two of the potential applications envisioned for the REBEL

ETS at the time of its design were for measuring process variability and as the basis for a

delay-based PUF design. If the REBEL embedded test structure could be used to

determine the amount of process variations in a semiconductor manufacturing process,

then it could also be used to measure those variations, store them temporarily in memory,

and use those measurements as the basis of comparisons for generating a unique bitstring

for an individual chip.

The initial investigation of the REBEL structure as a the basis for a PUF was

conducted as a series of tests on two sets of path delay data collected during REBEL

testing. The first testing of REBEL was done on an FPGA implementation of a stack of

three SBOX macros taken from an AES implementation. The design, including the

REBEL functionality, was configured in a Xilinx Virtex2-Pro FPGA, while the testing

resources, including the scan pattern generation, the clocking for the launch and capture

edges, and all of the control logic was provided from off-board by an Inovys Ocelot

structural DFT tester. A high-performance differential clock signal was provided by the

tester; however, the launch and capture clock signals consisted of consecutive rising

edges on the same clocking resource. This contrasts with the separate DCM outputs that

are used on the FPGA version of the HELP PUF engine discussed in the following

chapter.

The early experimentation with the HELP PUF concept was all done using software

28

manipulations of the scan patterns acquired during the REBEL testing of the design.

Nonetheless, the concept appeared to be successful in its primary mission of extracting a

meaningful amount of entropy from the same path timing measurements across a set of

the FPGA boards. The performance of the PUF was somewhat limited by the excessive

jitter introduced by the differential clock on the tester. Also, the limitations of the off-

chip analysis, in terms of the amount of data required to prove even a small amount of

entropy, soon made it apparent that a specially designed PUF engine on an FPGA was

needed to further advance the study.

29

Chapter 6: FPGA-based HELP PUF Engine

To prove the concept of the HELP PUF introduced in Chapter 3, and to conduct

research studies on its performance, we have designed and implemented a complete, self-

contained, fully functional FPGA-based HELP engine. The design for the PUF engine

was written in VHDL and the engine was created using the ISE design suite from Xilinx

Corporation[14].

The target FPGA platform was the Xilinx Virtex-II Pro device (P/N: XC2VP30).

The development board that we used for our experimentation was an XUP V2-Pro board

from Digilent, Inc. [25]. We chose this development board because we had access to 30

of these boards, which provided a sufficient population size to allow us to conduct

meaningful statistical evaluations of the PUF's performance. In addition, this board is

equipped with jumpers that can be removed to disable the on-board voltage regulator that

supplies the 1.5V internal logic voltage (VccINT) for the FPGA, and screw terminals that

facilitate the use of a programmable power supply for controlling VccINT

programmatically. Finally, the layout of the XUP V2-Pro board allows for placement of a

heat pump directly on the surface of the Virtex-II Pro for automated control of the chip

temperature. These features make this platform ideal for conducting environmental

testing across a range of temperatures and voltages. We provide additional details of our

environmental testing regimen later in this chapter.

The overarching design goals of the HELP PUF engine were to create and

demonstrate a hardware security primitive that: 1) used the REBEL path delay

30

measurement structure presented in Chapter 4, 2) could be added to an existing block of

combinational logic, and 3) was capable of generating cryptographic-quality bitstrings

the length of which is subject only to available on-chip block RAM (BRAM) memory.

Based upon our experimental results and the results of our randomness testing, we

believe that we have successfully met and exceeded each of these design goals with this

implementation. A photo of the XUP board and the test apparatus is shown in Fig. 5.

The HELP PUF design is comprised of several component parts. We start by

augmenting the existing logic design with the REBEL test structure, and adding several

memories, clocking circuitry, random sequence generators, stability analysis components,

31

Fig. 5: HELP Experimental Test Setup

and functionality for reliably generating or regenerating the bitstring.

The operation of the HELP PUF (shown in block diagram form in Fig. 6) is divided

into two distinct phases. In the first phase, a Data Collection Engine phase, the

propagation delays of paths in the MUT are measured, digitized into integer values that

represent the path delay, analyzed for stability, and recorded in memory. The second

phase of operation is the Bit Generation phase, in which the path delays stored in memory

are compared with each other to generate a sequence of binary comparison results in the

form of a bitstring. The user requests a bitstring of a specific length, and the data

collection process continues until a sufficient number of paths have been tested to allow

the Bit Generation process to create a bitstring of the desired length.

The remaining sections of this chapter describe the subparts of the HELP PUF

engine and their operation.

32

Fig. 6: HELP Structural Block Diagram

LC_LFSR
LFSR Controller

REBEL Controller

L/C
Ctrl

Clock Generator

PN Memory

Sample Analysis

Initial Launch Vector (256)

Final Launch Vector (256)

Existing
Combinational

Logic
(Pipelined AES)

REBEL (Capture) Row

Path Delay Result

...

...
Valid Path Memory

0 0 0 0 01 1 1 1

0 0 0 0 01 1 1 1

÷2

Launch

Capture
FPA

Random Pairing
Generator

BG_LFSR

Addr 2Addr 1

Data Collection Engine

Path Valid?

Addr MUX

BitGen Engine

Serial Interface

“Start”
Run Parameters

Ext.
Clock

Hard
Reset

Rx
Tx

PNs
PUF Bit String

0 0 01 1 ...

Sliding Window

DPNC Logic
(see Sect. 4.4)

En
ro

llm
en

t
R

eg
en

er
at

io
n

Stop Point Memory

6.1. Macro-Under-Test

The macro-under-test, or MUT, used in our implementation is the logic defining a

single round of a pipelined Advanced Encryption Standard, or AES [1], implementation

from OpenCores.org [26]. Other AES implementation choices in the public domain

included non-pipelined, recirculatory designs in which the same hardware is reused for

each round2. We chose this pipelined implementation because its non-recursive datapath

design provided a more stable platform on which to test our PUF concept, and avoids the

complicating effects on path timing that are introduced by routing outputs of the macro

back into the inputs.

Space limitations on the Virtex-II Pro prevented inclusion of all 10 rounds2 of a full

AES implementation. The block labeled 'Initial Launch Vector (256)' represents the

pipeline FFs in the full-blown AES implementation, converted here to MUX-D scan-FFs.

A second copy of this block, labeled 'Final Launch Vector (256)', is added to emulate the

logic from the omitted previous round. In our implementation, two randomly generated

vectors that represent the challenge are scan-loaded into the two blocks.

The original design of the AES core included the logic for ten pipelined rounds, and

each round was itself divided into three pipelined stages (addkey, sbox, and colmix). This

design is intended as a high-capacity, high-throughput standalone AES engine, capable of

encrypting/decrypting as many as 30 128-bit datablocks at a time. A full implementation

of this design requires an FPGA with a rather large number of sequential resources to

2 The encryption algorithm defined in the AES standard [1] operates on 128-bit data
blocks, and allows for three different key lengths (128-bit, 192-bit, and 256-bit). The
number of rounds corresponding to these key lengths is 10, 12, and 14, respectively.
The underlying algorithm is identical for all key lengths.

33

support this level of pipelining, and was not suitable for our purposes. For our HELP PUF

engine, we chose to isolate a single round, and to eliminate the sequential elements

(registers) within the round, resulting in only combinational logic with a row of registers

at the output of the block. We replaced the FFs in these registers with REBEL FFs, which

are described in Chapter 4. In addition, we added two 256-element rows of FFs on the

input of the MUT which contain the initial and final vectors in a launch-capture test.

6.2. Data Collection Engine (DCE)

The DCE in Fig. 6 carries out a sequence of LC tests, measures the path delays, and

records the digitized representation of them, called PUF numbers or PNs, in block RAM

on the FPGA. In our current implementation, the DCE runs to completion before the BGE

component is started3.

6.2.1. Clock Generator

The clock generator module generates two clock signals: a Launch clock and a

Capture clock, and is shown on the left in Fig. 6. In our design, this module contains

three digital clock managers, or DCMs. A 'master' DCM is used to reduce the off-chip

oscillator-generated 100 MHz clock to 50 MHz. The output of the master DCM drives the

Launch and Capture DCMs. We utilize the fine phase adjustment (FPA) feature of the

Capture DCM to 'tune' the phase relationship between the Launch and Capture clocks. At

50 MHz, the FPA allows 80 ps increments/decrements in the phase shift of the Capture

3 While not addressed in this dissertation, the potential modification of the HELP engine
to allow the data collection and the bit generation engines to operate simultaneously
would offer two advantages: a reduction in the time required to perform a HELP PUF
operation, and a means by which to obfuscate the individual operations that would be
subject to targeting in a differential power analysis attack by an adversary.

34

clock on the Virtex-II Pro chips.

When the DCE is configuring the scan chains in preparation for the LC test, the

phase relationship between the Launch and Capture clocks is eliminated without an

adjustment to the phase of the Capture clock by using an FPGA primitive called a

BUFGMUX, which allows the Launch clock to be routed to the clock inputs of the

REBEL row for the shift operation. Prior to the launch event, the controlling state

machine selects the 180° phase-shifted output of the Capture DCM, and the FPA feature

is used to tune the phase in an iterative process designed to meet a specific goal (to be

discussed).

TABLE I. CAPTURE CLOCK PHASE ADJUSTMENT

Phase Adj. Phase Angle LC Interval

0 90° 5 ns

64 180° 10 ns

128 270° 15 ns

TABLE I. summarizes the characteristics of the Capture clock, and Fig. 7 illustrates

the timing relationship between the Launch and Capture clocks for different values of the

'Phase Adj.' control counter in the DCM. The launch and capture events occur on the

rising edge of the

corresponding clocks. From the

timing diagram, this allows

path delays from 5 ns to 15 ns

in length to be measured. The 0

to 128 range of values (called

PUF numbers, or PNs) act as a

35

T
lc_min

=5 ns

10 ns

Launch Clock

Capture Clock
(fpa=0)

Capture Clock
(fpa=64)

Capture Clock
(fpa=128)

Start Signal
(Asynchronous)

T
lc
=10 ns

T
lc_max

=15 ns

0 64 128

Fine Phase
Adjustment

Fig. 7: Launch/Capture Timing Diagram

digital representation of the path delays.

6.2.2. PN Memory

The PN Memory is a block RAM used to store the PNs. The size of this memory

block can be made as large or as small as required to efficiently store the PNs required to

generate a bitstring of a given size; however, the data width must be 8 bits, as the possible

Launch-Capture interval values spans the range of 0 to 128, inclusive.

6.2.3. LC LFSR Controller

The bit sequences that represent the challenges in the traditional language of PUF

research, and that are shifted into the Initial Launch Vector and Final Launch Vector scan

rows of the MUT, are generated by a 32-bit linear feedback shift register (LFSR)

contained in the LC LFSR controller. An additional register and control signals are

manipulated by a finite state machine (FSM) to cause the LC LFSR to be operated in one

of three modes. The first mode initializes the LC LFSR to a seed value provided as a

parameter by the HELP PUF user. Another mode stores the current value in the temporary

seed register and permits the LC LFSR controller to repeatedly issue the same 512-bit

launch vectors for repeated testing across multiple samples and across multiple insertion

points (see Chapter 4). Finally, a third mode retains the present LC LFSR contents,

effectively advancing the LC LFSR to the next 512-bit subsequence, based upon the

LFSR configuration.

6.2.4. REBEL Controller

The REBEL controller, while not part of the REBEL design, is used by the DCE to

configure the IP in the REBEL row attached to the output of the AES logic block in

36

advance of each launch-capture interval of each sample of each LC Test (path timing)

sequence.

6.2.5. Sample Analysis Engine (SAE)

This FSM analyzes the digitized results in the delay chain after each LC test for a

given path and determines whether the path is 'valid'. A valid path is defined as one that

has a real transition, is glitch-free, and produces consistent results across multiple

samples. If a PN is deemed to be stable, the PN is stored in memory, and a “valid path”

flag is set in the Valid Path Memory (see below) corresponding to that path name.

6.2.6. Valid Path Memory

A block RAM is used to record a pass/fail flag for each tested path that reflects its

validity (as defined by the criteria for the SAE). These flags are set/cleared during

enrollment and then played back from non-volatile or off-chip memory (public storage)

during regeneration, and represent the helper data needed in the regeneration process.

6.3. Bit Generation Engine

The Bit Generation Engine is comprised of a collection of hardware components

and state machines that support the use of the PNs stored in PN memory to create the

bitstrings. Included in the Bit Generation Engine are an LFSR-based pseudorandom

pairings generator that randomizes the order in which PNs are read from memory, a block

of BRAM that is used to store public data (in addition to the Valid Path Memory in the

DCE) for properly recreating the bitstring during regeneration, and finally, the BRAM

which contains the final bitstring.

37

Chapter 7: Bit Generation Techniques

The ultimate objective of the HELP PUF is the creation of bitstrings that can be

used for any of a number of purposes, ranging from cryptographic keys to chip

identification and authentication to hardware support for random number generation. As

stated in the introduction of this dissertation, the quality of the bitstring that the HELP

PUF produces is dependent upon several performance metrics, such as uniqueness,

repeatability, randomness, and efficiency.

To accomplish this aim, several techniques for generating bitstrings were created

and implemented. This section of the thesis provides a detailed examination of those

techniques, and a comparative analysis of the strengths and challenges of each.

7.1. Modulus

The genesis of the HELP PUF began with the germ of an idea – that the variation in

path delays present in an existing functional logic macro could provide the foundation for

a PUF. However, attempts to capitalize on this phenomenon soon presented a number of

challenges. The first issue that was clearly evident was that, unlike other delay-based

PUFs such as the RO PUF or the Arbiter PUF, path delays in a macro are not specially

designed to be all the same, and in any such logic macro, the presence of a large gross

difference between any two path lengths would result in a bias that would overshadow

any amount of process variation for that comparison, rendering the comparison unusable

since all instances would result in the same evaluation. At the other extreme,

38

environmental and measurement noise effects would necessarily result in some variation

being non-repeatable, unstable, and therefore unusable.

To address these issues, the path delay measurements came to be characterized as

being comprised of three distinct components. First, the bulk of the propagation delay in

a given path is not subject to vary from one chip instance to another. A path in one chip

that is, for example, 10 ns is not likely to be measured at, say, 15 ns in another chip. As a

result, this path delay component represents a constant term, and in a digitized, quantized

representation of this delay, this component will appear in the most significant bits

(MSBs) of the digitized value. The second component of any path delay measurement

will include the noise, or uncertainty (resulting from measurement noise, thermal or

voltage fluctuations, quantization errors, etc.), and will be found in the least significant

bits (LSBs) of a digitized delay value. The third component of delay measurement is the

variation in the signal (resulting from process variations that occur during the chip's

manufacture). This variation is found in the bits of a quantized value that are constant

across repeated measurements and changing environmental conditions for the same

device, but that are found to be different between the same paths on different chips.

It was theorized that it may be possible to make use of the digitized representation

of a pair of path delays to allow the direct comparison of the variability of any two paths,

regardless of their path length. To do this, we examined a large number of paths and

determined, empirically, the magnitude of the uncertainty across a series of repetitive

measurements of the same path on the same chip. We then compared the delay values of

the same path on several chips to acquire a sense of the magnitude of the variability

39

found in the population. The example in Fig. 8 illustrates this technique, and shows how

the digitized value can be apportioned into a single set of bits (shown in green in the

digitized values of the figure) that represent the variations between chips. In the example,

the uncertainty was found to be < 200 ps, and the variations as high as 3.2 ns (24, or 16

200-ps intervals). The upper bits in the values represented the gross path length, and were

discarded, along with the 4 LSBs that contained the uncertainty (noise).

Ultimately, this technique, while initially promising, was found to be unworkable

due to non-uniformity in the distribution of the variations among the 16 values

represented by the 4 bits. Additionally, as shown in Fig. 9, the noise was largely

determined to be less than 200 ps; however, the outliers that are evident show occasional

uncertainty of as much as 1.8 ns. As a result, the Modulus technique was ultimately set

aside in favor of more robust methods described below.

7.2. Dual P/N (DPN) Path Delay Binning Method.

With the failure of the Modulus method to reliably generate unique bitstrings,

another similar method was explored in which the modulus was not specifically required

40

Fig. 8: Modulus-Based Path Delay Comparison (deprecated)

to be a power of two (so as to be described by a specific number of bits), but rather an

integer value, derived empirically, that more closely approximates the amount of true

process variation found across the population of chips. The drawing in Fig. 10 on page 42

illustrates this concept. Using this technique, a modulus operation is applied to the PUF

numbers returned by the Data Collection Engine. The resulting values, referred to as

Mod-PNs, fall into the range of [0..M-1], where M is the empirically derived modulus

number, which includes both the variation and the noise components described earlier,

while removing the bulk of the path length. This results in the ability to directly compare

paths whose lengths may be vastly different (such as the 7.8 ns path and the 23.8 ns path

in Fig. 8) without the bias that would normally preclude such a measurement.

The original intent of developing this technique was to then evaluate pairs of Mod-

41

Fig. 9: Results of Uncertainty (Noise) Analysis

PNs, using an XOR-style comparison, and generate a '0' if the Mod-PNs were from the

same “group”, and generate a '1' if they differed. However, this technique alone was

found to be insufficiently robust to accommodate the uncertainty present in the data.

Additionally, the occurrence of jumps in path delay presents an intractable hurdle for

making this technique sufficiently reliable to be the basis of a bit generation technique.

However, the DPN method has proved to be an effective means of binning the

distribution of path delays for the MUT into a binary pair of groups that subsequently

form the basis of a more robust bit generation technique. What is required is a means of

providing hardware-based error tolerance for those relatively infrequent cases where a

PN measured during regeneration is incorrectly partitioned, due to jumps or other factors.

7.3. The Dual-PN Count (DPNC) Bit Generation Method

Most PUF are designed using identical circuit primitives as a means of avoiding

bias. This is not the case for HELP, because the PUTs vary widely in length. We

developed a technique called 'Dual-PN Count' which post-processes the PNs to eliminate

42

5

9

12

14

15

7

10

13

8

11

6
Pa

th
 D

el
ay

 (n
s)

112

0

16

32

48

64

80

96

128

PU
F

N
um

be
r

(P
N

)

M-1
Enrollment Regeneration

0

Low PN Group

High PN Group

0

M-1

0

M-1

M-1

0

0

M-1

0

M-1

Actual
Path Delay

Result of
Measurement

Application
Of Modulus

Fig. 10: Dual-PN Path Binning Method

this bias. The technique applies a modulus operation to the PNs, which 'trims off' the

higher order bits of the path delay measurement. The truncation of the PNs effectively

reduces all path delays to a range upper-bounded by the modulus, i.e., it reduces the

overall path length to a range more closely consistent with the degree of variations found

in the data and allows unbiased comparisons to be made among all paths. The trimmed

Mod-PNs are then partitioned into two groups for bit generation purposes.

The diagram in Fig. 10 provides a graphical depiction of this two-step process. The

process begins on the left using a PUT with a delay between 5 ns and 15 ns. The

measured PN for this PUT is originally in the range 0 to 128, but the modulus operation

reduces it to a number in the range of 0 to M-1 (where M is a user-specified modulus).

The right-most portion of the diagram in Fig. 10 shows the partitioning of the Mod-PNs

into two groups, where values in the range of 0 to M/2-1 are placed in the low PN group,

while Mod-PNs in the range of M/2 to M-1 comprise the high PN group. Noise in the

measurements is dealt with by discarding additional PNs (beyond those discarded

because of path stability problems as described in a previous section of this thesis). In

particular, Mod-PNs that fall into regions outside those delineated in the center portion of

Fig. 10 are considered invalid during enrollment. This allows valid PNs, i.e., those that

fall within the center portions, to 'shift' during regeneration by up to M/4 in either

direction before causing a bit flip. Therefore, this scheme both eliminates bias and adds

bit flip resilience to HELP.

7.3.1. Bit Generation using DPNC

The filtering operations described above are sufficient to eliminate the adverse

43

effects on delay introduced by noise and TV variations. However, large changes in the

Mod-PNs introduced by “jumps”, as described in Chapter 8, require a more resilient

technique. The rare nature of “jumps” makes it possible to develop a bit-flip avoidance

method that imposes a low area and time overhead. The 'Count' term in DPNC refers to

this feature of the method, and characterizes the process used to generate bits, which is

described as follows. During enrollment, DPNC parses the valid PNs until it encounters a

sequence of k consecutive values from the same group, where k is an odd-numbered,

user-specified threshold. Two counters track the length of a sequence of PNs from the

same group. As each PN is read, the counter for the corresponding group is incremented,

while the other group's counter is reset to 0. When either of the counters reaches k

(indicating that the k most recent PNs belong to the same group), a new bit is generated

and added to the bitstring, and a 'stop point' flag is set in the Stop Point Memory to

indicate that a bit was generated at this point. The value of the generated bit is a '1' if the

PNs are from the high PN group, and a '0' if the PNs are from the low PN group. During

regeneration, the stop point flags (represented as a bitstring) are consulted to determine

when bit generation occurs. Therefore, the bitstring of stop point flags represents

additional helper data.

7.3.2. DPNC Example

An example of the DPNC process is shown in Fig. 11. The modulus is set to M=22,

and the range of valid PNs accepted in the low PN bin are given by {4,5,6}, while the

valid PNs for the high PN bin are defined as {15,16,17}. The value of counter k is set to

5. This example first depicts the enrollment process, in which PNs are read from the on-

44

chip memory, left to right, as shown in the top of the figure. Also shown are the states of

the counters after each PN is read. When the high PN counter reaches 5 (as shown in the

circle), a '1' bit is generated and added to the bitstring (not shown), and a '1' is written to

the current location in the Stop Point Memory. At this point, both counters are cleared

and the process continues until a second bit (a '0' in this case) is generated. The bitstring

is built up in this fashion one bit at a time, until a user-specified number is reached.

The bottom portion of Fig. 11 illustrates the process carried out during

regeneration. Here, the '1' bits in the Valid Path Memory (not shown) indicate which

paths were used for bit generation during enrollment, and dictate now those paths that

must be re-tested for proper regeneration. Similarly, the '1' bits in Stop Point Memory (in

Fig. 11) force bits to be generated at these points (the counters are not consulted). The

counters, however, are consulted to determine the value of the generated bit, which is

determined by the larger of the two counter values. In the example, two of the five values

that were in the high PN bin during enrollment have 'flipped' and now appear in the low

45

Fig. 11: Dual-PN/Count Example

PN bin (see elements highlighted with the heavy borders).

However, because the majority, 3 out of 5, are high PNs, the algorithm correctly

regenerates a '1' bit despite the presence of the erroneous measurements. Also note that

the first erroneous measurement (the '8' in the heavy border) is of no consequence since it

is not part of the consecutive sequence of 5 PNs that are consulted to determine the value

of the bit (these 5 PNs are identified in the figure with a curly bracket).

This seemingly innocuous observation constitutes a major strength of this

technique. The initial intent of the DPNC algorithm called for simply incrementing the

counter associated with the current PN and monitoring the difference between the two

counters, generating a bit as soon as a difference of k was reached. The logic behind this

approach was that a difference of k would occur much more frequently than a sequence of

k would in a given sequence of PNs, resulting in less unused PNs and, as a result, greater

efficiency and reduced running time for the algorithm. However, an analysis of the two

approaches showed that this method resulted in only a 33% increase in efficiency, while

incurring 9.95 times as many errors as the technique which requires k common-group

values in a sequence. This analysis was the basis for the decision to implement the latter

technique for DPNC.

7.4. Universal/No-Modulus Bit Generation Technique

In [27], we developed a method called “Universal-No Modulus” (UNM) that is

capable of generating O(n2) bits from n PNs. UNM avoids bit flips by using only the

longest and shortest paths in the MUT for comparisons, discarding paths of medium

length. It avoids the bias that would normally result under these conditions by exploiting

46

the property that path stability is random across chips. In other words, even though the

result of comparing a short path with a long path is predictable from the design, the

stability, and therefore selection, of short and long paths is random from chip to chip.

Figs. 12(a) and 12(b) show the path distribution from a typical chip, with the PN

range plotted along the x-axis against ‘number of instances’ along the y-axis. During

enrollment (Fig. 12(a)), UNM uses two thresholds to partition the distribution into 3

regions. The tail regions on the left and right are considered valid PN regions. PNs in the

tails represent short (Low PNs) and long (High PNs) paths respectively. The large

‘invalid’ region between the thresholds, given as 32 and 90 in Fig. 12(a), is a safety zone

between the groups designed to prevent ‘jumps’, and bit flips, between the Low and High

PN regions. The placement of the thresholds determines the balance between the number

of paths in each tail region, and are established using a process that characterizes the

path-length distribution at the start of each enrollment. Jumps, although infrequent, can

occur because of the appearance and disappearance of hazards (glitches) on side-inputs of

gates along the tested paths. Small temperature variations or power supply noise

influence the behavior of these hazards, in which changes in the delays of difference

branch paths are affected nonuniformly. Examples of tolerable (green line) and

intolerable (red line) jumps are shown Fig. 12, wherein the lines indicate PNs that were

significantly higher during regeneration than they were during enrollment.

The safety zone is only enforced during enrollment, and is redefined as the

midpoint between the margins during regeneration as shown in Fig. 12(b). The DCE

process creates a valid path bitstring during enrollment so the same sequence of path tests

47

can be carried out during regeneration. In our experiments, we found that UNM generates

a valid PN after approx. every 20 tested paths, depending on the user-specified width of

the 'invalid' region. The “XOR-style” bit generation process is carried out by comparing

pairs of PNs, where PNs from the same region generate a '0', while those from opposite

regions generate a ‘1’. With n PNs, up to n*(n-1)/2 bits can be generated by considering

all combinations.

7.4.1. Weakness of the Universal/No-Modulus Method

The Universal/No-Modulus bit generation method is robust in the presence of

jumps that do not exceed at least one-half the size of the safety gap. However, the net

effect of imposing this large gap in the allowable PNs during enrollment is a dramatic

reduction in the number of stable paths that can be used for bit generation. This creates

three effects, all of which adversely affect the utility of this technique. First, the

efficiency, in terms of the number of paths that must be tested for a given bitstring length

and the running time of the algorithm, is severely limited. Additionally, the size of the

public storage requirement increases in direct proportion to the increased demand for

48

Fig. 12: Universal/No-Modulus Bit Generation Technique

paths tested. Finally, the amount of excess entropy for a given macro-under-test is

reduced, increasing the probability that a reduction in performance against standardized

randomness testing will occur.

7.5. Universal/No-Modulus Difference (UNMD) Bit Generation

In response to these weaknesses in the UNM bit generation technique, in [28], we

presented the HELP PUF and a bit generation technique called Universal/No-Modulus

(UNM). We investigate a variant of this UNM technique in this section. Unlike the

DPNC described above, UNM leverages the randomness associated with the stability of

paths across chips and, as a result, there is no need to consider bias, i.e., UNM can

compare short paths with long paths directly without first reducing the overall path length

of the PNs, as is true for DPNC. The technique described in [27] defines a low and a high

PN bin (similar to DPNC), but with the bins defined in this case over the entire path

distribution range from 0 to 128. A large margin of approx. 100 is created between the

bins to allow for shifts and jumps in the PNs during regeneration. The original technique

therefore discards a large fraction of PNs that fall within this margin during enrollment

(beyond those discarded because of path stability problems as described in Chapter 4).

We refer to the variant described here as 'UNM Difference' or UNMD. In UNMD,

we replace the fixed margin with the concept of a noise threshold, discussed below. By

doing so, UNMD does not discard stable PNs as is true of UNM, but rather preserves and

makes use of all PNs generated by the DCE. This feature reduces the workload imposed

on the DCE to find a suitable set of PNs that meet a bitstring target by 95.8% when

compared with the original fixed threshold technique. As we will show, UNMD offers

49

significant advantages in both running time and memory

requirements.

7.5.1. Bit Generation Process and Procedure

All components except for the BitGen Engine in Fig.

6 on page 32 are identical for both the DPNC and UNMD

techniques. The BitGen Engine for UNMD, shown in Fig. 13,

randomly selects two PNs to compare (unlike DPNC which

parses the PNs one at a time as shown in Fig. 6). The

Random Pairing Generator produces the two addresses of the

PNs to compare and the values are read from on-chip memory

into a pair of registers (PN 'A' and PN 'B'). PN 'B' is then subtracted from PN 'A' to

produce a PN difference. The magnitude of the difference determines the strength of that

pairing, as discussed in the next section. If that difference is sufficiently large, then the

sign of the comparison determines the value of the generated bit. A negative sign

produces a '0', and a positive sign produces a '1'.

7.6. Thresholding Technique

A thresholding technique similar to that proposed in [29] is used to decide if a

given comparison generates a strong bit (which is kept) or a weak bit (which is

discarded). Thresholding works as follows. During enrollment, a noise threshold is

defined using the path distribution histogram for the chip. The histogram is constructed

using all n PNs collected by the DC engine. The noise threshold is then computed as a

constant that is proportional to the difference between the PNs at the 5 and 95 percentiles

50

...0 0 0 0 01 1 1 1

PN 'B'PN 'A'

Compare

Random Pairing
Generator

BG_LFSR

Addr 2Addr 1

BitGen Engine

'Strong Bit' Memory
(public data)

Strength Encoding Logic

0 11 0 0 ...

En
ro

llm
en

t

R
eg

en
er

at
io

n

PN
Memory

Fig. 13: Bit Gen
Engine (UNMD)

in this distribution. Therefore, each chip uses a different threshold that is 'tuned' to that

chip's overall (chip-to-chip) delay variation profile.

For each comparison, the difference between the two PNs is compared against the

noise threshold. A strong bit is generated if the magnitude of the difference exceeds the

threshold, otherwise the bit is discarded. Simultaneously, a bit is added to the 'Strong Bit

Memory' shown in Fig. 13 that reflects the status of the comparison, with a '1' indicating

a strong bit and a '0' indicating a weak bit. During regeneration, the Strong Bit Memory is

consulted to determine which comparisons are used to regenerate the bitstring.

Fig. 14 shows the path distribution for a typical chip. The dashed lines indicate the

5 and 95 percentiles, with PNs of 23 and 117 respectively. The difference between these

PNs is multiplied by a noise margin (0.90 in this example) to compute a noise threshold

of 84.6. Pairings which differ by more than this threshold form 'strong' bits, while

pairings that differ by less than this threshold are deemed to be 'weak' and will be

discarded. The 'pairings' in Fig. 14 illustrate this concept.

7.7. TMR-Based Error Correction Scheme

In Chapter 8, a detrimental behavior referred to as “jumping” is described as a

51

0 20 40 60 80 100 120

PN Difference: 117-23=94

Noise Threshold: 0.90 * 94 = 84.6

95%
(117)

5%
(23)

'Strong' Bit
'Weak' Bit

Fig. 14: Illustration – UNMD Technique

worst-case condition and these discontinuous jumps represent our biggest challenge in

dealing with bit flips. Both DPNC and UNMD are adversely impacted by jumps. In our

experiments, some path delays changed because of jumps by as much as 4.5 ns, or 58

PNs, at different TV corners. Moreover, the PN differences computed by UNMD

exacerbate the problem, where jumps in two path delays can combine in a worse-than-

worst-case fashion.

This is illustrated in the graphs of Fig. 15, which depict data from one of the Virtex-

II boards. The graphs plot the 'strong bit' number along the x-axis against the PN

differences on the y-axis, with the noise thresholds (as described above) set to ±77.4 for

this Virtex-II board. The data points from enrollment on the left all fall above or below

these thresholds (by definition), but data points from measurements taken at different TV

corners in the graph on the right 'infringe' into the space between the thresholds. Most

data points remain close to the thresholds, but some move significantly (because of

jumps), as highlighted, by as much as 5.6 ns or 71 PNs.

52

Fig. 15: Effect of Thresholding Technique on Reliability

By choosing a conservative noise threshold, bit flips caused by jumps such as those

shown in Fig. 15(b) can be avoided. However, a different strategy is needed in cases

where the application requires the probability of a bit-flip to be negligibly small (e.g.,

encryption). We proposed a technique in [28] that is based on a popular fault tolerant

technique called triple modular redundancy (TMR), which is capable of reducing the

probability of failure to values below 1e-11. The method constructs 3 copies of the

bitstring (using the abundance of bits provided by the PUF) and uses majority voting to

construct the final bitstring. The probability of a bit-flip error is significantly reduced

because any single bit-flip that occurs in any column of bits defined by the 3 copies can

be tolerated. Probability of failure is investigated in Chapter 9.

53

Chapter 8: Reliability Enhancement Techniques

Throughout the course of the experimental work with the HELP PUF, two

persistently troublesome issues have emerged as the primary sources of the errors in our

bitstring generation techniques.

The first is the change in path delay that is caused by one or more changing

environmental conditions, primarily in supply voltage and operating temperature. The

impacts of these changes on the propagation delay through a given path are consistent

with the drain current equations for the complementary MOSFET devices that comprise

the gates along the path, and are therefore somewhat predictable and consistent.

The second source of errors, and the least easily predicted or mitigated, are

characterized by discontinuous “jumps” that can cause the delay for a given path to

change in abrupt, often large amounts of as much as 4 ns to 5 ns.

A third, less problematic error mechanism consists of the subtle differences in the

distributions of the path lengths across the range of paths measured for each individual

chip. These differences manifest themselves in two distinct modes: the first mode is a

apparently random, normal distribution of mean path values throughout the population of

boards, and the second mode is marked by a distinct shift in the means of two speed

grades (-6, -7) for the devices mounted on the two boards.

To correct for these sources of errors in the PN measurements, the following

reliability enhancement techniques were devised and implemented in hardware: a

temperature/voltage compensation technique (TVCOMP) for addressing the changes in

54

environmental conditions and a path distribution characterization technique (PDIST) for

addressing the differences in path length distribution between devices. Unfortunately, the

“jump” behavior described earlier, and depicted in Fig. 16, has been found to be too

inconsistent and too unpredictable to be solved using the types of broadly applied

corrective measures described here. The only techniques that have been shown to be

effective against these jumps are the error-tolerance features included in the bit

generation techniques in the previous chapter.

8.1. Temperature/Voltage Compensation (TVCOMP)

To adjust for the measurable changes in path length that are caused by changing

voltages and temperatures occurring between enrollment and regeneration, a technique

was developed that establishes a mean path length for a small subset of paths that are

55

Fig. 16: Jump Behavior vs. Path Length

deemed to be stable during an enrollment. We then compute the total path lengths of the

same set of paths during regeneration, and adjust each of the subsequent path

measurements to accommodate this shift in mean path delay.

To implement this feature, we maintain two registers during enrollment (a path

counter and a path delay accumulator). For each of the first 64 valid, stable paths, that

path length is added to the accumulator and the counter is incremented. After 64 paths

have been added to the counter, the counter is divided by 64, using a rightward shift of 6

bits (26=64). This value is transferred into a register to use as a “mean enrollment

reference delay”, and the enrollment process continues normally.

During regeneration, the same technique is performed: the first 64 path delays are

accumulated and the result is divided by 64 to determine the “mean regeneration delay”.

At this point, the difference between the mean delay values at enrollment and

regeneration is computed, and the Data Collection Engine restarts the regeneration,

applying the difference to the regenerated path delay values. Following this adjustment,

each of the path delays measured during regeneration are shifted back into alignment

with the path delays measured during enrollment.

In implementing this technique, two approximations were made and merit

discussion here. The first approximation is that all paths are equally affected by the

changing environmental conditions. In fact, this is not the case; consistent with the drain

current equations for MOSFET devices, the path length change, Δt, is a function of the

overall path delay, so that Δt tends to be greater for long paths and less for short paths.

However, because the 64 paths that are sampled are drawn without bias from the chip's

56

path distribution, this approximation has some merit and represents a reasonable trade-off

between accuracy and hardware efficiency and simplicity.

The second approximation that is made concerns the stability of the environmental

conditions during the Data Collection Engine operation. This algorithm is implemented

only at the beginning of the data collection process. As a result, additional changes in the

operating conditions the occur during the data collection process will degrade the

effectiveness of the TVCOMP process. Experiments performed with different lengths of

temperature soak times (the time after a new temperature point was reached and held

before a new operation was started) clearly showed that thermal changes propagating

through the device during the data collection process, whether during enrollment or

regeneration, adversely impacted the effectiveness of the technique.

8.2. Path Distribution (PDIST) Characterization

The bit generation techniques presented in the previous chapter rely on some

degree of freedom from structural bias in the underlying data (the PNs stored in PN

memory). One potential source of bias is an incorrect assumption about the likelihood of

some numbers occurring more frequently than others. This condition can occur for

several reasons, but the primary cause is a difference in the distribution of paths lengths

being measured from one chip to the next.

Path length distribution (hereafter referred to as “path distribution”) in the MUT for

a given chip was found to follow a generally Gaussian distribution around a mean path

length of 11 ns to 12 ns. Furthermore, the distributions of the mean path lengths of each

of the chips for each of two speed grades also was normally distributed around a

57

population mean for that speed grade. Slower chips (identified on the package with a

speed grade of -6) tend to have a mean path length of 10.70 ns while faster chips (speed

grade -7) have a mean path length of 9.93 ns. The graphic in Fig.17 provides a succinct

depiction of the path length distributions in our set of boards through the use of box plots

which capture the mean, minimum, maximum, and 25th and 75th percentiles of the

distribution. As shown, the boards are divided into two sets (“Slow”/“Fast” indicates a

speed grade of (-6/-7), respectively).

The PDIST algorithm is a process that, when requested via a user parameter, is

invoked at the start of an enrollment operation that uses either UNM or UNMD as the bit

generation algorithm. It runs immediately following the TVCOMP algorithm, and

collects the path lengths of 1,024 random paths in the distribution. A finite state machine

then sorts the results using a histogram-based sorting algorithm and identifies the PUF

numbers associated with the 5th and the 95th percentiles of the distribution. This

mechanism allows a finite state machine within the data collection engine, called the

LC_Test, to dynamically adjust the parameters of the data collection engine so that the

same number of paths exist at the low and high ends of the range, resulting in a more

58

Fig. 17: Distributions of Path Lengths across FPGA Boards

balanced distribution of PUF numbers from each end of the path length spectrum. This

dynamic balancing is required to prevent bias in the data from adversely impacting the

randomness performance of the HELP PUF.

59

Chapter 9: Experimental Results and Analysis

To test the effectiveness of the HELP PUF, environmental experiments were carried

out on 30 Virtex-II Pro boards using a thermoelectric cooler (TEC) apparatus and a

programmable power supply. As indicated earlier, each board was tested at 9 TV corners,

defined by all combinations of three temperatures (0°C, 25°C and 70°C) and three

voltages (1.35V, 1.50V and 1.65V). Data collected at 25°C and 1.50V is treated as

enrollment data while the data collected at the remaining 8 TV corners is treated as

regeneration data.

9.1. Hamming Distance (HD)

Inter-chip Hamming Distance (HD) measures uniqueness of the bitstrings across

boards, and is computed by counting the number of bits that are different in the bitstrings

from each pairing of boards. An average inter-chip HD is computed using the results from

all possible pairings, which in our experiments is 30*29/2 = 435. The inter-chip HDs are

typically converted into percentages by dividing each of them by the length of the

bitstrings. The best achievable average HD under these conditions is 50%. Intra-chip HD,

on the other hand, is the number of bits that differ in two bitstrings obtained from the

same chip but tested under different environmental conditions. The ideal intra-chip HD is

zero, and a non-zero value indicates that one or more bit flips occurred during

regeneration. In our experiments, intra-chip HDs are computed across the 9 TV corners

for each board and then an average is computed using the 9*8/2 = 36 individual HDs.

60

The 'average-of-the-averages' is then computed using the average HDs from all boards.

Fig. 19 shows histograms for the inter-chip HDs and other statistical results obtained for

the DPNC and UNMD techniques.

9.1.1. UNM

Fig. 18 shows the HD distribution as well as the mean (Mn) and standard deviation

(SD) of the Gaussian curve fitted to, and superimposed on, the distribution. The inter-

chip HD is 50.0019% for bitstrings with a length of 1,028,890. This is very close to the

ideal value of 50%. The standard deviation is also very small. Combined with a mean

61

Fig. 19: Hamming Distance (HD)

60

10

0

70

0.3 0.4 0.5 0.6 0.7

HD (PCH)
Mean: 49.923%
StDev: 0.320%

HD (Actual)
Mean: 127.8

StDev: 8.2

Length:
256 Bits

of

 in
st

an
ce

s

Intra-chip HD
Mean: 0.038%
(0.097 bits)

HD (Actual)
Mean: 3.35M
StDev: 1273

Length:
6.7M Bits

HD (PCH)
Mean: 50.001%
StDev: 0.0002%

Intra-chip HD
Mean: 4.59%
(Non-TMR)

0.3 0.4 0.5 0.6 0.7

of

 in
st

an
ce

s

10

0

60

70

(a) (b)

DPNC UNMD

(TMR)
Mean: 0.00%

Fig. 18: Hamming Distance (HD) for UNM Method

intra-chip HD of 2.74e-7, these results indicate the bitstrings are highly reliable and

unique.

9.1.2. DPNC

The length of the bitstrings using the DPNC technique is 256 bits. The average

inter-chip HD in Fig. 19(a) is 49.923%. A Gaussian curve is shown fitted on top of the

inter-chip HD distribution as a means of illustrating expected behavior. The standard

deviation of the normal curve is 8.192 (where smaller is better). This value is consistent

with the expected standard deviation of a normally distributed set of random values.

The average intra-chip HD is 0.038%. The non-zero value indicates that bit-flips

occurred with a frequency of 0.097 bit-flips per 256-bit string.

9.1.3. UNMD

The length of the bitstrings for the UNMD technique is 6,698,512. Fig. 19(b) plots

the inter-chip HD distribution. The average inter-chip HD is 50.001%. The intra-chip HD

using the bitstrings prior to applying is 4.59%, which became 0% after applying TMR.

9.2. NIST Statistical Analysis of Randomness

To test the randomness of the bitstrings produced by the HELP PUF, we used a

statistical test suite provided by the National Institute of Science and Technology, or

NIST [14]. These tests were applied to the bitstrings from the 30 boards.

9.2.1. UNM

The NIST statistical test suite is also applied to the bitstrings from the 29 boards.

The bitstrings pass all NIST statistical tests, with no more than 2 boards failing any of the

62

15 tests. In addition, these bitstrings pass all of the P-value-of-the-P-values tests, even in

spite of the fact that the NIST documentation indicates that a minimum of 55 boards is

required before this metric can be considered valid.

9.2.2. DPNC

All of the bitstrings generated by this method passed each of the tests in the subset

of NIST tests that are applicable to 256-bit strings.

UNMD. The bit sequences generated by the UNMD method were sufficiently long

that all 15 NIST tests are applicable. All 15 tests passing, with no fewer than 28 boards

passing any one test (the number required by NIST for a test to be considered 'passed').

9.3. Analysis of Running Time

9.3.1. UNM

On average, the number of valid paths tested per second is 30.20 for enrollment and

88.03 for regeneration. This includes the time required to test and discard invalid paths,

and the time required to generate the n(n-1)/2 bitstrings from the n PNs stored in block

RAM.

9.3.2. DPNC

Bitstring generation times for HELP are reported here as the average number of bits

generated per minute, excluding serial data transfer time. During enrollment, the time

required to generate each bit depends on several factors, including the percentage of

tested paths that are stable, the value of k (the number of consecutive copies of a value

required to produce a bit), and the number of PNs that are read from memory before

63

encountering k consecutive copies.

With k=5, the average number of paths tested for each generated bit during

enrollment is 1,261, due to the highly selective nature of the DPN binning algorithm

described previously. Bits are generated at an average rate of 36.4 bits per minute. During

regeneration, since only valid paths are measured, the average bit generation rate

increases to 167 bits per minute.

9.3.3. UNMD

On average, the data collection engine tested 3.92 paths for each of the 4,096 valid

PNs that we collected across 30 boards. On average, 22.35 paths were tested, at up to 12

samples per path, for stability every second. For the UNMD analysis, the PNs were

collected by the HELP PUF engine, while the bit generation process was completed off-

chip using a software program. This was done to allow us to evaluate a range of noise

thresholds without needing to re-collect the PNs each time. As a result, the FPGA running

time of the bit generation process for UNMD is not known.

9.4. Probability of Failure: Results and Analysis

9.4.1. UNM

As discussed above, a bit flip occurs when a PN measured during regeneration

jumps across the “bit flip line” as shown by the example in Fig. 4(b). The number of bit

flips that occurred across the 8 regenerations for the 29 boards is 10. This yields a

probability of failure of 8e-5, computed as 10 / (29 boards x 4096 PNs per board).

Although beyond the scope of this work, we have developed a simple, very low-overhead

64

technique that eliminates all bit flips in our results and improves the probability of failure

to 7.25e-11.

9.4.2. DPNC

There were a total of 9 unique errors that resulted in 19 bit flips during the 240

regenerations that were performed during our experimentation. The overall single-bit

probability of failure (POF) is 3.09x10-4 (19 errors per (30 boards * 8 regenerations per

board * 256 bits per regeneration)). 16 of these 19 bit flips occur when the core logic

voltage of the FPGA is 10% lower than nominal.

9.4.3. UNMD

The probability-of-failure analysis for the UNMD method is performed as two

analyses: the POF for the initial bitstring and the POF for the TMR-based bitstring

described in Chapter 7. Both of these analyses involve generating bitstrings at all 9 TV

corners across a range of noise thresholds. In each case, we record the number of bit flips

that occur at each noise threshold, and then fit an exponential curve to this data. The

exponential fit allows us to model expected error rates for noise thresholds far higher than

those at which bit flips actually occur in our empirical results.

For the initial bitstrings, we computed a theoretical error rate of 1.54 x 10-6, or 1 bit

flip in approx. 650,000 bits generated. Fig. 20(a) illustrates the actual and theoretical

error rates for each of the TMR-based bitstrings. Fig. 20(b) shows an enlarged view of the

theoretical error rate at a noise margin of 0.90. At this noise threshold, our POF is 1.096

x 10-11, or 1 bit flip in approx. 91 billion bits generated.

65

9.5. UNMD Security Vulnerability and Mitigation.

The HELP PUF, when using the UNMD method, is capable of generating reliable,

cryptographic-strength bitstrings of up to several million bits in length. However, an

adversary with access to the simulation model of the target system may be able to

“reverse engineer” the secret bitstring. While this vulnerability would be difficult to

exploit, the only way to completely eliminate the threat is to obfuscate the Valid Path

Memory component of the public data.

Since the DPNC method is not subject to this vulnerability, we propose to use

DPNC to generate a small (32- to 64-bit) bitstring that can be used to obscure the public

data produced by the UNMD technique using the same set of PNs during the enrollment

process. The public data for this short bit string is added to the obfuscated UNMD public

data. At the start of regeneration, the unobscured public data for the DPNC method is

used to regenerate the short bitstring, which is then used to unveil the public data for the

66

Fig. 20: Probability of Failure (UNMD)

UNMD regeneration process.

67

Chapter 10: Future Work

The FPGA implementation of the HELP PUF has been highly successful in

demonstrating the concept of the PUF and studying its performance. The PUF has been

shown to perform well against the three fundamental criteria for PUF performance that

were set out in the introduction: uniqueness (inter-chip HD), robustness (intra-chip HD),

and randomness (NIST). Additionally, through the use of the TMR-styled bitstring

replication method explained in Sect. 7.7, we have been able to reduce the probability of

an error in a 256-bit bitstring to approximately 3 parts per billion.

In this chapter, I present a discussion of additional work that will be of value to

increasing the attractiveness of, and/or enhancing our understanding of, the HELP PUF.

10.1. ASIC Implementation

Perhaps the most obvious extension of this work is to port an improved version of

the HELP PUF's design into an application-specific integrated circuit (ASIC) platform. At

the time of this writing, this work is already underway, and a design is being prepared for

inclusion on a test chip that will be fabricated in a 130-nm bulk technology. This

implementation is expected to be completed in the Fall of 2013.

Challenges posed by an ASIC implementation will include the necessity of

designing the required clocking resources, replacing the proven digital clock managers

(DCMs) that are available on the Xilinx Virtex2-Pro FPGA. In particular, the ability to

control the phase relationship between a DCM output and a reference clock must be

68

preserved. The critical role that this adjustment plays in both the operation of the PUF

and its performance means that this design goal will require careful analog-level

simulation of phase controllability using a post-layout netlist.

10.2. Aging: A Study of the PUF Performance Over Time

The reliability of the HELP PUF is directly related to the relationships between

path delays of different paths in the MUT. Therefore, anything that causes those path

delays to change presents a risk to the PUF's ability to correctly regenerate a bitstring.

And, while we have thus far treated the variations upon which the PUF relies for its

operation as being static and unchanging after the point of manufacture, this assumption

may not be valid when the effects of aging are considered.

Aging effects for path delay include anything that affects the rate of charging and

discharging the parasitic on-path and off-path capacitances. For transistors, changes to

threshold voltages, effective resistance, and charge carrier mobility caused by hot carrier

injection (HCI) and negative bias temperature instability (NBTI) are a primary concern,

while electromigration in the metal lines of the interconnections can also impact the

resistances through which these currents are supplied.

The specific concerns surrounding aging effects on the HELP PUF differ slightly

depending upon the bit generation method that is invoked. For UNM/UNMD, the

bitstring that is generated depends on the relative differences in delay between paths, so

that the sensitivity of these methods to common-mode changes (changes that affect all

paths equally) will have a less detrimental effect than localized changes in individual path

delays. DPNC, however, considers each of the PN values individually, and is therefore

69

more likely to suffer from any changes to path delay that cause mod-PNs to change from

one group to another.

At present, we do not have any specific data that directly correlates the same path

delay measurements separated only by significant amounts of time. The evolving nature

of the HELP PUF's structure and operation means that the data that was collected in the

early experiments is not directly comparable to the data collected more recently. This is

due to the lack of control over the actual placement and routing of each of the different

versions of the HELP PUF engine bitstream. As new features were added and changes

made to the implementation, each generated bitstream resulted in the use of different

primitives and routing resources on the FPGA, and therefore path delays for the same

path (comprised of an initial and final launch vector and a target insertion point) no

longer bore any relevance.

An accelerated aging test regimen on all or part of the population of test boards is

not a desirable option. The XUP boards that we have used for this experimentation

represent a sizable investment and are a valuable resource for other experimentation. As

a result, any testing that risks permanent damage to the boards is not suitable under the

circumstances. However, specific repetition of tests using the same bitstreams that were

used in the early phase of HELP PUF experimentation could be performed solely for the

purpose of determining the impact of aging on the HELP PUF's performance.

10.3. The Use of Voltage Scaling to Improve Reliability

Our environmental testing revealed a strong correlation between the worst

reliability performance and low supply voltage. Sixteen out of nineteen bit flips that

70

occurred during testing of the DPNC method occurred when the supply voltage was set to

1.35V (10% below the normal VCC).

One idea that offers a measure of protection against this error-producing condition

is to perform an additional filtering step during enrollment to eliminate paths that are

susceptible to jumping at lower-than-normal supply voltages. The use of voltage scaling

circuits to reduce the supply voltage on an ASIC could allow paths to be measured at both

nominal and low voltages, and if significant changes occur between the path lengths

under these conditions, the path could be marked as invalid in PN memory and the

possible error averted.

Voltage scaling circuits were originally introduced to match power consumption

and applications' performance requirements in computing hardware designed for mobile

applications. Static voltage scaling technologies such as Intel's SpeedStep are used to

match power and performance requirements on a per-application level, while true

dynamic voltage scaling techniques (such as Marvell's Xscale processor technology)

involves “on-the-fly” changes to operating voltage and processor frequency based upon

continuously changing operating environments[30]. It is anticipated that either approach

would be appropriate for this application.

Much of the research work required to explore this option could be done using

existing hardware, and a sense of the effectiveness of voltage scaling on the reliability of

HELP could possibly be obtained from existing data from our TV experiments. The same

is true for the ASIC version; it is not strictly necessary to incorporate voltage scaling

hardware into the on-chip design, since the entire chip's supply voltage may be adjusted

71

externally. Regarding the inclusion of voltage scaling circuitry on the test chip currently

being design, several questions emerge. These questions include whether the scaling

circuitry could be built simply from the standard cell library currently being developed

for the next test chip, how costly the circuit would be in terms of area, power, and design

complexity, and whether its inclusion in the design would adversely impact the other

primitives on the ASIC.

10.4. Attack Threat Analysis and Mitigation

An important topic in any PUF research is the threat of adversarial attacks designed

to steal secret data from a PUF. Side-channel attacks are aimed at extracting information

from one of a number of secondary sources, such as global chip current, power

consumption, electromagnetic emissions, or optically observing the circuit's behavior

through the use of such techniques as backside thinning. More invasive attacks, such as

probing attacks, attempt to learn the key through more direct physical access.

Another type of side-channel attack is the fault injection attack. This is considered

an active attack because it involves the creation of one or more fault conditions, which

might include abnormal power supply levels, out-of-spec clock timing, or invalid timing

conditions (i.e., setup-hold violations). By recording the resulting output of the PUF, it is

possible to gain critical information about the internal state of the device.[31]

Another form of attack is the modeling attack, wherein an attacker repeatedly

applies challenges and records the corresponding responses in order to build a linear

model of the variations in the system, and in so doing can learn the secret data or

significantly reduce the size of the problem to the point at which a brute force attack is

72

feasible.

Of these, perhaps the greatest threat of attacks on the HELP PUF are power

analysis attacks. In particular, it would be prudent to study the effectiveness of

differential power analysis (DPA) attacks, in which repeated power traces are captured on

an oscilloscope and analyzed using statistical methods to identify power signatures

associated with certain states, values, or conditions within the chip. No specific attempts

have been made thus far to assess the vulnerability of HELP to DPA attacks. Additionally,

no hardware features have been added to HELP to obfuscate the power behavior of

critical operations that may leak the internal states of the engine. Both of these represent

opportunities for improving the viability of the HELP PUF.

The HELP PUF may prove to be more resilient to model-building attacks, since the

specific MUT does not present an adversary with a simple, repeating set of gates to

model, in the way that Arbiter PUFs and RO-PUFs do. However, the work that we have

been doing has heretofore been confined to ensuring that the PUF performs well in terms

of the specific PUF metrics, and a complete attack threat analysis has been outside of the

scope of that work.

73

Chapter 11: Conclusion

In this dissertation, details have been presented regarding the design and

experimental testing of HELP, a practical, realizable PUF, and several bit generation

techniques have been proposed and their strengths and weaknesses analyzed. In

particular, two of these bit generation techniques, called DPNC and UNMD, have been

put forward as showing the most robustness, reliability, and utility. The HELP PUF is

based on variations in path delays and on the stability of those paths, each measured from

a core logic macro embedded within the chip. The results of the HD, NIST, and POF

analyses show the bitstrings to be genuinely random, unique, and highly reproducible

under changing environmental conditions, all of which are critical requirements for the

potential use of HELP in applications such as mobile computing or smartcards.

Finally, a list of additional research work was included that, if completed, will

strengthen the viability of the HELP PUF as a cryptographic-strength hardware security

primitive.

74

References

[1] “Federal Information Processing Standard 197 (FIPS-197), Advanced Encryption

Standard.” [Online]. Available: csrc.nist.gov/publications/fips/fips197/fips-

197.pdf.

[2] “National Institute of Science & Technology.” [Online]. Available:

http://csrc.nist.gov/.

[3] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way functions.,”

Science (New York, N.Y.), vol. 297, no. 5589, pp. 2026–30, Oct. 2002.

[4] B. Gassend, D. Clarke, and M. van Dijk, “Controlled Physical Random Functions,” in

Conf. on Computer Security Applications, 2002, pp. 149–160.

[5] K. Lofstrom, W. R. Daasch, and D. Taylor, “IC Identification Circuit using Device

Mismatch,” in IEEE International Solid-State Circuits Conference, 2000, vol. 46,

no. 8, pp. 372–373.

[6] P. Simons, E. van der Sluis, and V. van der Leest, “Buskeeper PUFs, a promising

alternative to D Flip-Flop PUFs,” in 2012 IEEE International Symposium on

Hardware-Oriented Security and Trust, 2012, pp. 7–12.

[7] G. E. Suh and S. Devadas, “Physical Unclonable Functions for Device Authentication

and Secret Key Generation,” in 2007 44th ACM/IEEE Design Automation

75

Conference, 2007, pp. 9–14.

[8] P. S. Abhranil Maiti, “Improving the Quality of a Physical Unclonable Function Using

Configurable Ring Oscillators,” in International Conference on Field

Programmable Logic and Applications, 2009, pp. 703–707.

[9] Y. Su, J. Holleman, and B. P. Otis, “A Digital 1 . 6 pJ / bit Chip Identification Circuit

Using Process Variations,” IEEE Journal of Solid State Circuits, vol. 43, no. 1, pp.

406–407, 2008.

[10] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Lightweight secure PUFs,” in

2008 IEEE/ACM International Conference on Computer-Aided Design, 2008, vol.

0, no. 1, pp. 670–673.

[11] J. Ju, J. Plusquellic, R. Chakraborty, and R. Rad, “Bit string analysis of Physical

Unclonable Functions based on resistance variations in metals and transistors,” in

2012 IEEE International Symposium on Hardware-Oriented Security and Trust,

2012, pp. 13–20.

[12] D. Suzuki and K. Shimizu, “The Glitch PUF : A New Delay-PUF,” in Conf. on

Hardware Embedded Security (CHES), 2010, pp. 366–382.

[13] J. Lie and J. Lach, “At-speed delay characterization for IC authentication and Trojan

Horse detection,” in 2008 IEEE International Workshop on Hardware-Oriented

Security and Trust, 2008, pp. 8–14.

76

[14] “Xilinx Corporation.” [Online]. Available: http://www.xilinx.com.

[15] M. Tehranipoor and C. Wang, Introduction to Hardware Security and Trust.

Springer, 2012, p. 427.

[16] M. Bhargava, C. Cakir, and K. Mai, “Comparison of Bi-stable and Delay-based

Physical Unclonable Functions from Measurements in 65nm bulk CMOS,” in

Custom Integrated Circuits Conference (CICC), 2012, pp. 1–4.

[17] S. S. Kumar, J. Guajardo, R. Maes, G. Schrijen, and P. Tuyls, “The Butterfly PUF

Protecting IP on every FPGA (Extended Abstract),” in Hardware-Oriented

Security & Trust (HOST, 2008, no. 71369, pp. 67–70.

[18] G.-J. Schrijen and V. van der Leest, “Comparative analysis of SRAM memories used

as PUF primitives,” 2012 Design, Automation & Test in Europe Conference &

Exhibition (DATE), pp. 1319–1324, Mar. 2012.

[19] Y. Hori, T. Yoshida, T. Katashita, and A. Satoh, “Quantitative and Statistical

Performance Evaluation of Arbiter Physical Unclonable Functions on FPGAs,”

2010 International Conference on Reconfigurable Computing and FPGAs, pp.

298–303, Dec. 2010.

[20] C. Yin and G. Qu, “Temperature-aware cooperative ring oscillator PUF,” 2009 IEEE

International Workshop on Hardware-Oriented Security and Trust, pp. 36–42,

2009.

77

[21] A. Maiti, L. McDougall, and P. Schaumont, “The Impact of Aging on an FPGA-

Based Physical Unclonable Function,” in International Conference on Field

Programmable Logic and Applications, 2011, pp. 151–156.

[22] C. Lamech, J. Aarestad, J. Plusquellic, R. Rad, and K. Agarwal, “REBEL and TDC:

Two embedded test structures for on-chip measurements of within-die path delay

variations,” 2011 IEEE/ACM International Conference on Computer-Aided Design

(ICCAD), pp. 170–177, Nov. 2011.

[23] Y. Haihua and A. D. Singh, “Experiments in detecting delay faults using multiple

higher frequency clocks and results from neighboring die,” International Test

Conference, 2003. Proceedings. ITC 2003., vol. 1, pp. 105–111, 2003.

[24] J. Aarestad, C. Lamech, J. Plusquellic, D. Acharyya, and K. Agarwal,

“Characterizing within-die and die-to-die delay variations introduced by process

variations and SOI history effect,” Proceedings of the 48th Design Automation

Conference on - DAC ’11, p. 534, 2011.

[25] “Digilent, Inc.” [Online]. Available: http://www.digilentinc.com.

[26] “OpenCores.com.” [Online]. Available: http://www.opencores.org.

[27] J. Aarestad, P. Ortiz, D. Acharyya, and J. Plusquellic, “HELP: A Hardware-

Embedded Delay PUF,” IEEE Design & Test, pp. 1–8, 2013.

[28] J. Aarestad, J. Plusquellic, and D. Acharyya, “Error-Tolerant Bit Generation

78

Techniques For Use With A Hardware-Embedded Path Delay PUF,” in Hardware-

Oriented Security & Trust (HOST), 2013, pp. 1–8.

[29] J. Ju, R. Chakraborty, C. Lamech, and J. Plusquellic, “Stability Analysis of a

Physical Unclonable Function based on Metal Resistance Variations,” in

Hardware-Oriented Security & Trust (HOST), 2013, pp. 1–8.

[30] L. T. Clark, F. Ricci, and W. E. Brown, “Dynamic Voltage Scaling with the XScale

Embedded Microprocessor,” in Adaptive Techniques for Dynamic Processor

Optimization, Springer`, 2008, pp. 123–143.

[31] B. A. Barenghi, L. Breveglieri, I. Koren, F. Ieee, and D. Naccache, “Fault Injection

Attacks on Cryptographic Devices : Theory ,” Proceedings of the IEEE, vol. 100,

no. 11, pp. 3056–3076, 2012.

79

	University of New Mexico
	UNM Digital Repository
	9-4-2013

	A hardware-embedded, delay-based PUF engine designed for use in cryptographic and authentication applications
	James C. Aarestad
	Recommended Citation

	Chapter 1: Introduction
	Chapter 2: Background
	2.1 PUF Classification and Types
	2.1.1 Bistable Element PUFs
	2.1.1.1. SRAM/Butterfly PUFs
	2.1.1.2. The BusKeeper PUF.

	2.1.2. Delay-Based PUFs
	2.1.2.1. The Arbiter PUF
	2.1.2.2. The Ring Oscillator (RO) PUF

	2.1.3. The Power Grid PUF (PG-PUF)

	2.2. PUF Design – Challenges

	Chapter 3: The Hardware-Embedded Delay PUF
	Chapter 4: REBEL Test Structure
	4.1. REBEL for LSSD Scan
	4.2. REBEL For Mux-D-Style Scan
	4.3. PUT Delay Analysis Process

	Chapter 5: Preliminary HELP PUF Research
	Chapter 6: FPGA-based HELP PUF Engine
	6.1. Macro-Under-Test
	6.2. Data Collection Engine (DCE)
	6.2.1. Clock Generator
	6.2.2. PN Memory
	6.2.3. LC LFSR Controller
	6.2.4. REBEL Controller
	6.2.5. Sample Analysis Engine (SAE)
	6.2.6. Valid Path Memory

	6.3. Bit Generation Engine

	Chapter 7: Bit Generation Techniques
	7.1. Modulus
	7.2. Dual P/N (DPN) Path Delay Binning Method.
	7.3. The Dual-PN Count (DPNC) Bit Generation Method
	7.3.1. Bit Generation using DPNC
	7.3.2. DPNC Example

	7.4. Universal/No-Modulus Bit Generation Technique
	7.4.1. Weakness of the Universal/No-Modulus Method

	7.5. Universal/No-Modulus Difference (UNMD) Bit Generation
	7.5.1. Bit Generation Process and Procedure

	7.6. Thresholding Technique
	7.7. TMR-Based Error Correction Scheme

	Chapter 8: Reliability Enhancement Techniques
	8.1. Temperature/Voltage Compensation (TVCOMP)
	8.2. Path Distribution (PDIST) Characterization

	Chapter 9: Experimental Results and Analysis
	9.1. Hamming Distance (HD)
	9.1.1. UNM
	9.1.2. DPNC
	9.1.3. UNMD

	9.2. NIST Statistical Analysis of Randomness
	9.2.1. UNM
	9.2.2. DPNC

	9.3. Analysis of Running Time
	9.3.1. UNM
	9.3.2. DPNC
	9.3.3. UNMD

	9.4. Probability of Failure: Results and Analysis
	9.4.1. UNM
	9.4.2. DPNC
	9.4.3. UNMD

	9.5. UNMD Security Vulnerability and Mitigation.

	Chapter 10: Future Work
	10.1. ASIC Implementation
	10.2. Aging: A Study of the PUF Performance Over Time
	10.3. The Use of Voltage Scaling to Improve Reliability
	10.4. Attack Threat Analysis and Mitigation

	Chapter 11: Conclusion
	References

