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Abstract

Cryptographic  and  authentication  applications  in  application-specific  integrated 

circuits (ASICs) and field-programmable gate arrays (FPGAs), as well as codes for the 

activation  of  on-chip  features,  require  the  use  of  embedded  secret  information.  The 

generation of secret  bitstrings using physical  unclonable functions,  or PUFs, provides 

several  distinct  advantages  over  conventional  methods,  including  the  elimination  of 

costly non-volatile memory,  and the potential to increase the random bits available to 

applications. 

In this dissertation, a Hardware-Embedded Delay PUF (HELP) is proposed that is 

designed to leverage path delay variations that occur in the core logic macros of a chip to 

create random bitstrings. A thorough discussion is provided of the operational details of 
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an embedded path timing structure called REBEL that is used by HELP to provide the 

timing functionality upon which HELP relies for the entropy source for the cryptographic 

quality of the bitstrings. Further details of the FPGA-based implementation used to prove 

the viability of  the HELP PUF concept  are  included,  along with a  discussion  of  the 

evolution of the techniques employed in realizing the final PUF engine design.

The bitstrings produced by a set of 30 FPGA boards are evaluated with regard to 

several  statistical quality metrics including uniqueness, randomness, and stability.  The 

stability  characteristics  of  the  bitstrings  are  evaluated  by  subjecting  the  FPGAs  to 

commercial-grade temperature and power supply voltage variations.  In particular,  this 

work evaluates the reproducibility of the bitstrings generated at 0C, 25C, and 70C, and 

10% of the rated supply voltage. 

A pair  of  error  avoidance  schemes  are  proposed  and  presented  that  provide 

significant  improvements  to  the  HELP PUF's  resiliency  against  bit-flip  errors  in  the 

bitstrings. 
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Chapter 1: Introduction

Recent  years  have  seen  a  decline  in  the  vertically-integrated  nature  of  the 

semiconductor industry. One effect of this change has been a heightened concern over the 

issues  of  hardware  security  and  trust  in  the  VLSI  design/manufacturing/distribution 

cycle. Threats of such activities as the unauthorized cloning of integrated circuits and the 

placement  of  key  components  in  sensitive  electronic  systems  that  may  have  been 

compromised or altered are serious, real, and difficult to thwart using only procedural and 

policy methods. Additionally, the security weaknesses imposed by the storage of secret 

keys and identification in non-volatile storage in an IC make these techniques 

unattractive as well. As a result, the emergence of these threats is causing designers to 

search for effective measures to counter the security risks that they present. One 

technique that has shown promise is the physical unclonable function (PUF); the 

exploitation of repeatedly random device properties to distinguish one instance of a 

device from another. 

PUFs  enjoy  a  key  advantage  over  other  techniques  for  establishing  unique 

identification for individual integrated circuits, particularly over storage-based solutions 

such  as  eFUSE  and  EEPROM  technologies;  because  their  uniquely  identifying 

characteristics derive from naturally-varying physical properties within the die, they do 

not require, nor do they permit, the impression of an identification mark from the outside 

world. 
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Physical  unclonable  functions  (PUFs)  are  becoming  increasingly  attractive  for 

generating random bitstrings for a wide range of security-related applications. PUFs are 

designed  to  reliably  differentiate  one  chip  from another  by leveraging  the  naturally-

occurring random process variations which occur when the chips are fabricated. Process 

variations  are  increasing  as  layout  geometries  shrink  across  technology  generations. 

Although undesirable from a design perspective, the electrical variations introduced by 

process variations define the entropy source on which PUFs are based. PUFs are designed 

to measure and 'digitize' these electrical variations to create random bitstrings. The most 

common sources of variations that PUFs leverage include path delay, metal resistance 

and SRAM power-up patterns.

The quality of the bitstrings produced by a PUF are typically evaluated using a 

suite of statistical tests. Generally, three criteria are considered essential for a PUF to be 

used for applications such as encryption: 1) the bitstrings produced for each chip must be 

sufficiently  unique to distinguish each chip in the population, 2) the bitstrings must be 

random, making them difficult for an adversary to model and predict, and 3) the bitstring 

for any one chip must be stable over time and across varying environmental conditions. 

In this thesis, we present a detailed examination of a PUF, called HELP, that is 

based on path delay variations. The novel features that differentiate HELP from other 

delay-based  PUFs  include:  1)  the  capability  of  comparing  paths  of  different  lengths 

without adding bias, 2) elimination of specialized test structures, 3) a minimally invasive 

design  with  low  per-bit  area  and  performance  impact,  and  4)  a  PUF engine  that  is 

integrated into the existing functional units of the chips and requires no external testing 
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resources.  The  integration  of  HELP  into  an  existing  functional  unit,  such  as  an 

implementation of the Advanced Encryption Standard (AES), allows it to leverage a large 

source of entropy while minimizing its overall footprint.  This large source of entropy 

allows HELP to generate long bitstrings, while being conservative in the paths selected 

for bit generation. The large availability of paths also enables unique opportunities for 

avoiding bit-flip errors.

The HELP PUF introduced in this thesis presents a new concept in path delay PUFs 

and includes experimental results, performance analysis against a set of established PUF 

evaluation criteria, and a complete PUF primitive and an associated on-chip PUF engine. 

The term “hardware-embedded” refers, in this context, to PUFs that generate repeatedly 

random digital bit strings which can subsequently be supplied to encryption circuitry for 

use in its functional operation. Because the chip is able, internally, both to generate and 

consume the PUF bit string (e.g., as a private key for an encryption engine), the bit string 

does not need to be transmitted off-chip. 

HELP is based upon path delay, and takes advantage of manufacturing variations 

which alter the propagation delays in a target design. By eliminating the magnitudes of 

path lengths and accounting for timing and measurement uncertainties, this PUF enables 

the comparison of logic paths whose actual path delays might vary widely. Because I am 

not constrained to only comparing paths with similar lengths, this approach permits an 

exponential number of delay comparisons, and consequently, the generation of PUF bit 

strings the lengths of which grow exponentially with increasingly long challenge vectors. 

Using data that was generated during prior experimentation using an on-chip path delay 

3



measurement  structure,  we examine  the  resulting  comparisons  using  several  standard 

statistical metrics to determine the effectiveness of our PUF strategy, including analyses 

of  numeric  distribution,  Hamming  distance,  Euclidean  distance,  and  tests  of  the 

randomness of the resulting bit string. 

As with all PUFs, we have found that uncertainty in our delay measurements has a 

direct  bearing on the  amount  of  the  variability that  can  be  used to  create  separation 

between devices. As a result, we have performed an analysis of the uncertainty that is 

present in the data, and that information is presented here as well. 

There is a growing set of advanced statistical analysis tools and techniques that are 

being commonly applied to the data generated by any random or pseudo-random number 

generator  (RNG/PRNG);  these include a  battery of  statistical  tests  from the National 

Institute of Standards and Technology (NIST) [2]. We have included a discussion of our 

ongoing  work  with  these  and  other  tools,  such  as  the  use  of  helper  data  and  error 

correction to improve the utility of PUF bit strings. 
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Chapter 2: Background

The PUF first appeared as a mechanism for generating secure bitstrings in [3] and 

[4]. The PUF as a chip identifier, however, was introduced earlier in [5]. Proposed PUF 

designs generally fall into one of the following classifications: SRAM PUFS  [6], ring 

oscillators  [7][8], MOS drive-current PUFs  [9], delay line and arbiter PUFs  [10], and 

PUFs based upon variations in a chip's metal wires [11]. Delay-based PUFs also include 

such  designs  as  the  Glitch  PUF,  which  leverages  variation  in  glitch  behavior  and is 

presented in [12]. Each of these PUFs takes advantage of one or more naturally-varying 

properties, and nearly all PUFs share a common set of challenges such as measurement 

error and uncertainty, and fluctuations in voltage or temperature. The degree to which a 

given PUF can tolerate or mitigate these challenges is an important indicator of its utility 

for generating secret data.

The HELP PUF proposed in this dissertation, is to the best of our knowledge the 

only delay-based PUF that combines the following features: 

• The HELP PUF is entangled with the hardware in which it is embedded, in the sense 

that the path delays measured in, e.g.,  an AES core logic macro,  can be used to 

generate a bitstring that is subsequently used as the key for use by AES in functional 

mode. The proximity of the bit generation to the hardware that uses the bitstring 

improves robustness against invasive or probing attacks designed to steal the key.

• The  bit  flip  avoidance  scheme  proposed  in  this  thesis  significantly  reduces  the 

probability of bit-flip errors during regeneration.
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• The physical implementation of HELP uses standard hardware resources commonly 

available  in  the  fabric  of  an  FPGA,  including  an  on-chip  digital  clock  manager 

(DCM). (Note: the authors of [13] also leverage the high timing resolution provided 

by a DCM for Trojan detection and IC authentication, although they did so using an 

earlier version of the same FPGA. They used a Virtex-II device from Xilinx  [14], 

with a DCM capable of timing increments of 160 ps, while our experiments utilize a 

Virtex-II Pro, which has the capability of phase adjustments of just under 80 ps when 

used  with  a  50-MHz  clock  like  that  used  in  our  experiments.  Additionally,  the 

applications  most  directly  targeted  by  their  research  were  authentication  and 

hardware Trojan Horse (HTH) detection.)

• By using the core logic of AES itself, a large source of existing entropy is leveraged.

The area of hardware security research that is concerned with developing methods 

of security based upon a device's unclonable properties can be coarsely divided into two 

categories: 1) methods that make use of those properties which are purely physical in 

nature, and 2) methods which rely upon those physical properties which in some way 

impinge on the electrical behavior or performance of an individual component or device.

The first  category,  referred to in Chapter 4 of  [15] as Unique Objects  (UNOs), 

encompasses  a  number  of  interesting  and  potentially  viable  identification  methods, 

including, for example, the unique scattering patterns created by light passing through, or 

reflecting  from,  the  surface  of  an  object  under  consideration.  However,  these  UNOs 

typically  require  specialized  external  measurement  equipment,  are  fundamentally 

different in kind than those involving the electrical properties of electronic circuits and, 
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as such, are not considered further in this work. 

2.1 PUF Classification and Types 

In  recent  years,  as  PUFs  have  gained  attention  in  hardware  security  research, 

developments in the field have crystallized into a handful of architectural classes. Most 

proposed PUFs fall into one of several categories: so-called “bistable element PUFs”, 

ring oscillators (ROs), MOS drive-current differences, and delay line and arbiter PUFs, as 

well as PUFs based upon variations in back-end-of-line (BEOL) properties, such as metal 

thickness and via resistance. 

2.1.1 Bistable Element PUFs 

2.1.1.1. SRAM/Butterfly PUFs

SRAM PUFs are based upon a traditional six-transistor static RAM cell, and make 

use  of  the  mismatched  threshold  voltages  in  small  inverter  transistors  caused  by 

variations in the manufacturing process  [16]. Proponents of the SRAM PUF claim that 

the  combined  effects  of  common-mode  process  variations  and  common-mode 

temperature and power supply fluctuations are effectively eliminated by the differential 

nature of the SRAM PUF. These PUFs have less of an advantage in those devices without 

SRAM cells,  as  an  important  design  feature  of  this  PUF type  is  the  regularity  and 

symmetry of the layout which must be present in the cells to prevent adverse biasing 

effects from degrading the performance of the PUF. A similar PUF concept, known as the 

Butterfly PUF [17], is based upon two opposing NAND gates that interact in much the 

same way as an SRAM cell and has been proposed for use in those designs which do not 
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use SRAM memory cells as a standard cell library component. As in the SRAM PUF, the 

stable state of each Butterfly PUF cell is determined randomly by mismatches between 

the threshold voltages and drive strengths of the component transistors. 

This PUF is also heavily dependent upon consistent layout to eliminate bias. SRAM 

PUFs and Butterfly PUFs are examples of a class known as “weak PUFs”, characterized 

by a relatively small number of challenge-response pairs (CRPs). Strong PUFs, such as 

those  described  in  the  upcoming  paragraphs,  generally  are  marked  by a  large,  often 

exponential, number of CRPs. 

2.1.1.2. The BusKeeper PUF.

This PUF concept was proposed as an area-efficient alternative to the use of D-

Flipflop (DFF)-styled and traditional 6T-style SRAM PUFs.

The buskeeper, also known as a  weak keeper, is a small, inputless cross-coupled 

latch made from minimum- (or less-than-minimum-) sized transistors that is used to help 

to  preserve  a  bus-attached (tri-stated)  register's  state.  The  small  size  of  the  device is 

designed to be easily overwritten by changes in the state of the register itself.

Beyond  the  savings  in  area  and  power,  there  is  little  difference  between  the 

fundamental operation of the PUF itself and that of other bistable element PUFs. The 

authors of [6] present the details of a PUF implementation using the buskeeper in a 65-

nm TSMC bulk technology. The analysis includes a discussion of the PUF's performance 

across an industrial range of temperatures. No voltage analysis is provided, and while this 

could be considered a weakness of the research, it was shown in [18] that SRAM PUFs 

are, in relative terms, not significantly subject to changes in supply voltage. Given that 
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the final state of the Buskeeper PUF is also arbitrated during the power supply ramp to its 

final value, it is reasonable to conclude that the Buskeeper PUF is not adversely affected 

by changes in supply voltage, it would have strengthened the research to demonstrate this 

immunity in the paper.

2.1.2. Delay-Based PUFs 

Two examples of strong PUFs are the arbiter PUF [19] and the ring oscillator PUF 

[20]. These delay-based PUFs make use of variations in device characteristics which alter 

the path delays through these PUFs. These PUFs are of particular interest to the work that 

I have done, as HELP is also a type of delay-based PUF. 

2.1.2.1. The Arbiter PUF 

The Arbiter  PUF makes use of a pair  of configurable,  identically laid-out paths 

through a set of path-switching elements, terminating at an arbitration element. In many 

such designs, the arbiter is a 'D' flip-flop with one path connected to the 'D' input and the 

other path driving the D-FF's clock input. A positive-going edge is asserted onto both 

paths simultaneously, setting up a race condition between the propagating edges which is 

determined by the random variations in the path design. In some devices, the path which 

is connected to the clock input of the arbiter will be faster, and a transition will occur at 

the clock input ahead of the 'D' input, and a '0'  will be stored in the arbiter.  In other 

devices, the 'D' transition will occur ahead of the clock, and a '1' will be stored. Multiple 

arbiters  PUF  structures,  with  large  numbers  of  switching  elements  in  each,  can  be 

implemented to increase the number of resulting bits in the PUF bit string, and the size of 

the challenge vector space is determined by the number of switching elements in each 
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PUF. 

While arbiter PUFs have been demonstrated to be effective and realizable, there are 

several significant drawbacks, as well: they impose heavy area and power penalties, and 

they require a high degree of regularity to prevent bias. Additionally, as the length of an 

arbiter PUF increases, the Central Limit Theorem dictates that the aggregate path length 

tends to converge to a mean value, and there is often not sufficient difference in the path 

delays to overcome the setup and hold time of the arbiter, resulting in many unstable, 

unusable CRPs. 

2.1.2.2. The Ring Oscillator (RO) PUF 

Another delay-based PUF is the RO PUF which, as the name implies, uses a large 

number of ring oscillators and pulse counters. The ROs are enabled and used to increment 

counter values for a fixed period; the values in the counters are then compared and the 

results of the comparisons are used to generate binary digits in the PUF bit string. This 

PUF also imposes  a  high  area  cost,  and in  addition,  the  large  number  of  oscillating 

devices incurs large dynamic power consumption. 

RO  PUFs  are  used  heavily  in  the  research  of  PUFs  because  they  are  easily 

understood and can be easily implemented in FPGA-based hardware experiments.  Their 

widespread adoption in commercial PUF applications could be unlikely, however, as their 

high area cost and large dynamic power footprint will remain a liability throughout the 

lifetime of the chip.

2.1.3. The Power Grid PUF (PG-PUF) 

The PG-PUF is an example of a PUF based upon the electrical characteristics of a 

10



power distribution system (PDS) such as that found in a traditional IC design. This PUF 

belongs  to  a  class  of  PUFs  that  leverage  physical  properties  in  an  existing  chip  (as 

contrasted  with  front-end-of-line  (FEOL)  variations  in  transistors);  as  such,  the 

performance of this PUF will depend more upon the types and magnitudes of variations 

that occur in post-metal manufacturing operations. The PG- PUF relies on comparisons 

between the voltage drops that occur at different points in the multi-level metal grid of a 

PDS when current flow is induced at a point in the network. Process variations result in 

localized changes in the resistance of the metal  lines and the vias between the metal 

layers.  An  alternate  method  is  to  combine  the  voltage  and  current  measurements  to 

compute  an  equivalent  resistance  (REQ).  Regardless  of  the  method  used,  the  binary 

evaluations that result  from these comparisons are  used to  create a unique digital  bit 

string for a given device. 

Although no formal study on the impact of aging has been completed at the time of 

this writing, the PG-PUF may offer a significantly reduced sensitivity to changes in PUF 

response  over  time.  This  is  because,  unlike  the  classification  of  PUFs  that  draw on 

variations in the front-end-of-line (FEOL) processes that produce the transistor devices, 

the only significant aging effect related to the entropy source upon which the PUF draws 

is  electromigration, the physical displacement of metal molecules caused by extremely 

localized areas of high current (such as in corners and jogs in the metal  lines).  The 

temperature effects related the FEOL, in contrast,  will be related more to the readout 

circuitry,  and  therefore  appear  as  common-mode  changes  that  affect  the  individual 

measurements equally.  (Note: the author concedes that this is assertion amounts to little 
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more than informed speculation.)

2.2. PUF Design – Challenges

Each of the PUFs that have been proposed or implemented attempts to leverage one 

or  more  naturally  varying  properties.  These  PUFs  share,  to  varying  degrees,  the 

challenges that arise from a number of sensitivities, including measurement error and 

uncertainty,  fluctuations  in  process,  voltage,  or  temperature  (PVT)  conditions,  and 

instability over time [21], among other factors. Devising methods and techniques for the 

mitigation of these sensitivities is equally as important to the development of robust and 

reliable PUFs as the underlying PUF design itself. Regardless of the type of PUF that is 

considered, the ability to attain perfection in terms of robustness and randomness remains 

an elusive goal. As a result, some PUF designers have come to rely on the use of “helper 

data”,  which  is  information  concerning  the  PUF  bit  string  that  is  made  externally 

available to help to identify those bits that are not stable enough to be included in a PUF 

bit string. This information, however, “leaks” or reduces the amount of entropy that a 

PUF can leverage. As such, one desirable characteristic of a robust PUF is the avoidance 

of the need to rely on the use of helper data. 

One technique for improving PUF performance without the need for helper data is 

the use of hardware redundancy to create a voting scheme, which reduces the probability 

of single-bit instability in a PUF bit string. This technique necessarily incurs a penalty in 

terms of area and power consumption, while maximizing the use of available entropy in 

the PUF design. 

The HELP PUF is, to the best of my knowledge, the only delay-based PUF that 
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offers  the  following  combination  of  characteristics;  it  is  hardware-entangled,  which 

means that 'secret' information is derived from the core-logic components themselves and 

therefore secrets remain localized on-chip to those components that use that information, 

it takes advantage of an existing REBEL path-delay measurement structure (discussed 

thoroughly in the following chapter), and it is 'all-digital', which means that it can be 

implemented using standard library components, i.e., there is no need for a specialized 

on-chip PUF structure outside of the PUF engine that controls its operation. 
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Chapter 3: The Hardware-Embedded Delay PUF

The Hardware-Embedded Delay PUF, or HELP, is a physical unclonable function 

that draws on the variations in path delay found in an existing combinational logic block. 

The actual path delay measurements are carried out by an embedded test structure called 

REBEL [22]. This test structure was developed primarily for adding the ability to do on-

chip path delay timing measurements in Design-For-Testability (DFT) applications, but 

which offers  a  convenient  mechanism for  providing  path timing functionality for  the 

HELP PUF as well. The REBEL embedded timing structure is discussed in greater detail 

in the following chapter.
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Chapter 4: REBEL Test Structure

In  [22], we proposed an embedded test structure (ETS), called REBEL, which is 

designed to measure regional path delays  in macros while minimizing these types  of 

adverse effects. This test structure is designed to serve applications such as model-to-

hardware  correlation,  detection  of  hardware  Trojans  [13],  design  debug  processes, 

detection of small  delay defects  [23],  and,  especially relevant for this  work,  physical 

unclonable functions. Each of these areas requires accurate measurements of path delays 

and/or the ability to differentiate at high resolutions between delays of neighboring paths. 
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The REBEL ETS leverages the scan chain architecture to measure delay variations; 

in particular, it uses a special configuration of flush delay mode that is available in level-

sensitive  scan  design  (LSSD) scan  chains  and in  modified  Mux-D scan  designs.  We 

demonstrated in a previous work [24] the promise of capturing regional delay variations 

using a special launch-capture timing sequence applied while in flush delay mode. We 

extend this technique here by allowing output signals from design macros to be inserted 

into the flush delay chain for path delay measurements. 

4.1. REBEL for LSSD Scan

As indicated previously, REBEL is integrated into the scan chain directly, as shown 

in Fig. 2 for a clocked-LSSD-style scan architecture. Here, the regions labeled ‘Product 

16

Fig. 2: REBEL Row Control Logic (RCL)



Macro’ are functional units composed of combinational logic. Three scan chain segments 

are shown that serve to deliver input and capture output from these macros. The three 

blocks  labeled Row Control  Logic  identify components  of  the REBEL ETS,  and are 

described below. Beyond these three ‘header’ blocks, smaller blocks are also needed for 

local  scan  signal  control  for  each  of  the  scan  FFs.  The  basic  idea  is  to  generate  a 

transition on the inputs to the macro using a standard launch-off-capture transition fault 

test. In this scenario, the scan chain is loaded with the initial pattern of the 2-pattern test 

and the system clock (CLK) is used to generate a transition in the core logic by capturing 

the output of a previous block, or by capturing the PI values, as shown in the figure. One 

or more transitions are propagated through the macro, as shown by the dotted line labeled 

“PUT” (for “path-under-test”). The PUT’s transition emerges on an output of the macro, 

and drives the D input of a scan FF in the second row. Special control logic associated 

with the scan FF (to be described) allows the transition to propagate along the scan chain, 

as shown by the dotted line in Fig.  2. CLK is then reasserted to halt the propagation, 

which effectively ‘takes a digital snapshot’ of the signal propagation behavior along the 

scan chain, including any glitching that may have occurred. This digital snapshot is then 

scanned out for analysis. 

For designs that make use of LSSD-style scan, propagation along the scan chain is 

relatively straightforward to implement. This is true because LSSD inherently supports a 

flush-delay (FD) mode of operation. In FD mode, both the 'Scan A' clock (SCA) and 

'Scan B' clock (SCB) are held high, effectively making both latches of the FF transparent, 

i.e., any transition generated on D propagates to Q after a ∆t that represents the delay 
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through the  FF.  FD mode  effectively makes  the  scan  chain  a  combinational  inverter 

chain. 

However, the configuration in Fig.  2 differs from the traditional definition of FD 

mode because only a portion of the scan chain is configured in FD mode. In particular, 

the scan FFs along the top row and those along the middle row to the point of insertion of 

the PUT operate in functional mode, and only those to the right (and below) of this point 

operate in FD mode. In order to realize this configuration, several changes are required to 

the logic implementing the scan operation. 

One of  the components  to  support  this  dual  mode of  operation is  labeled Row 

Control Logic (RCL) on the left side of Fig. 2. These blocks, in combination with a scan 

chain encoding scheme and localized scan FF logic, enable this dual mode of operation 

and provide a mechanism to specify a PUT’s output to direct into the scan chain. This is 

accomplished by configuring several  state bits  in the RCL, and by loading a specific 

pattern into the scan chain before the launch-capture (LC) timing sequence (REBEL test) 

is applied, as described below. 

Each RCL block controls a ‘row’ of scan FFs, called row-FFs, in the following 

description.  Fig.  2 shows  a  schematic  diagram of  the  RCL.  The  top  portion  of  the 

diagram controls local (row-specific) scan clock signals, labeled SCA_L and SCB_L (_L 

for local) while the bottom portion contains two shift  registers (Shift  Reg) and mode 

select logic. A large portion of the RCL logic is in place to allow different sections of the 

row FFs to operate in either of the traditional functional or scan modes of operation. The 

global  (chip-wide)  scan  signals  (labeled ‘global  SCA’ and ‘global  SCB’)  are  used to 
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specify one of the three possible global operational states. When both are low, the entire 

row is set to operate in functional mode, with CLK controlling the launch-capture activity 

in the row FFs. Non-overlapping assertion of these signals causes all scan FFs to act as a 

shift register, implementing scan mode. The timing mode used by REBEL is specified 

when both of these signals are asserted. This is illustrated by the ‘1’s on global SCA and 

SCB in Fig. 2. 

Note that the two shift registers in the RCL block are conditionally inserted into the 

scan chain during a scan operation and can therefore be configured prior to a REBEL test. 

The shift registers’ scan clock inputs (SCA/SCB) are also gated to prevent them from 
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entering FD mode, thereby destroying the state information, when both global SCA and 

SCB  signals  are  asserted.  The  state  of  the  two  shift  registers  defines  the  mode  of 

operation for the row when REBEL mode is activated. Two control bits (as opposed to 

one) are needed to implement the simultaneous functional and FD modes discussed above 

because there are actually four possible conditions that need to be handled. The three 

rows of scan FFs in Fig.  1 illustrate three of the four conditions. For example, the scan 

FFs in the top row need to be in functional mode throughout the REBEL test. In contrast, 

the scan FFs in the bottom row need to be in FD mode to extend the propagation path of 

the PUT signal captured in the middle row. Finally, the middle row contains scan FFs in 

both of  these  modes,  i.e.,  the scan FFs to  the left  of  the  PUT insertion point  are  in 

function mode while those to the right are in FD mode. The fourth condition is just a 

special case of this third condition where the insertion point is the left-most scan FF in 

the row. Table 1 identifies the bit configurations that handle these four conditions. 

RCL Shift Reg Functionality

00 All scan FFs in Row are in functional mode

01 All scan FFs in row are in FD mode

11/10 Left scan FFs in functional mode, right scan FFs in FD mode 
(10: Insertion Point is leftmost scan FF)

Table 1: Configuration States for Row Control Logic

Before describing the annotations in Fig. 4, we turn to the configuration of the scan 

FFs. Fig. 4(a) shows a clocked LSSD FF (CLSSD), which consists of three latches. The 

two latches on the left implement the functional path, and are controlled by the system 
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clock  (Clk).  The  center  latch  is  dually  ported  and  serves  both  as  the  slave  for  the 

functional path and as the master in the LSSD pair. The right-most latch is the slave latch 

of the LSSD pair. The top pass-gate of the dual port latch is highlighted to indicate that it 

has been modified. In the following paragraphs, it will become apparent that during the 

REBEL test, both CLK and SCA will be asserted simultaneously during a portion of the 

test. This creates a potential shorting condition in the dual port latch, i.e., both the master 

of the functional path and the SI input paths are enabled. To prevent this from happening, 

we modified the single input pass gate connected to the master’s output to include a 

second input. The second input contains a “wired-AND” configuration, and prevents the 

master’s output from driving the dual port latch when both CLK and SCA are asserted 

simultaneously. 

Fig. 4(b) shows the additional logic required to integrate REBEL into a design with 

CLSSD-style scan. The functional path’s D-input is fanned out to a 2-to-1 MUX. This 

will allow for the insertion of a macro’s PUT into the scan chain during the REBEL test. 

The local scan signals (SCA_L and SCB_L) are gated by mode select logic shown along 

the  bottom  of  the  figure.  The  mode  select  logic  incorporates  the  normal  scan  path 

(SOPrev to the SI input), as well as a propagating mode bit (ModePrev to ModeNext). 

The  mode  select  logic  is  responsible  for  selecting  the  insertion  point.  This  is 

accomplished by preloading the row-FFs with a pattern of all ‘1’s followed by a ‘0’ from 

left to right along the row-FFs. The ‘0’ in this sequence causes the next scan FF to be 

configured in a special way, i.e., it allows the PUF output signal to drive the SI pin. The 

annotation and dotted line in the figure illustrates this case, and assumes the scan FF on 
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the left (not shown) is configured with a ‘0’ bit. Given the scan chain connects the SO 

output of each scan FF to the SOPrev of the next scan FF, this arrangement allows the 

scan chain encoding to specify the PUT insertion point.  Moreover,  the split  mode of 

operation required for this row is implemented using a propagating mode bit (ModePrev 

and ModeNext), which is ‘1’ for all scan FFs to the left of the insertion point and ‘0’ to 

the right. The left-most scan FFs in the middle row of Fig.  1 are annotated with a bit 

configuration that enables the insertion of the PUT at the position shown. 

The mode select logic also participates in controlling the local scan signals (SCA_L 

and SCB_L), and completes the implementing of the four conditions described above in 

reference to the RCL. The shift registers in Fig. 2 are annotated with four states (for the 

four conditions). The ‘00’ state, which forces functional mode for the row-FFs (row 1 in 

Fig. 1), sets both SCA_L and SCB_L to ‘1’. Given that these signal connect to the inputs 

of the two NOR gates in instances of the scan FFs (as shown in Fig. 4(b)), and ‘1’ is the 

dominate value for a NOR gate, this condition effectively disables FD mode for the entire 

row. In this case, the ModeNext and SONext output signals of the RCL, which connect to 

the left-most scan FF’s ModePrev and SOPrev signals, are irrelevant. 

The ‘01’ state, as discussed earlier, forces the row-FFs into FD mode (row 3 in Fig. 

1). This requires both of the SCA_L and SCB_L signals to be set to ‘0’. However, the 

annotation in Fig. 2 indicates that the value of SCA_L is ‘Q’, which is the inverted output 

value of the negative-edge-triggered FF (N-FF) in the RCL. In the implementation flow 

for a REBEL test,  the initial value of the N-FF is set to ‘1’ by virtue of strobing the 

SET_B signal low prior to the REBEL test. The REBEL test is defined as a rising edge on 
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CLK (which effectively launches a transition(s) into the macro-under- test), followed by a 

falling edge on CLK that acts to capture a snapshot of the PUT’s behavior in the scan 

chain. The snapshot is realized by deasserting the Q output of the N-FF, which occurs 

when CLK goes low. This in turn causes the SCA_L output signal  from the RCL to 

transition from ‘0’ (initial value) to ‘1’. From Fig. 4(b), the arrival of the ‘1’ on SCA_L 

signals  of the scan FFs deasserts  the SCA input and turns off  FD mode.  This action 

captures the snapshot of the PUT’s voltage behavior in the scan chain. 

The ModeNext output signal of the RCL configured in the ‘01’ state is ‘0’. The ‘0’ 

propagates along the mode select logic of the row and forces all row FFs to operate in 

scan mode, i.e., SO to SI to SO, and so on. This condition allows for the propagation of 

the PUT’s signal along the scan chain. The SONext signal’s value for state ‘01’ is given 

as ‘SI’ to indicate that this signal is driven from the SI input of the RCL. Therefore, the 

scan chain bypasses (and preserves the contents of) the state elements in the RCL. The SI 

input in turn connects to the SO signal from the right-most scan FF of the previous row, 

effectively extending the scan path across rows (see Fig. 1). 

Finally, the ‘11’ state in the RCL configures a split mode of operation in the row 

FFs and connects a specific PUT output into the scan chain (row 2 in Fig. 1). The mode 

select logic in the scan FFs work together with the RCL block to implement this split 

mode of operation. The behavior of the SCA_L and SCB_L outputs are identical to those 

described  above for  state  ‘01’.  The difference lies  in  the  state  of  the ModeNext  and 

SONext output signals in Fig.  2. As noted above, a string of ‘1’s followed by a ‘0’ are 

preloaded  into  the  scan  chain  to  specify  the  PUT  insertion  point.  The  ‘1’ on  the 
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ModeNext output propagates along the mode select logic, described earlier in reference 

to Fig. 4(b) until a ‘0’ is encountered in scan FFs of the row. This causes the next scan FF 

to be configured as the insertion point. The remaining scan FFs in the row are configured 

in FD mode because the mode bit is inverted to a ‘0’ after the insertion point. RCL state 

‘10’ behaves identically but allows the insertion point to be the left-most scan FF in the 

row. 

We have designed the REBEL support logic such that it minimizes the impact on 

the functional behavior of the design. There are two components of REBEL that impact 

the functional operation. The first is the change of the CLSSD as shown in Fig. 4(a), and 

the second is the fanout of the D input to the 2-to-1 MUX as shown in Fig. 4(b). Each of 

these changes adds a small delay (∆t) to the functional path. 

4.2. REBEL For Mux-D-Style Scan

Although we integrate  and  demonstrate  REBEL in  a  CLSSD- style  scan  chain 

(which is the style used in the design flow of our 90-nm test chip), MUX scan is the 

industry standard and is the design generally required for FPGA-based implementations 

such as has been used for the majority of this research. Integration of REBEL into MUX 

scan is easy and even less invasive than it is for CLSSD. The overall operation of REBEL 

for MUX scan is very similar to that described for CLSSD. The main difference is that 

the launch and capture is accomplished using rising edges of CLK (as opposed to a rising 

and falling edge for CLSSD). Also, an additional primary input is required to specify FD 

mode. This global signal is routed to the RCL blocks (not shown). A RCL block for MUX 

scan is similar in function to the CLSSD version except that all logic in reference to 
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SCA_L and SCB_L of Fig.  2 can be eliminated. The key objective in the MUX scan 

implementation is to implement a FD mode, i.e., a combinational path, using the latches 

within the MUX scan FFs. This can be achieved by adding a ‘tappoint’ to the master 

latch, called QMNext in Fig. 4, and routing this signal to a 2-to-1 MUX in the next scan 

FF of the scan path (labeled QMPrev in Fig.  4). The SE input in Fig.  4 refers to the 

globally routed scan enable signal (already required for MUX scan). SE is set to ‘1’ when 

we  are  in  scan  mode,  and  ‘0’ when  in  functional  or  FD  (REBEL test)  mode.  The 

remaining logic gates are inserted to implement the four conditions described earlier. 

For example, to configure a row in functional mode (row 1 in Fig.  1), the RCL 

block places a ‘0’ on the FD_L wire. To configure a row in FD mode (row 3 in Fig. 1), 

the RCL block sets FD_L to ‘1’ and ModePrev to ‘0’. For a split mode row (row 2 in Fig. 

1), the same scan FF encoding method described for CLSSD is used. In addition, the 

RCL block forces a ‘1’ onto FD_L and sets ModePrev to a ‘1’ for insertion points other 
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than the left-most scan FF in the row or ‘0’ otherwise. The annotation in Fig. 4 shows the 

values of the scan FF at the point of PUT insertion for a split mode row. The REBEL 

implementation using MUX scan is actually smaller in overhead and is less invasive to 

the functional path (only one capacitive load is added at the tap-point in the master latch) 

than it is for CLSSD. 

4.3. PUT Delay Analysis Process

The Launch/Capture delay in REBEL is controlled by CLK, as described earlier, 

and therefore REBEL leverages the CLK tree for critical timing events. 

A REBEL test is carried out as follows: 

1. Configuration data is scanned in. 

2. The global SCA and SCB signals are asserted. 

3. CLK is asserted to launch a transition into the PUT. 

4. CLK is deasserted after a specific ∆t, sufficiently long to allow the transitions on 

the PUT to propagate along the scan chain. 

5. The global SCA/SCB signals are deasserted, and the values in the scan chain are 

scanned out. 

The delay in the combinational path is computed using Eq. 1.

TPATH = TLC - TSC Eq. 1

where: 

TPATH = Delay in the combinational path 

TLC = Launch/Capture Delay 
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TSC = Delay in the Scan Chain 

The scan chain delay, TSC, can be calculated from the number of scan cells that are 

set by the propagating edge(s), and the data obtained from a set of calibration tests1. 

1 The calibration of the scan chain propagation delay is straightforward and performed 
by performing repeated timing tests with successively longer Launch/Capture 
intervals, recording the intervals in which a transition reaches each FF in turn. 
However, for the purposes of the HELP PUF, this calibration is not required; in this 
case, we are only concerned with the interval required to propagate to a known point 
in the scan chain, and not with the actual delay of a path in the MUT (as we would be 
for a DFT application).
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Chapter 5: Preliminary HELP PUF Research

As noted in Chapter 4, two of the potential applications envisioned for the REBEL 

ETS at the time of its design were for measuring process variability and as the basis for a 

delay-based  PUF  design.  If  the  REBEL embedded  test  structure  could  be  used  to 

determine the amount of process variations in a semiconductor manufacturing process, 

then it could also be used to measure those variations, store them temporarily in memory, 

and use those measurements as the basis of comparisons for generating a unique bitstring 

for an individual chip.

The initial  investigation of  the  REBEL structure as  a  the basis  for  a  PUF was 

conducted as a series of tests on two sets of path delay data collected during REBEL 

testing.  The first testing of REBEL was done on an FPGA implementation of a stack of 

three  SBOX  macros  taken  from an  AES  implementation.  The  design,  including  the 

REBEL functionality, was configured in a Xilinx Virtex2-Pro FPGA, while the testing 

resources, including the scan pattern generation, the clocking for the launch and capture 

edges, and all  of  the control logic was provided from off-board by an Inovys Ocelot 

structural DFT tester. A high-performance differential clock signal was provided by the 

tester;  however,  the  launch  and capture  clock  signals  consisted  of  consecutive  rising 

edges on the same clocking resource. This contrasts with the separate DCM outputs that 

are  used  on  the  FPGA version  of  the  HELP PUF engine  discussed  in  the  following 

chapter.

The early experimentation with the HELP PUF concept was all done using software 
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manipulations  of  the scan patterns  acquired during the REBEL testing of the design. 

Nonetheless, the concept appeared to be successful in its primary mission of extracting a 

meaningful amount of entropy from the same path timing measurements across a set of 

the FPGA boards. The performance of the PUF was somewhat limited by the excessive 

jitter introduced by the differential clock on the tester.  Also, the limitations of the off-

chip analysis, in terms of the amount of data required to prove even a small amount of 

entropy, soon made it apparent that a specially designed PUF engine on an FPGA was 

needed to further advance the study.
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Chapter 6: FPGA-based HELP PUF Engine

To prove the concept of the HELP PUF introduced in Chapter 3, and to conduct 

research studies on its performance, we have designed and implemented a complete, self-

contained, fully functional FPGA-based HELP engine. The design for the PUF engine 

was written in VHDL and the engine was created using the ISE design suite from Xilinx 

Corporation[14]. 

The target FPGA platform was the Xilinx Virtex-II Pro device (P/N: XC2VP30). 

The development board that we used for our experimentation was an XUP V2-Pro board 

from Digilent, Inc. [25].  We chose this development board because we had access to 30 

of  these  boards,  which  provided  a  sufficient  population  size  to  allow us  to  conduct 

meaningful statistical evaluations of the PUF's performance. In addition, this board is 

equipped with jumpers that can be removed to disable the on-board voltage regulator that 

supplies the 1.5V internal logic voltage (VccINT) for the FPGA, and screw terminals that 

facilitate  the  use  of  a  programmable  power  supply  for  controlling  VccINT 

programmatically. Finally, the layout of the XUP V2-Pro board allows for placement of a 

heat pump directly on the surface of the Virtex-II Pro for automated control of the chip 

temperature.  These  features  make  this  platform  ideal  for  conducting  environmental 

testing across a range of temperatures and voltages. We provide additional details of our 

environmental testing regimen later in this chapter.

The  overarching  design  goals  of  the  HELP  PUF  engine  were  to  create  and 

demonstrate  a  hardware  security  primitive  that:  1)  used  the  REBEL  path  delay 
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measurement structure presented in Chapter 4, 2) could be added to an existing block of 

combinational logic, and 3) was capable of generating cryptographic-quality bitstrings 

the length of which is subject only to available on-chip block RAM (BRAM) memory. 

Based  upon  our  experimental  results  and  the  results  of  our  randomness  testing,  we 

believe that we have successfully met and exceeded each of these design goals with this 

implementation. A photo of the XUP board and the test apparatus is shown in Fig. 5. 

The  HELP PUF  design  is  comprised  of  several  component  parts.  We  start  by 

augmenting the existing logic design with the REBEL test structure, and adding several 

memories, clocking circuitry, random sequence generators, stability analysis components, 
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and functionality for reliably generating or regenerating the bitstring.

The operation of the HELP PUF (shown in block diagram form in Fig. 6) is divided 

into  two  distinct  phases.  In  the  first  phase,  a  Data  Collection  Engine  phase,  the 

propagation delays of paths in the MUT are measured, digitized into integer values that 

represent  the path delay,  analyzed for stability,  and recorded in  memory.  The second 

phase of operation is the Bit Generation phase, in which the path delays stored in memory 

are compared with each other to generate a sequence of binary comparison results in the 

form of  a  bitstring.  The  user  requests  a  bitstring  of  a  specific  length,  and  the  data 

collection process continues until a sufficient number of paths have been tested to allow 

the Bit Generation process to create a bitstring of the desired length.

The remaining sections  of  this  chapter  describe the subparts  of  the HELP PUF 

engine and their operation.
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6.1. Macro-Under-Test

The macro-under-test, or MUT, used in our implementation is the logic defining a 

single round of a pipelined Advanced Encryption Standard, or AES [1],  implementation 

from  OpenCores.org  [26].  Other  AES  implementation  choices  in  the  public  domain 

included non-pipelined, recirculatory designs in which the same hardware is reused for 

each round2. We chose this pipelined implementation because its non-recursive datapath 

design provided a more stable platform on which to test our PUF concept, and avoids the 

complicating effects on path timing that are introduced by routing outputs of the macro 

back into the inputs. 

Space limitations on the Virtex-II Pro prevented inclusion of all 10 rounds2 of a full 

AES  implementation. The  block  labeled  'Initial  Launch  Vector  (256)'  represents  the 

pipeline FFs in the full-blown AES implementation, converted here to MUX-D scan-FFs. 

A second copy of this block, labeled 'Final Launch Vector (256)', is added to emulate the 

logic from the omitted previous round. In our implementation, two randomly generated 

vectors that represent the challenge are scan-loaded into the two blocks.

The original design of the AES core included the logic for ten pipelined rounds, and 

each round was itself divided into three pipelined stages (addkey, sbox, and colmix). This 

design is intended as a high-capacity, high-throughput standalone AES engine, capable of 

encrypting/decrypting as many as 30 128-bit datablocks at a time. A full implementation 

of this design requires an FPGA with a rather large number of sequential resources to 

2 The encryption algorithm defined in the AES standard [1] operates on 128-bit data 
blocks, and allows for three different key lengths (128-bit, 192-bit, and 256-bit). The 
number of rounds corresponding to these key lengths is 10, 12, and 14, respectively. 
The underlying algorithm is identical for all key lengths.

33



support this level of pipelining, and was not suitable for our purposes. For our HELP PUF 

engine,  we chose  to  isolate  a  single  round,  and  to  eliminate  the  sequential  elements 

(registers) within the round, resulting in only combinational logic with a row of registers 

at the output of the block. We replaced the FFs in these registers with REBEL FFs, which 

are described in Chapter 4. In addition, we added two 256-element rows of FFs on the 

input of the MUT which contain the initial and final vectors in a launch-capture test. 

6.2. Data Collection Engine (DCE)

The DCE in Fig. 6 carries out a sequence of LC tests, measures the path delays, and 

records the digitized representation of them, called PUF numbers or PNs, in block RAM 

on the FPGA. In our current implementation, the DCE runs to completion before the BGE 

component is started3. 

6.2.1. Clock Generator 

The clock generator module generates two clock signals:  a Launch clock and a 

Capture clock, and is shown on the left in Fig.  6. In our design, this module contains 

three digital clock managers, or DCMs. A 'master' DCM is used to reduce the off-chip 

oscillator-generated 100 MHz clock to 50 MHz. The output of the master DCM drives the 

Launch and Capture DCMs. We utilize the fine phase adjustment (FPA) feature of the 

Capture DCM to 'tune' the phase relationship between the Launch and Capture clocks. At 

50 MHz, the FPA allows 80 ps increments/decrements in the phase shift of the Capture 

3 While not addressed in this dissertation, the potential modification of the HELP engine 
to allow the data collection and the bit generation engines to operate simultaneously 
would offer two advantages: a reduction in the time required to perform a HELP PUF 
operation, and a means by which to obfuscate the individual operations that would be 
subject to targeting in a differential power analysis attack by an adversary.
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clock on the Virtex-II Pro chips. 

When the DCE is configuring the scan chains in preparation for the LC test, the 

phase  relationship  between  the  Launch  and  Capture  clocks  is  eliminated  without  an 

adjustment  to  the  phase  of  the  Capture  clock  by  using  an  FPGA primitive  called  a 

BUFGMUX, which  allows the Launch clock to  be  routed  to  the  clock inputs  of  the 

REBEL row for  the  shift  operation.   Prior  to  the  launch  event,  the  controlling  state 

machine selects the 180° phase-shifted output of the Capture DCM, and the FPA feature 

is used to tune the phase in an iterative process designed to meet a specific goal (to be 

discussed).

TABLE I. CAPTURE CLOCK PHASE ADJUSTMENT

Phase Adj. Phase Angle LC Interval

0 90° 5 ns

64 180° 10 ns

128 270° 15 ns

TABLE I. summarizes the characteristics of the Capture clock, and Fig. 7 illustrates 

the timing relationship between the Launch and Capture clocks for different values of the 

'Phase Adj.'  control counter in the DCM. The launch and capture events occur on the 

rising  edge  of  the 

corresponding clocks. From the 

timing  diagram,  this  allows 

path delays from 5 ns to 15 ns 

in length to be measured. The 0 

to  128 range of  values  (called 

PUF numbers, or PNs) act as a 
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digital representation of the path delays.

6.2.2. PN Memory

The PN Memory is a block RAM used to store the PNs. The size of this memory 

block can be made as large or as small as required to efficiently store the PNs required to 

generate a bitstring of a given size; however, the data width must be 8 bits, as the possible 

Launch-Capture interval values spans the range of 0 to 128, inclusive.

6.2.3. LC LFSR Controller 

The bit sequences that represent the challenges in the traditional language of PUF 

research, and that are shifted into the Initial Launch Vector and Final Launch Vector scan 

rows  of  the  MUT,  are  generated  by  a  32-bit  linear  feedback  shift  register  (LFSR) 

contained  in  the  LC  LFSR  controller.  An  additional  register  and  control  signals  are 

manipulated by a finite state machine (FSM) to cause the LC LFSR to be operated in one 

of three modes. The first mode initializes the LC LFSR to a seed value provided as a 

parameter by the HELP PUF user. Another mode stores the current value in the temporary 

seed register and permits the LC LFSR controller to repeatedly issue the same 512-bit 

launch vectors for repeated testing across multiple samples and across multiple insertion 

points  (see  Chapter  4).  Finally,  a  third  mode  retains  the  present  LC LFSR contents, 

effectively advancing the LC LFSR to the next  512-bit  subsequence,  based upon the 

LFSR configuration.

6.2.4. REBEL Controller

The REBEL controller, while not part of the REBEL design, is used by the DCE to 

configure the IP in the REBEL row attached to the output of the AES logic block in 
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advance of each launch-capture interval of each sample of each LC Test (path timing) 

sequence. 

6.2.5. Sample Analysis Engine (SAE)

This FSM analyzes the digitized results in the delay chain after each LC test for a 

given path and determines whether the path is 'valid'. A valid path is defined as one that 

has a real transition, is glitch-free, and produces consistent results across multiple 

samples. If a PN is deemed to be stable, the PN is stored in memory, and a “valid path” 

flag is set in the Valid Path Memory (see below) corresponding to that path name.

6.2.6. Valid Path Memory

A block RAM is used to record a pass/fail flag for each tested path that reflects its 

validity  (as  defined  by  the  criteria  for  the  SAE). These  flags  are  set/cleared  during 

enrollment and then played back from non-volatile or off-chip memory (public storage) 

during regeneration, and represent the helper data needed in the regeneration process.

6.3. Bit Generation Engine

The Bit Generation Engine is comprised of a collection of hardware components 

and state machines that support the use of the PNs stored in PN memory to create the 

bitstrings.  Included  in  the  Bit  Generation  Engine  are  an  LFSR-based  pseudorandom 

pairings generator that randomizes the order in which PNs are read from memory, a block 

of BRAM that is used to store public data (in addition to the Valid Path Memory in the 

DCE) for properly recreating the bitstring during regeneration, and finally, the BRAM 

which contains the final bitstring.
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Chapter 7: Bit Generation Techniques

The ultimate objective of the HELP PUF is the creation of bitstrings that can be 

used  for  any  of  a  number  of  purposes,  ranging  from  cryptographic  keys  to  chip 

identification and authentication to hardware support for random number generation. As 

stated in the introduction of this dissertation, the quality of the bitstring that the HELP 

PUF  produces  is  dependent  upon  several  performance  metrics,  such  as  uniqueness, 

repeatability, randomness, and efficiency.

To accomplish this aim, several techniques for generating bitstrings were created 

and implemented.  This  section of the thesis  provides  a detailed examination of those 

techniques, and a comparative analysis of the strengths and challenges of each.  

7.1. Modulus

The genesis of the HELP PUF began with the germ of an idea – that the variation in 

path delays present in an existing functional logic macro could provide the foundation for 

a PUF.  However, attempts to capitalize on this phenomenon soon presented a number of 

challenges.  The first issue that was clearly evident was that, unlike other delay-based 

PUFs such as the RO PUF or the Arbiter PUF, path delays in a macro are not specially 

designed to be all the same, and in any such logic macro, the presence of a large gross 

difference between any two path lengths would result in a bias that would overshadow 

any amount of process variation for that comparison, rendering the comparison unusable 

since  all  instances  would  result  in  the  same  evaluation.   At  the  other  extreme, 
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environmental and measurement noise effects would necessarily result in some variation 

being non-repeatable, unstable, and therefore unusable. 

To address these issues, the path delay measurements came to be characterized as 

being comprised of three distinct components. First, the bulk of the propagation delay in 

a given path is not subject to vary from one chip instance to another.  A path in one chip 

that is, for example, 10 ns is not likely to be measured at, say, 15 ns in another chip.  As a 

result, this path delay component represents a constant term, and in a digitized, quantized 

representation  of  this  delay,  this  component  will  appear  in  the  most  significant  bits 

(MSBs) of the digitized value.  The second component of any path delay measurement 

will  include  the  noise,  or  uncertainty (resulting  from measurement  noise,  thermal  or 

voltage fluctuations, quantization errors, etc.), and will be found in the least significant 

bits (LSBs) of a digitized delay value.  The third component of delay measurement is the 

variation in  the signal  (resulting from process  variations  that  occur  during the chip's 

manufacture).  This variation is found in the bits of a quantized value that are constant 

across  repeated  measurements  and  changing  environmental  conditions  for  the  same 

device, but that are found to be different between the same paths on different chips.

It was theorized that it may be possible to make use of the digitized representation 

of a pair of path delays to allow the direct comparison of the variability of any two paths, 

regardless of their path length.  To do this, we examined a large number of paths and 

determined,  empirically,  the magnitude of the uncertainty across a series of repetitive 

measurements of the same path on the same chip.  We then compared the delay values of 

the same path on several chips to acquire a sense of the magnitude of the variability 

39



found in the population.  The example in Fig. 8 illustrates this technique, and shows how 

the digitized value can be apportioned into a single set of bits (shown in green in the 

digitized values of the figure) that represent the variations between chips. In the example, 

the uncertainty was found to be < 200 ps, and the variations as high as 3.2 ns (24, or 16 

200-ps intervals). The upper bits in the values represented the gross path length, and were 

discarded, along with the 4 LSBs that contained the uncertainty (noise). 

Ultimately, this technique, while initially promising, was found to be unworkable 

due  to  non-uniformity  in  the  distribution  of  the  variations  among  the  16  values 

represented  by  the  4  bits.  Additionally,  as  shown  in  Fig.  9,  the  noise  was  largely 

determined to be less than 200 ps; however, the outliers that are evident show occasional 

uncertainty of as much as 1.8 ns.  As a result, the Modulus technique was ultimately set 

aside in favor of more robust methods described below.

7.2. Dual P/N (DPN) Path Delay Binning Method. 

With  the  failure  of  the  Modulus  method  to  reliably generate  unique  bitstrings, 

another similar method was explored in which the modulus was not specifically required 

40

Fig. 8: Modulus-Based Path Delay Comparison (deprecated)



to be a power of two (so as to be described by a specific number of bits), but rather an 

integer value,  derived empirically,  that  more closely approximates the amount of true 

process variation found across the population of chips. The drawing in Fig. 10 on page 42 

illustrates this concept.  Using this technique, a modulus operation is applied to the PUF 

numbers returned by the Data Collection Engine.  The resulting values, referred to as 

Mod-PNs, fall into the range of [0..M-1], where M is the empirically derived modulus 

number, which includes both the  variation and the  noise components described earlier, 

while removing the bulk of the path length.  This results in the ability to directly compare 

paths whose lengths may be vastly different (such as the 7.8 ns path and the 23.8 ns path 

in Fig. 8) without the bias that would normally preclude such a measurement.

The original intent of developing this technique was to then evaluate pairs of Mod-
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PNs, using an XOR-style comparison, and generate a '0' if the Mod-PNs were from the 

same “group”,  and generate  a  '1'  if  they differed.  However,  this  technique alone was 

found to  be insufficiently robust to accommodate the uncertainty present  in  the data. 

Additionally,  the occurrence of jumps in path delay presents an intractable hurdle for 

making this technique sufficiently reliable to be the basis of a bit generation technique.

However,  the DPN method has proved to be an effective means of binning the 

distribution of path delays for the MUT into a binary pair of groups that subsequently 

form the basis of a more robust bit generation technique. What is required is a means of 

providing hardware-based error tolerance for those relatively infrequent cases where a 

PN measured during regeneration is incorrectly partitioned, due to jumps or other factors.

7.3. The Dual-PN Count (DPNC) Bit Generation Method

Most PUF are designed using identical circuit primitives as a means of avoiding 

bias.  This  is  not  the  case  for  HELP,  because  the  PUTs  vary  widely  in  length.  We 

developed a technique called 'Dual-PN Count' which post-processes the PNs to eliminate 
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this bias. The technique applies a modulus operation to the PNs, which 'trims off'  the 

higher order bits of the path delay measurement. The truncation of the PNs effectively 

reduces all  path delays  to a range upper-bounded by the modulus,  i.e.,  it  reduces the 

overall path length to a range more closely consistent with the degree of variations found 

in the data and allows unbiased comparisons to be made among all paths. The trimmed 

Mod-PNs are then partitioned into two groups for bit generation purposes.

The diagram in Fig. 10 provides a graphical depiction of this two-step process. The 

process  begins  on  the  left  using  a  PUT with  a  delay between  5  ns  and  15  ns.  The 

measured PN for this PUT is originally in the range 0 to 128, but the modulus operation 

reduces it to a number in the range of 0 to M-1 (where M is a user-specified modulus). 

The right-most portion of the diagram in Fig. 10 shows the partitioning of the Mod-PNs 

into two groups, where values in the range of 0 to M/2-1 are placed in the low PN group, 

while Mod-PNs in the range of  M/2 to M-1 comprise the high PN group. Noise in the 

measurements  is  dealt  with  by  discarding  additional  PNs  (beyond  those  discarded 

because of path stability problems as described in a previous section of this thesis). In 

particular, Mod-PNs that fall into regions outside those delineated in the center portion of 

Fig.  10 are considered invalid during enrollment. This allows valid PNs, i.e., those that 

fall  within  the  center  portions,  to  'shift'  during  regeneration  by  up  to  M/4 in  either 

direction before causing a bit flip. Therefore, this scheme both eliminates bias and adds 

bit flip resilience to HELP. 

7.3.1. Bit Generation using DPNC

The filtering  operations  described  above are  sufficient  to  eliminate  the  adverse 
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effects on delay introduced by noise and TV variations. However, large changes in the 

Mod-PNs introduced by “jumps”,  as  described in  Chapter  8,  require  a  more resilient 

technique. The rare nature of “jumps” makes it possible to develop a bit-flip avoidance 

method that imposes a low area and time overhead. The 'Count' term in DPNC refers to 

this feature of the method, and characterizes the process used to generate bits, which is 

described as follows. During enrollment, DPNC parses the valid PNs until it encounters a 

sequence of  k consecutive values from the same group, where  k is an odd-numbered, 

user-specified threshold. Two counters track the length of a sequence of PNs from the 

same group. As each PN is read, the counter for the corresponding group is incremented, 

while  the  other  group's  counter  is  reset  to  0.  When either  of  the  counters  reaches  k 

(indicating that the k most recent PNs belong to the same group), a new bit is generated 

and added to the bitstring, and a 'stop point'  flag is set  in the Stop  Point Memory to 

indicate that a bit was generated at this point. The value of the generated bit is a '1' if the 

PNs are from the high PN group, and a '0' if the PNs are from the low PN group. During 

regeneration, the stop point flags (represented as a bitstring) are consulted to determine 

when  bit  generation  occurs.  Therefore,  the  bitstring  of  stop  point  flags  represents 

additional helper data.

7.3.2. DPNC Example 

An example of the DPNC process is shown in Fig. 11. The modulus is set to M=22, 

and the range of valid PNs accepted in the low PN bin are given by {4,5,6}, while the 

valid PNs for the high PN bin are defined as {15,16,17}. The value of counter k is set to 

5. This example first depicts the enrollment process, in which PNs are read from the on-
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chip memory, left to right, as shown in the top of the figure.  Also shown are the states of 

the counters after each PN is read.  When the high PN counter reaches 5 (as shown in the 

circle), a '1' bit is generated and added to the bitstring (not shown), and a '1' is written to 

the current location in the Stop Point Memory.  At this point, both counters are cleared 

and the process continues until a second bit (a '0' in this case) is generated. The bitstring 

is built up in this fashion one bit at a time, until a user-specified number is reached.

The  bottom  portion  of  Fig.  11 illustrates  the  process  carried  out  during 

regeneration.  Here,  the '1'  bits in the Valid Path Memory (not shown) indicate which 

paths were used for bit generation during enrollment, and dictate now those paths that 

must be re-tested for proper regeneration. Similarly, the '1' bits in Stop Point Memory (in 

Fig.  11) force bits to be generated at these points (the counters are not consulted). The 

counters, however,  are consulted to determine the value of the generated bit, which is 

determined by the larger of the two counter values. In the example, two of the five values 

that were in the high PN bin during enrollment have 'flipped' and now appear in the low 
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PN bin (see elements highlighted with the heavy borders). 

However, because the majority, 3 out of 5, are high PNs, the algorithm correctly 

regenerates a '1' bit despite the presence of the erroneous measurements. Also note that 

the first erroneous measurement (the '8' in the heavy border) is of no consequence since it 

is not part of the consecutive sequence of 5 PNs that are consulted to determine the value 

of the bit (these 5 PNs are identified in the figure with a curly bracket). 

This  seemingly  innocuous  observation  constitutes  a  major  strength  of  this 

technique. The initial intent of the DPNC algorithm called for simply incrementing the 

counter associated with the current PN and monitoring the difference between the two 

counters, generating a bit as soon as a difference of k was reached. The logic behind this 

approach was that a difference of k would occur much more frequently than a sequence of 

k would in a given sequence of PNs, resulting in less unused PNs and, as a result, greater 

efficiency and reduced running time for the algorithm. However, an analysis of the two 

approaches showed that this method resulted in only a 33% increase in efficiency, while 

incurring  9.95 times as many errors as the technique which requires  k common-group 

values in a sequence. This analysis was the basis for the decision to implement the latter 

technique for DPNC.

7.4. Universal/No-Modulus Bit Generation Technique

In  [27],  we developed a method called “Universal-No Modulus” (UNM) that is 

capable of generating  O(n2) bits from  n PNs.  UNM avoids bit flips by using only the 

longest  and shortest  paths  in  the MUT for  comparisons,  discarding paths  of medium 

length. It avoids the bias that would normally result under these conditions by exploiting 
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the property that path stability is random across chips. In other words, even though the 

result  of  comparing a short  path with a long path is predictable from the design,  the 

stability, and therefore selection, of short and long paths is random from chip to chip. 

Figs.  12(a) and 12(b) show the path distribution from a typical chip, with the PN 

range plotted along the x-axis against  ‘number of instances’ along the y-axis.  During 

enrollment  (Fig.  12(a)),  UNM uses  two thresholds  to  partition the distribution into 3 

regions. The tail regions on the left and right are considered valid PN regions. PNs in the 

tails  represent  short  (Low  PNs)  and  long  (High  PNs)  paths  respectively.  The  large 

‘invalid’ region between the thresholds, given as 32 and 90 in Fig. 12(a), is a safety zone 

between the groups designed to prevent ‘jumps’, and bit flips, between the Low and High 

PN regions. The placement of the thresholds determines the balance between the number 

of paths in each tail region, and are established using a process that characterizes the 

path-length distribution at the start of each enrollment. Jumps, although infrequent, can 

occur because of the appearance and disappearance of hazards (glitches) on side-inputs of 

gates  along  the  tested  paths.  Small  temperature  variations  or  power  supply  noise 

influence the behavior of these hazards, in which changes in the delays of difference 

branch  paths  are  affected  nonuniformly.  Examples  of  tolerable  (green  line)  and 

intolerable (red line) jumps are shown Fig. 12, wherein the lines indicate PNs that were 

significantly higher during regeneration than they were during enrollment.

The  safety  zone  is  only  enforced  during  enrollment,  and  is  redefined  as  the 

midpoint between the margins during regeneration as shown in Fig.  12(b).  The DCE 

process creates a valid path bitstring during enrollment so the same sequence of path tests 
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can be carried out during regeneration. In our experiments, we found that UNM generates 

a valid PN after approx. every 20 tested paths, depending on the user-specified width of 

the 'invalid' region. The “XOR-style” bit generation process is carried out by comparing 

pairs of PNs, where PNs from the same region generate a '0', while those from opposite 

regions generate a ‘1’. With n PNs, up to n*(n-1)/2 bits can be generated by considering 

all combinations.

7.4.1. Weakness of the Universal/No-Modulus Method

The  Universal/No-Modulus  bit  generation  method  is  robust  in  the  presence  of 

jumps that do not exceed at least one-half the size of the safety gap. However, the net 

effect of imposing this large gap in the allowable PNs during enrollment is a dramatic 

reduction in the number of stable paths that can be used for bit generation. This creates 

three  effects,  all  of  which  adversely  affect  the  utility  of  this  technique.  First,  the 

efficiency, in terms of the number of paths that must be tested for a given bitstring length 

and the running time of the algorithm, is severely limited. Additionally, the size of the 

public storage requirement increases in direct  proportion to the increased demand for 
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paths  tested.  Finally,  the  amount  of  excess  entropy for  a  given  macro-under-test  is 

reduced, increasing the probability that a reduction in performance against standardized 

randomness testing will occur.

7.5. Universal/No-Modulus Difference (UNMD) Bit Generation

In response to these weaknesses in the UNM bit generation technique, in [28], we 

presented the HELP PUF and a bit generation technique called Universal/No-Modulus 

(UNM).  We investigate  a  variant  of  this  UNM technique  in  this  section.  Unlike  the 

DPNC described above, UNM leverages the randomness associated with the stability of 

paths  across chips  and,  as  a  result,  there  is  no need to  consider  bias,  i.e.,  UNM can 

compare short paths with long paths directly without first reducing the overall path length 

of the PNs, as is true for DPNC. The technique described in [27] defines a low and a high 

PN bin (similar to DPNC), but with the bins defined in this case over the entire path 

distribution range from 0 to 128. A large margin of approx. 100 is created between the 

bins to allow for shifts and jumps in the PNs during regeneration. The original technique 

therefore discards a large fraction of PNs that fall within this margin during enrollment 

(beyond those discarded because of path stability problems as described in Chapter 4).

We refer to the variant described here as 'UNM Difference' or UNMD. In UNMD, 

we replace the fixed margin with the concept of a noise threshold, discussed below. By 

doing so, UNMD does not discard stable PNs as is true of UNM, but rather preserves and 

makes use of all PNs generated by the DCE. This feature reduces the workload imposed 

on the DCE to find a suitable set of PNs that meet a bitstring target by  95.8% when 

compared with the original fixed threshold technique.  As we will show, UNMD offers 
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significant  advantages  in  both  running  time  and  memory 

requirements.

7.5.1. Bit Generation Process and Procedure

All components except for the BitGen Engine in Fig. 

6 on page 32 are identical for both the DPNC and UNMD 

techniques. The BitGen Engine for UNMD, shown in Fig. 13, 

randomly selects two PNs to compare (unlike DPNC which 

parses  the  PNs  one  at  a  time  as  shown in  Fig.  6).  The 

Random Pairing Generator produces the two addresses of the 

PNs to compare and the values are read from on-chip memory 

into a pair of registers (PN 'A' and PN 'B'). PN 'B' is then subtracted from PN 'A' to 

produce a PN difference. The magnitude of the difference determines the strength of that 

pairing, as discussed in the next section. If that difference is sufficiently large, then the 

sign of  the  comparison  determines  the  value  of  the  generated  bit.  A negative  sign 

produces a '0', and a positive sign produces a '1'.

7.6. Thresholding Technique

A thresholding technique similar to that proposed in  [29] is used to decide if a 

given  comparison  generates  a  strong  bit  (which  is  kept)  or  a  weak  bit  (which  is 

discarded).  Thresholding  works  as  follows.  During  enrollment,  a  noise  threshold is 

defined using the path distribution histogram for the chip. The histogram is constructed 

using all  n PNs collected by the DC engine. The noise threshold is then computed as a 

constant that is proportional to the difference between the PNs at the 5 and 95 percentiles 
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in this distribution. Therefore, each chip uses a different threshold that is 'tuned' to that 

chip's overall (chip-to-chip) delay variation profile.

For each comparison, the difference between the two PNs is compared against the 

noise threshold. A strong bit is generated if the magnitude of the difference exceeds the 

threshold, otherwise the bit is discarded. Simultaneously, a bit is added to the 'Strong Bit 

Memory' shown in Fig. 13 that reflects the status of the comparison, with a '1' indicating 

a strong bit and a '0' indicating a weak bit. During regeneration, the Strong Bit Memory is 

consulted to determine which comparisons are used to regenerate the bitstring.

Fig. 14 shows the path distribution for a typical chip. The dashed lines indicate the 

5 and 95 percentiles, with PNs of 23 and 117 respectively. The difference between these 

PNs is multiplied by a noise margin (0.90 in this example) to compute a noise threshold 

of  84.6.  Pairings  which  differ  by  more  than  this  threshold  form 'strong'  bits,  while 

pairings  that  differ  by less  than  this  threshold  are  deemed  to  be  'weak'  and  will  be 

discarded.  The 'pairings' in Fig. 14 illustrate this concept.

7.7. TMR-Based Error Correction Scheme

In Chapter 8, a detrimental  behavior referred to as “jumping” is described as a 
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worst-case condition and these discontinuous jumps represent our biggest challenge in 

dealing with bit flips. Both DPNC and UNMD are adversely impacted by jumps. In our 

experiments, some path delays changed because of jumps by as much as  4.5 ns, or  58 

PNs,  at  different  TV  corners.  Moreover,  the  PN  differences  computed  by  UNMD 

exacerbate the problem, where jumps in two path delays can combine in a worse-than-

worst-case fashion.

This is illustrated in the graphs of Fig. 15, which depict data from one of the Virtex-

II  boards.  The  graphs  plot  the  'strong  bit'  number  along  the  x-axis  against  the  PN 

differences on the y-axis, with the noise thresholds (as described above) set to ±77.4 for 

this Virtex-II board. The data points from enrollment on the left all fall above or below 

these thresholds (by definition), but data points from measurements taken at different TV 

corners in the graph on the right 'infringe' into the space between the thresholds. Most 

data  points  remain  close  to  the  thresholds,  but  some move  significantly  (because  of 

jumps), as highlighted, by as much as 5.6 ns or 71 PNs.
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Fig. 15: Effect of Thresholding Technique on Reliability



By choosing a conservative noise threshold, bit flips caused by jumps such as those 

shown in Fig.  15(b) can be avoided. However, a different strategy is needed in cases 

where the application requires the probability of a bit-flip to be negligibly small (e.g., 

encryption). We proposed a technique in  [28] that is based on a popular fault tolerant 

technique called triple  modular redundancy (TMR), which is  capable of reducing the 

probability  of  failure  to  values  below  1e-11.  The  method  constructs  3  copies  of  the 

bitstring (using the abundance of bits provided by the PUF) and uses majority voting to 

construct the final bitstring. The probability of a bit-flip error is significantly reduced 

because any single bit-flip that occurs in any column of bits defined by the 3 copies can 

be tolerated. Probability of failure is investigated in Chapter 9.
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Chapter 8: Reliability Enhancement Techniques

Throughout  the  course  of  the  experimental  work  with  the  HELP  PUF,  two 

persistently troublesome issues have emerged as the primary sources of the errors in our 

bitstring generation techniques.

The  first  is  the  change  in  path  delay that  is  caused  by one  or  more  changing 

environmental  conditions,  primarily in  supply voltage and operating temperature.  The 

impacts of these changes on the propagation delay through a given path are consistent 

with the drain current equations for the complementary MOSFET devices that comprise 

the gates along the path, and are therefore somewhat predictable and consistent. 

The  second  source  of  errors,  and  the  least  easily  predicted  or  mitigated,  are 

characterized  by discontinuous “jumps”  that  can  cause  the  delay for  a  given  path  to 

change in abrupt, often large amounts of as much as 4 ns to 5 ns.

A third, less problematic error mechanism consists of the subtle differences in the 

distributions of the path lengths across the range of paths measured for each individual 

chip.  These differences manifest themselves in two distinct modes: the first mode is a 

apparently random, normal distribution of mean path values throughout the population of 

boards, and the second mode is marked by a distinct shift in the means of two speed 

grades (-6, -7) for the devices mounted on the two boards.

To  correct  for  these  sources  of  errors  in  the  PN  measurements,  the  following 

reliability  enhancement  techniques  were  devised  and  implemented  in  hardware:  a 

temperature/voltage compensation technique (TVCOMP) for addressing the changes in 
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environmental conditions and a path distribution characterization technique (PDIST) for 

addressing the differences in path length distribution between devices. Unfortunately, the 

“jump” behavior described earlier,  and depicted in Fig.  16,  has been found to be too 

inconsistent  and  too  unpredictable  to  be  solved  using  the  types  of  broadly  applied 

corrective measures described here.  The only techniques that have been shown to be 

effective  against  these  jumps  are  the  error-tolerance  features  included  in  the  bit 

generation techniques in the previous chapter.

8.1. Temperature/Voltage Compensation (TVCOMP)

To adjust for the measurable changes in path length that are caused by changing 

voltages and temperatures occurring between enrollment and regeneration, a technique 

was developed that establishes a mean path length for a small subset of paths that are 
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Fig. 16: Jump Behavior vs. Path Length



deemed to be stable during an enrollment. We then compute the total path lengths of the 

same  set  of  paths  during  regeneration,  and  adjust  each  of  the  subsequent  path 

measurements to accommodate this shift in mean path delay.

To implement this  feature,  we maintain two registers  during enrollment (a path 

counter and a path delay accumulator).  For each of the first 64 valid, stable paths, that 

path length is added to the accumulator and the counter is incremented.  After 64 paths 

have been added to the counter, the counter is divided by 64, using a rightward shift of 6 

bits  (26=64).   This  value  is  transferred  into  a  register  to  use  as  a  “mean  enrollment 

reference delay”, and the enrollment process continues normally.

During regeneration, the same technique is performed: the first 64 path delays are 

accumulated and the result is divided by 64 to determine the “mean regeneration delay”. 

At  this  point,  the  difference  between  the  mean  delay  values  at  enrollment  and 

regeneration  is  computed,  and  the  Data  Collection  Engine  restarts  the  regeneration, 

applying the difference to the regenerated path delay values. Following this adjustment, 

each of the path delays measured during regeneration are shifted back into alignment 

with the path delays measured during enrollment.

In  implementing  this  technique,  two  approximations  were  made  and  merit 

discussion  here.  The  first  approximation  is  that  all  paths  are  equally affected  by the 

changing environmental conditions. In fact, this is not the case; consistent with the drain 

current equations for MOSFET devices, the path length change,  Δt, is a function of the 

overall path delay, so that Δt tends to be greater for long paths and less for short paths. 

However, because the 64 paths that are sampled are drawn without bias from the chip's 
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path distribution, this approximation has some merit and represents a reasonable trade-off 

between accuracy and hardware efficiency and simplicity.

The second approximation that is made concerns the stability of the environmental 

conditions during the Data Collection Engine operation. This algorithm is implemented 

only at the beginning of the data collection process. As a result, additional changes in the 

operating  conditions  the  occur  during  the  data  collection  process  will  degrade  the 

effectiveness of the TVCOMP process.  Experiments performed with different lengths of 

temperature soak times (the time after a new temperature point was reached and held 

before a new operation was started) clearly showed that thermal changes propagating 

through  the  device  during  the  data  collection  process,  whether  during  enrollment  or 

regeneration, adversely impacted the effectiveness of the technique. 

8.2. Path Distribution (PDIST) Characterization

The  bit  generation  techniques  presented  in  the  previous  chapter  rely  on  some 

degree of freedom from structural  bias  in the underlying data (the PNs stored in  PN 

memory). One potential source of bias is an incorrect assumption about the likelihood of 

some  numbers  occurring  more  frequently  than  others.  This  condition  can  occur  for 

several reasons, but the primary cause is a difference in the distribution of paths lengths 

being measured from one chip to the next.

Path length distribution (hereafter referred to as “path distribution”) in the MUT for 

a given chip was found to follow a generally Gaussian distribution around a mean path 

length of 11 ns to 12 ns. Furthermore, the distributions of the mean path lengths of each 

of  the  chips  for  each  of  two  speed  grades  also  was  normally  distributed  around  a 
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population mean for that speed grade. Slower chips (identified on the package with a 

speed grade of -6) tend to have a mean path length of 10.70 ns while faster chips (speed 

grade -7) have a mean path length of 9.93 ns. The graphic in Fig.17 provides a succinct 

depiction of the path length distributions in our set of boards through the use of box plots 

which  capture  the  mean,  minimum,  maximum,  and  25th and  75th percentiles  of  the 

distribution. As shown, the boards are divided into two sets (“Slow”/“Fast” indicates a 

speed grade of (-6/-7), respectively).

The PDIST algorithm is a process that,  when requested via a user parameter, is 

invoked at the start of an enrollment operation that uses either UNM or UNMD as the bit 

generation  algorithm.  It  runs  immediately  following  the  TVCOMP  algorithm,  and 

collects the path lengths of 1,024 random paths in the distribution. A finite state machine 

then sorts the results using a histogram-based sorting algorithm and identifies the PUF 

numbers  associated  with  the  5th and  the  95th percentiles  of  the  distribution.   This 

mechanism allows a finite state machine within the data collection engine,  called the 

LC_Test, to dynamically adjust the parameters of the data collection engine so that the 

same number of paths exist at the low and high ends of the range, resulting in a more 
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balanced distribution of PUF numbers from each end of the path length spectrum. This 

dynamic balancing is required to prevent bias in the data from adversely impacting the 

randomness performance of the HELP PUF.
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Chapter 9: Experimental Results and Analysis

To test the effectiveness of the HELP PUF, environmental experiments were carried 

out  on  30 Virtex-II  Pro  boards  using  a  thermoelectric  cooler  (TEC)  apparatus  and a 

programmable power supply. As indicated earlier, each board was tested at 9 TV corners, 

defined  by  all  combinations  of  three  temperatures  (0°C,  25°C  and  70°C)  and  three 

voltages  (1.35V,  1.50V and  1.65V).  Data  collected  at  25°C  and  1.50V is  treated  as 

enrollment  data  while  the  data  collected at  the  remaining 8 TV corners  is  treated as 

regeneration data.

9.1. Hamming Distance (HD)

Inter-chip Hamming Distance (HD) measures uniqueness of the bitstrings across 

boards, and is computed by counting the number of bits that are different in the bitstrings 

from each pairing of boards. An average inter-chip HD is computed using the results from 

all possible pairings, which in our experiments is 30*29/2 = 435. The inter-chip HDs are 

typically  converted  into  percentages  by  dividing  each  of  them by the  length  of  the 

bitstrings. The best achievable average HD under these conditions is 50%. Intra-chip HD, 

on the other hand, is the number of bits that differ in two bitstrings obtained from the 

same chip but tested under different environmental conditions. The ideal intra-chip HD is 

zero,  and  a  non-zero  value  indicates  that  one  or  more  bit  flips  occurred  during 

regeneration. In our experiments, intra-chip HDs are computed across the 9 TV corners 

for each board and then an average is computed using the 9*8/2 = 36 individual HDs. 
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The 'average-of-the-averages' is then computed using the average HDs from all boards. 

Fig. 19 shows histograms for the inter-chip HDs and other statistical results obtained for 

the DPNC and UNMD techniques. 

9.1.1. UNM

Fig. 18 shows the HD distribution as well as the mean (Mn) and standard deviation 

(SD) of the Gaussian curve fitted to, and superimposed on, the distribution. The inter-

chip HD is 50.0019% for bitstrings with a length of 1,028,890. This is very close to the 

ideal value of 50%. The standard deviation is also very small. Combined with a mean 
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intra-chip  HD of  2.74e-7,  these  results  indicate  the  bitstrings  are  highly reliable  and 

unique.

9.1.2. DPNC

The length of the bitstrings using the DPNC technique is 256 bits. The average 

inter-chip HD in Fig. 19(a) is 49.923%. A Gaussian curve is shown fitted on top of the 

inter-chip HD distribution as a  means of  illustrating expected behavior.  The standard 

deviation of the normal curve is 8.192 (where smaller is better). This value is consistent 

with the expected standard deviation of a normally distributed set of random values.

The average intra-chip HD is 0.038%. The non-zero value indicates that bit-flips 

occurred with a frequency of 0.097 bit-flips per 256-bit string.

9.1.3. UNMD

The length of the bitstrings for the UNMD technique is 6,698,512. Fig. 19(b) plots 

the inter-chip HD distribution. The average inter-chip HD is 50.001%. The intra-chip HD 

using the bitstrings prior to applying is 4.59%, which became 0% after applying TMR.

9.2. NIST Statistical Analysis of Randomness

To test the randomness of the bitstrings produced by the HELP PUF, we used a 

statistical  test  suite  provided by the National  Institute  of  Science and Technology,  or 

NIST [14]. These tests were applied to the bitstrings from the 30 boards. 

9.2.1. UNM

The NIST statistical test suite is also applied to the bitstrings from the 29 boards. 

The bitstrings pass all NIST statistical tests, with no more than 2 boards failing any of the 
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15 tests. In addition, these bitstrings pass all of the P-value-of-the-P-values tests, even in 

spite of the fact that the NIST documentation indicates that a minimum of 55 boards is 

required before this metric can be considered valid. 

9.2.2. DPNC

All of the bitstrings generated by this method passed each of the tests in the subset 

of NIST tests that are applicable to 256-bit strings.

UNMD. The bit sequences generated by the UNMD method were sufficiently long 

that all 15 NIST tests are applicable. All 15 tests passing, with no fewer than 28 boards 

passing any one test (the number required by NIST for a test to be considered 'passed').

9.3. Analysis of Running Time

9.3.1. UNM

On average, the number of valid paths tested per second is 30.20 for enrollment and 

88.03 for regeneration. This includes the time required to test and discard invalid paths, 

and the time required to generate the n(n-1)/2 bitstrings from the n PNs stored in block 

RAM.

9.3.2. DPNC

Bitstring generation times for HELP are reported here as the average number of bits 

generated per minute, excluding serial data transfer time. During enrollment, the time 

required to  generate  each bit  depends on several  factors,  including the percentage of 

tested paths that are stable, the value of k (the number of consecutive copies of a value 

required to produce a bit), and the number of PNs that are read from memory before 
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encountering k consecutive copies.

With  k=5,  the  average  number  of  paths  tested  for  each  generated  bit  during 

enrollment is  1,261,  due to the highly selective nature of the DPN binning algorithm 

described previously. Bits are generated at an average rate of 36.4 bits per minute. During 

regeneration,  since  only  valid  paths  are  measured,  the  average  bit  generation  rate 

increases to 167 bits per minute.

9.3.3. UNMD

On average, the data collection engine tested 3.92 paths for each of the 4,096 valid 

PNs that we collected across 30 boards. On average, 22.35 paths were tested, at up to 12 

samples  per  path,  for  stability every second.  For  the  UNMD analysis,  the  PNs were 

collected by the HELP PUF engine, while the bit generation process was completed off-

chip using a software program. This was done to allow us to evaluate a range of noise 

thresholds without needing to re-collect the PNs each time. As a result, the FPGA running 

time of the bit generation process for UNMD is not known.

9.4. Probability of Failure: Results and Analysis

9.4.1. UNM

As discussed above,  a bit  flip occurs when a PN measured during regeneration 

jumps across the “bit flip line” as shown by the example in Fig. 4(b). The number of bit 

flips  that  occurred  across  the  8  regenerations  for  the  29  boards  is  10.  This  yields  a 

probability  of  failure  of  8e-5,  computed  as  10 /  (29  boards  x  4096 PNs per  board). 

Although beyond the scope of this work, we have developed a simple, very low-overhead 
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technique that eliminates all bit flips in our results and improves the probability of failure 

to 7.25e-11.

9.4.2. DPNC

There were a total of 9 unique errors that resulted in 19 bit flips during the 240 

regenerations  that  were  performed during  our  experimentation.  The  overall  single-bit 

probability of failure (POF) is 3.09x10-4 (19 errors per (30 boards * 8 regenerations per 

board * 256 bits per regeneration)). 16 of these 19 bit flips occur when the core logic 

voltage of the FPGA is 10% lower than nominal.

9.4.3. UNMD

The probability-of-failure  analysis  for  the  UNMD method  is  performed  as  two 

analyses:  the  POF for  the  initial  bitstring  and  the  POF for  the  TMR-based  bitstring 

described in Chapter 7. Both of these analyses involve generating bitstrings at all 9 TV 

corners across a range of noise thresholds.  In each case, we record the number of bit flips 

that occur at each noise threshold, and then fit an exponential curve to this data. The 

exponential fit allows us to model expected error rates for noise thresholds far higher than 

those at which bit flips actually occur in our empirical results. 

For the initial bitstrings, we computed a theoretical error rate of 1.54 x 10-6, or 1 bit 

flip in approx.  650,000 bits  generated.  Fig.  20(a) illustrates the actual and theoretical 

error rates for each of the TMR-based bitstrings. Fig. 20(b) shows an enlarged view of the 

theoretical error rate at a noise margin of 0.90.  At this noise threshold, our POF is 1.096 

x 10-11, or 1 bit flip in approx. 91 billion bits generated.

65



9.5. UNMD Security Vulnerability and Mitigation.

The HELP PUF, when using the UNMD method, is capable of generating reliable, 

cryptographic-strength bitstrings of up to several million bits in length.  However, an 

adversary  with  access  to  the  simulation  model  of  the  target  system may be  able  to 

“reverse  engineer”  the  secret  bitstring.  While  this  vulnerability  would  be  difficult  to 

exploit, the only way to completely eliminate the threat is to obfuscate the Valid Path 

Memory component of the public data.

Since the DPNC method is  not  subject  to  this  vulnerability,  we propose to  use 

DPNC to generate a small (32- to 64-bit) bitstring that can be used to obscure the public 

data produced by the UNMD technique using the same set of PNs during the enrollment 

process. The public data for this short bit string is added to the obfuscated UNMD public 

data. At the start of regeneration, the unobscured public data for the DPNC method is 

used to regenerate the short bitstring, which is then used to unveil the public data for the 
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UNMD regeneration process.
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Chapter 10: Future Work

The  FPGA implementation  of  the  HELP  PUF  has  been  highly  successful  in 

demonstrating the concept of the PUF and studying its performance. The PUF has been 

shown to perform well against the three fundamental criteria for PUF performance that 

were set out in the introduction: uniqueness (inter-chip HD), robustness (intra-chip HD),  

and  randomness (NIST).  Additionally,  through  the  use  of  the  TMR-styled  bitstring 

replication method explained in Sect. 7.7, we have been able to reduce the probability of 

an error in a 256-bit bitstring to approximately 3 parts per billion.

In this chapter, I present a discussion of additional work that will be of value to 

increasing the attractiveness of, and/or enhancing our understanding of, the HELP PUF. 

10.1. ASIC Implementation

Perhaps the most obvious extension of this work is to port an improved version of 

the HELP PUF's design into an application-specific integrated circuit (ASIC) platform. At 

the time of this writing, this work is already underway, and a design is being prepared for 

inclusion  on  a  test  chip  that  will  be  fabricated  in  a  130-nm  bulk  technology.  This 

implementation is expected to be completed in the Fall of 2013.

Challenges  posed  by  an  ASIC  implementation  will  include  the  necessity  of 

designing the required clocking resources, replacing the proven digital clock managers 

(DCMs) that are available on the Xilinx Virtex2-Pro FPGA.  In particular, the ability to 

control  the phase relationship between a DCM output  and a reference clock must  be 
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preserved. The critical role that this adjustment plays in both the operation of the PUF 

and  its  performance  means  that  this  design  goal  will  require  careful  analog-level 

simulation of phase controllability using a post-layout netlist.

10.2. Aging: A Study of the PUF Performance Over Time

The reliability of the HELP PUF is directly related to the relationships between 

path delays of different paths in the MUT.  Therefore, anything that causes those path 

delays to change presents a risk to the PUF's ability to correctly regenerate a bitstring. 

And, while we have thus far treated the variations upon which the PUF relies for its 

operation as being static and unchanging after the point of manufacture, this assumption 

may not be valid when the effects of aging are considered.

Aging effects for path delay include anything that affects the rate of charging and 

discharging the parasitic on-path and off-path capacitances.  For transistors, changes to 

threshold voltages, effective resistance, and charge carrier mobility caused by hot carrier 

injection (HCI) and negative bias temperature instability (NBTI) are a primary concern, 

while  electromigration  in  the  metal  lines  of  the interconnections  can  also impact  the 

resistances through which these currents are supplied.

The specific concerns surrounding aging effects on the HELP PUF differ slightly 

depending  upon  the  bit  generation  method  that  is  invoked.   For  UNM/UNMD,  the 

bitstring that is generated depends on the relative differences in delay between paths, so 

that the sensitivity of these methods to common-mode changes (changes that affect all 

paths equally) will have a less detrimental effect than localized changes in individual path 

delays. DPNC, however, considers each of the PN values individually, and is therefore 
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more likely to suffer from any changes to path delay that cause mod-PNs to change from 

one group to another. 

At present, we do not have any specific data that directly correlates the same path 

delay measurements separated only by significant amounts of time.  The evolving nature 

of the HELP PUF's structure and operation means that the data that was collected in the 

early experiments is not directly comparable to the data collected more recently.  This is 

due to the lack of control over the actual placement and routing of each of the different 

versions of the HELP PUF engine bitstream. As new features were added and changes 

made to the implementation,  each generated bitstream resulted in the use of different 

primitives and routing resources on the FPGA, and therefore path delays for the same 

path (comprised of  an initial  and final  launch vector  and a  target  insertion point)  no 

longer bore any relevance.

An accelerated aging test regimen on all or part of the population of test boards is 

not  a  desirable  option.  The  XUP boards  that  we have  used  for  this  experimentation 

represent a sizable investment and are a valuable resource for other experimentation.  As 

a result, any testing that risks permanent damage to the boards is not suitable under the 

circumstances. However, specific repetition of tests using the same bitstreams that were 

used in the early phase of HELP PUF experimentation could be performed solely for the 

purpose of determining the impact of aging on the HELP PUF's performance. 

10.3. The Use of Voltage Scaling to Improve Reliability

Our  environmental  testing  revealed  a  strong  correlation  between  the  worst 

reliability performance  and low supply voltage.  Sixteen  out  of  nineteen  bit  flips  that 
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occurred during testing of the DPNC method occurred when the supply voltage was set to 

1.35V (10% below the normal VCC). 

One idea that offers a measure of protection against this error-producing condition 

is to perform an additional filtering step during enrollment to eliminate paths that are 

susceptible to jumping at lower-than-normal supply voltages. The use of voltage scaling 

circuits to reduce the supply voltage on an ASIC could allow paths to be measured at both 

nominal  and low voltages,  and if  significant  changes  occur  between the path lengths 

under  these  conditions,  the  path  could  be  marked as  invalid  in  PN memory and the 

possible error averted.

Voltage scaling circuits were originally introduced to match power consumption 

and applications' performance requirements in computing hardware designed for mobile 

applications.  Static voltage scaling technologies such as Intel's  SpeedStep are used to 

match  power  and  performance  requirements  on  a  per-application  level,  while  true 

dynamic  voltage  scaling  techniques  (such  as  Marvell's  Xscale  processor  technology) 

involves “on-the-fly” changes to operating voltage and processor frequency based upon 

continuously changing operating environments[30]. It is anticipated that either approach 

would be appropriate for this application.

Much of the research work required to explore this option could be done using 

existing hardware, and a sense of the effectiveness of voltage scaling on the reliability of 

HELP could possibly be obtained from existing data from our TV experiments.  The same 

is true for the ASIC version; it is not strictly necessary to incorporate voltage scaling 

hardware into the on-chip design, since the entire chip's supply voltage may be adjusted 
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externally.  Regarding the inclusion of voltage scaling circuitry on the test chip currently 

being  design,  several  questions  emerge.  These  questions  include  whether  the  scaling 

circuitry could be built simply from the standard cell library currently being developed 

for the next test chip, how costly the circuit would be in terms of area, power, and design 

complexity,  and whether its inclusion in the design would adversely impact the other 

primitives on the ASIC.

10.4. Attack Threat Analysis and Mitigation

An important topic in any PUF research is the threat of adversarial attacks designed 

to steal secret data from a PUF.  Side-channel attacks are aimed at extracting information 

from  one  of  a  number  of  secondary  sources,  such  as  global  chip  current,  power 

consumption,  electromagnetic  emissions,  or  optically  observing  the  circuit's  behavior 

through the use of such techniques as backside thinning. More invasive attacks, such as 

probing attacks, attempt to learn the key through more direct physical access. 

Another type of side-channel attack is the fault injection attack.  This is considered 

an active attack because it involves the creation of one or more fault conditions, which 

might include abnormal power supply levels, out-of-spec clock timing, or invalid timing 

conditions (i.e., setup-hold violations). By recording the resulting output of the PUF, it is 

possible to gain critical information about the internal state of the device.[31]

Another  form of  attack  is  the  modeling  attack,  wherein  an  attacker  repeatedly 

applies  challenges and records the corresponding responses in  order  to build  a linear 

model  of  the  variations  in  the  system,  and in  so  doing  can  learn  the  secret  data  or 

significantly reduce the size of the problem to the point at which a brute force attack is 
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feasible.

Of  these,  perhaps  the  greatest  threat  of  attacks  on  the  HELP PUF  are  power 

analysis  attacks.  In  particular,  it  would  be  prudent  to  study  the  effectiveness  of 

differential power analysis (DPA) attacks, in which repeated power traces are captured on 

an  oscilloscope  and  analyzed  using  statistical  methods  to  identify  power  signatures 

associated with certain states, values, or conditions within the chip.  No specific attempts 

have been made thus far to assess the vulnerability of HELP to DPA attacks. Additionally, 

no hardware  features  have  been  added to  HELP to  obfuscate  the  power  behavior  of 

critical operations that may leak the internal states of the engine.  Both of these represent 

opportunities for improving the viability of the HELP PUF.

The HELP PUF may prove to be more resilient to model-building attacks, since the 

specific  MUT does  not  present  an adversary with a  simple,  repeating set  of gates  to 

model, in the way that Arbiter PUFs and RO-PUFs do. However, the work that we have 

been doing has heretofore been confined to ensuring that the PUF performs well in terms 

of the specific PUF metrics, and a complete attack threat analysis has been outside of the 

scope of that work.
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Chapter 11: Conclusion

In  this  dissertation,  details  have  been  presented  regarding  the  design  and 

experimental  testing  of  HELP,  a  practical,  realizable  PUF,  and several  bit  generation 

techniques  have  been  proposed  and  their  strengths  and  weaknesses  analyzed.  In 

particular, two of these bit generation techniques, called DPNC and UNMD, have been 

put forward as showing the most robustness, reliability, and utility. The HELP PUF is 

based on variations in path delays and on the stability of those paths, each measured from 

a core logic macro embedded within the chip. The results of the HD, NIST, and POF 

analyses show the bitstrings to be genuinely random, unique, and highly reproducible 

under changing environmental conditions, all of which are critical requirements for the 

potential use of HELP in applications such as  mobile computing or smartcards.

Finally,  a  list  of  additional  research work was included that,  if  completed,  will 

strengthen the viability of the HELP PUF as a cryptographic-strength hardware security 

primitive.
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