
University of Massachusetts Amherst University of Massachusetts Amherst 

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst 

Doctoral Dissertations Dissertations and Theses 

March 2020 

EFFICIENT HARDWARE PRIMITIVES FOR SECURING EFFICIENT HARDWARE PRIMITIVES FOR SECURING 

LIGHTWEIGHT SYSTEMS LIGHTWEIGHT SYSTEMS 

Siva Nishok Dhanuskodi 

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 

 Part of the VLSI and Circuits, Embedded and Hardware Systems Commons 

Recommended Citation Recommended Citation 
Dhanuskodi, Siva Nishok, "EFFICIENT HARDWARE PRIMITIVES FOR SECURING LIGHTWEIGHT SYSTEMS" 
(2020). Doctoral Dissertations. 1821. 
https://doi.org/10.7275/re76-xh53 https://scholarworks.umass.edu/dissertations_2/1821 

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at 
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of ScholarWorks@UMass Amherst. For more information, please contact 
scholarworks@library.umass.edu. 

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1821&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1821&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.7275/re76-xh53
https://scholarworks.umass.edu/dissertations_2/1821?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1821&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


EFFICIENT HARDWARE PRIMITIVES FOR
SECURING LIGHTWEIGHT SYSTEMS

A Dissertation Presented

by

SIVA NISHOK DHANUSKODI

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

February 2020

Electrical and Computer Engineering



c© Copyright by Siva Nishok Dhanuskodi 2020

All Rights Reserved



EFFICIENT HARDWARE PRIMITIVES FOR
SECURING LIGHTWEIGHT SYSTEMS

A Dissertation Presented

by

SIVA NISHOK DHANUSKODI

Approved as to style and content by:

Daniel E. Holcomb, Chair

Wayne P. Burleson, Member

Russell G. Tessier, Member

Charles Weems, Member

Christopher V. Hollot, Department Head
Electrical and Computer Engineering



DEDICATION

To my parents Dhanuskodi S. and Parvathi B.



ACKNOWLEDGMENTS

I would like to first of all thank my advisor Professor Daniel Holcomb. His tech-

nical astuteness, patient guidance and unwavering support throughout my PhD have

gone a long way in making this thesis happen. He has been always been willing to

give a lot of his time and energy. The many interactions I have had with him have

shaped my research goals as well as honed my technical skills. This thesis would not

have been possible without his constant friendly support and encouragement.

I would like to thank the members of my thesis committee for their valuable

feedback and time. A special thanks to Professor Burleson, Professor Kundu and

Professor Koren for their guidance, discussions and critique in group meetings. Their

personal interest and experience have helped me improve research quality. I would

like to acknowledge the faculty at ECE department in general for an inspiring and

conducive learning atmosphere.

It was great to work with several people all these years: Xiang Li, Shahrzad Ke-

shavarz, Harshavardhan Ramanna, Vinay Patil, Arunkumar Vijayakumar and Ragha-

van Kumar. I really enjoyed our collaborations, technical discussions and thank you

for your support at several stages of my graduate life. A special mention to some

of my friends who always stood by me with encouragement and support: Arunacha-

lam Annamalai, Sankara Narayanan Rajapandian, Meenakshi Sundaram Bhaskaran,

Surendran Subramanian and Badri Krishna Kumar.

The list would not be complete without thanking my family for their selfless love,

support and care. Their entire life has been an offering to my brother and I, more

than I could ever ask for. Yoga has been a huge support in every aspect of my life, I

would like to express my heartfelt gratitude to Sadhguru.

v



ABSTRACT

EFFICIENT HARDWARE PRIMITIVES FOR
SECURING LIGHTWEIGHT SYSTEMS

FEBRUARY 2020

SIVA NISHOK DHANUSKODI

B.E., ANNA UNIVERSITY - MADRAS INSTITUTE OF TECHNOLOGY

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Daniel E. Holcomb

In the era of IoT and ubiquitous computing, the collection and communication

of sensitive data is increasingly being handled by lightweight Integrated Circuits. Ef-

ficient hardware implementations of crytographic primitives for resource constrained

applications have become critical, especially block ciphers which perform fundamental

operations such as encryption, decryption, and even hashing. We study the efficiency

of block ciphers under different implementation styles. For low latency applications

that use unrolled block cipher implementations, we design a glitch filter to reduce

energy consumption. For lightweight applications, we design a novel architecture for

the widely used AES cipher. The design eliminates inefficiencies in data movement

and clock activity, thereby significantly improving energy efficiency over state-of-the-

art architectures. Apart from efficiency, vulnerability to implementation attacks are

a concern, which we mitigate by our randomization capable lightweight AES archi-

tecture. We fabricate our designs in a commercial 16nm FinFET technology and

vi



present measured testchip data on energy consumption and side channel resistance.

Finally, we address the problem of supply chain security by using image processing

techniques to extract fingerprints from surface texture of plastic IC packages for IC

authentication and counterfeit prevention. Collectively these works present efficient

and cost effective solutions to secure lightweight systems.

vii



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

CHAPTER

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Block ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 AES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 SIMON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Energy efficiency in block ciphers implementations . . . . . . . . . . . . . . . . . . . . 7
1.3 Side Channel Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Differential Power Analysis and metrics . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Existing countermeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.3 Logic State Based Leakage Power Analysis . . . . . . . . . . . . . . . . . . . . 12
1.3.4 Remote Side Channel Attack on FPGAs. . . . . . . . . . . . . . . . . . . . . . 14

1.4 Supply Chain Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2. EFFICIENCY IN UNROLLED BLOCK CIPHERS . . . . . . . . . . . . . . . 21

2.1 Glitches and glitch filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Checkpointing to improve energy efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Evaluation of Checkpointing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

viii



2.3.2 Comparison of Average Switching Rates . . . . . . . . . . . . . . . . . . . . . . 27
2.3.3 Energy Comparison in Fully Unrolled Designs . . . . . . . . . . . . . . . . . 29

2.3.3.1 SIMON-128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.3.2 AES-128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.4 Optimal Placement of Checkpoints for Glitch Filtering . . . . . . . . . 32
2.3.5 Checkpointing in Partially Unrolled Designs . . . . . . . . . . . . . . . . . . 33

2.3.5.1 SIMON-128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.5.2 AES-128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.6 Area Cost of Checkpointing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.7 Power Gating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.8 Voltage Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3. EFFICIENCY IN LIGHTWEIGHT AES . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Novel architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.1 Improved clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.1.2 Register renaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Microarchitectural Randomization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.1 Enable Generator design for Word and Byte shuffling . . . . . . . . . . 55
3.2.2 Mix Columns design to handle permutation . . . . . . . . . . . . . . . . . . . 57
3.2.3 Sequencing of Rounds and Key Expansion . . . . . . . . . . . . . . . . . . . . 59

3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.1 Efficiency and overheads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.2 Susceptibility to Side Channel Attacks . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4. TESTCHIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1 Design methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1.1 RTL design and synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.1.2 Physical design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.1.3 Chip packaging and Printed Circuit Board design . . . . . . . . . . . . . . 74

ix



4.2 Chip Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.1 Efficiency, power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2.2 Side Channel resilience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5. PACKAGE IDENTIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1 Transfer Molding for IC packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 CounterFoil anti-counterfeiting scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.1 Enrollment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2.3 Attacker Capabilities and Security Considerations . . . . . . . . . . . . . 92

5.3 Image Processing and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.1 Aruco marker labels and detection of ROI . . . . . . . . . . . . . . . . . . . . 95
5.3.2 Feature Enrollment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3.3 Feature Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.3.1 Feature matching and RANSAC based homography
computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.3.2 Projection and Scoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4.1 Package Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.4.2 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.4.3 Practicality and Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.4.4 Algorithm Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.4.5 Camera Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.4.6 Varying Magnification and Lighting . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5 Further Investigation of Fingerprints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5.1 Testing Resilience of Fingerprints . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.5.2 Testing Fingerprint Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.5.2.1 Scoring under Controlled Alignment . . . . . . . . . . . . . . . . 111
5.5.2.2 PUF-like evaluation using Pixel Intensity . . . . . . . . . . . . 112
5.5.2.3 PUF-like evaluation using Feature Distance . . . . . . . . . . 114

5.5.3 Additional Package Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

x



6. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

LIST OF PUBLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

xi



LIST OF TABLES

Table Page

1.1 Simulated Dynamic and static power consumption of a WDDL-AND
gate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Breakdown of Eenc (pJ/bit) in fully unrolled SIMON-128. Glitch
filters are added after every round in Round Gating and our
checkpointing work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Breakdown of Eenc (pJ/bit) in fully unrolled AES-128. Glitch filters
are added after every round in Round Gating and our
checkpointing work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Eenc (pJ/bit) comparison in SIMON-128 between optimal
checkpointing and the baseline design for various degrees of
unrolling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Eenc (pJ/bit) comparison in AES-128 between optimal checkpointing
and the baseline design for various degrees of unrolling. . . . . . . . . . . . . 37

2.5 Area penalty of proposed glitch filtering scheme in units of gate
equivalents. Even in absolute terms, the area cost of
checkpointing is significantly higher in SIMON-128 than in
AES-128 because the larger number of rounds requires a larger
number of checkpoints, even though the checkpoints are only
applied at every second round. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Physical registers to be enabled in each clock cycle . . . . . . . . . . . . . . . . . . . 49

3.2 Table illustrates the operation of the pipelined MixColumns (see
Fig. 3.10) for two different orderings of the input bytes. At the
end of the four cycles, the same values exist in the registers for
both orderings, but their locations differ. The permutation step
associates the appropriate register value to each output signal. . . . . . . 59

3.3 Comparison of energy efficiency of four AES designs all implemented
by us in the same 16nm technology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

xii



3.4 Comparison of area of four AES designs all implemented by us in the
same 16nm technology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Comparison of performance. Throughput obtained at 300MHz
clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Performance comparison of AES designs with testchip measurements
obtained at 20MHz clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Measurements to Disclosure using Hamming Distance DPA on the
8-bit AES designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1 Quantitative comparison of different feature-detecting methods. Plot
at right shows the ROC plot from which the area-under-curve is
computed. All four algorithms are configured to use 1,000
keypoints per mm2 for this comparison. . . . . . . . . . . . . . . . . . . . . . . . . 107

xiii



LIST OF FIGURES

Figure Page

1.1 Structure of AES round function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Structure of AES 128-bit Key Expansion [87]. . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 SIMON round function and key schedule [13]. . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Illustration of a DPA attack on AES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Schematics for LLPA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 A successful attack using LLPA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.7 FDPA Attack setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.8 FDPA in action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Schematic of latch-based checkpoints for glitch filtering. . . . . . . . . . . . . . . . 25

2.2 Timing diagram of glitch filter operation, annotated with the number
of switching events happening at each point in the circuit for
SIMON-128. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Increasing pulse width of enable signal to tolerate variations. . . . . . . . . . . 25

2.4 SIMON-128 energy per encryption histogram for 100 random
inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Comparison of the average toggle rate of the output signals of each
round of SIMON-128 for four different implementation styles. . . . . . . . 29

2.6 Contribution of each round to the overall energy per encrypted bit in
four different implementation styles of fully unrolled
SIMON-128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7 Energy/encryption breakdown in fully unrolled implementations
using checkpointing after every round. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

xiv



2.8 Energy efficiency varies with the spacing between checkpoints in fully
unrolled designs. Performing more computation between
checkpoints reduces checkpointing energy, but allows more data
switching to occur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.9 Energy breakdown of Eenc for each round in fully unrolled
SIMON-128 in the optimal configuration of checkpointing every
second round. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.10 Power gating to reduce leakage power consumption. . . . . . . . . . . . . . . . . . . 39

2.11 Energy per encryption at different supply voltages in SIMON. Dotted
lines represent leakage energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Proposed 8-bit architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Timing of control signals for a quarter of one round. enB signals
enable bytes to be read from physical registers into the datapath
S-Box, and enW signals allow round outputs to be written back
to physical registers on falling edge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Illustration of register renaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Enable Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Schematic of Round Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Schematic of Key Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7 Randomization-capable 8-bit AES architecture. Additional details of
redesigned Enable Generator and MixColumns circuits are shown
in Figs. 3.9 and 3.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.8 Shuffled orders in which bytes can be processed in our architecture.
Depending on the value of the word offset and byte offset, each of
the 16 state bytes could be processed in any of the 16 cycles of
the round. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.9 Enable Generator for Randomized architecture (compare Fig. 3.4).
Solid, dotted and red lines indicate 4-bit, 1-bit and 2-bit signals
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.10 MixColumns for Randomized architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xv



3.11 Plots showing DPA attack on 4 key bytes for the 8-bit designs. Top
plot shows differential power traces for the 8-bit renaming design
and the bottom plot shows the same for the 8-bit randomized
design. Green line corresponds to correct key guess and red lines
correspond to incorrect key guesses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.12 CDF of MTD for the different designs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Block level view of designs implemented on testchip. . . . . . . . . . . . . . . . . . 69

4.2 Different stages of physical design of 8-bit Randomized AES. . . . . . . . . . . 71

4.3 Layout showing all four AES designs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Examples of sign-off DRC violations on finished design that were
manually fixed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Images of full chip with other designs from colleagues on same die.
All designs have isolated power domains. . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6 Chip packaged in a Flip Chip Ball Grid Array . . . . . . . . . . . . . . . . . . . . . . . 76

4.7 AES chip test setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.8 Power and energy comparison of AES designs based on testchip
measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.9 Effect of voltage scaling on efficiency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.10 Differential and DPA traces with Hamming distance leakage
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.11 Differential Power Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 Transfer molding is the mechanism used for packaging most
high-volume microchips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Protocol for package fingerprinting. Trusted enroller labels each
package and then enrolls it by extracting and then signing a set of
keypoints associated with the package. Verifier compares the
enrolled keypoints against the package to determine whether the
package is consistent with its label. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xvi



5.3 Size of features extracted from images of package surfaces using
OpenCV implementation of ORB algorithm as discussed in
Sec. 5.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 Image of chip with affixed marker. The position of enrollment ROI is
shown by the blue box, and the callout shows the keypoints
extracted from the ROI. The ROI that would be used for
verification is the smaller red box. The size and position of both
ROIs are defined relative to the marker, as shown by annotations
in yellow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5 Pixel distance between the expected location of a keypoint (according
to homography) and the location of its nearest neighbor in feature
space. The spike at left shows points for which the nearest
neighbor is found in the expected location. The points that are
sufficiently close to be counted as inliers are the ones colored
red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.6 Three examples of matching between enrollment keypoints (square in
upper left) and verification image of the same chip package
instance, where the verification image differs in zoom and
orientation. White square on chip package is the identified region
of interest for verification. Each line corresponds to a keypoint
match from enrollment to verification (Sec. 5.3.3.2). . . . . . . . . . . . . . . 101

5.7 Experimental setup. Left side of workbench used for enrollment, right
side used for verification. Separate camera are used for enrollment
and verification. Middle of image shows the population of chips
with labels affixed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.8 CDF of number of inliers using each model of camera. . . . . . . . . . . . . . . . 103

5.9 Receiver Operating Characteristic curves show ability to distinguish
enrolled chips from other chips created from a different mold than
the enrolled chip, or from the same mold that produced the
enrolled chip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.10 Runtime of verification procedure, broken down by processing task,
for different sizes of ROI. Keypoint density is held constant at
1,000/mm2. The increase in keypoints for the larger ROI results
in a higher runtime, but also increases the number of matching
points that are found. Runtime can be traded against accuracy by
adjusting the ROI size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

xvii



5.11 Histograms showing increase in number of inliers in AS6C6264
SRAM when same ViTiny cameras are used for both enrollment
and verification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.12 Histogram of inliers in AS6C6264 SRAM under two alternative
lighting intensities (nominal is 800 lux) and one alternative
zoom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.13 Reduction in inliers for chip AS6C6264 after spending time in rock
tumbler. Images of chip are included to give a sense of the
amount of wear caused. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.14 Inlier CDFs for SRAMs under controlled alignment. . . . . . . . . . . . . . . . . . 112

5.15 PUF-like evaluation on raw pixel intensity data. . . . . . . . . . . . . . . . . . . . . 113

5.16 Average distance in feature space for same-position keypoint
pairs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.17 Evaluation of package surface fingerprints across a range of package
types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

xviii



INTRODUCTION

Advances in the chip industry have enabled, at the time of this thesis, production

of Integrated Circuits (ICs) with transistor channel lengths as small as a few nanome-

ters. Miniaturization has opened avenues for ultra-lightweight systems such as the

Internet-of-Things (IoT). Some of the multi-billion dollar [115] applications of IoT

include smart homes and cities, operations and equipment optimization in factories,

wearable/implantable medical devices and autonomous vehicles.

Ubiquitous computing often involves sharing personal and confidential data over

the Internet. As a result security of IoT devices becomes important especially in

critical applications like healthcare. Some of the unique challenges in IoT security

include limited hardware resources, stringent power budgets, and cost constraints.

Lightweight IoT devices like Radio Frequency Identification (RFID) tags and wireless

sensor nodes are typically battery powered with energy budgets of less than a micro-

joule per bit of data processed [115]. Physically accessibility of these devices to an

attacker opens a variety of security threats, both passive and active attacks.

The basic security services required of a cryptosystem are confidentiality, integrity,

message authentication and nonrepudiation [87]. Block ciphers form an important

building block in offering these services. Symmetric key encryption algorithms encrypt

and authenticate data using a secret key. Advanced Encryption Standard (AES)

is the most widely used symmetric key based block cipher. Dedicated hardware

implementations of AES are used in millions of hardware chips worldwide to encrypt

large blocks of data with better performance and power than can be achieved in

software implementations.

1



Implementing cryptographic primitives such as AES for IoT systems is challenging

due to cost constraints and power budgets. Designers exploit the symmetry in the

operations of the AES algorithm to reduce the number of hardware units implemented

and reuse them over time to save area. However block ciphers have data dependencies

which these make lightweight implementations inefficient as a significant amount of

energy is spent in moving data around to work around the dependencies.

Apart from efficiency concerns, AES can be vulnerable to Side Channel Attacks

(SCAs) that target weaknesses of the hardware implementation to extract the secret

key. Passive SCAs exploit correlation between computed data and the power con-

sumption of hardware implementing AES to retrieve the secret key. Active attacks

inject a fault in the AES computation and retrieve the secret key by comparing the

outputs of faulty and faulty-free computations. Lightweight devices for IoT are espe-

cially susceptible to SCAs as they have low background noise power, are physically

accessible to the attacker, and have low budget for defenses.

Besides the implementation weaknesses, the supply and distribution channels of

ICs present a large, diverse and vulnerable attack surface. Counterfeit ICs such as

phony parts, recycled, and remarked chips have made their way into critical defense

and avionics systems. With ubiquitous computing, the problem of counterfeit parts

becomes increasingly critical. IoT systems are often combining chips from different

sources, and a single bad chip can compromise the entire system.

In this dissertation, we present a background to further understand some of the

aforementioned problems, then provide novel and efficient solutions. The dissertation

ranges on topics from silicon to package, covering the entire stack of a hardware sys-

tem. We study the reasons for energy inefficiencies in state-of-the-art block ciphers

and design micro-architectures that greatly mitigate inefficiencies under different sce-

narios. We support our claims with data from a testchip in an advanced commercial

16nm FinFET technology. We also present a novel IC authentication technique that

2



uses computer vision techniques to prevent counterfeits and can be deployed atop

current infrastructure at almost no cost.

My specific contributions include:

• Developed glitch filtering techniques that allow partially and fully unrolled block

ciphers to have an energy efficiency that is competitive with serialized imple-

mentations

• Designed a novel microarchitecture for lightweight AES implementations that

minimizes data movement and clock activity to improve energy efficiency

• Enabled randomization of sub-round operations in lightweight AES architecture

to mitigate side channel susceptibility

• Taped out AES designs in a commercial 16nm FinFET technology chip and

tested efficiency and side channel resilience of the designs

• For the first time, showed that individual chip packages can be recognized and

authenticated using intrinsic surface features extracted using low cost cameras

and image processing

The remainder of the dissertation is structured as follows. Chapter 1 provides

the necessary background about block ciphers, side channel attacks and supply chain

security. Efficiency of unrolled block ciphers is addressed in chapter 2 through a new

glitch filter design (published in Trans. on Computers 2017 [30]) enabling unrolled

ciphers to be competitive with serialized designs but with the drawback of significant

area costs. We next explore a novel lightweight AES architecture with side channel

resilience in chapter 3. Our design significantly outperforms state-of-the-art and we

published our work in ISLPED 2017 [32] and ISVLSI 2019 [31]. We further taped

out our designs in 16nm FinFET technology and chapter 4 describes the design and

evaluation of our testchip containing four AES designs. In chapter 5 we discuss our

3



novel IC package authentication methodology to verify provenance of ICs. We present

concluding remarks in chapter 6.

4



CHAPTER 1

BACKGROUND

1.1 Block ciphers

Block ciphers are cryptographic primitives that encrypt and decrypt data, typi-

cally within a larger encryption mode of operation to help achieve security goals of

confidentiality and authenticity for a cryptosystem. Block ciphers can also be used as

part of hash functions. Typically, a block cipher algorithm iterates over a round func-

tion for a specified number of times using different round keys generated by the key

schedule function. Substitution and permutation are two common operations found

in the round functions of block ciphers. Symmetric key block ciphers such as DES

and AES are used for data encryption due to their simple design and performance.

Asymmetric algorithms such as RSA and ECC employ complex mathematical opera-

tions and are therefore used for key exchange and digital signatures. Now we describe

the block ciphers AES and SIMON, as we will be using them in this thesis.

1.1.1 AES

The Advanced Encryption Standard (AES) is a ubiquitous encryption standard [91]

based on the Rijndael cipher. It was standardized by NIST in 2001 to replace DES

following an open competition. AES uses a number of iterated rounds, 10 in the

case of a 128-bit key strength, to transform a block of plaintext into a corresponding

block of ciphertext. Each round (Fig. 1.1) operates on 128 bits of state, and uses

a 128-bit round key to generate the next state from the current state. The major

components of the round function are SubBytes, ShiftRows, MixColumns, and ad-

dition of the round key. The SubBytes function uses an S-Box circuit to apply the

5



B0	

S	

B1	

S	

B2	

S	

B3	

S	

B4	

S	

B5	

S	

B6	

S	

B7	

S	

B8	

S	

B9	

S	

B10	

S	

B11	

S	

B12	

S	

B13	

S	

B14	

S	

B15	

S	

B0	

S	
B0	

S	

Mix	Cols	 Mix	Cols	 Mix	Cols	 Mix	Cols	

B0’	 B1’	 B2’	 B3’	 B4’	 B5’	 B6’	 B7’	 B8’	 B9’	 B10’	 B11’	 B12’	 B13’	 B14’	 B15’	

+	 +	 +	 +	 +	 +	 +	 +	 +	 +	 +	 +	 +	 +	 +	 +	

Figure 1.1: Structure of AES round function.

same byte-wise substitution function to each of the 16 state bytes. ShiftRows oper-

ation reorders the bytes. MixColumns operates on a 4-byte input {s3, s2, s1, s0} and

produces a 4-byte output {m3,m2,m1,m0} as per Eq. 1.1. Finally the round key

is added (XORed) to the output of MixColumns to create the next state that will

be used as the input to the next round. The 128-bit round keys are expanded from

a single 128-bit key input as shown in Fig. 1.2. Round key 0 is the input key and

RC[i] = xi−1mod(x8 + x4 + x3 + x+ 1) is the Round Constant of round i.



m0

m1

m2

m3


=



2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2





s0

s1

s2

s3


(1.1)

1.1.2 SIMON

SIMON is a lightweight Feistel cipher suitable for resource constrained systems,

and we use the SIMON-128 variant [13]. SIMON-128 uses a 128-bit key, 128-bit data,

and requires 68 rounds for each encryption. A Feistel structure is symmetric in nature

and offers the advantage of similarities in the encryption and decryption operations,

which in turn reduces the required resources for a hardware implementation. The

round function (Fig. 1.3a) is constructed to be extremely small in hardware and easy

6



Figure 1.2: Structure of AES 128-bit Key Expansion [87].

to serialize without sacrificing software performance [13]. It consists of only the fol-

lowing operations: bitwise XOR, bitwise AND and left circular shift Sj by j bits. The

round key ki is generated from the input key according to the key schedule operation

shown in Fig. 1.3b. The operations in the key schedule are similar to the ones in

the round function. To eliminate vulnerabilities to cryptanalysis attacks such as slide

attack [18] that exploits cyclic nature of key schedule and rotational attacks that

exploit correlations between bit-rotated pairs of inputs [62], a 1-bit round constant

is employed in each round of the key schedule from the following 62-period sequence

z2 = 62′b 10101111011100000011010010011000101000010001111110010110110011.

1.2 Energy efficiency in block ciphers implementations

Block ciphers are almost always implemented as components of a larger overall

system-on-chip design, and this prevents the block cipher from being freely optimized

independently of the other SoC components. For example, the block cipher will have

to use the same fabrication process and supply voltage as the other components,

and typically will share a common clock frequency to avoid clock generation and

7



(a) Round Function (b) Key Schedule

Figure 1.3: SIMON round function and key schedule [13].

clock domain crossing. Therefore, any attempt at optimizing block ciphers may be

constrained by these chip-scale implementation decisions.

Depending on the chip-scale requirements and constraints, the block cipher rounds

can be implemented through sequential reuse of a single combinational block for each

round, or they can be unrolled. If a design is serialized (no unrolling), one round

function is computed in each clock cycle, and the number of cycles needed to encrypt

a block is the same as the number of rounds in the block cipher algorithm. Yet at slow

clock frequencies, the clock period may far exceed the critical path delay of a block

cipher round. The latency of the block-cipher is then being increased unnecessarily

due to the serialization of the round function. Unrolling has been explored in literature

as a technique to instantiate multiple round functions per clock cycle and eliminate

energy spent in loop control elements such as registers and multiplexers. However

the energy savings are minimal and are offset by the increase in glitching power that

comes with unrolling; we further explore this in Ch. 2.

For resource constrained applications like IoT, lightweight implementations of

block ciphers have been explored. Symmetry in sub-round operations has been lever-

aged by temporal reuse of limited hardware units to save area in ciphers such as AES

[78, 47]. For example, if a single AES S-box (Fig. 1.1) is implemented in hardware

8



it can be reused to operate on different bytes across clock cycles. In this case one

round is completed in 16 cycles. The increase in latency due to narrow datapath

operation is acceptable in these non-performance critical applications. However, sig-

nificant energy inefficiencies exist due to the storage of intermediate results and data

movement which are explored and addressed in Ch. 3. Though lightweight ciphers

such as SIMON have been proposed they are not used as extensively as AES.

1.3 Side Channel Attacks

Although encryption algorithms and protocols have been developed to provide

security, hardware implementations can leak valuable information to an attacker. For

example, data dependence in power consumption of a device can be exploited as a

side-channel to extract its secret key. Such a security attack is termed a Side Channel

Attack (SCA). Some examples of passive side-channels include encryption time, power

consumption or electromagnetic radiation emanating from device that are correlated

to the computed data [104]. Active attacks on the other hand inject faults into the

computation by varying supply voltage, clock frequency, or exposing the device to

lasers, and subsequently analyze faulty and fault-free outputs to retrieve the secret

key [57, 104]. Combined active and passive attacks also exist [95].

1.3.1 Differential Power Analysis and metrics

Power side-channel attacks such as Simple Power Analysis (SPA) [64], Differential

Power Analysis (DPA) [64] and Correlation Power Analysis (CPA) [22] leverage data

dependency in power consumption to extract secret information. In a DPA attack, one

would capture power traces T0, T1, ... Tm−1 while the encryption algorithm is running

and record the corresponding ciphertexts C0, C1, ... Cm−1. An internal node value b

in the computation that is dependent on a few bits of round key and ciphertext is

then chosen as a selection function. In AES, the attack is performed on values that

9



depend on only a single byte of round key at a time. Now the attacker guesses the key

bits, and for each guess Ks he partitions the power traces T0, T1, ... Tm−1 based on the

computed value of the selection function D(Ci, b,Ks). The attacker then computes

a differential trace ∆D as shown in Eq. 1.2. For the correct key guess, with enough

power measurements a peak in the differential trace is observed at the time when

the selection function is computed in hardware, due to the correlation between the

predicted selection function and the differential average of power traces (∆D). For

incorrect key guesses, a random partitioning of power traces results in a differential

average that approaches zero with enough measurements.

∆D[j] =

∑m
i=1D(Ci, b,Ks)Ti[j]∑m

i=1D(Ci, b,Ks)
−

∑m
i=1(1−D(Ci, b,Ks))Ti[j]∑m

i=1(1−D(Ci, b,Ks))
(1.2)

For example in a DPA attack on AES, by making power measurements the secret

key of AES in a smart card is broken by using S-box input value as selection function.

The attack works despite not being able to observe the S-box inputs. In Fig. 1.4a the

differential power trace values for different key guesses are plotted. The correct key

guess (green line) has a higher DPA peak than incorrect key guesses (red lines). With

enough measurements only the correct key guess has a consistently high DPA peak

as seen in Fig. 1.4b. Measurements to Disclosure (MTD) [107] is the number of

measurements required to distinguish the correct key guess from incorrect ones. MTD

is defined as the cross-over point between the differential peak of the correct key guess

and the maximum differential peak of all the wrong key guesses. In Fig. 1.4b we see

an MTD of about 13K encryptions. Even though we demonstrate DPA with AES,

side-channel attacks can also break insecure implementations of other cryptographic

algorithms such as RSA and DES [63].

10



(a) DPA power trace

0 5 10 15 20 25 30
Number of encryptions (x1000)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

M
a
x
 (

D
P
A

 t
ra

ce
)

1e 5

(b) MTD

Figure 1.4: Illustration of a DPA attack on AES.

1.3.2 Existing countermeasures

A number of circuit-level countermeasures exist for side-channels. Circuit-level

countermeasures are imperfect but can drastically decrease the signal-to-noise ratio of

the information leaked through the side channel. One family of countermeasures tries

to modify the power delivery system so that the power consumed by the encryption

circuit will not be externally visible to the attacker. Switched-capacitor designs can

isolate the sensitive computation from main power by sourcing its current from a

capacitor and then discharging the capacitor to a fixed value before replenishing

it [108]. On-chip low-dropout regulators [100] can also be used to obscure the power

consumption of the sensitive circuit.

11



A second family of circuit-level countermeasures are modified logic styles that try

to achieve a power consumption that is independent of the values being computed.

SABL and WDDL [105] are differential logic styles that always compute both true

and complement values of each node so that power consumption is unrelated to the

computed value; these logic styles require careful routing to balance the loading on

the differential signals, but given enough measurements can still be attacked due

to unavoidable small imbalances in the differential routing [107]. Masked dual-rail

precharge logics seek to avoid routing constraints by using a random mask to reduce

correlation between power consumption and processed data [90, 89], but are costly in

area.

Another approach to preventing side channel attacks, which can be complementary

to circuit-level countermeasures, is hiding the timing of the computation from the

attacker. An attacker that does not know when a certain key byte is processed will

have difficulty aligning the power traces in the way that is required for DPA attacks.

Timing randomization can easily be accomplished by inserting idle delays, but idle

delays can be identified in the power trace and removed by the attacker. Randomly

inserting dummy encryptions or dummy rounds between meaningful computations

adds a delay that cannot easily be detected and removed in post-processing, but

consumes significant power and latency and requires added complexity around the

cipher. We further explore efficient timing randomization in Sec. 3.2.

1.3.3 Logic State Based Leakage Power Analysis

Side-channel attacks have primarily focused on dynamic power as it has typically

been assumed to be the main contributor of the power consumption. However with

today’s technology scaling, leakage power has become a significant contributor as well.

While the countermeasures such as WDDL, SABL mitigate the information leakage

12



Table 1.1: Simulated Dynamic and static power consumption of a WDDL-AND gate.

Input State
Absolute currents Normalized to state 00

Dynamic (µA) Static (µA) Dynamic Static
00 9.83 0.174 1.00 1.00
01 9.80 0.231 1.00 1.33
10 9.73 0.206 0.99 1.18
11 9.82 0.238 1.00 1.37

through dynamic power consumption, the secret data can still be vulnerable through

the analysis of leakage power.

Leakage Power Analysis (LPA) attacks are relatively new and have not been as

thoroughly explored as dynamic power attacks. The overall leakage power of a cryp-

tographic core is related to the secret data [43] and DPA techniques can be applied

to leakage power in the presence of process variations [70]. Effectiveness of a Ham-

ming Weight based LPA attack on cryptographic cores has been studied for various

side-channel resistant logic styles in the presence of noise and process variations [6].

WDDL and other side-channel resistant logic styles offer resistance against dy-

namic power attacks. However, WDDL still has a significant data dependence in the

static (leakage) power consumption (Tab. 1.1). Dynamic power can be made arbi-

trarily balanced (using SABL for instance) but static power cannot. We leverage the

data dependence of static power to predict the total leakage power consumed by a

circuit and from this extract secret information such as cryptographic keys. We name

our scheme Logic state based Leakage Power Analysis (LLPA) [33].

We assume the attacker has knowledge of the circuit’s implementation (in terms of

logic gates) and is able to observe primary outputs and measure power consumption.

Note that our assumption that an attacker knows the exact gates implemented inside

of a design is increasingly a very practical assumption, as this technique has been

employed in security research [86, 101], and one can even purchase this information

commercially through companies such as Chipworks. Even if a design uses camou-

13



A

B
Y = A.B

B

A
Y = A+B

AND gate

(a) WDDL gate

6x4 S-box
X

key
Y

6

6
6 4Precharge 

Inputs

6

6
4-bit

register
4

CLK

(b) Circuit under attack

Figure 1.5: Schematics for LLPA.

flaged gates [92], the functionality of gates can often be extracted [77, 71]. Also,

note that the internal state is unobservable in the attack model and is predicted with

design knowledge and known data inputs.

To demonstrate our methodology, we choose to attack in simulation a 6x4 S-box

used in DES and retrieve the secret key. The schematic of our circuit is shown in

Fig. 1.5b. The static current of each gate type for every gate input combination

is obtained in a pre-characterization step. For each data input the attacker guesses

the key value Kj and computes the logical input state of each gate in the design.

Under a key guess, state dependent static currents of all gates are summed up to

compute a predicted static power Pj for the entire design. This is repeated for all

key guesses j = 0, 1, ... 63 and the correlation Cj between static power predictions Pj

and measurement M is computed per Eq. 1.3. With enough measurements only the

correct key guess should have a consistently high correlation value. Fig. 1.6 shows a

successful attack with an MTD of 1071 measurements.

Cj = ρM,Pj
=
covariance(M,Pj)

σMσPj

(1.3)

1.3.4 Remote Side Channel Attack on FPGAs

As part of my thesis, I collaborated with students from the Reconfigurable Com-

puting Group at UMass to investigate a remote side channel attack on FPGAs which

I describe in this section. The FPGA implementations described in this section were

14



Figure 1.6: A successful attack using LLPA.

done by my colleagues. I was responsible for developing the attack methodology and

related software code. This work was published in 2018 [93].

Field Programmable Gate Arrays (FPGAs) are quickly growing in importance in

a variety of computing spaces including cloud computing and embedded platforms

(automotive, military, and aerospace). As FPGAs grow in size and complexity, it

is apparent that numerous applications from independent users may simultaneously

reside in a single FPGA device. This use of multi-tenant FPGAs opens the door to nu-

merous potential attack vectors on unsuspecting co-located FPGA circuits. Although

FPGA devices in cloud computing environments such as Microsoft Catapult [4] and

Amazon EC2 F1 [1] are currently dedicated to a specific application, the growing

capabilities of FPGAs makes it easy to envision single-FPGA platforms containing

multiple independent applications created by completely separate entities.

The discovery of a covert communication channel between neighboring FPGA long

wires (also called ”long lines”) has the potential to dramatically change the threat

level of multi-tenant FPGAs. In a comprehensive set of experiments, Giechaskiel et

15



ct+
88 8

8

8

k

r

b S-Box

state byte at start of 10th round 
(unknown to attacker)

Byte of 10th roundkey
(unknown to attacker)

Ring oscillator count from cycle in 
which byte of ciphertext is computed

(known to attacker)

b[0]

Ciphertext byte
(known to attacker)

Shift 
Rows

Figure 1.7: FDPA Attack setup

al. [42] showed that the logic value carried on a long wire influences the delay of both

its immediate neighbor and a long wire in the same channel two wires away. When a

logic 1 value is carried on a wire (the transmitter), the delay in the neighboring wire

(the receiver) is reduced relative to when a logic 0 is transmitted. We leverage this

information leakage by implementing a Ring Oscillator (RO) near a long wire (the

victim), and use a binary counter to measure the RO’s frequency: we increment a

32-bit count value at every positive edge of RO clock for a fixed time duration. The

count values will depend on the data being transmitted on the victim wire.

Our Frequency DPA (FDPA) attack draws inspiration from DPA. As an example,

we demonstrate the working of FDPA on AES to retrieve the secret key. The relevant

portion of the AES final round circuit for attacking a key byte, using information

leaked from a single wire, is shown in Fig. 1.7. Recall that the final round of the AES

algorithm performs bytewise substitution (S-Box), shift rows, and key addition using

XOR, but it omits the mix columns operation. The output of the final round is the

ciphertext, which is public information. To set up the attack scenario for recovering

a key byte, the attacker chooses as the victim any bit of S-Box input that is routed

on a long wire; in Fig. 1.7, bit 0 of the S-Box input is chosen as the victim. The ring

oscillator is then routed next to this signal so that its oscillation count in each clock

cycle will depend slightly on the value of the S-Box input bit.

Using the ring oscillator as a sensor, the attacker monitors many encryptions to

collect information for the side channel attack. For each of n encryptions performed,

16



the attacker records the ciphertext byte and the ring oscillator count during the

cycle the ciphertext byte was produced; we denote these two quantities as cti and ri

respectively for the ith encryption. After n encryptions, the attacker has a collection of

measured oscillator count and ciphertext pairings (r0, ct0), (r1, ct1), . . . , (rn−1, ctn−1).

Among the 256 possible key byte values, the attacker correctly identifies the key byte

used in the circuit based on side channel measurements as follows. For each key guess

kj (i.e. k0 . . . k255), the attacker computes an S-Box input value bi,j for each of the

i ∈ [0, n − 1] measurements using Eq. 1.4 to invert the circuit’s round key addition

and S-Box computation.

bi,j = S−1 (cti ⊕ kj) (1.4)

By inverting the S-Box function under key guess kj, the attacker now knows what

S-Box input value would have induced ciphertext cti if the key byte was in fact kj.

For key guess kj, the computed values at the S-Box input in the n encryptions would

be denoted b0,j, b1,j, . . . , bn−1,j. The predicted S-Box inputs each contain a specific

prediction on the value of the victim wire (bit 0 of the S-Box input), and we check for

its effect on the oscillator counts to know whether kj is the correct key byte value. The

attacker next partitions the n measurements into two subsets according to whether

the victim wire would have a 0 or 1 value under the key guess kj – one subset contains

all the measured RO counts (ri) for encryptions when the victim would have a 1 value,

and the other subset contains all the measured RO counts when the victim would have

a 0 value. The attacker then uses the average RO counts of the two subsets to confirm

or refute his guess that kj is the key byte value as follows:

• If the key byte is in reality kj, then partitioning according to key guess kj

is accurately partitioning the data based on whether the victim is 0 or 1. The

average RO count will tend to be higher in the subset of encryptions that predict

a 1-value for the victim wire, and lower in the subset of encryptions that predict

17



a 0-value. Observing a sufficient difference between the average RO counts in

the two subsets confirms that the partition is meaningful, and thus supports

the hypothesis that the correct key byte value is kj.

• If the key byte is not in reality kj, then partitioning according to key guess

kj is arbitrary and not correlated to the computation of the circuit. Because

the partition is arbitrary, each subset will contain a similar proportion of RO

counts taken when the victim wire is 0 and 1. In this case, the average RO

count from each subset will be similar, and the difference between the average

RO counts of the two sets will approach 0 with enough data. Observing no

difference between the average RO counts of the two subsets therefore serves to

refute the hypothesis that the key byte value is kj.

Fig. 1.8a shows graphically how a collection of RO counts can confirm or refute

a key guess. The attacker in this case collects 500 RO counts and corresponding

ciphertexts; the RO counts for the measurements are shown in the top plot of Fig. 1.8a.

The middle plot shows which of the counts are predicted, according to the correct key

guess, to occur when the victim wire is 1 and 0. We can see that, in measurements

when the key guess predicts the victim wire to have a 1 value, the RO counts tend to

be higher. The significant difference in average RO counts gives an attacker confidence

that the key guess is correct. The lower plot of Fig. 1.8a uses an incorrect key guess

to predict the 1 and 0 values of the victim wire. Using this key guess there is no

difference between the average RO counts, indicating to an attacker that the key

guess is not the correct one. Using this approach, with enough side channel data, the

attacker will be able to identify the correct key byte guesses, even when the difference

between the average RO counts is quite small. Successful attacks were performed on

different FPGAs at clock frequencies upto 10MHz and the MTDs are shown in Fig.

1.8b.

18



6

8

10

12

14

16

R
O

 C
o
u
n
t

+1.432e4 All measurements

6

8

10

12

14

16

R
O

 C
o
u
n
t

+1.432e4 Correct Key guess

250 300 350 400 450 500

Trials

6

8

10

12

14

16

R
O

 C
o
u
n
t

+1.432e4 Incorrect Key guess

logic 0
logic 1

(a) RO count values

104 105 106 107

Clock Frequency (Hz)

102

103

104

105

106

107

M
a
x
im

u
m

 M
T
D

Cyclone IV GX
Cyclone IV E
Cyclone IV GX auto-placed

(b) MTD with clock frequency

Figure 1.8: FDPA in action.

1.4 Supply Chain Security

ICs take on critical roles in today’s society, but the supply and distribution chan-

nels for ICs are vulnerable to a variety of security threats. One such threat is counter-

feit parts, which are a significant and increasing threat to the reliability of electronic

systems. Counterfeits are defined by the US Department of Defense as “unauthorized

copies and previously used parts that are made to look new, and are sold as new” [94].

Misrepresented ICs such as speed binned parts that are remarked to a higher speed

grade to increase selling price [88] can also be considered counterfeits. Prior research

claims that recycled and remarked chips together make up 80% of all counterfeiting

incidents [45]. These types of counterfeit parts are enabled by a lack of traceability

through distribution channels as parts change hands through resellers and system in-

tegrators. DARPA notes that chain-of-custody solutions are unworkable for securing

distribution due to components that may change hands 15 times before final instal-

lation [67]. Our work addresses this critical security problem by giving an approach

for securing parts through distribution without chain-of-custody.

Estimates variously place the direct losses from electronics counterfeiting at $3B-

$7.5B [55], and the potential risk due to counterfeiting at $100B-$200B [88, 84]. The

19



most commonly counterfeited electronics are said to be analog ICs, microprocessors,

memories, programmable logic, and discrete transistors [52, 45]. Documented cases of

counterfeit parts include purported microcontrollers that were found to be remarked

voltage regulators [103], four instances of counterfeit parts in the Avionics Systems of

C-27J aircraft [98], and refurbished flash memory devices in Terminal High-Altitude

Area Defense (THAAD) mission computers that led to a recall of 50 systems [94].

Counterfeit parts such as these present clear security risks which we address in Ch.

5.

20



CHAPTER 2

EFFICIENCY IN UNROLLED BLOCK CIPHERS

Unrolling a block cipher is the process of instantiating multiple rounds of the al-

gorithm combinationally to be completed within each clock cycle. Unrolling allows

the result to be computed in fewer cycles at the cost of increased area of the combi-

national circuit. Unrolling also saves some amount of register energy, as energy is not

spent storing signals at the output of each round like the fully serialized case. The

unrolling of block ciphers as an energy optimization technique has been explored in

a number of recent works [58, 11]. Switching power, especially due to glitches, is a

challenge in unrolled implementations of a block cipher. In this chapter we present

an efficient latch-based glitch filter for unrolled designs that reduces energy per en-

cryption by an order of magnitude over a straightforward unrolled implementation,

and by 28-45% over the best existing glitch filtering schemes. We explore the optimal

number of glitch filters to use for minimizing total energy, and provide estimates of

the area cost. Power gating to reduce leakage power and reuse of computed key en-

able unrolled designs to be more efficient than serialized ones. We demonstrate our

approach on the SIMON-128 and AES-128 block ciphers.

2.1 Glitches and glitch filtering

The limiting factor in energy minimization of block ciphers is switching energy.

This is especially true in unrolled block ciphers because combinational logic glitches

at the input of each round diffuse through the round to cause more glitches at the

output of the round. Leakage power is small relative to switching power for typical

21



clock periods and technologies used in low power designs [58]. Fundamentally, glitches

occur because of mismatched arrival times of gate inputs. This causes the gate output

to switch once when the first input arrives, and then switch again when the next input

arrives. These two switching events then propagate to many other nodes and cause

more switching events in a cascading fashion.

Several techniques to filter glitches have been proposed in literature. Pipelin-

ing [19, 114] stops glitches because they cannot propagate through a register, as a

register can change its output value only once per clock cycle upon arrival of the

clock transition. Gate-freezing [14] stalls the computation in a gate by using an

NMOS footer transistor to filter 1-to-0 transitions. The stalled gate is allowed to

compute only when its inputs have reached their final state. The scheme has a limi-

tation in that it allows 0-to-1 transitions to pass through a stalled gate. Retiming [81]

by moving or adding flip-flops in the datapath to high activity nodes that have a large

fanout can reduce glitches and save power. Yet another approach is delay balancing

to equalize input arrival times at a gate and reduce the number of output switching

events [66, 51].

An AND gate based glitch filtering scheme (Round Gating) has recently been

proposed in [9]. The output signals of each round in this scheme are gated by AND

gates that wait on an enable signal. The enable signal is derived from a delayed clock

such that it goes high to propagate the round outputs through the AND gates only

after they have stopped glitching and become stable. A drawback of this scheme is

that the enable signals must be reset low between the end of one computation and the

start of the next in order to stop propagation of the glitches in the next operation.

When the enable signals go low, waves of 0s propagate forward from the glitch filters

and through the circuit to charge and discharge the nodes in the round functions

similar to a normal computation of the round function. Effectively, resetting the

glitch filters is thus causing a second, unnecessary, power-wasting computation to

22



occur. State-retaining barriers [83] provide a mechanism for preventing this power-

wasting computation. The use of state-retaining elements is effective for reducing

glitching in FPGAs [69, 27, 35].

2.2 Checkpointing to improve energy efficiency

Combinational checkpointing is a microarchitectural technique to increase energy

efficiency in a combinational circuit by filtering glitches. We propose a new standard-

cell compatible glitch filtering mechanism [29, 30] as shown in Fig. 2.1. The topology

is similar to that of round gating using AND gates [9], except that the glitch filtering

element consists of a positive latch implemented using a multiplexer (MUX) at the

output of the round function. The purpose of the filter is to make sure that any

glitching activity from its input is not propagated to its output.

The operation of the filter is as follows. The MUX holds on to its previous output

value when the enable (select) signal is low, and becomes transparent when enable

is high. This causes the latch to be transparent only during the enable pulse. The

enable pulse is generated at the rising edge of the clock as the AND of the clock signal

and a delayed inverted version of clock. The enable pulse is propagated to the glitch

filters combinationally with timing controlled by adding a delay element per round

function. If the propagation delay of the delay element (td) is greater than the critical

delay of a round function (tr), then round output ri stabilizes before the rising edge

of signal eni, so the latches only become transparent after the glitching has stopped.

Therefore, when this timing condition (td > tr) is satisfied, glitches generated in

round i do not propagate through the glitch filters to round i+ 1. Because the latch

stays open for the duration of the enable pulse, the circuit will function correctly as

long as the round outputs stabilize before the falling edge of eni, but the circuit will

not filter any glitches that arrive when the latch is open, and the glitch filter will not

have the intended effect.

23



The timing waveform for a single round of SIMON-128 is shown in Fig. 2.2. When

the enable signal pulses at the first glitch filter, the stable outputs of round i − 1

propagate through round i and cause a total of 122 transitions on the 128 round

output signals. The round outputs wait for the enable signal to arrive at the second

glitch filter, and upon its arrival, only 60 transitions occur on the inputs of round

i+1; these 60 transitions are single transitions on 60 of the 128 signals, which is close

to the expected number of bits that would differ between two uncorrelated 128-bit

signals. In this case, the filter has prevented all the spurious glitches from propagating

across rounds.

The propagation delay of the round function (tr) can be determined through static

timing analysis, and propagation delay of the delay element (td) can be configured

to exceed tr by a conservative 20% margin. This timing margin provides resilience

against PVT variations and ensures that the enable signal always arrives after the

round computation is complete. If the enable pulse arrives at a checkpoint before the

round computation has completed, glitches will propagate through the open latch, but

the computation can still be functionally correct as long as the round outputs stabilize

before the falling edge of the enable pulse closes the latch. Correct functionality

requires tr < td + w, where w is the enable pulse width, and glitch free operation

requires tr < td. Therefore, a more aggressive td can be chosen by widening the

enable pulse to tolerate variations as illustrated in Fig. 2.3. Widening the enable

pulse allows performance improvements by paying a small (glitching) energy cost,

and can be useful if only a few instances of the round function are slow due to process

variations. The enable pulses can be made very wide as the input to a round function

does not change until the next clock cycle, and the enable pulses can even be delayed

versions of the clock signal.

24



Round 2 Round NRound 1

0

1

0

1

clk

...

en1 en2

...

td

r1 r2

clk_b

pulse

clk

clk_b

pulse

g1 g2

Delay 
Element

Delay 
Element

Delay 
Element

tr

Figure 2.1: Schematic of latch-based checkpoints for glitch filtering.

Round 

i

0

1

0

1

giri

gi-1

ri-1

     ri-1

     gi-1

     ri

     gi

eni-1

ri-1

gi-1

eni

gi

ri

122 

trans./enc. 60 trans./enc.

eni-1 eni

tr

td

Figure 2.2: Timing diagram of glitch filter operation, annotated with the number of
switching events happening at each point in the circuit for SIMON-128.

     ri-1

     gi-1

     ri

     gi

eni-1

ri-1

gi-1

eni

gi

ri

tr

td

gi

(b) Large Pulse width

     ri-1

     gi-1

     ri

     gi

eni-1

ri-1

gi-1

eni

gi

ri

tr

td

(a) Short Pulse width

Figure 2.3: Increasing pulse width of enable signal to tolerate variations.

25



2.3 Evaluation of Checkpointing

2.3.1 Methodology

We use the SIMON and AES block ciphers to study the effectiveness of our glitch

filtering scheme. SIMON is a lightweight Feistel cipher suitable for resource con-

strained systems, and we use SIMON-128 [13], which has a 128-bit key, 128-bit block

size, and requires 68 rounds for each encryption. AES refers to three standardized

variants [91] of the Rijndael cipher, based on a substitution-permutation network.

Relative to SIMON, AES is a more complicated design, and we specifically use the

widely used variant, AES-128; which has 128-bit block size, a 128-bit key, and re-

quires 10 rounds per encryption. The RTL for both designs are written by us and

validated for correctness against software implementations. To give an idea of the rel-

ative scales of the two ciphers, the round and key functions of fully unrolled SIMON

require around 30,000 gates, whereas the round and key functions of fully unrolled

AES are 4 times larger, requiring around 122,000 gates.

All of the measurements presented in this section are from simulation. Specifically,

we simulate designs with 45nm NCSU PDK [2] implemented using CMOS logic style.

Synopsys Design Compiler and HSIM are used for synthesis and circuit simulation,

respectively. We rely on circuit simulation rather than power simulations using char-

acterized libraries to ensure that glitch propagation effects are accurately captured.

Given the time consuming nature of circuit simulation on large designs, which takes

several days per encryption for the unrolled AES design, we simulate only two en-

cryptions per design, using inputs that are chosen at random. The first encryption

initializes the circuit state, and the second encryption is used for measuring metrics

described below. The accuracy of our results should not be compromised by the small

number of encryptions simulated because a block cipher’s behavior is fairly indepen-

dent of the input value used. In support of this claim, the energy consumption of

partially unrolled (17 rounds) SIMON for 100 random input vectors is shown in Fig.

26



Figure 2.4: SIMON-128 energy per encryption histogram for 100 random inputs.

2.4. The variation in energy consumption is small (σ = 0.032pJ/bit) for the chosen

input vectors.

Metrics such as toggle rate and energy consumption are measured during the

circuit simulation and used to compare our scheme’s performance with others. Toggle

rate is measured as the average number of signal transitions at round outputs per

encryption. For example, in SIMON-128 a round output has 128 signals. We compute

the total number of signal transitions in all 128 signals that occur during an encryption

operation, and divide by bit-width (128) to get the toggle rate. We present energy

numbers using a metric of energy-per-encrypted bit denoted as Eenc, which is the

total energy consumed to perform an encryption operation divided by the number of

encrypted bits generated during the operation. When considering individual rounds

of the block cipher, we use as a metric the contribution of that round to the overall

Eenc. In our experiments, clock frequencies are chosen such that idle time is minimal,

and are above 10MHz in all cases.

2.3.2 Comparison of Average Switching Rates

We first study the effectiveness of the proposed glitch filter by counting switching

events on a fully unrolled implementation of SIMON-128. Fig. 2.5 compares signal

27



toggle rates (signal transitions/encryption) for the outputs of all 68 rounds of SIMON.

In the ideal case of no glitching activity, at the round outputs one can expect 0.5

transitions per signal for each encryption, as round outputs are uncorrelated across

encryptions.

When no glitch filtering is used (baseline design), the switching activity is observed

to increase linearly with logic depth (number of rounds). This increase in switching

occurs because the logic of the block cipher tends not to mask transitions as they

propagate, and because the diffusion property of block ciphers tends to propagate

each transition out to many nodes. Our finding of linear increase is consistent with

observations made in previous works [10]. For each encryption in the baseline design,

the average switching across all rounds is 14.16 transitions per signal, and in the later

rounds it is 2x larger than this average.

We analyze the effectiveness of checkpointing and two other techniques that miti-

gate switching. Compared to baseline, the Round Gating scheme [9] achieves a much

lower average switching of 1.79 transitions per signal. Also, the switching activ-

ity stays fairly constant across rounds because glitches are never propagated across

round boundaries. However as noted in Sec. 2.1, resetting the AND gates every clock

cycle leads to unnecessary switching activity. Our checkpointing scheme has no such

resetting and is therefore able to reduce switching to 0.95 transitions per signal, a

47% reduction relative to Round Gating. For comparison purposes, we implement

SIMON-128 also using WDDL logic style [106]. WDDL is a dual-rail precharge based

logic that is glitch free by design. To mitigate power side channel leakages, every

signal pair in WDDL always has exactly 2 transitions per encryption; specifically,

among the true and complementary representations of each signal, it is always the

case that exactly one representation goes through a 1-0 transition during precharge

and a subsequent 0-1 transition during evaluation.

28



(a) Toggle rate (b) Zoomed in

Figure 2.5: Comparison of the average toggle rate of the output signals of each round
of SIMON-128 for four different implementation styles.

2.3.3 Energy Comparison in Fully Unrolled Designs

The significant reduction in average switching rates implies that glitch filtering

can reduce the overall energy used for encryption. In this section we study the

energy savings achieved by using checkpointing to filter glitches in fully unrolled

implementations of SIMON-128 and AES-128.

2.3.3.1 SIMON-128

The energy use of each of the 68 rounds in the fully unrolled SIMON-128 imple-

mentation is plotted in Fig. 2.6 for the baseline (no glitch filter) design and three

glitch filtering schemes. The energy trends across rounds are similar to the toggle

rate trends shown in Fig. 2.5. The total energy per encryption (Eenc) including all of

the rounds is given in Tab. 2.1 and is broken down by function to show where the en-

ergy is being used. A fully-unrolled implementation with checkpointing (4.46pJ/bit)

is more efficient than fully unrolled baseline (25.91pJ/bit) because it greatly reduces

the amount of energy spent on switching in the data and key rounds, and this sav-

ings is considerably larger than the energy spent to implement the checkpoints. In

comparison to Round Gating [9], checkpointing consumes 27.9% lower Eenc. The

29



Figure 2.6: Contribution of each round to the overall energy per encrypted bit in four
different implementation styles of fully unrolled SIMON-128

savings comes from a 47% reduction in toggle rate which leads to a 44.6% reduction

in data and key computation energy specifically, while the costs of other components

are similar across the two schemes. Note that WDDL and Round Gating schemes

have similar toggle rates, yet WDDL consumes 2.4x more energy because it uses only

positive gates, and therefore requires approximately 3x more gates to implement the

same function.

Fig. 2.7a shows the breakdown of energy consumption per encryption for the

checkpointing scheme. As can be seen in the figure, the switching energy does not

increase across rounds, because each round similarly starts its computation from a

single switching event. However, as was noted in Tab. 2.1, the glitch filters themselves

consume about 50% of the total energy relative to the extremely simple combinational

round function of SIMON. Hence, there is a possibility that using fewer glitch filters

might reduce Eenc further if the glitches do not increase significantly. We explore

this in Sec. 2.3.4. It can also be noted that the simple delay line that propagates

30



Table 2.1: Breakdown of Eenc (pJ/bit) in fully unrolled SIMON-128. Glitch filters
are added after every round in Round Gating and our checkpointing work

SIMON-128 Baseline Round Gating Checkpointing WDDL

Data 16.37 1.90 1.07 6.95

Key 9.42 1.62 0.88 7.42

Glitch Filter – 2.36 2.20 –

Delay Line – 0.18 0.19 –

Other 0.12 0.12 0.12 0.45

Total 25.91 6.19 4.46 14.82

the enable is not costly in energy, as it is a single inverter chain relative to a 128-bit

wide computation path. The delay line does not require any tuning if care is taken

by adding some margin (buffers) to ensure td > tr (Fig. 2.2) even in the presence of

process variation.

2.3.3.2 AES-128

We repeat the energy analysis of checkpointing for the larger design, the fully un-

rolled implementation of AES-128. The energy breakdown per encryption in Fig. 2.7b

shows that glitches are filtered effectively as there is no significant increase in switch-

ing energy with logic depth (round number). The energy cost of glitch filtering is

small compared to that of actual computation. Note that the last round in AES

is simpler, and therefore consumes less energy. The energy breakdown summary is

tabulated in Tab. 2.2. Our scheme consumes an Eenc of 2.16 pJ/bit, which is 4.6x

lower than fully unrolled baseline and 45.6% lower than Round Gating. These sav-

ings directly come from a lower switching activity. Unlike the extremely simple round

functions of SIMON, AES round and key functions constitute more than 80% of the

total energy. As a result, in comparison to Round Gating our scheme saves more

energy in AES-128 (45.6%) than in SIMON-128 (27.9%).

31



Table 2.2: Breakdown of Eenc (pJ/bit) in fully unrolled AES-128. Glitch filters are
added after every round in Round Gating and our checkpointing work

AES-128 Baseline Round Gating Checkpointing

Data 7.97 2.83 1.44

Key 1.83 0.76 0.36

Glitch Filter – 0.30 0.26

Delay Line – 0.02 0.04

Other 0.05 0.05 0.07

Total 9.85 3.97 2.16

(a) SIMON (b) AES

Figure 2.7: Energy/encryption breakdown in fully unrolled implementations using
checkpointing after every round.

2.3.4 Optimal Placement of Checkpoints for Glitch Filtering

In this section we explore the optimal number of glitch filters that should be used

to minimize the total energy consumption. Energy optimal glitch filtering requires

finding the right trade-off between the cost of glitch filtering and the energy saved

by filtering glitches. If too many filters are used, then the cost of the filters them-

selves will dominate; but if too few filters are used, then the cost of the glitches will

dominate. Fig. 2.8 shows how each round contributes to the energy per encrypted bit

when different numbers of rounds are implemented between the checkpoints. When

32



checkpoints are added after every round (spacing = 1) in fully unrolled SIMON-128

(Fig. 2.8a), more energy is spent in glitch filtering than is spent in actual computa-

tion. However, if checkpointing is done every other round (spacing = 2), the average

energy per round is decreased because the reduction in glitch filtering energy is larger

than the increase in switching energy of the key and data rounds. Increasing the

spacing beyond 2 further reduces the cost of glitch filtering but the glitches increase

the key and data energy by a larger amount and the total energy increases. Therefore

a spacing of 2 rounds between checkpoints is optimal for SIMON-128.

The energy breakdown of Eenc for each round of the fully unrolled SIMON-128

with optimal glitch filter placement is shown in Fig. 2.9. Checkpoints are added after

every second round - the even rounds have more glitching, and only the even rounds

spend energy on checkpointing. At the optimal spacing of 2, the design consumes

4.18pJ/bit per encryption which is 6.3% lower than the 4.46pJ/bit when checkpointing

is applied after every round (Tab. 2.1). In addition, the area will be reduced because

of the fewer checkpoints. Any block cipher implementation will have some optimal

tradeoff of checkpointing energy versus glitching, but the specifics are of course design

and technology dependent.

Fig. 2.8b shows that in AES, the much larger round function justifies adding glitch

filtering after every round. Therefore, checkpoints are added at all round boundaries

in AES-128. Our design uses the Decode-Switch-Encode S-box implementation [17],

which by design is not prone to glitching, so it is likely the energy penalty of go-

ing from 1 round spacing to 2 round spacing might be greater if a different S-box

implementation were used.

2.3.5 Checkpointing in Partially Unrolled Designs

Partially unrolled designs, which implement some number of rounds combination-

ally, offer a tradeoff between area and latency of encryption. Aside from this tradeoff,

33



(a) SIMON (b) AES

Figure 2.8: Energy efficiency varies with the spacing between checkpoints in fully
unrolled designs. Performing more computation between checkpoints reduces check-
pointing energy, but allows more data switching to occur

partial unrolling may also be desirable due to design constraints (area, clock period)

which do not allow for a fully unrolled implementation. Since the optimal spacing of

checkpoints is a low number (every round for AES-128, and every second round for

SIMON-128), it is beneficial to use checkpointing even for partially unrolled designs.

2.3.5.1 SIMON-128

Tab. 2.3 shows the energy per encryption numbers for different partially unrolled

implementations of SIMON-128. Glitching causes the energy of the baseline design to

increase with the degree of unrolling up to 25.91 pJ/bit for the fully unrolled design.

The energy savings offered by checkpointing also increase with unrolling up to 84%

in the fully unrolled case. Checkpointing allows for a deeper unrolling while keeping

the energy efficiency nearly constant. In comparison to the most efficient baseline

implementation (4-unrolled, 2.89pJ/bit, 17-cycle latency), checkpointing enables 34-

unrolled design (3.41pJ/bit, 2-cycle latency) to be competitive in energy at a much

lower latency. Unrolling the design further (68-unrollings) helps save some loop con-

trol energy but incurs significant leakage cost, leading to a less efficient design (4.18

pJ/bit).

34



Figure 2.9: Energy breakdown of Eenc for each round in fully unrolled SIMON-128 in
the optimal configuration of checkpointing every second round.

The 1-unrolled baseline design consumes more energy than the 2-unrolled and 4-

unrolled baselines because the SIMON key expansion function requires storing keyi−2

in additional registers to compute keyi if no unrolling were done [13]. The frequencies

in Tab. 2.3 are chosen conservatively to account for process variations, but the design

could be optimized for performance.

2.3.5.2 AES-128

Similar results for different partially unrolled implementations of AES-128 are

tabulated in Tab. 2.4. The fully serialized Baseline (1.79pJ/bit) is the most energy

efficient design. In comparison, checkpointing allows unrolled implementations to

be competitive in energy while offering latency improvements. For example, the 2-

unrolled checkpointed design (1.83 pJ/bit) reduces latency by a factor of 2 for a small

2.2% energy penalty with respect to the fully serialized Baseline. The cost of leakage

35



Table 2.3: Eenc (pJ/bit) comparison in SIMON-128 between optimal checkpointing
and the baseline design for various degrees of unrolling.

Either
Unrolled rounds 1 2 4 17 34 68

Latency (cycles) 68 34 17 4 2 1

Baseline

Eenc (pJ/bit) 3.78 2.95 2.89 6.15 12.43 25.91

Ileak(µA) 133 134 170 417 753 1,420

Frequency (MHz) 1,667 833 417 98 49 25

Checkpointing

Eenc (pJ/bit) – – 2.92 2.99 3.41 4.18

Ileak(µA) – – 170 557 1,080 2,017

Frequency (MHz) – – 185 73 37 19

increases with unrolling depth (Tab. 2.4) resulting in energy inefficiencies. Power

gating can help in mitigating this problem as discussed in Sec. 2.3.7.

With regard to timing, unrolled designs operate at slow clock frequencies. Check-

pointing incurs a small timing penalty because of the introduction of the glitch filters

in the critical path and some timing margin to make sure the delay element is suffi-

ciently long so that the enable pulse to a glitch filter arrives after the corresponding

round output stabilizes. Though we report conservative frequency numbers in Tab.

2.4 to account for process variations, there is no requirement to double the (already

slow) clock period as in other schemes such as WDDL or Round Gating.

Our colleagues at UMass evaluated the Checkpointing scheme on Xilinx and Altera

FPGAs using unrolled implementations of SIMON and AES, and found similar energy

savings [35].

2.3.6 Area Cost of Checkpointing

Using our glitch filtering scheme does incur some area penalty as tabulated in Tab.

2.5. In terms of number of gate equivalents, the area overhead is 4.2% if checkpoints

36



Table 2.4: Eenc (pJ/bit) comparison in AES-128 between optimal checkpointing and
the baseline design for various degrees of unrolling.

Either
Unrolled rounds 1 2 5 10

Latency (cycles) 10 5 2 1

Baseline

Eenc (pJ/bit) 1.79 2.84 6.16 9.85

Ileak(µA) 560 1,030 2,400 4,600

Frequency (MHz) 1,000 625 313 164

Checkpointing

Eenc (pJ/bit) – 1.83 2.06 2.16

Ileak(µA) – 1,050 2,500 4,800

Frequency (MHz) – 500 159 81

Table 2.5: Area penalty of proposed glitch filtering scheme in units of gate equiva-
lents. Even in absolute terms, the area cost of checkpointing is significantly higher in
SIMON-128 than in AES-128 because the larger number of rounds requires a larger
number of checkpoints, even though the checkpoints are only applied at every second
round.

Baseline Checkpointing Area overhead

SIMON-128 56,488 81,321 44.0%

AES-128 147,333 153,528 4.2%

are added after every round in AES-128. In the case of a lightweight block cipher like

SIMON-128 that has a very small round function and larger number of rounds, the

penalty is more pronounced. In SIMON, the area overhead is 44% if checkpoints are

placed at the energy-optimal spacing of every second round. Adding checkpoints after

every round in SIMON-128 would incur a much higher 80% area penalty in addition

to not being energy optimal.

37



2.3.7 Power Gating

In unrolled designs of a block cipher, energy efficiency would be independent of

unrolling depth except for leakage, which causes a linear increase in energy with

unrolling when a design is run at its maximum frequency. Power gating idle round

blocks can help reduce leakage power consumption. The round functions can be

powered using a virtual supply, like the drain terminal of a PMOS header as shown

in Fig. 2.10a. When the header is turned ON, the round functions are connected

to the supply (VDD) and can perform normal computation. When a round is idle, it

can be turned off by simply turning off the header transistor to disconnect the power

supply. The checkpoints are not power gated and remain powered using VDD to ensure

that state is retained. This isolates the checkpoints from the round functions, and

any decay within the logic of the round functions will not cause additional power to

be drawn from the supply.

Round functions between two checkpoints constitute a Power Gated Block (PGB),

and each such block is connected to its own virtual supply with a dedicated header.

In SIMON two rounds constitute a PGB as checkpoints are inserted every second

round, whereas in AES each round is a PGB by itself as checkpoints are inserted

after every round. When the checkpoint preceding a PGB is updated with new

data, the round functions in the PGB need to be turned ON to compute on the

new data. The PGB can then be powered off after the computed data is latched on

to the checkpoint succeeding the PGB. To accomplish this, the control signal for a

PGB’s header is generated using an SR latch that is ”set” by the enable signal of the

preceding checkpoint (eni−2 in Fig. 2.10a) and ”reset” by the enable signal of the

succeeding checkpoint (eni). The SR latch outputs a one when the set signal (eni−2)

is asserted, and stays high until the reset signal (eni) is asserted. Thus a PGB is

turned ON only while it is computing on new data.

38



Round 

i-1

eni-2
eni

Round 

i

C
h

k
p

t 
i

C
h

k
p

t 
i-

2

VDD VDD

VDD

SR 

latch

SET

RST

Q

Q

_

eni-2

eni

(a) Schematic (b) Energy of fully unrolled SIMON-128

Figure 2.10: Power gating to reduce leakage power consumption.

The header transistor is sized so that it is able to supply the peak current required

by the connected round functions. Each PGB’s header is turned ON and OFF once

per cycle, and from our experiments the energy spent in switching the header is

smaller than leakage energy saved in the round functions. This leads to a net energy

savings as seen in Fig. 2.10b, with up to 1pJ/bit being saved in the 68-unrolled case.

Energy savings on using power gating for different partially unrolled implementations

of SIMON-128 are shown in the figure.

2.3.8 Voltage Scaling

Supply voltage scaling is a well known general technique to reduce energy con-

sumption of a circuit and has been applied to block ciphers as well [20, 78]. Switching

energy reduces with supply voltage while the computation time increases. On scaling

down the supply voltage beyond a certain point, leakage energy starts to increase

and dominate the total energy consumption. Thus there is a minimum energy point

of operation - which can be a near-threshold or even a subthreshold supply voltage

depending on the design characteristics [23]. The effect of voltage scaling on Eenc

of different partially unrolled implementations of SIMON-128 is shown in Fig. 2.11.

The total energy consumption reduces with supply voltage and leakage energy (dotted

39



Figure 2.11: Energy per encryption at different supply voltages in SIMON. Dotted
lines represent leakage energy.

lines) accounts for a major fraction of the total energy at low supply voltages. Re-

gardless of the degree of unrolling, voltage scaling enables encryption to be performed

at sub pJ/bit energy cost.

2.4 Summary

In this chapter, we have presented an efficient latch-based checkpointing mecha-

nism to reduce the energy per encryption of unrolled block cipher implementations.

We demonstrated significant energy savings (28-45%) compared to the best exist-

ing scheme for glitch filtering in unrolled block ciphers. Our scheme performs well on

block ciphers with simple round functions as in SIMON, and complex round functions

as in AES. We also showed that optimal use of glitch filters can result in energy con-

sumption that is competitive to a fully serialized implementation while maintaining

the latency advantages of an unrolled design. However unrolling comes at a significant

40



area cost, so we investigate lightweight block cipher implementations in subsequent

chapters of this dissertation.

41



CHAPTER 3

EFFICIENCY IN LIGHTWEIGHT AES

Unrolled implementations of block ciphers as shown in the previous chapter have

large area footprints, making them unsuitable for resource-constrained applications

like IoT. Lightweight implementations take the opposite approach where less than

a round is implemented in combinational logic. These sub-round implementations

exploit the symmetric nature of operations in the round function, and save area by

reusing fewer hardware units over time. For example in a round based implementation

of AES (Fig. 1.1) the entire round function is performed combinationally in one clock

cycle. All 16 identical S-box instances are implemented in hardware and form a major

( 75%) contributor of area. Sub-round implementations of AES perform a fraction of

a round in each clock cycle, and this allows a smaller number of S-boxes to be reused

across clock cycles thereby saving area but increasing the number of clock cycles.

Compact AES implementations often use 8-bit data paths. In such a design, a

single S-box circuit is reused 16 times per round, and therefore each round requires

at least 16 cycles to complete. 8-bit implementations of AES are less energy-efficient

than full-round implementations, and the inefficiency is mainly in the control and data

movement. Among the computations performed in a round, SubBytes operates on 8

bits, and AddRoundKey is a bitwise XOR; only MixColumns is natively performed on

32-bit inputs, but is known to have an efficient serialization [47] that takes 8-bit inputs

in four consecutive cycles. A complicating factor in sub-round AES implementations

is that the round computation produces output bytes in an order that differs from

their input order. For example, as shown in Fig. 1.1, one quarter of the round

42



computation uses bytes B0, B5, B10,B15 and produces output values that will become

bytes B′0, B
′
1, B

′
2,B

′
3 for the next round. The round output bytes are produced in

sequential order if the input bytes are read in the order (B0,B5,B10,B15, B4,B9,B14,B3,

B8,B13,B2,B7, B12,B1,B6,B11); we denote this ordering as Shift Rows Order (SRO).

The reordering of bytes by the computation causes a Write After Read (WAR) hazard.

As the first Mix Column outputs B′0,B
′
1,B

′
2,B

′
3 are produced, they must be written to

a location that will not overwrite the current values of B1,B2,B3 which have not yet

been used in the current round. Since computation itself can scale down to an 8-bit

datapath, the inefficiency of 8-bit architectures arises from the costs of moving data

around and avoiding hazards. Two dominant techniques for moving data through the

computation are RAM and shift register-based schemes.

Early 8-bit AES designs [37, 56] used small RAM blocks to hold state, and control

logic to generate addresses to read and write the RAM. Because data can be written

to, and read from, arbitrary addresses, these techniques make it easy to avoid data

hazards without increasing the amount of storage available. The latency is high in

these techniques (534 and 1016 cycles per block respectively) as very little useful work

is performed in each cycle. RAM-based techniques can be low in power, but relatively

higher in energy because of the energy cost of reading and writing data to and from

RAM in each cycle.

Shift register-based datapaths improve on RAM-based datapaths and are the most

compact way to orchestrate data movement in 8-bit AES. Most of the control com-

plexity is handled implicitly by the wiring, and data bytes proceed in lockstep through

the S-box and MixColumns at appropriate times. This shift register-based approach

is employed by recent low power implementations [47, 116, 78] and shown to perform

well. Note that the shift-register implementation style causes every byte of the state

to move at least 16 times per round (e.g. 20 shifts per round in [47]), and this can

have significant energy cost which we will address in this chapter. The total latency of

43



a shift register-based 8-bit AES can be as low as 160 cycles [116], which is a significant

improvement over the RAM-based scheme.

3.1 Novel architecture

In this section, we describe a clocking methodology that improves energy efficiency

of sub-round AES implementations. 8-bit architectures proposed in literature ( [78,

116]) spend a lot of energy in data movement. These architectures move data through

at least 16 registers per AES round. Our scheme uses register renaming to avoid data

hazards without having to store a duplicate copy of the state register. Further,

movement of each data byte is limited to 5 registers per round, thereby saving clock

and data energy.

3.1.1 Improved clocking

In sub-round implementations of AES, care should be taken that the state register

is not corrupted by WAR hazard as discussed earlier. Adding a shadow register file [78]

to store intermediate results solves the problem but doubles the area of state registers.

Shift register based schemes [47, 116] avoid this area penalty by storing the duplicate

copy in the shifting behavior of the datapath. However, such an approach has energy

inefficiencies due to data movement and clock load. Consider the architecture shown

in Fig. 3.1 which has a state register whose bytes are individually clocked into and out

of the registers using enable signals with a timing as shown in Fig. 3.2. The byte in

physical register Pi is passed through the Shift Rows Mux to the S-Box when enB[i]

is active. The register enable signals enB[i] are generated such that bytes are read

out in Shift Rows Order, and the round function operates on one byte per cycle. The

computed results are written back to the state register on the negative edge of the

word enable signal enW [i]. In this scheme, each byte in the state register is clocked

once per round as opposed to 16 times/round in other schemes [116]. Further, data

44



128-bit state register

Shift Rows Mux

Enable 
Generator

enB[15:0]

Mix Column

Key 
Expansion

enW[15:0]

enK[15:0]

8

8

32

32

32

128

Round Function

S-box

Figure 3.1: Proposed 8-bit architecture

moves through 1 state register and 4 registers in the Mix Column block which is

again fewer than the 16 or more moves needed in shift register based schemes. One

may notice that the proposed architecture (Fig. 3.1) does not contain any shadow

registers. That is because a duplicate copy of the system state is not stored. WAR

hazards are addressed in the following manner. Let byte Bi be read from register

Pj for computation. Once the resulting output byte has been computed, it can be

written back to register Pj as Bi is no longer required. However, the resulting byte

is no longer byte Bi, so now the register Pj is logically renamed to ensure correct

functionality.

3.1.2 Register renaming

Let P0, P1, . . . , P15 be 16 8-bit physical registers that store the 128-bit data.

Similarly, let B0, B1, . . . , B15 be 16 8-bit logical registers, which also correspond to

data bytes. The physical registers store the AES state, and the logical registers

describe what byte is stored in each register. The correspondence between physical

45



enB[0]	
enB[5]	
enB[10]	
enB[15]	

enW[0]	
enW[5]	
enW[10]	
enW[15]	

Read	state	
as	bytes	

Write	back	
as	words	

Figure 3.2: Timing of control signals for a quarter of one round. enB signals enable
bytes to be read from physical registers into the datapath S-Box, and enW signals
allow round outputs to be written back to physical registers on falling edge.

registers and logical registers changes over time, and a logical register may be found

in different physical locations in different rounds of AES. At first appearance, this

might seem to greatly complicate control flow, because a logical register required for

the AES algorithm may need to be accessed from different physical registers across

rounds. However, periodicity in register renaming results in a much simpler control

logic as discussed below.

We first present the schedule of reading and writing registers used in our scheme,

but we do not yet address the design of the control logic that generates the enable

signals to realize this schedule. Once we’ve established here which physical addresses

should be enabled in each cycle, we come back to the question of control logic in

Sec. 3.1.3.

Fig. 3.3 illustrates our scheme of logically renaming registers to avoid the WAR

hazards; each column in the figure corresponds to a physical address, and the mark-

ings in the squares denote the logical addresses contained therein during each cycle.

Initially, the logical registers are mapped to the corresponding physical registers, that

is Bi = Pi for all i. The black squares in the figure indicate when data is read from

each physical register, and the labels on those squares indicate which byte is stored in

that register at the time of the read. The blue squares indicate cycles in which bytes

of round output are written to physical registers, and the labels on the squares denote

which bytes are being written to each register. Grey squares show the time between

46



writing a byte to a physical register and subsequently reading out that same byte.

White squares indicate that the byte stored in the physical register has been read,

but nothing has yet been written back. For example, in cycle 2 byte B5 is read from

register P5, computed on for two cycles and the resulting byte (B1) is written back

to P5 in cycle 5, causing the register to be renamed accordingly. Round boundaries

are indicated by thick lines (e.g. after cycle 16). Note that four bytes are written

concurrently on every fourth cycle (i.e. in cycles 5,9,13,17 and so on). By the end of

four entire rounds (64 cycles), all bytes are returned to the same physical registers in

which they started, and the pattern repeats.

Note several very important details of Fig. 3.3. First, in each round, the bytes

are read in Shift Rows Order (B0,B5,B10. . . ), although the pattern of reading from

physical addresses that realizes this order changes across rounds due to the renaming.

Second, in each round, the bytes are written in order with B0,B1,B2,B3 written first,

then the next 4 bytes 4 cycles later, and so on. This means that, aside from the

control logic that governs when each register is read and written, the remainder of

the AES computation is entirely decoupled from the renaming and clocking scheme.

The job of the control logic is then to read each of the physical registers at the times

indicated by the black squares, and to write each of the physical registers at the times

indicated by the blue squares.

At the beginning of the second round (cycles 17-21) bytes B0,B5,B10,B15, pro-

cessed in Shift Rows Order, are read from physical registers P0,P9,P2,P11. The enable

signals that control reading (writing) from (to) these physical registers are orches-

trated by a control unit (Enable Generator in Fig. 3.1) that is aware of renaming and

tracks bytes across physical registers. In the general case, in our scheme byte Bj, in

round k, is mapped to physical register Pi, where i is as shown in Eq. 3.1.

i = (j + 12k(j mod 4)) mod 16 (3.1)

47



Cycle P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15
- B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15
1 B0
2 B5
3 B10
4 B15
5 B0 B4 B1 B2 B3
6 B9
7 B14
8 B3
9 B7 B4 B8 B5 B6

10 B13
11 B2
12 B7
13 B10 B11 B8 B12 B9
14 B1
15 B6
16 B11
17 B0 B13 B14 B15 B12
18 B5
19 B10
20 B15
21 B0 B2 B4 B1 B3
22 B9
23 B14
24 B3
25 B4 B6 B8 B5 B7
26 B13
27 B2
28 B7
29 B9 B11 B8 B10 B12
30 B1
31 B6
32 B11
33 B0 B13 B15 B12 B14
34 B5
35 B10
36 B15
37 B0 B4 B3 B2 B1
38 B9
39 B14
40 B3
41 B5 B4 B8 B7 B6
42 B13
43 B2
44 B7
45 B10 B9 B8 B12 B11
46 B1
47 B6
48 B11
49 B0 B15 B14 B13 B12
50 B5
51 B10
52 B15
53 B0 B1 B2 B3 B4
54 B9
55 B14
56 B3
57 B4 B5 B6 B7 B8
58 B13
59 B2
60 B7
61 B8 B9 B10 B11 B12
62 B1
63 B6
64 B11
- B12 B13 B14 B15

Cycle P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

 R
ou

nd
s 1

, 5
, 9

R
ou

nd
s 2

, 6
, 1

0
R

ou
nd

s 3
, 7

R
ou

nd
s 4

, 8

Figure 3.3: Illustration of register renaming

48



Table 3.1: Physical registers to be enabled in each clock cycle

Round Cycle +0 +1 +2 +3
1 P0 P5 P10 P15

5 P4 P9 P14 P3

9 P8 P13 P2 P7
1,5,9

13 P12 P1 P6 P11

17 P0 P9 P2 P11

21 P4 P13 P6 P15

25 P8 P1 P10 P3
2,6,10

29 P12 P5 P14 P7

33 P0 P13 P10 P7

37 P4 P1 P14 P11

41 P8 P5 P2 P15
3,7

45 P12 P9 P6 P3

49 P0 P1 P2 P3

53 P4 P5 P6 P7

57 P8 P9 P10 P11
0,4,8

61 P12 P13 P14 P15

3.1.3 Implementation

In this section, we describe the implementation details of the architecture shown

in Fig. 3.1. An AES round operation consists of Shift Rows (permute bytes from

different words), substitution operation (S-box), followed by Mix Column (mix bytes

from different words) and addition of round key. All these operations operate on bytes

except the Mix Column which operates on words. The Enable Generator produces

byte enable signals (enB in Fig. 3.1) for registers that cause the AES state to be

passed through the Shift Rows MUX in Shift Rows Order during every round of

encryption. The data then goes through the S-box, and gets mixed with three other

bytes in the Mix Column block. Finally, 32 bits of the round key are added to the

data and written back to the state register. As described in the previous section,

data is written back to the register it was read from, and renaming ensures no data

hazards occur.

49



Our enable generation logic allows bytes to be processed in appropriate order with-

out the typical 8-bit architectural approach of shifting data through several flip-flops

and multiplexers [54]. In our design, the outputs of the state register are multiplexed

(by the Shift Rows Multiplexer - SRM) as shown in Fig. 3.1. We use the one-hot

enB signals produced by the enable generator as select inputs to the 16:1 SRM. To

preserve Shift Rows Ordering, the control circuitry generating enB needs to enable

the physical registers in each cycle as listed in Tab. 3.1. The physical registers listed

in the table correspond to the location of the black squares in Fig. 3.3 across four

rounds. Note that each column in Tab. 3.1 can be described as a repeating pattern

with a circular shift at round boundaries. The four columns have circular shifts of 0,

1, 2, and 3 positions at the round boundaries, respectively. This observation enables

us to generate the 64 cycle pattern of control signals required for datapath orches-

tration and register renaming at the cost of just 23 single-bit registers, as discussed

below.

Fig. 3.4 shows the Enable Generator. It consists of a single byte-select shift register

and four word-select shift registers. As the name implies, the Word Select registers

collectively enable a word (32 bits) that the Mix Column block operates on over 4

cycles. The Byte Select unit enables one byte of this word per clock cycle to pass

through SRM and to use the datapath S-box (Fig. 3.1) before entering MixColumns.

Each Word Select register shifts around a single 1 value and the current position of the

1 value determines which register is enabled in the current word. The position of the 1

within each word select register only changes on every fourth clock cycle (when shift

is asserted). For example, the state of the Word Select registers shown in Fig. 3.4

causes enable signals enW [0], enW [5], enW [10] and enW [15] to be asserted for the

next four cycles. This corresponds to the start of round 1 of AES, in which the first

4 bytes are read from registers P0, P5, P10, P15. The Byte Select unit sequences the

enB signals for these registers to allow one of the 4 bytes byte per cycle to proceed

50



through SRM through the S-Box and into Mix Columns. Note that this sequence of

enable signals across four cycles is the case shown in the waveforms of Fig. 3.2. At the

end of the 4th cycle rotate is asserted, the Word Select shift registers all advance by

one position, and the next word (P4, P9, P14, P3) is processed. Once a round of AES is

completed at the end of 16 cycles, the control input to the multiplexers in the Word

Select shift registers causes them to rotate, and P0, P9, P2, P11 becomes the first word

processed in the second round. This shift at the round boundary accounts for the

register renaming, as these registers are the ones that contain bytes B0,B5,B10,B15

(see cycles 17-20 of Fig. 3.3).

In this way, despite the apparent complexity of the control signals, the enable

generation circuitry comprises only 23 flops. Effectively, the scheme works because

the control logic is mimicing the AES shift rows structure, but doing so in the control

logic to avoid moving entire bytes around the datapath. Note that the flops in the

Word Select shift registers are clocked by the system clock an not a divided clock, even

though they only shift every fourth cycle. This is done to avoid having an additional

clk-to-q delay on the critical path, as would occur if the shift register used a derived

clock.

The enable signals for the Key Expansion unit (enK) are computed by treating

Word Select register WSA and Byte Select register in Fig. 3.4 as word address and

byte address respectively. enK selects each of the 16 key registers (Fig. 3.6) one per

clock cycle in sequential order.

The schematic of the round function is shown in Fig. 3.5. All registers and

data wires in the figure are 8-bits wide. The state registers are shown in red, and

are organized in four groups {P0, P4, P8, P12}, {P1, P5, P9, P13}, {P2, P6, P10, P14} and

{P3, P7, P11, P15}. The inputs of all registers in a group are tied together, but since

register Pi is clocked by negative edge of enW [i] signal, a byte is always written to

one register in a group and is ignored by the other three in the group because their

51



1	 0	 0	 0	clk	
Byte		
Select	

b[0]	
clk	

shi,	

enB[8]	b[0]	

enW[8]	
s 0

enB[12]	b[0]	

enW[12]	
s 0

enB[4]	b[0]	

enW[4]	
s 0

enB[0]	b[0]	

enW[0]	
s 1

WSA	

b[2]	
clk	

shi,	
rotate	

enB[2]	b[2]	

enW[2]	

enW[6]	
s
r	

0

enB[6]	b[2]	

enW[6]	

enW[10]	
s
r	

0

enB[14]	b[2]	

enW[14]	

enW[2]	
s
r	

0

enB[10]	b[2]	

enW[10]	

enW[14]	
s
r	

1
WSC	

b[1]	
clk	

shi,	
rotate	

enB[13]	b[1]	

enW[13]	

enW[5]	
s
r	

0

enB[1]	b[1]	

enW[1]	

enW[9]	
s
r	

0

enB[9]	b[1]	

enW[9]	

enW[1]	
s
r	

0

enB[5]	b[1]	

enW[5]	

enW[13]	
s
r	

1
WSB	

b[3]	
clk	

shi,	
rotate	

enB[7]	b[3]	

enW[7]	

enW[7]	
s
r	

0

enB[11]	b[3]	

enW[11]	

enW[11]	
s
r	

0

enB[3]	b[3]	

enW[3]	

enW[3]	
s
r	

0

enB[15]	b[3]	

enW[15]	

enW[15]	
s
r	

1
WSD	

Figure 3.4: Enable Generator

clocks do not switch. The outputs of all 16 Pi registers are connected to the S-Box

input via SRM with the byte enables enB[i] acting as the respective select signals.

During a regular round computation, a four-byte word is selected by asserting

four enW signals (Sec. 3.1.3) for a quarter of a round. enB signal then enables one

byte of the word per cycle to pass through to the S-Box. We choose Decode Switch

Encode S-box which performs one hot encoding to eliminate glitches and reduce

energy consumption [17]. However, our architecture is agnostic to the choice of S-box

and one can choose area efficient alternatives [78, 24] if desired. The S-box operation

is followed by Mix Column operation which is performed over 4 clock cycles operating

on the enabled word. We adopt the Mix Column design from [47] except that we do

not pipeline the output. Instead, 32-bits are read out of MixColumns, XORed with

32 bits of round key and written into state at once; this decision prevents stalls, saves

three register moves, and reduces clock loading. Given that enW is serving as the

clock to the 128 bits of AES state, the registers in our design switch only once per

round as opposed to once per cycle in conventional 8-bit architectures [47].

In AES with 128-bit key size, rounds 0 and 10 operate differently than the other

rounds. In our scheme, rounds 0 and 10 work as follows. In round 0, plaintext

bytes (Data in) are read sequentially and XORed with corresponding input key bytes

(Key in). To match the “word write” of the regular round, we use three registers to

52



pipeline the data. These registers can be clock gated after round 0 to save energy. For

round 10, Mix Column operation is not required and we XOR the S-Box output with

8-bits of round key to output an encrypted byte Data out (Fig. 3.5). Note that since

AES operation is decoupled from renaming, encrypted bytes are output in correct

sequential order.

Each round of AES is completed in 16 cycles, leading to a latency of 160 cycles to

encrypt a block. Among all the registers in our design, only the Enable Generation

and the 32 bits of MixColumn state switch every clock cycle, which is a small percent-

age of the overall registers in the design. The state registers switch once per round

thereby reducing clock load significantly. When considering that each data byte will

be clocked through the state once and clocked 4 times through MixColumns, this

adds up to only 5 register moves per byte per round, as opposed to approximately 20

moves in conventional 8-bit architectures [47, 78].

The schematic of Key Expansion is shown in Fig. 3.6. The functionality of key

expansion is straightforward (register read/write is sequential) and interested readers

can refer to [91] for more detail. The enable signals for the key registers (enK) are

generated by the Enable Generator. These signals enable registers K0 through K15

in the same sequence one register per cycle. The key registers are similar to data

registers in that their outputs are multiplexed and they sample data on the negative

edge of enK, once per round. The byte enables used as select signals are as shown

in Fig. 3.6. Each byte i from words Ka, Kb and Kc is enabled twice, once while

computing round key, and once more while being XORed with corresponding byte in

the next successive word. Bytes from word Kd are also enabled twice - for computing

g-function and round key.

53



S 
box

{03} {02}

enMc

Ka Kb Kc Kd

clkclk clk clk

Data_in

clkfirstRound

Key_in

P{i}
enW[i]

Q D
88

enB Key_out

Data_out

enMc enMc enMc
P12

P8

P4

P0

P13

P9

P5

P1

P14

P10

P6

P2

P15

P11

P7

P3

State 
Registers Mix 

Column

Add Key

Add Key
 (Rnd. 10)

Add Key
(Rnd. 0)

Din
Dout

Figure 3.5: Schematic of Round Function

Key_in

K0 K1 K2 K3 K8 K9 K4 K5 K6 K7

S

Ka KbKc Kd

round_const enK[0]

enK[0:3]

enK[12:15]enK[4:7] +
enK[8:11]

enK[0:3] +
enK[4:7]

enK[8:11] +
enK[12:15]

Key_out

firstWord

K{i}

enK[i]

D

Q

8

8

g-function

K15K10 K11 K12 K13 K14

enK[i]  Ki 

Figure 3.6: Schematic of Key Expansion

54



128-bit state register
(Stores bytes b0 , b1 , ... b15)

Byte Select Mux
(Shift Rows)

Enable 
Generator

Mix Columns

Key 
Expansion

8

8

32

32

128

Round Function

S-box

8

Word 
enable

Byte 
enable Key 

enable

Key byte
(prev. round)

16

16

word_offset byte_offset
22

2 byte_offset
Permute

16

Figure 3.7: Randomization-capable 8-bit AES architecture. Additional details of
redesigned Enable Generator and MixColumns circuits are shown in Figs. 3.9 and 3.10.

3.2 Microarchitectural Randomization

The security of the AES algorithm itself has held up against extensive scrutiny, but

can often be broken by power side channel attacks (Sec. 1.3.1). In practice, it is often

the case that an AES key can be guessed with a few thousand power measurements if

side channel countermeasures are not used. Recent works have shown that sub-round

architectures are especially susceptible to side channel attacks [100]. Randomizing

the order of processing can potentially help resolve the side channel vulnerability, but

requires architectural support as we will show. The renaming architecture from the

previous section is modified to allow for processing the bytes in a randomly chosen

order for every round (Fig. 3.7).

3.2.1 Enable Generator design for Word and Byte shuffling

The Enable Generator controls which bytes of the state register are read and

written in each cycle of computation by generating the control signals to the byte

selection mux and the state register itself. Within the Enable Generator these signals

55



come from four 4-bit Word Select Registers (WSRs) and a single 4-bit Byte Select

Register (BSR). Fig. 3.9 shows the details of BSR and one 4-bit WSR. The working

of the Enable Generator without word/byte shuffling is as follows. Each WSR is

initialized to a specific one-hot value, where the position of the 1 bit selects a byte

of the state register that is used in the current word of computation; the four WSRs

together select the four bytes comprising the current word. The BSR selects in each

of the next four cycles which byte of the word is read from the state register, through

the S-Box, and into MixColumns. After four cycles the current word is written back

in-place to the state register, and a shift signal is asserted to advance the WSRs by

one position to select the four bytes of the word that is computed in the next four

cycles. The use of in-place write back to the state register avoids data hazards, but

changes the assignment of bytes to registers and necessitates register renaming for

tracking the bytes. The logical renaming of registers at the end of each round is

handled by asserting the rotate signal of each WSR, which updates the state of each

WSR in a way that accounts for the renaming. More details regarding the working

of renaming can be found in Sec. 3.1.2.

Since bytes are multiplexed into the datapath, by modifying the Enable Generator

circuit one can shuffle the order in which the four words of the round are processed.

To implement word shuffling, in each WSR the nominal rotation that happens at

the end of a round is modified to include a random offset determined by the 2-bit

word offset signal (Fig. 3.9). This effectively causes each round to use a random

choice of the word that will be processed first, and the other three words follow it in

sequence. With the word ordering shuffled, there are now four cycles of the round in

which each byte could be read from the state register and processed. For example, b0

would still be processed as the first byte of its word, but that processing might occur

in cycles 0, 4, 8, or 12 of the round depending on the value of word offset.

56



b8 b13 b2 b7
b7 b8 b13 b2
b2 b7 b8 b13

b13 b2 b7 b8

b0 b5 b10 b15
b15 b0 b5 b10
b10 b15 b0 b5
b5 b10 b15 b0

b4 b9 b14 b3
b3 b4 b9 b14

b14 b3 b4 b9
b9 b14 b3 b4

b12 b1 b6 b11
b11 b12 b1 b6
b6 b11 b12 b1
b1 b6 b11 b12

b8 b13 b2 b7
b7 b8 b13 b2
b2 b7 b8 b13

b13 b2 b7 b8

b0 b5 b10 b15
b15 b0 b5 b10
b10 b15 b0 b5
b5 b10 b15 b0

b4 b9 b14 b3
b3 b4 b9 b14

b14 b3 b4 b9
b9 b14 b3 b4

b12 b1 b6 b11
b11 b12 b1 b6
b6 b11 b12 b1
b1 b6 b11 b12

b8 b13 b2 b7
b7 b8 b13 b2
b2 b7 b8 b13

b13 b2 b7 b8

b0 b5 b10 b15
b15 b0 b5 b10
b10 b15 b0 b5
b5 b10 b15 b0

b4 b9 b14 b3
b3 b4 b9 b14

b14 b3 b4 b9
b9 b14 b3 b4

b12 b1 b6 b11
b11 b12 b1 b6
b6 b11 b12 b1
b1 b6 b11 b12

b8 b13 b2 b7
b7 b8 b13 b2
b2 b7 b8 b13

b13 b2 b7 b8

b0 b5 b10 b15
b15 b0 b5 b10
b10 b15 b0 b5
b5 b10 b15 b0

b4 b9 b14 b3
b3 b4 b9 b14

b14 b3 b4 b9
b9 b14 b3 b4

b12 b1 b6 b11
b11 b12 b1 b6
b6 b11 b12 b1
b1 b6 b11 b12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0,0
0,1

Byte read from state register in each cycle of round

va
lu

e 
of

 w
or

d_
of

fs
et

, b
yt

e_
of

fs
et

in
 ro

un
d

0,2
0,3

1,0
1,1
1,2
1,3
2,0
2,1
2,2
2,3

3,0
3,1
3,2
3,3

Figure 3.8: Shuffled orders in which bytes can be processed in our architecture. De-
pending on the value of the word offset and byte offset, each of the 16 state bytes
could be processed in any of the 16 cycles of the round.

Ensuring that each byte can be processed in any of the 16 cycles of a round further

requires shuffling of bytes within each word in addition to the shuffling of the words.

Byte shuffling uses a similar mechanism to word shuffling. Before the start of each

round, the BSR logic gets initialized to a state determined by the 2-bit byte offset

signal (Fig. 3.9). Within the word selected by the WSRs, the BSR will therefore cause

the processing to start from a randomly chosen byte of the word. The remaining three

bytes of the word follow in sequence before the next word is processed. Thus, word

and byte level shuffling allow each data byte to be processed in any of the 16 cycles

of a round, as seen in Fig. 3.8.

3.2.2 Mix Columns design to handle permutation

Among the AES operations ShiftRows, SubBytes (S-Box) and key addition require

no changes to accommodate byte shuffling, whereas MixColumns requires modifica-

tion. The MixColumns operation is performed on 4 bytes (a word) and is sensitive

to the order of operated bytes. The function computed by MixColumns is shown

57



0

1

0

1

0

3

1
2

<<3

<<2

Addition 
mod 4

b[0]

b[0]

b[0]

b[0]

enB[15]

enB[3]

enB[7]

enB[11]<<1

Rotate Val 1

0

0

0
0

1

0

1

0

3

1
2

<<3

<<2

Addition 
mod 4

b[0]

b[0]

b[0]

b[0]

enB[10]

enB[14]

enB[2]

enB[6]
<<1

Rotate Val 1

0

0

0
0

1

0

1

0

3

1
2

<<3

<<2

Addition 
mod 4

b[0]

b[0]

b[0]

b[0]

enB[5]

enB[9]

enB[13]

enB[1]
<<1

Rotate Val 1

0

0

0

rotate

0

1

0

3

1
2

Byte offset

Byte Select
b[0]

b[1]

b[2]

b[3]

1000

0001

0100
0010

<<1

1

0

0

0

shift

0

1

0

1

0

3

1
2

<<3

<<2

Word offset

Word Select

b[0]

b[0]

b[0]

b[0]

enB[0]

enB[4]

enB[8]

enB[12]
<<1

1

0

0

0

rotate

Add
mod 4

Rotate Val

Figure 3.9: Enable Generator for Randomized architecture (compare Fig. 3.4). Solid,
dotted and red lines indicate 4-bit, 1-bit and 2-bit signals respectively.

58



Table 3.2: Table illustrates the operation of the pipelined MixColumns (see Fig. 3.10)
for two different orderings of the input bytes. At the end of the four cycles, the
same values exist in the registers for both orderings, but their locations differ. The
permutation step associates the appropriate register value to each output signal.

Bytes arrive in the order s0, s1, s2, s3 Bytes arrive in the order s1, s2, s3, s0
Cycle Reg0 Reg1 Reg2 Reg3 Reg0 Reg1 Reg2 Reg3

1 s0 s0 3s0 2s0 s1 s1 3s1 2s1
2 s1+s0 s1+3s0 3s1+2s0 2s1+s0 s2+s1 s2+3s1 3s2+2s1 2s2+s1
3 s2+s1+3s0 s2+3s1+2s0 3s2+2s1+s0 2s2+s1+s0 s3+s2+3s1 s3+3s2+2s1 3s3+2s2+s1 2s3+s2+s1
4 s3+s2+3s1+2s0 s3+3s2+2s1+s0 3s3+2s2+s1+s0 2s3+s2+s1+3s0 s0+s3+3s2+2s1 s0+3s3+2s2+s1 3s0+2s3+s2+s1 2s0+s3+s2+3s1

Out m0 m1 m2 m3 m1 m2 m3 m0

by Eq. 3.2, where si and mi represent the ith input and output bytes respectively

of the current MixColumns word. In absence of shuffling, MixColumns can be effi-

ciently serialized using a four stage pipeline [47] in which each incoming byte is scaled

appropriately and accumulated to a four byte value (see Tab. 3.2).

Once byte shuffling is considered, the MixColumns pipeline that processes bytes

s0, s1, s2, s3 may receive these bytes in four different orders: (s0, s1, s2, s3), (s1, s2, s3, s0),

(s2, s3, s0, s1), or (s3, s0, s1, s2). If the standard MixColumns pipeline is used to process

shuffled inputs, the correct output byte values will be computed, but their positions

will be shuffled as is shown in Tab. 3.2. Our MixColumns design adds a new permu-

tation stage that unshuffles the MixColumns results before they are written to the

AES state register (Fig. 3.10).



m0

m1

m2

m3


=



2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2





s0

s1

s2

s3


(3.2)

3.2.3 Sequencing of Rounds and Key Expansion

Although the sub-round computations are shuffled internally in the datapath, the

external interface to the AES module remains unshuffled, meaning that the plaintext

data is shifted into the state register in normal order, while the ciphertext data is

59



Reg0 Reg1 Reg2 Reg3

{03}  {02} 

enMc  enMc  enMc  enMc 

byte
offset

byte in

to state registers
m0 m1 m2 m3

M
ix
C
ol
um

ns
Pe

rm
ut
e

Figure 3.10: MixColumns for Randomized architecture.

concurrently shifted out of the state register in normal order. Shuffling is neither

required nor possible while shifting plaintext/ciphertext as no computation is per-

formed on the data at this time. After the data is loaded, the initial key addition is

performed one (shuffled) byte at a time, and the 10 subsequent rounds of encryption

are performed using the 8-bit datapath. There is an extra one-cycle delay at the end

of each round to allow output of MixColumns to be written back to the state register

before the next round begins. The one cycle delay avoids a potential read-after-write

data hazard that can arise in shuffled operation when the same register is written at

the end of one round and read in the first cycle of the next.

Key expansion cannot easily be randomized on-the-fly because its computation

has a long chain of dependencies. Instead, the key addition which normally happens

at the end of a round before data is written back to the state register, in our design is

delayed to occur in the next round as the first step when data is read from the state

register. Delaying the key addition ensures that the required bytes of the round key

60



will always be available when needed, regardless of order in which the data bytes are

processed in each round.

3.3 Evaluation

We evaluate the efficiencies of four AES architectures: (1) an ordinary round-

based 128-bit design, (2) our efficient 8-bit renaming architecture [32], (3) our 8-bit

design with randomization, and (4) state-of-the-art reference 8-bit design [116]. The

RTL for all designs are written by us and validated against an online tool. For a

fair comparison, all designs are synthesized using Synopsys Design Compiler for the

same commercial 16nm FinFET technology, and all designs use the same energy-

efficient S-Box implementation [17]. We use the nominal voltage (0.8 V) for our

experiments. In addition to energy efficiency, the designs are also evaluated for side

channel vulnerability, area, power and performance costs.

3.3.1 Efficiency and overheads

We first analyze the energy expenditure of the AES designs using Synopsys Prime-

Time power simulations. Tab. 3.3 compares the energy per encryption (fJ/bit) broken

down by different design modules (S-box, Mix Column, Key Expansion, Control) and

also by design components (CLK, Sequential, Combinational). For efficiency, it is

generally understood that no narrow datapath computation can match or exceed the

efficiency of a 128-bit datapath, because serializations perform all of the same compu-

tation, but with some additional work to orchestrate the serialized design and store

intermediate results.The 128-bit datapath, as expected, is the most energy efficient

design at 244 fJ/bit. Our implementation of the reference 8-bit design [116] consumes

1350 fJ/bit for an encryption.

Our renaming architecture at 710 fJ/bit achieves a 47% improvement over the

8-bit reference design. The energy numbers shown in Tab. 3.3 demonstrate the

61



Table 3.3: Comparison of energy efficiency of four AES designs all implemented by
us in the same 16nm technology.

128-bit Ref. 8-bit renaming 8-bit Rand. 8-bit Ref.
S-box (data&key) 68 86 74 141
Mix Column 36 172 191 187
Key Expansion 52 84 80 409
Control 3 121 385 24
Energy (fJ/bit) 244 710 889 1350

CLK 38 246 325 741
Sequential 21 155 230 228
Combinational 185 309 334 381

specific benefits of using our clocking methodology. From table in comparison to 8-

bit reference, our renaming architecture consumes 32% less sequential energy because

data moves through 5 flip-flops per round instead of 20. Further, our design spends

3x smaller CLK energy. This is because all 296 flops in the reference design switch

every clock cycle. In our design 61 flops involved in Mix Column operation and enable

generation switch every cycle, while the rest (280) of the flops holding data and key

switch once per round.

Our randomization enabled 8-bit design at 889 fJ/bit uses 25% more energy-

per-bit than the renaming design. Most of the additional energy is in the control

logic which orchestrates and manages the shuffling of the data bytes, but the energy

cost of MixColumns also grows due to the added permutation stage. Note that

non-randomized reference 8-bit design consumes 1350 fJ/bit of energy, which is less

efficient than our randomized design mainly due to inefficiency in data movement.

An area comparison is presented in Tab. 3.4. The 128-bit design is obviously the

most expensive in terms of area. Our renaming design occupies 886 µm2 and incurs a

18% area penalty compared to our implementation of the reference 8-bit design [116].

This area penalty probably comes from additional multiplexers used as the control

logic (Enable Generator) area is comparable to that of reference 8-bit. Randomization

62



Table 3.4: Comparison of area of four AES designs all implemented by us in the same
16nm technology.

128-bit Ref. 8-bit renaming 8-bit Rand. 8-bit Ref.
S-box (data&key) 2226 223 223 223
Mix Column 217 60 85 60
Key Expansion 216 212 213 184
Other 407 391 476 104
Area (µm2) 3066 886 1201 750

Table 3.5: Comparison of performance. Throughput obtained at 300MHz clock.

128-bit Ref.
8-bit

renaming
8-bit Rand. 8-bit Ref.

Energy (fJ/bit) 244 710 889 1350
Power (µW ) 391 77 80 146
Area (µm2) 3066 886 1201 750
Throughput (Mbps) 3491 239 187 239
Latency (cycles) 10 160 204 160
Mean MTD 9746 1492 15983 -

adds 35.5% area overhead on top of the 8-bit renaming design, as shown in Tab. 3.4.

Both 8-bit designs are significantly smaller than the 128-bit datapath, owing primarily

to their serialized use of a single S-Box instead of the 16 parallel S-Box instances

in the 128-bit datapath. The area overhead of adding randomization to the 8-bit

datapath comes primarily from designing the flexible Enable Generator and adding

a permutation stage after MixColumns to allow reordering.

Finally, our designs are competitive in performance with the reference 8-bit design

[116] as seen in Tab. 3.5. The renaming architecture offers similar throughput at

300MHz, while the randomized design has a 22% throughput degradation due to an

increased latency. The latency increase is due to several factors: additional stall cycle

at the end of each round, delayed key addition and reading out cipher text after final

key addition to prevent information leakage.

63



3.3.2 Susceptibility to Side Channel Attacks

To provide a baseline comparison between the architectures, side channel at-

tacks are performed on standard CMOS implementations of the designs in absence

of other circuit-level countermeasures. Attacking baseline implementations gives a

fair comparison of the relative susceptibility of each architecture, which is important

to consider. If the architectures are strengthened by circuit-level countermeasures,

the relative side channel susceptibilities of the architectures will reflect the baseline

comparison. In the randomized design shuffling of data requires four random bits;

2 for the word offset signal that selects the ordering of the words, and 2 for the

byte offset signal that selects the ordering of the four bytes within a word. We

shuffle each round independently, and assume that the random bits that configure

the shuffling are generated by the chip’s true-random number generator or crypto-

graphically secure random number generator. Given that the shuffling bits are not

externally observable, it might be permissible to shuffle less often, but we do not

consider this.

We perform logic simulation to obtain switching activity information and subse-

quently use time-based power analysis in Synopsys PrimeTime to generate the power

traces on which the attacks are performed. The differential power analysis attack

is performed on the power traces using a program written in C++. The attack de-

ployed against the designs is a standard DPA attack, so we provide limited details

here and refer interested readers to the work of Kocher et al. [63], among others, for

a description of DPA. Per usual in DPA, we assume that the attacker knows when

the encryption begins and can use this to align the power traces. The selection func-

tion of the DPA attack is based on predicted values of an intermediate circuit node

under each key byte guess. In our experiments we use an S-Box input bit as selection

function during the final round of each encryption.

64



Figure 3.11: Plots showing DPA attack on 4 key bytes for the 8-bit designs. Top plot
shows differential power traces for the 8-bit renaming design and the bottom plot
shows the same for the 8-bit randomized design. Green line corresponds to correct
key guess and red lines correspond to incorrect key guesses.

0 5000 10000 15000 20000 25000 30000
Measurements To Disclosure (MTD)

0.0

0.2

0.4

0.6

0.8

1.0

No
. o

f k
ey

 b
yt

es
  (

no
rm

al
ize

d)

8-bit Ref.
128-bit Ref.
8-bit Rand.

Figure 3.12: CDF of MTD for the different designs.

Fig. 3.11 shows differential power analysis traces from the first 4 bytes of a key in

the 8-bit renaming design after 5k encryptions, and in the 8-bit randomized design

after 30k encryptions. The differential power trace under the correct key guess (green)

has peaks of higher magnitude than all incorrect key guesses (red) demonstrating a

successful attack. Despite the larger number of encryptions performed to generate

the traces, the peaks in the randomized design are less prominent.

Fig. 3.12 shows the cumulative distribution of MTD for key bytes in the three

different designs. The DPA attack is repeated with different keys to extract a total of

64 key bytes. As would be expected, the plot shows that the key bytes can be extracted

65



most easily from the 8-bit renaming design. The 128-bit design is somewhat harder to

attack due to the increased noise from parallel computations. The 8-bit design with

randomization is found to be least susceptible to the side channel attack. The mean

MTD values for the 128-bit, 8-bit renaming design, and proposed 8-bit randomized

design are 9746, 1492, and 15983 respectively. This finding from simulation suggests

that randomization helps to diminish the side channel susceptibility. In particular, the

randomized 8-bit design is not more vulnerable than the 128-bit design, and requires

an order of magnitude more encryptions to break than an ordinary 8-bit design. The

randomized design is fabricated and its side channel resistance is evaluated in Ch. 4.

3.4 Summary

In this chapter, we presented a microarchitectural technique to improve energy

efficiency of 8-bit implementation of AES. Our improved clocking methodology greatly

reduces activity of data and key registers to a single update per round, which is at least

16x smaller than conventional 8-bit implementations. Register renaming eliminates

the need for additional state registers to store intermediate results and minimizes

data movement through registers, thereby saving energy. In comparison to the most

efficient conventional 8-bit implementations, we consume 47% lower energy for an

encryption operation with a 3x reduction in clock energy, while paying a 18% area

cost. Our methodology can be extended to other sub-round implementations of AES

like 32-bit. For a 32-bit implementation, energy inefficiencies in data movement and

clocking are smaller and so would be the energy savings using our scheme.

Further, we have proposed a novel microarchitectural randomization scheme for

serialized AES implementations to reduce their susceptibility to side channel attacks.

We build on the register renaming architecture to create a design that can random-

ize the order of the sub-round operations while preserving correctness of the AES

algorithm, and avoiding data hazards. In particular, the ability to randomize the

66



sub-round operations is enabled by a modified Enable Generation circuit and a per-

mutation stage after MixColumns, and by rescheduling the key expansion and key

addition across round boundaries. For an overhead of 36% area and 25% energy, our

proposed architecture improves side channel resistance of the renaming design by an

order of magnitude and removes the inherent vulnerability of 8-bit architectures rel-

ative to 128-bit designs. Our technique is well suited for low power/area applications

and is an architecture that is suitable for implementing circuit-level countermeasures

as well. Benefits of microarchitectural randomization can go beyond side channel

resilience and also protect a design against targeted runtime attacks that would re-

quire an attacker to inject a fault during a specific computation. We fabricated our

AES designs in a commercial 16nm FinFET technology and evaluate our testchip as

described in the next chapter.

67



CHAPTER 4

TESTCHIP

In this chapter we describe the design methodology used to tape out our AES

designs in a commercial 16nm FinFET technology. The chip was taped out through

MOSIS in May 2018 and received back in December 2018. We also discuss our testing

methodology and measurement results from the chip. In compliance with our NDA,

we exclude reporting confidential information about the process technology in this

thesis.

4.1 Design methodology

Our design flow comprises of RTL design, synthesis to obtain a gate level design,

and physical design to generate layout. We further design a Printed Circuit Board

(PCB) to test the fabricated chips.

4.1.1 RTL design and synthesis

A block level view of our system is shown in Fig. 4.1. As mentioned in Sec. 3.3,

we implement four AES architectures: (1) an ordinary round-based 128-bit design,

(2) our efficient 8-bit renaming architecture [32], (3) our 8-bit design with random-

ization [31], and (4) state-of-the-art reference 8-bit design [116]. The control block

enables communication with all four AES design on the chip. It consists of a Finite

State Machine (FSM) that takes as input clock, reset signals, a byte of plaintext and a

byte of key per clock cycle from chip’s primary inputs. The control block uses FIFOs

to interface with the different AES designs by feeding plaintext data of appropriate

68



Figure 4.1: Block level view of designs implemented on testchip.

bit width and receiving ciphertext data. The ciphertexts are then serialized as 1-bit

signals and output along with a valid bit to the chip’s primary outputs. Details of

the AES architectures are presented in Ch. 3.

RTL design is the first step of implementation. RTL for all four AES designs

are written by us and validated against an online tool. Synthesis is the process of

converting RTL specification into an optimized technology-dependent gate-level de-

sign. Synthesis tools can optimize for area, speed and power subject to constraints.

We use Synopsys Design Compiler (DC) for synthesis with a commercial 16nm Fin-

FET standard cell library for technology mapping. Given that our goal is to come

up with efficient lightweight designs, we optimize our designs for area subject to a

timing constraint of 200 MHz clock frequency. Synopsys Prime Time (PT) is used

to perform initial timing checks on the synthesized gate level netlist. PT performs

static timing analysis and exhaustively checks the design for timing violations. The

targeted clock frequency of 200MHz exceeds the I/O pad speed limitation, and we

supply the clock from off chip through I/O, so we cannot operate above 200MHz even

if the design is capable. Setup and hold timing are comfortably met by our designs

at the foundry-specified worst case corners.

69



4.1.2 Physical design

Physical design is the process of creating an optimized layout for fabrication from

the gate level design. It comprises several steps: design planning, power planning,

placement and optimization, clock tree synthesis, routing and post-route optimiza-

tion, chip finishing steps, and Design Rule Checks (DRCs). We use Synopsys IC

Compiler (ICC) for physical design. Fig. 4.2 shows snapshots from different stages

of the physical design flow for the 8-bit randomized AES design.

In design planning, a floorplan of the layout is created. It defines cell boundary

and core area, and creates site rows for standard cell placement. I/O pads are placed

outside the core area. We create a rectangular floorplan with a 50% target utilization

for each of the AES designs. Due to schedule constraints we did not pursue optimiza-

tion of higher utilizations but fairness in comparing results is assured by using the

same utilization specification for all four AES architectures. Higher utilizations (such

as 70%) would further reduce footprint of each design.

Power planning ensures a design with good power integrity, and a reduction in

IR drop and electromigration. A power distribution network is created per vendor

specification. A coarse-grained grid in the top two metal layers addresses IR drop

while a fine-grained grid in the two lower metal layers addresses the di/dt requirements

of the design. The spacing between power straps in each metal layer is determined

based on current density limits of the metal layers, the design’s power requirements,

and routability. A snapshot of the created floorplan with power grid is shown in Fig.

4.2a.

Following power grid creation, cells from the post-synthesis gate level netlist are

placed in the various site rows of the floorplan core area. Legal placement of standard

cells is obtained through an iterative process while optimizing for minimum area

subject to timing constraints. Special physical only cells such as well taps to prevent

latchup current and endcaps to meet DRC requirements at layout boundaries are

70



(a) Floorplan showing power grid

(b) Placed design

(c) Clock tree

(d) Routed design

Figure 4.2: Different stages of physical design of 8-bit Randomized AES.

71



placed first, followed by regular logic cell placement. Placement of cells for the 8-bit

Randomized AES design is shown in Fig. 4.2b.

After placement, clock tree synthesis is performed to build the clock network that

begins at the clock source and ends at the sequential elements of the design. The clock

tree is optimized by buffer sizing/relocation to minimize clock skew between different

fanouts and also reduce clock insertion delay. Clock nets are then pre-routed before

proceeding to signal routing. The clock tree of the 8-bit Randomized AES design

containing 579 sinks is shown in Fig. 4.2c.

As part of routing and postroute optimization ICC performs global routing, track

assignment followed by detailed routing to determine the actual course of wires that

connect the placed cells. Setup and hold time for critical process corners are checked

in this step for timing closure while optimizing routes. Initial DRC checks are also

performed to ensure routing abides by design rules. Setup timing is easy to meet

due to the modest maximum frequency of the design which is limited by I/O pads.

Following the initial routing step, we perform two incremental post route optimization

steps to individually address hold time and DRC violations. Finally, we use a focal

optimization step that targets only a single violation type to fix any remaining hold

timing violations. Fig. 4.2d shows an example of a fully routed design. After timing

closure of the fully routed design in ICC, we perform standard cell filler insertion

to ensure well continuity. Sign-off timing checks using Synopsys PrimeTime passed

while sign-off DRC checks using Synopsys IC Validator (ICV) had over 100 violations.

The DRC violations were related to routing issues with I/O pins that were not on the

routing tracks. Fig. 4.4 shows some examples of the DRCs that were manually fixed.

A snapshot of the entire system’s layout containing all four AES designs and

I/O pad placement is shown in Fig. 4.3. The layout area is pad limited as seen in

the figure. Each AES design has its own isolated power network to enable accurate

power measurements. The control logic from Fig. 4.1 is placed outside the four AES

72



Figure 4.3: Layout showing all four AES designs.

Figure 4.4: Examples of sign-off DRC violations on finished design that were manually
fixed.

73



(a) Full chip layout. (b) Unpackaged die on a dime.

Figure 4.5: Images of full chip with other designs from colleagues on same die. All
designs have isolated power domains.

designs and has its own power network. The I/O pads are powered through a 1.8V

supply while the AES designs and control logic in the core area are powered through

individual 0.8V power supplies.

For full chip integration, designs from colleagues were also instantiated in the same

die. The I/O pads from the different designs are routed to Re-Distribution Layer

(RDL) bumps that are laid out in a 13x13 matrix over the entire die area. Synopsys

ICC was used to perform RDL routing. FEOL and BEOL fills for manufacturability,

and final DRC checks on full chip are performed using Synopsys ICV. Fig. 4.5 shows

a picture of an unpackaged die containing the AES system among others. RDL routes

are also visible in the image.

4.1.3 Chip packaging and Printed Circuit Board design

Flip Chip Ball Grid Array (FC-BGA) packaging is used to house the 2.5mm x

2.5mm fabricated die. Solder balls are laid out in a 13x13 grid at a 1mm pitch.

Fig. 4.6a shows how RDL bumps of die are connected to solder balls in the package.

Snapshots of the packaged chip are shown in Fig. 4.6b. The 168 package pins comprise:

74



84 signal, 48 VDD and 36 GND pins. The four AES designs and control logic use

30 signal, 12 VDD and 8 GND pins. To test the packaged chips, we design a 4-layer

Printed Circuit Board (PCB) using Autodesk Eagle. The boardview of the PCB is

shown in Fig. 4.7a. The PCB integrates a BGA socket for testchip, an FPGA module

with testbench, level shifters, screw terminals for power supply connections, and

testpoints for side channel and energy measurements. The BGA socket (Fig. 4.7b)

allows us to test multiple chip instances using the same PCB instead of soldering

the chip directly to the board. The bottom part of the socket is mounted on the

PCB using bolts such that the Surface Mount Technology (SMT) pads of the PCB

are contacted by an elastomer guide of the socket. The packaged chip is placed in

the socket such that its solder balls make contact with the socket’s elastomer guide

which connects them electrically to the SMT pads of PCB. The top lid of the socket

is secured using a torque driver. The socket manufacturer estimates that packaged

chips can be swapped out 1000 times before the elastomer layer wears out and must

be replaced.

.

4.2 Chip Testing

In this section we present results on efficiency and side channel resilience of the

four AES designs based on measurements from the testchip. The PCB designed

for chip testing (Fig. 4.7b) houses an Artix 7 FPGA (Cmod A7 [34]) and a Flip

Chip Ball Grid Array (FCBGA) socket that holds the chip. The FPGA handles all

communication with the testchip. A MATLAB program sends plaintext data to the

testchip via FPGA and receives ciphertext data from the testchip in a similar fashion.

The received ciphertext is validated in MATLAB against a software implementation

of AES to continually check correctness of chip output. The FPGA operates at 3.3V

while the testchip uses an 0.8V core voltage and 1.8V I/O voltage. Level shifters

75



(a) Illustration of flip-chip packaging [110].

(b) Images of packaged chip showing front and back side.

Figure 4.6: Chip packaged in a Flip Chip Ball Grid Array

translate voltage levels appropriately between FPGA and testchip I/O. A Keysight

Source Measure Unit B2901A [60] is used to supply power to individual AES modules

and also measure current with 100fA precision. I mentored Samuel Allen in the

summer of 2019 and would like to acknowledge his help with some aspects of test

setup and data collection.

4.2.1 Efficiency, power

Power measurements are made using the Source Measure Unit (Fig. 4.7b) by pow-

ering each AES design in isolation. Power consumption per encryption at different

clock frequencies is shown in Fig. 4.8a and the slope of the line plot (µW/MHz)

is determined for each design. The renaming architecture has a power consump-

tion of 0.42µW/MHz which is 13x lower than a 128-bit design which consumes

5.75µW/MHz. Power does not equate to efficiency because the designs have differ-

ent throughput. The metric of Mbps/µW describes efficiency of a design. It remains

76



(a) PCB boardview showing isolated power domains for different components

(b) Data collection setup to perform automated measurement from testchip. BGA socket [53] houses
the chip.

Figure 4.7: AES chip test setup.

77



(a) Power (µW) Vs Clock frequency (b) Efficiency (Mbps/µW)

(c) Energy-per-bit (pJ) Vs Clock frequency (d) Leakage Power (µW)

Figure 4.8: Power and energy comparison of AES designs based on testchip measure-
ments.

78



Table 4.1: Performance comparison of AES designs with testchip measurements ob-
tained at 20MHz clock.

128-bit Ref. Renaming Randomized 8-bit Ref.
Energy (pJ/bit) 0.44 0.55 0.74 1.20
Power (µW ) 113.28 8.74 9.24 19.32
Throughput (Mbps) 256.00 16.00 12.54 16.00
Cell Area (µm2) 3066 886 1201 750
Die Area (µm2) 6450 1800 2400 1480
Latency (cycles) 10 160 204 160

constant as clock frequency is adjusted to increase throughput for proportionally more

dynamic power. In terms of efficiency from Fig. 4.8b, the 128-bit datapath is the most

efficient at 2.28 Mbps/µW due its to 16x higher throughput than the 8-bit designs.

The renaming architecture is competitive at 1.90 Mbps/µW and is twice as efficient

as the state-of-the-art reference 8-bit design (0.84 Mbps/µW ). Even our Randomized

architecture is more efficient at 1.42 Mbps/µW . Efficiency can also be measured in

terms of Energy-per-bit and similar trends are seen in Fig. 4.8c. Both the renaming

and randomized designs have sub-pJ/bit energy efficiencies as tabulated in Tab. 4.1.

Leakage power, measured by turning off the clock, is correlated to design area as seen

in Fig. 4.8d. The 128-bit design exhibits highest leakage power because it is about

4x larger in area than the 8-bit designs. Cell area, latency and throughput of the four

designs are tabulated in Tab. 4.1.

The efficiency of all designs can further be improved with voltage scaling and we

reassured this experimentally for the Renaming architecture. Though we did not

design for low voltage operation the testchip was functional down to 0.6V resulting

in improvements of 2x in efficiency and 33% in leakage power (Fig. 4.9).

4.2.2 Side Channel resilience

Resilience of the 8-bit AES designs to side channel attacks is analyzed by perform-

ing a Hamming Distance based DPA attack during the final round of encryption. A

79



Figure 4.9: Effect of voltage scaling on efficiency.

background on DPA is given in Sec. 1.3.1. Power traces are captured by measuring

the voltage drop across a 1k supply-side resistor as illustrated in Fig. 4.11a. With our

measurement setup (Fig. 4.7b), we are able to capture 20K traces/hr using MATLAB

with Keysight MSOX4154A (700Mhz probe) oscilloscope [61] and USB data transfer.

Since bytes are processed one at a time in an 8-bit datapath, Hamming Distance

between consecutive bytes at the S-box input is chosen as the selection function to

partition the power traces (Fig. 4.11b). This selection function is meaningful because

of the side channel leakage in power consumption when a data byte (green star in

Fig. 4.11b) overwrites the previous one at S-box input.

The attacker observes the ciphertext byte ct and guesses the key byte k to com-

pute the value of byte b at S-box input. In the next clock cycle, the procedure is

repeated with the new observed ciphertext byte to compute the S-box input byte

b′ that overwrites byte b, and a Hamming Distance HD between bytes b and b′ is

computed. In this manner, power traces are aggregrated in Class1 if HD > 4 and

in Class0 if HD < 4. The differential trace is computed as the average difference

between traces in the two classes. The attacker computes a differential trace for each

key guess for the byte he wishes to attack. A peak in the differential trace indicates

a correlation between the key guess and power measurement. With enough mea-

surements the differential trace of the correct key byte guess will consistently show

80



(a) 8-bit reference

(b) 8-bit renaming

(c) 8-bit randomized

Figure 4.10: Differential and DPA traces with Hamming distance leakage model.

81



(a) DPA measurement (b) Leakage model

Figure 4.11: Differential Power Analysis

a higher peak than the differential traces of incorrect key byte guesses. We use the

term DPA trace of a key byte guess to denote the maximum values of the differential

traces when varying the number of encryptions used for the attack.

The differential and DPA traces at the end of 200K encryptions are shown in Fig.

4.10 for the 8-bit AES designs. All 16 key bytes are attacked and the location of

the differential trace peak varies depending on the clock cycle of the last AES round

in which a particular key byte is processed. In Fig. 4.10, a successful DPA attack is

indicated by green lines for the differential and DPA traces of the correct key; whereas

a failed attack with 200K encryptions is indicated by corresponding red lines.

• In the renaming design key bytes are processed sequentially one per clock cycle

and the peaks in differential trace also follow suit (Fig. 4.10b).

• In the randomized architecture key bytes are processed in a random order and

a particular key has equal probability to be computed in any of the 16 clock

cycles of the last AES round. This results in 16 smaller peaks in the differential

trace (Fig. 4.10c).

• The reference 8-bit design also has multiple peaks in the differential trace

(Fig. 4.10a) but for a different reason. In this architecture, data bytes pass

82



Table 4.2: Measurements to Disclosure using Hamming Distance DPA on the 8-bit
AES designs

Renaming Randomized 8-bit Ref.
Mean MTD 761 118,400 1897

through register-to-register in the shift rows pipeline several times before ap-

pearing at the S-box input.

The resilience to DPA is quantified in terms of Measurements to Disclosure (MTD)

[107] - the number of measurements required to distinguish the correct key guess

from incorrect ones. MTD is defined as the cross-over point between the DPA trace

of the correct key byte guess and the maximum of DPA traces of all the wrong

key byte guesses. The DPA attack is repeated 40 times with all 16 key bytes on

the 8-bit AES designs and the average MTD values are listed in Tab. 4.2. The

renaming design is easy to break with just 761 encryptions required on average for a

successful DPA attack. The efficiency of the renaming design in eliminating unwanted

switching results in a lower background noise power and makes the design more

vulnerable to DPA. The 8-bit reference design in comparison has slightly higher MTD,

apparently due to increased noise power. The randomized design is much harder to

break (MTD > 100,000 encryptions) as the signal is spread out in time over 16 clock

cycles as was shown in Fig. 4.10c. Adding randomization capability to the renaming

design increases MTD by two orders of magnitude. While it is hard to draw absolute

conclusions, the significant increase in MTD indicates that randomization can help

slow down the attacker from retrieving the secret key.

4.3 Summary

In this chapter we presented the design methodology for taping out our AES

architectures in a commercial 16nm FinFET technology. Our automated testing

methodology enables functional verification, energy measurements and side channel

83



analysis of the AES designs. In line with our simulations, the renaming architecture

exhibits 2x efficiency improvements over the state-of-the-art 8-bit reference design and

is the most efficient 8-bit AES to date to the best of our knowledge. The randomized

design shows promise to improve side channel resilience which is an important concern

with 8-bit datapaths of AES. Both of our AES designs consume sub-pJ/bit energy

making them attractive candidates for low power applications in resource constrained

scenarios. With techniques such as voltage scaling, further improvements in efficiency

can be achieved.

84



CHAPTER 5

PACKAGE IDENTIFICATION

In this chapter we propose and evaluate CounterFoil, a system that uses in-

expensive cameras to check intrinsic variations in semiconductor packaging as means

of verifying IC provenance. We name our system CounterFoil both to reflect its

aim of foiling counterfeits, and because the enrollment records it uses are analogs for

counterfoils kept by issuers of cheques1.

IC manufacturing often involves off-shore foundries for fabrication, a packaging

house where the bare die is mounted within an encapsulating package, and system

integration where packaged chips are soldered onto a PCB. The supply chain for

packaged ICs can involve several distributors before the IC gets installed in a system.

Securing the supply and distribution chain of ICs is important to prevent counterfeit

parts. Besides monetary risks of billions of dollars counterfeit ICs can pose serious

security threats to critical systems in defense and healthcare as discussed in Sec. 1.4.

Some examples of counterfeit ICs are unauthorized copies (overproduction), remarked

old parts (recycling) and ICs with misrepresented speed grades.

Existing strategies for preventing counterfeits parts from being used in systems

can be broadly classified as either trying to detect anomalies, or else authenticat-

ing individual chip instances that are trusted. A common approach in counterfeit

identification is to apply a battery of tests to a part in order to evaluate whether it

1Oxford Dictionary defines counterfoil as “The part of a cheque, receipt, ticket, or other document
that is torn off and kept as a record by the person issuing it.” https://en.oxforddictionaries.

com/definition/counterfoil

85

https://en.oxforddictionaries.com/definition/counterfoil
https://en.oxforddictionaries.com/definition/counterfoil


is consistent with the expectations based on known good parts. The applied tests

include physical inspection (visual [8], x-ray imaging, microblast analysis of the sur-

face, spectroscopy, ion chromatography), electrical inspections [65, 16], and checking

for aging using silicon odometers [5], ring oscillators [46], dynamic current signatures

in adders [117], or other circuits that change in a measurable way with use. If any

tests reveal an anomaly, the part can be deemed counterfeit. Anomaly detection

techniques are used as part of qualification procedures by the US Department of

Defense to minimize the risk of counterfeits, but “may not definitively distinguish

authentic parts from counterfeit parts” [97]. Machine learning and neural network

based techniques [99] detect anomalies in microscopic features to classify genuine and

counterfeit parts. Unlike these approaches our technique relies on extracting unique

fingerprints from individual parts to authenticate provenance and thereby prevent use

of counterfeits.

An alternative to anomaly detection is to identify and authenticate individual

part instances using unique or hard to clone features. If a part is trusted at one

point in time, and later a part can be validated as being the same one that was

earlier trusted, then a judgment can be made that the part is still trustworthy. Well-

known non-microchip versions of this style of object authentication include human

fingerprints [39] and anti-counterfeiting features in currency [85]. Similarly, Physi-

cal Unclonable Functions (PUFs) are a type of physical fingerprint that can be used

for authentication of parts. PUFs can be based on random delays in silicon [41],

power-up fingerprints of Static Random Access Memory [44, 49, 102], randomly scat-

tered dielectric particles in a protective coating [112], or unique Radio Frequency

emissions [28, 26], among many others.

Several existing strategies for validating provenance of microchips are implicitly

relying on the IC package as the basis for trusting the enclosed silicon die. The

DARPA SHIELD project aims to embed inside IC packaging a secure dielet that

86



can be interrogated wirelessly with a smart-phone like device to validate provenance

of the part [67]. A company called Applied DNA Sciences offers a botanical DNA

taggant that can be applied to various goods including microchip packages [48] to

support traceability through distribution. To date, working with the Defense Logistics

Agency (DLA) of the US Department of Defense, the technology has marked over

700,000 microchips [79]. Both package-embedded dielets and package tagging have

an underlying assumption that an adversary cannot easily swap a microchip out of

its package, and therefore validating the package provenance suffices to validate the

provenance of enclosed microchip.

5.1 Transfer Molding for IC packaging

Transfer molding (Fig. 5.1) is the typical procedure for packaging of high-volume

integrated circuits [15, 25]. Most DIP (Dual In-line Package), SMT (Surface-Mount

Technology), and QFP (Quad Flat Package) packages are created this way, as well as

more advanced packaging styles such as system-in-package. In the transfer molding

process, each silicon die is first attached to a metal leadframe, and the pads from

the die are wire-bonded to the individual leads to create electrical connections. Each

leadframe-mounted die is then placed in a mold cavity, with the leads extending out

the side of the cavity. A plunger liquefies pucks of epoxy molding compound using

temperature and/or pressure. The liquefied compound flows through runner channels

into the mold cavity to surround the die and form the shape of the package. After

the compound solidifies, the molds are released, and the leads are separated from

the remainder of leadframe, which is discarded. The metal leads protruding from the

formed package are now the pins of the packaged chip that will connect it to a printed

circuit board. Further details on the many packaging styles for integrated circuits can

be found in a popular textbook on the topic [111].

87



flow

plunger

molding 
compound

flow

bottom mold

top mold

IC die
lead lead

mold cavity

IC die
lead lead

mold cavity

bottom mold

top mold

bottom mold

top mold

IC die
lead lead

mold cavity

(a) Transfer molding of package for IC on leadframe

5mm

this size is 9.2mm (536px)

this size to crop is 719px = 12.3mm

5mm

USENIX revision version 15.2

this size is 15.2mm (845px)

this size to crop is 950px (=17.1mm)

(b) Surface texture of molded packages

Figure 5.1: Transfer molding is the mechanism used for packaging most high-volume
microchips.

Several sources of variability in transfer molding can impart unique features to

a package surface. The mold has a surface roughness that gets imprinted onto the

package. The surface texture of the mold changes over time as residue material

accumulates on the mold, and molds require cleaning to mitigate this build up [50].

Additionally, the molding compound itself, and its curing, contribute a certain amount

of unpredictability. The molding compound is an epoxy that contains a number

of fillers including crushed quartz or alumina that comprise 75% or more of the

compound, and provide thermal conductivity. The size of the filler particles can range

from 20-100µm, and the orientation and distribution of filler particles in the package

is unpredictable. The package during post-mold curing also experiences shrinkage,

cracks, porosity, and voids [109]. Due to aforementioned variation sources, even chips

packaged in the same mold could have differences in their package surface.

88



Figure 5.2: Protocol for package fingerprinting. Trusted enroller labels each pack-
age and then enrolls it by extracting and then signing a set of keypoints associated
with the package. Verifier compares the enrolled keypoints against the package to
determine whether the package is consistent with its label.

Algorithm 1: EnrollChip

Input: Image img of chip surface with marker attached. Private key kpr for
signing messages.

1 eid← readMarker(img)
2 feid ← extractKeypoints(img, r, θ, wenroll)
3 s(feid)← Sign(kpr, feid)
4 database[eid]← feid‖s(feid)
5 return

Algorithm 2: VerifyChip

Input: Image img of chip surface with marker attached. Public key kpub to
check signatures.

Output: Success or failure to verify chip as authentic according to the
identity on its label

1 id← readMarker(img)
2 feid‖s(feid)← database[id]
3 if V erifySignature(kpub, s(feid)) then
4 fv ← extractKeypoints(img, r, θ, wverify)
5 if score(feid, fv) > threshold then
6 return success

7 return fail

89



5.2 CounterFoil anti-counterfeiting scheme

CounterFoil uses package surface features to authenticate provenance of indi-

vidual chips as shown in Fig. 5.2. The two participants in the scheme that interact

with the chip are denoted as the enroller and a verifier. The enroller acts on behalf

of a chip manufacturer that wishes to sell parts with an assurance of provenance.

The verifier is a customer that has purchased the chips on the market and wants

to check whether they are legitimate. Both the manufacturer as enroller, and cus-

tomer as verifier, have incentives for participating in the presented scheme. The

chip manufacturer can make their products more attractive by offering an assurance

that authentic parts bearing their branding can be verified as produced by them.

Importantly, they can accomplish this without needing to trust every point in their

distribution channels. The chip customer is incentivized to participate because sys-

tems that are free from counterfeit chips can avoid costly failures or recalls that are

caused by counterfeits [94].

The enroller extracts fingerprints from package surface features using image pro-

cessing and publishes information about enrolled chips to a public database. Integrity

of database entries is assured by digital signatures. The enroller holds a private key

kpr for signing messages, and gives the corresponding public key kpub to any parties

that wish to act as verifiers. Our implementation uses the simplifying assumption of

pre-existing public keys for enroller and verifier, but in practice this could, for exam-

ple, rely on a trusted certificate authority. The enroller uses the private key to sign

database entries when writing them, and the verifier uses the enroller’s corresponding

public key to check the signatures when reading from the database. More details

about the enrollment (Alg. 1) and verification (Alg. 2) procedures are given below.

Details of the image processing performed in enrollment and verification are deferred

to Sec. 5.3.

90



5.2.1 Enrollment

The enrollment procedure should occur as part of the packaging of an IC. The IC

should be trusted at the time of packaging, as the goal is to later tie provenance back

to this point. Each die is sealed inside of a molded plastic package as usual by means

of transfer molding (see Sec. 5.1 and Fig. 5.1). After the package hardens and cures,

a label with a computer-readable identification marker is affixed to the surface of the

package. The marker represents an insecure numerical identifier of the chip instance,

similar to a serial number, which we denote as its eid (enrollment identifier). The

enroller then takes an image that captures both the marker, and the package surface

in the vicinity of the marker, from which the fingerprint will be extracted. A digitized

enrollment fingerprint feid is extracted from the image, using a procedure that will

be explained in Sec. 5.3.2. The date of manufacture and other metadata can be

appended to the fingerprint at this point. The enroller creates signature s(feid) by

digitally signing fingerprint feid using private key kpr (Alg. 1, line 3). An entry is

added to the public database to associate the identifier eid with feid‖s(feid) (Alg. 1,

line 4). Once the chip is enrolled to the database, it is released into distribution

channels.

5.2.2 Verification

The verification procedure checks authenticity of chips at the end of distribution.

The verifier takes an image of the chip that includes both the marker and the package

surface in the vicinity of the marker. The insecure identifier (eid) of the marker is

extracted from the image. The enrolled data feid‖s(feid) for this identifier is accessed

from the database (Alg. 2, line 2). The validity of signature s(feid) is checked using

the public key kpub of the enroller (Alg. 2, line 3). The enrolled fingerprint feid is

compared against a new fingerprint fv that is extracted from the relevant area of

the chip package surface. If the similarity score exceeds a chosen threshold, then the

91



package surface is determined to match the record (Alg. 2, line 5). The chip is verified

as authentic only if the digital signature is valid, and the fingerprints match. The

validity of the signature ensures that the enrolled fingerprint in the public database

was created by the enroller and has not been modified. The fingerprint match ensures

that the enrolled data is not being used to authenticate a chip other than the one that

was enrolled, a scenario that would arise if a label was copied or transferred from one

chip to another. The verification procedure is currently performed on a workbench

in our lab, but could later, for example, be integrated into a pick-and-place machine

at the end of distribution that picks chips from reels and places them appropriately

onto printed circuit boards.

5.2.3 Attacker Capabilities and Security Considerations

The attacker considered in this work is a profit-motivated counterfeiter that forges

chips for purpose of selling them on the market. This type of profit-seeking attacker

is responsible for prior counterfeit parts found in sensitive systems, but note that it

does not include nation-state attackers that may spend large amounts of money to

create malicious forgeries to bring down targeted high-value systems. For a profit-

seeking attacker, if the effort of forging chips exceeds the selling price of the chip on

the market, there is no incentive to forge the chips. At the same time, the cost for

anti-counterfeiting technology in commodity parts cannot exceed what the producer

or consumer of the parts is willing to spend for the guarantee of provenance.

The security of our approach relies on assumptions similar to those in earlier

work on certificates of authenticity [28]. Our assumptions relate to the enrollment

and verification protocol, the uniqueness of package fingerprints, and the difficulty of

creating forged chip packages that match legitimately enrolled fingerprints. Among

these three, the first is intended to be uncontroversial, and the latter two are supported

by experimental data in the paper.

92



1. Protocol Integrity: We make the standard assumption that an adversary is

not able to obtain the enroller’s private key or forge digital signatures without

having the private key. We assume that the enroller is trusted to only package

legitimate integrated circuits, and to enroll only these packages with the private

key kpr.

2. Unique Fingerprints: We rely on the fact that package fingerprints created

under ordinary conditions are unique and are identifiable via image processing.

Specifically, an enrolled fingerprint from one package will not be deemed a match

for any package other than the enrolled one. Fingerprint uniqueness binds the

enrolled data to a specific chip instance. If labels are later affixed to chips other

than the enrolled, the enrollment data associated to the label will not match

the chip characteristic. This prevents an adversary from successfully copying or

transferring labels across chips.

3. Difficulty of Package Forgery: We assume, and then support experimen-

tally, that package fingerprints are random and difficult to control. This pre-

vents an adversary from creating a new package surface that matches a legit-

imate enrolled fingerprint. We support this assumption by showing that even

chips from the same mold have different fingerprints. This implies that even

possession of an identical mold will not enable an adversary to successfully

forge packages and therefore forgery requires a more advanced manufacturing

process than what industry uses for packaging chips. Regardless of the process

used to create forgeries, an adversary will have to create recognizable features

with sizes on the order of 10µm (see Fig. 5.3). Besides attempting to clone the

package surface an attacker could print a label with features from a legitimate

chip. However, the printing task is seemingly out of reach of many technologies

such as high-end 2400 DPI printers, which have a dot size of 10.6µm and can

93



only print reliable features at a much larger scale than its dot size. Aside from

forgery, an adversary might transfer the package from a legitimate part to a

counterfeit IC, but there would be no profit motive to this, as it would destroy

a legitimate chip to create a single forged chip.

8µm

-8µm

0µm

4µm

-4µm

(a) Package surface profiled using Zygo Nexview [118]

0 20 40 60 80 100 120
Feature size ( m)

10
0

10
2

10
4

10
6

10
8

C
ou

nt

Pixel Size

2400 DPI printer

Typical size of fillers

(b) Extracted feature sizes from image processing.

Figure 5.3: Size of features extracted from images of package surfaces using OpenCV
implementation of ORB algorithm as discussed in Sec. 5.3.2

Note that an adversary could make a chip unverifiable by simply removing or

irreparably damaging its label. We view this as a reliability concern more than

94



a security concern, as counterfeiters would not earn profit by disabling the trust-

enhancing technology from legitimate parts. Nonetheless, the paper labels we use

in our prototype system would likely be replaced by a more robust marking when

deploying CounterFoil at production scale.

5.3 Image Processing and Analysis

Our system relies on image processing as part of enrollment and verification. En-

rollment generates a digitized representation of recognizable features within a selected

area of the package surface. Verification later scores the record of enrolled features

against a new image of the package surface. In this section we describe the computer

vision algorithms used. Our algorithms are written in C++ using OpenCV [21] for

the image processing.

5.3.1 Aruco marker labels and detection of ROI

Our system uses computer-readable labels (Fig. 5.2) to represent the purported

identity of a package. We also use the labels as fiducial marks to determine the Region

Of Interest (ROI) in an image used for both enrollment and verification. It is to be

noted that one could choose to use the entire image for enrollment/verification but this

would increase runtime as discussed in Sec. 5.4. Aruco, the specific marker system that

we use, is a square-based fiducial marker system with binary codes [40]. Aruco marker

dictionaries are configurable, allowing for an arbitrary marker capacity (in bits) and

number of markers. We use Aruco markers to label the chips with the search tag

of the public database. The four corners of the marker allow for detection of image

orientation (pose estimation) which we leverage to determine the ROI for further

processing. Fig. 5.4 shows a detected marker with its top-left corner used to determine

the center of ROI at a distance < r, θ > relative to the marker. Depending on

whether the image is being processed for enrollment or verification, the ROI selected

95



θ
r

wenroll
wverify

USENIX revision version

Figure 5.4: Image of chip with affixed marker. The position of enrollment ROI is
shown by the blue box, and the callout shows the keypoints extracted from the ROI.
The ROI that would be used for verification is the smaller red box. The size and
position of both ROIs are defined relative to the marker, as shown by annotations in
yellow.

from the image would be either ROIenroll (blue square) and ROIverify (red square).

Both squares are centered at the same point, and have a size that is defined relative

to the marker size for magnification invariance. The width of the larger square is

wenroll = 2mm, and the width of the smaller square is wverify = wenroll/
√

2. The

difference in ROI sizes ensures that the ROI from enrollment will always contain the

ROI from verification regardless of rotation. Consider the yellow circle in Fig. 5.4

which is centered at point < r, θ >. Regardless of the image orientation, the red

square will always be contained within the circle, and the blue square will always

contain the circle. Therefore, the blue square (ROIenroll) will always contain the

red square (ROIverify). Further, ROIenroll is chosen larger than ROIverify to save

runtime, as the verification involves more processing steps than enrollment. In our

experiments we use r = 5mm and θ = π/8.

5.3.2 Feature Enrollment

The enrollment process extracts distinctive features from an image which are suit-

able for matching and object recognition, and stores them as compact feature descrip-

tors. A number of well-known image processing techniques exist for feature detection

96



and description, such as Scale Invariant Feature Transform (SIFT) [72], Oriented

FAST and Rotated BRIEF (ORB) [96], Binary Robust Invariant Scalable Keypoints

(BRISK) [68], and Speeded-Up Robust Features (SURF) [12]. These techniques are

commonly used in applications such as image stitching, where image alignment re-

quires finding corresponding points of objects in two different images that contain

the objects. Our work is agnostic to the choice of algorithm, but based on empirical

evaluation (as will be discussed in Sec. 5.4.4) we choose ORB.

We first pre-process the image (ROI) using Contrast Limited Adaptive Histogram

Equalization (CLAHE) to improve the contrast and tolerance to variation in lighting

intensity. We then use OpenCV’s implementation of ORB to extract image fea-

tures. The keypoints are detected by Oriented FAST algorithm and described by

256-dimensional rotated BRIEF descriptors [96]. Similarity between two keypoints

can be evaluated using feature distance, which is the Euclidean distance between two

keypoints in the 256-dimensional feature space. The keypoints also have associated

positions within an image, and we will use pixel distance to denote the Euclidean

distance in two dimensions between pixels in an image. For the sake of predictable

runtime, we restrict the number of keypoints to 1,000/mm2 of package surface. Fig.

5.4 shows the keypoints extracted from the region of interest.

The enrolled features are stored in a public database along with a digital signature

(Fig. 5.2). The NIST Digital Signature Standard (DSS) establishes three algorithms

for signatures, RSA, Digital Signature Algorithm (DSA) and Elliptic Curve DSA

(ECDSA) [59]. We choose DSA in our implementation, but this can replaced by either

of the other algorithms with minimal performance impact. For hashing function,

SHA-3 is chosen because it is the latest Cryptographic Hash Standard issued by

NIST [36]. More specifically, the enrollment data is hashed using SHA3-256 and

subsequently signed with the enroller’s private key using an implementation of DSA

with 3072-bit private key as from the open-source Crypto++ library [3].

97



5.3.3 Feature Verification

Verification compares the enrolled keypoints against the ROI of a new image in to

order compute a similarity score. The integrity of enrolled keypoints is first verified by

checking the digital signature. When a new image is captured for verification, its ROI

is identified relative to the marker, and keypoints are extracted from the ROI. This

mirrors the corresponding steps performed in feature enrollment, so we don’t repeat

their description here. The processing performed with the verification keypoints is as

follows.

5.3.3.1 Feature matching and RANSAC based homography computation

Two images of the same planar surface taken from different perspectives are re-

lated by a homography, which is a geometric model that maps feature positions in

one image to the corresponding positions in the second image. Estimating the ho-

mography requires finding enrollment and verification keypoints that are similar and

therefore likely to be representations of the same feature on the package surface. We

find such points by performing nearest neighbor matching using Open CV FLANN

(Fast Library for Approximate Nearest Neighbors) [82] matcher, and then evaluating

quality of matches using a standard approach based on ratio of feature distances [72]

as described here. For every keypoint ki in ROIenroll, we find its two closest (in

feature distance) keypoints (k′1 and k′2) from ROIverify and compute from their Eu-

clidean distance in feature space a ratio score ri =
‖ki−k′1‖2
‖ki−k′2‖2

. A low ratio indicates that

keypoint ki is significantly more similar to its best match k′1 than to its second best

match k′2, which implies that ki and k′1 are likely to be corresponding points in the two

images [72]. The 50 keypoint pairs with the lowest ratios (i.e., the best matches) are

used as the basis for estimating a homography with the RANSAC algorithm. Increas-

ing the number of matches will reduce the chance of RANSAC reaching consensus

98



on an incorrect homography, but increases the expected number of random samples

required to find consensus.

RANSAC (Random Sample Consensus) [38] is an algorithm to estimate a model

from noisy data that contains both inliers and outliers. In our case, the computed

model is the homography, and the data are the 50 selected keypoint pairs. RANSAC

first samples four keypoint pairs from the set and calculates from them a homography

matrix as in Eq. 5.1, where the 3x3 matrix is the homography, and Pe and Pv are the

respective coordinates in enrollment and verification images of the keypoints. The

quality of the homography model is then evaluated according to how many of the 50

keypoint pairs fit the model. Each pair that fits the homography model is considered

an inlier. The process iterates to calculate and evaluate homographies from different

sample points, and the homography with the highest number of inliers is returned as

the best fit for the data.

Pv =


h11 h12 h13

h21 h22 h23

h31 h32 1

× Pe (5.1)

5.3.3.2 Projection and Scoring

Using the enrollment and verification keypoints, and the homography between

them, we compute a score that indicates how many of the enrolled keypoints have

good matches in the set of verification keypoints. An enrolled keypoint is considered to

have a good match if there exists a verification keypoint that satisfies two conditions:

(1) it is highly similar to the enrolled keypoint, and (2) it is at the position where

the enrolled keypoint should be found in the verification image. The first condition

is formalized as a requirement of being the nearest neighbor in feature space to the

enrolled keypoint. The second condition is formalized as a requirement of being within

2 pixels of the location where the homography predicts the enrolled keypoint to be in

99



0 20 40 60 80 100
distance [pixels]

10
4

10
3

10
2

10
1

pr
ob

ab
ili

ty

Figure 5.5: Pixel distance between the expected location of a keypoint (according to
homography) and the location of its nearest neighbor in feature space. The spike at
left shows points for which the nearest neighbor is found in the expected location.
The points that are sufficiently close to be counted as inliers are the ones colored red.

the verification image. This ensures that matched features are not only similar, but

also geometrically consistent with relative positions of the enrolled keypoints. Fig. 5.5

shows the pixel distance between the homography projection of an enrolled keypoint

and the location of the verification keypoint that is its nearest neighbor in feature

space. The data is collected from 100 different verification trials. The peak at left

indicates that the nearest neighbor is often found within two pixels of the location

predicted by the homography. These points are the inliers.

Fig. 5.6 shows examples of keypoint matching from verification. The matching

succeeds even when the verification image is rotated and at a different scale from

the orientation of the same chip at enrollment. Each line on the figure shows the

correspondence between an enrolled keypoint and a matching keypoint found on the

package during verification.

5.4 Evaluation

We evaluate the CounterFoil system using experiments on populations of two

plastic dual in-line package (PDIP) chips. The first is an Alliance Memory AS6C6264-

55PCN [7], which is a 64kb SRAM in a 28-pin PDIP (surface size 35.6mm × 15.2mm)

100



(a) Verification at nominal ori-
entation

(b) Verification with rotation (c) Verification at different scale

Figure 5.6: Three examples of matching between enrollment keypoints (square in
upper left) and verification image of the same chip package instance, where the ver-
ification image differs in zoom and orientation. White square on chip package is the
identified region of interest for verification. Each line corresponds to a keypoint match
from enrollment to verification (Sec. 5.3.3.2).

that is rated for 0◦C to 70◦C temperature range. The second is a Microchip Tech-

nology 23LC1024 [80], which is a 1Mb SRAM in an 8-pin PDIP (9.2mm × 6.4mm)

that is rated for −40◦C to 85◦C. Images are collected using two instances of two

different camera models. The two ViTiny UM12 cameras [113] cost $390 each, have

5MP sensors, and computer-controlled focus through software. The two MustCam

UM012C cameras cost $40 each, have 5MP sensors, and manual focus by turning a

dial. Our collection of chips and cameras are shown in Fig 5.7.

In our evaluation we use 52 instances of chip model AS6C6264 and 40 instances

of chip model 23LC1024. Chips packaged in the same mold are identified by the

mold marking on the package. Our dataset has several chips packaged from the

same mold: 5 pairs, 9 multiples in chip model AS6C6264 and 14 pairs in chip model

23LC1024. Each chip instance is enrolled to the database using one camera, and then

verified using the other camera of the same model. Enrollment and verification is

repeated 3 times for each chip, comprising a total of 528 images taken with ViTiny

and MustCam.

101



enrollment verification

rock 
tumbler

MustCamViTiny ViTiny

AS6C6264

23LC1024
MustCam

enrollment verification

rock 
tumbler

MustCamViTiny ViTiny

AS6C6264

23LC1024
MustCam

Figure 5.7: Experimental setup. Left side of workbench used for enrollment, right
side used for verification. Separate camera are used for enrollment and verification.
Middle of image shows the population of chips with labels affixed.

5.4.1 Package Authentication

Package authentication is performed by matching verification image features with

enrolled ones as described in Sec. 5.3. Fig. 5.8 shows in green the cumulative distri-

bution function (CDF) of the number of inliers (matched keypoints) from the dataset

of enrolled and verification chip images using our system. Fig. 5.8 also shows in red

the CDF of inliers for mislabeled packages. In these cases, the program is modified to

ignore the identity encoded on the label, and to fetch from the database the enrolled

keypoints of another, randomly selected chip instance of the same model. 5,000 such

comparisons are performed. This CDF represents what a counterfeiter might achieve

by randomly swapping labels. We also consider the strongest counterfeiter that has

an exact duplicate of the mold used to produce the enrolled chip, and he copies the

label for the legitimate enrolled chip onto his counterfeits created from the same mold.

The lines in blue show the number of inliers that the counterfeit would be able to

achieve in this permissive setting. Even if the attacker has the same mold used to

produce an enrolled chip, the counterfeits that can be created with the mold typically

still have significantly fewer inliers than the enrolled chip.

The verifier’s decision to accept or reject a package is made according to whether

the number of matched enrollment keypoints exceeds a threshold. A higher thresh-

102



0 200 400
No. of inliers

0.0

0.5

1.0

Diff mold
Same mold
Same chip

(a) 23LC1024 with ViTiny

0 200 400
No. of inliers

0.0

0.5

1.0

Diff mold
Same mold
Same chip

(b) AS6C6264 with ViTiny

0 200 400
No. of inliers

0.0

0.5

1.0

Diff mold
Same mold
Same chip

(c) 23LC1024 with MustCam

0 200 400
No. of inliers

0.0

0.5

1.0

Diff mold
Same mold
Same chip

(d) AS6C6264 with MustCam

Figure 5.8: CDF of number of inliers using each model of camera.

old is a more selective determination of authenticity. Higher thresholds reduce false

positives (counterfeit chips being accepted as authentic), but can also reduce true

positives (legitimate chips being accepted as authentic). Receiver operating charac-

teristic (ROC) curves are plots that show the achievable tradeoffs between excluding

false positives and keeping true positives. An ROC curve is created by sweeping the

acceptance threshold, and at each threshold value evaluating the number of true and

false positives. A true positive always refers to a case where the enrolled and verified

chip are the same instance with the same label, but we use two different notions of a

103



0.0 0.25 0.50 0.75 1.0
False Positive Rate

0.0

0.25

0.50

0.75

1.0

T
ru

e 
P

os
iti

ve
 R

at
e

From Different Mold 
(AUC=1.0)
From Same Mold 
(AUC=0.997)

(a) 23LC1024 with ViTiny

0.0 0.25 0.50 0.75 1.0
False Positive Rate

0.0

0.25

0.50

0.75

1.0

T
ru

e 
P

os
iti

ve
 R

at
e

From Different Mold 
(AUC=1.0)
From Same Mold 
(AUC=0.981)

(b) AS6C6264 with ViTiny

0.0 0.25 0.50 0.75 1.0
False Positive Rate

0.0

0.25

0.50

0.75

1.0

T
ru

e 
P

os
iti

ve
 R

at
e

From Different Mold 
(AUC=1.0)
From Same Mold 
(AUC=0.999)

(c) 23LC1024 with MustCam

0.0 0.25 0.50 0.75 1.0
False Positive Rate

0.0

0.25

0.50

0.75

1.0

T
ru

e 
P

os
iti

ve
 R

at
e

From Different Mold 
(AUC=1.0)
From Same Mold 
(AUC=0.999)

(d) AS6C6264 with MustCam

Figure 5.9: Receiver Operating Characteristic curves show ability to distinguish en-
rolled chips from other chips created from a different mold than the enrolled chip, or
from the same mold that produced the enrolled chip.

false positive. The first case is when the chip being verified is a counterfeit that differs

from its labeled identity, and the identity on the label is not enrolled to a chip from

the same mold as the counterfeit. The second case is when the counterfeit chip has a

label used to enroll another chip from the same mold as itself. The ROC curves are

shown in Fig. 5.9. For both models of chip and both models of camera, we are able to

distinguish perfectly (100% true positives at 0% false positives) between a legitimate

chip being verified and a counterfeit chip that is created from a different mold. Even

in the extreme case where the counterfeiter has the same mold (from the packaging

104



house) used to create the enrolled chip, it is possible to detect the counterfeits while

still keeping a high rate of true positives. The worst case is AS6C6264 with ViTiny

camera (Fig. 5.9b), where it is still possible to accept 90% of legitimate chips while

rejecting 90% of counterfeits that are created from the exact same mold. We will show

later in the paper that this performance can be further improved by higher quality

images.

5.4.2 Runtime

Verifying provenance of packages should not slow manufacturing (for enroller) or

integration (for verifier). The verification process is more computationally intensive

than enrollment, and certain target applications for verification may impose stringent

latency requirements. For example, we envision that one application is integration

with a pick-and-place machine, which removes chips from feeder reels and places them

appropriately onto printed circuit board pads for reflow soldering. Single head pick-

and-place machines from a leading manufacturer place between 1,800 and 5,000 parts

per hour [76], which corresponds to handling each part for 720ms to 2s. Fig. 5.10

shows that package verification can be performed at production speed, as our system

is able to authenticate each instance within 150 ms on an Intel Xeon CPU E5-2690.

The runtime can be further reduced to meet even tighter latency requirements by

enrolling a smaller number keypoints for each chip. Fig. 5.10 shows how runtime

scales with the size of ROI at a constant keypoint density, and shows the breakdown

of runtime according to image processing function.

5.4.3 Practicality and Costs

The CounterFoil methodology is compatible as an add-on to existing supply

chains, and the cost at scale should be significantly less than one cent per chip.

Chip verifiers can use the inexpensive camera models from our experiments, and

perform processing on dedicated or shared computers. Given that verification would

105



1.8 2 2.2
Window size (mm)

0.00

0.05

0.10

0.15

0.20

0.25

R
un

tim
e(

s)

Read image
ROI using Aruco markers
Digital Signature
ORB
Matching
Others

0

50

100

150

200

250

300

350

In
lie

rs

Inliers

Figure 5.10: Runtime of verification procedure, broken down by processing task, for
different sizes of ROI. Keypoint density is held constant at 1,000/mm2. The increase
in keypoints for the larger ROI results in a higher runtime, but also increases the
number of matching points that are found. Runtime can be traded against accuracy
by adjusting the ROI size.

likely be performed at PCB assembly houses, the small cost of the camera would be

insignificant, especially when amortized over a large number of boards being produced.

The labels affixed to the chips cost $0.30 per sheet, and we print 1024 markers per

sheet, for a per-unit cost of $0.0003 per label. The enrolled data for each chip is 1

MB, which at current hard-drive prices of $0.03 per GB corresponds to a per-unit

cost of $0.00003 for storing the data. Affixing markers to each chip is currently a

manual and time-consuming process. At scale we imagine that per-chip labels could

be replaced by labels on part reels, or other ways of communicating a purported

identity for the parts that would be used to access the signed enrollment records.

In that case, the ROI would be identified based on image recognition of package

surface instead of the markers. The low barriers to adoption of CounterFoil are

simply convincing a packaging house to deploy this technology, and establishing keys

for signing and verifying chips. Even if only a small fraction of purchasers would

106



Table 5.1: Quantitative comparison of different feature-detecting methods. Plot at
right shows the ROC plot from which the area-under-curve is computed. All four
algorithms are configured to use 1,000 keypoints per mm2 for this comparison.

Algorithm
Avg. Inliers Area

Under
Curve

Run
Time [s]Same

Chip
Same
Mold

SIFT 570 178 0.971 0.215

SURF 470 100 0.970 0.211

ORB 236 56 0.980 0.064

BRISK 215 53 0.953 0.432 0.0 0.25 0.50 0.75 1.0
False Positive Rate

0.0

0.25

0.50

0.75

1.0

T
ru

e 
P

os
iti

ve
 R

at
e

SIFT
SURF
ORB
BRISK

verify their chips using the available information, this should increase the risk of

detection for distributors that traffic in possible counterfeits. The more significant

barrier to adoption is perhaps the possibility that superficial cosmetic damage to parts

could cause them to become untrusted, representing a monetary loss and a harm to

branding.

5.4.4 Algorithm Difference

Tab. 5.1 compares the runtime and authentication performance of four popular

algorithms for feature extraction and matching. While all of the algorithms are

suitable, we find ORB to perform best, and have thus chosen it for our work. In

particular, the speedup of ORB comes largely from its compatibility of using locality-

based hashing to identify near neighbors, without using the k-nearest neighbor search

which is the most time consuming operation in the other algorithms.

5.4.5 Camera Differences

Because enrollment and verification are performed using different camera in-

stances, ability to match features may be impacted by differences in the lens, lighting,

107



0 200 400 600 800 1000
No. of inliers

0

50

100

150

200

250

300

O
cc

ur
re

nc
e

Same Chip Diff. Camera
Same Mold Diff. Camera
Same Chip Same Camera
Same Mold Same camera

Figure 5.11: Histograms showing increase in number of inliers in AS6C6264 SRAM
when same ViTiny cameras are used for both enrollment and verification.

or the sensor array [73] of the cameras. To explore this further, we now evaluate

how the matching performance changes in the unrealistic scenario of using the same

ViTiny camera instance for both enrollment and verification of AS6C6264 chips, which

was the most challenging authentication case in the prior experiments (see Fig 5.9b).

Fig. 5.11 shows that using a consistent camera causes the number of inliers to increase,

both in the case of same-chip comparisons and same-mold comparisons. The same-

chip comparisons have a larger increase, and the overlap between the two distributions

is reduced, implying capability for better authentication performance. This result re-

veals the presence of some detrimental camera variations that are being overcome in

our realistic authentications that use different camera instances for verification and

enrollment.

5.4.6 Varying Magnification and Lighting

Fig. 5.12 shows results under different magnification and lighting conditions using

the ViTiny camera with the AS6C6264 chips using a smaller dataset with 10 chip

instances. The approach is largely unaffected by lighting changes, but changing the

magnification from enrollment to verification has some impact on the number of

inliers.

108



0 200 400 600 800 1000
No. of inliers

0

5

10

15

20

25

30

O
cc

ur
en

ce
s

+20% magnification
800 lux
500 lux
1100 lux

Figure 5.12: Histogram of inliers in AS6C6264 SRAM under two alternative lighting
intensities (nominal is 800 lux) and one alternative zoom.

5.5 Further Investigation of Fingerprints

In this section we deviate from our standard system to investigate package fin-

gerprint properties that cannot easily be evaluated within the overall system. In

particular, for different reasons, experiments in this section define the ROI in a way

that doesn’t rely on affixed labels. Instead of defining the center of the ROI as being

at position < r, θ > relative to the marker (see Fig. 5.4), the center of the ROI is here

defined as a pixel in the center of the image. To ensure that the same area of the

chip is always imaged, the chip is aligned carefully to the camera. Aside from lacking

markers, the image processing performed is as described in Sec. 5.3.

5.5.1 Testing Resilience of Fingerprints

The fingerprints should be robust enough to withstand wear that occurs when IC

packages are jostled and handled during distribution. We use various time durations

in a hobbyist rock tumbler to impart controllable amounts of wear on chips. After

enrollment, chips are placed alone in the rock tumbler with 45mL of water and 5g of

60-grit silicon carbide, which is the coarsest grit used in rock tumbling. The tumbler

barrel is washed out between experiments, and each trial uses new grit and clean

water. After tumbling, the chip is removed, rinsed under a faucet, dried and imaged

109



for verification. The prototype adhesive labels do not survive the rock tumbler, so

the ROI in the images is instead found by careful alignment of the chip under the

camera.

Fig. 5.13 shows the degradation in number of inliers for chips after different

amounts of time in the tumbler. The plot shows a slow decrease in the number of

inliers after tumbling with a few hundred inliers left after an hour in the tumbler.

The dashed line on the plot shows the acceptance threshold that has a 95 percent

probability of rejecting a different chip from the same mold. In other words, an

attacker that has obtained the same mold and produced new chips from it will have

only a 5% of exceeding this threshold and thereby succeeding in forgery. Even after

significant wear, most authentication trials from the legitimate chip are able to exceed

this value.

Figs. 5.13b and 5.13c show package surfaces before and after 1 hour in the tumbler.

Note that these images are illustrative; they use a different magnification from the

results in Fig. 5.13a and include the corners of the chip where the wear is most

noticeable, instead of showing only the ROI where the wear is less apparent. We

also tested the effect of temperature by heating the chips to 170◦C for an hour in a

thermal chamber, but saw no change in the number of inliers.

5.5.2 Testing Fingerprint Uniqueness

Any complex physical object has some combination of minute features that are

unlike all other instances of the same object. Given that molded integrated circuit

packages are heterogeneous mixtures of particles, they are certain to be unique in this

trivial, physical, sense. However, for authentication the relevant question is whether

there is a uniqueness that is observable and stable at the scale of our imaging. In

studying uniqueness, we pay special attention to chips that are produced from the

same mold. Fortunately, each chip bears a mold mark that is imprinted in a circle on

110



0 10 20 30 40 50 60
Time in rock tumbler (minutes)

0

200

400

600

800

1000

1200

1400

N
o.

 o
f i

nl
ie

rs
95% same mold

(a) Reduction in inliers after wear in rock tumbler

(b) Chip before tumbler (c) Chip after 1 hour

Figure 5.13: Reduction in inliers for chip AS6C6264 after spending time in rock
tumbler. Images of chip are included to give a sense of the amount of wear caused.

the underside of the chip. The mold mark, as is visible in Fig. 5.13b, gives a code of

one letter and two numbers. The marks are used for traceability within the packaging

facility, so that problematic molds can be identified. Our experiments confirm that

chips with the same mark are from the same mold, as they show a distinct similarity

according to our analysis, and in fact a similar texture can be observed at high

magnification.

5.5.2.1 Scoring under Controlled Alignment

Experiments that use imprecisely placed labels to define the ROI of each chip

cannot definitively show whether package fingerprints are unique. Two packages that

are identical would appear unique if their labels are placed in such a way that their

ROIs are disjoint regions of the package surface. We again avoid relying on markers

and perform experiments in which ROI is based on chip alignment underneath the

camera. Fig. 5.14 shows the result. Different chip instances from the same mold do

111



0 600
No. of inliers

0.0

0.5

1.0

Diff mold
Same mold
Same chip

(a) 23LC1024 with ViTiny

0 600
No. of inliers

0.0

0.5

1.0

Diff mold
Same mold
Same chip

(b) AS6C6264 with ViTiny

Figure 5.14: Inlier CDFs for SRAMs under controlled alignment.

show similarity, but it is smaller than the similarity between two images of the same

chip. In chip type AS6C6264, the highest score between any two images of different

chips from the same mold is 277 inliers, whereas the lowest score between any two

images of the same chip is 603 inliers; the means are 113 and 825 respectively. The

clear difference in scores for same-mold and same-chip comparisons is significant, as

it shows that the mold surface texture is not entirely responsible for the fingerprints.

Even if an adversary were able to perfectly reproduce (or steal) the mold, they will

be unable to create high quality forged packages with it.

5.5.2.2 PUF-like evaluation using Pixel Intensity

We also consider evaluating similarity of package fingerprints using a standard

Physically Unclonable Function(PUF)-like scheme rather than the computer vision

based techniques used in CounterFoil. As standard PUF metrics [75, 74] based on

Hamming distance are not directly applicable in this setting, distance comparisons

between enrollment and verification images are made by comparing the 8-bit pixel

intensities of the two ROIs on a pixel-by-pixel basis, which is analogous to comparing

responses from weak PUFs on a bit-by-bit basis.

112



0 10 20 30 40 50 60
Avg. Difference in Intensity

0

20

40

60

80

100

120

140

160

180

O
cc

ur
en

ce
s

Same Mold
Same Chip
Diff Mold

(a) Difference in Pixel Intensity

x offset [pixels]

-30 -20 -10 0 10 20 30 y offset (pixels)

-30-20-10 0 102030 In
te

ns
ity

 D
iff

er
en

ce

0
10
20
30
40
50

(b) Alignment

Figure 5.15: PUF-like evaluation on raw pixel intensity data.

The major challenge in making this comparison is that, unlike in digital PUFs,

when comparing images there is no ground truth about which pixel in the verifica-

tion image should be compared against which pixel in the enrollment image. Even if

the package appears identical in the two images, the pixel-by-pixel comparison will

only show the similarity if the two images have pixel-accurate alignment. Aside from

requiring pixel-accurate alignment in the X and Y directions, rotation and scale vari-

ance additionally cannot be tolerated. Still, with some difficulty, we can partially

overcome these challenges to make a pixel-by-pixel comparison. To make the com-

parison, we start from images taken using controlled alignment. A bruteforce search

is then performed to find the X and Y offset that best aligns the images, as seen

113



in Fig. 5.15b. Only when the alignment is correct to within a few pixels does the

similarity between the images become apparent. The need to perform brute force

search for alignment increases runtime to 10s per comparison, which is hundreds of

times slower than CounterFoil, and still unable to handle any change to rotation

or scale. The results from making hundreds of comparisons in this manner are shown

in Fig. 5.15a. In some cases, presumably due to rotation or scale, the similarity be-

tween the same-chip images cannot be found using pixel-by-pixel comparisons. This

result confirms that the package features can with some difficulty be observed in a

PUF like way, but also shows that pixel-by-pixel comparisons are not well-suited to

this task relative to the computer vision approach.

5.5.2.3 PUF-like evaluation using Feature Distance

In CounterFoil, the number of matches that we compute as inliers is based on

both feature similarity, and the geometric relationship of the features on the pack-

age surface, as matched keypoints from enrollment and verification must be related

by a homography. One might also consider evaluating similarity of the features in

corresponding positions of two chip packages, similar to Hamming Distance between

corresponding bits in a PUF circuit. In this case, the computer vision approach is

being used to align the enrollment and verification keypoints, but after alignment is

decided the corresponding features are scored according to their similarity in feature

space instead of their pixel intensity.

Fig. 5.16 shows the average distance, in feature space, between features having

positional correspondence defined by computed homography. In a highly controlled

setting of careful alignment, lighting and single camera, the same package can be

distinguished from packages created from the same mold, as shown by the separation

between the feature distances in Fig. 5.16a. However, in the general setting which

contains typical image quality variations, the same chip distribution is shifted to

114



0 20 40 60 80 100 120
Average Feature Distance

0

50

100

150

200

250

300

350

O
cc

ur
en

ce
s

Same Mold
Same Chip
Diff Mold

(a) Controlled setting

0 20 40 60 80 100 120
Average Feature Distance

0

20

40

60

80

100

120

140

160

180

O
cc

ur
en

ce
s

Same Mold
Same Chip
Diff Mold

(b) Uncontrolled setting

Figure 5.16: Average distance in feature space for same-position keypoint pairs.

the right leading to a slight overlap with the same mold distribution as shown in

Fig. 5.16a. An absolute feature distance threshold to distinguish between chips from

same mold is therefore not robust to image quality variations. CounterFoil aims

to avoid this limitation by using feature similarity ranking (nearest neighbors) instead

of an absolute distance threshold.

5.5.3 Additional Package Types

To further validate package surface fingerprints, we conduct experiments with

10 additional types of circuit packages. As before, one ViTiny camera is used for

115



Figure 5.17: Evaluation of package surface fingerprints across a range of package
types.

enrollment, and a second for verification. We use 5 instances of each chip, and from

each instance collect 5 enrollment and 5 verification images. Note that, among the

molded packages in this secondary population, we don’t have any chips that appear

to be from the same mold.

Fig. 5.17 summarizes the results of the experiment. Because many of the packages

are quite small, and we want to use an unmarked area of the package surface as the

fingerprint, in some cases the enrolled area of the surface is smaller than 2mm2. ROI

is identified by manual chip alignment under the camera, as many of the packages

are impractically small for the crude adhesive markers used in our prototype demon-

stration. The table gives for each chip an example image with the ROI marked by a

square. To give a sense of the surface structure of each package model, we plot within

the table the deviation from nominal surface height along an arbitrary 0.9mm trace

of the surface; this data is collected with the same Zygo Nexview 3D optical surface

profiler used to generate Fig. 5.3a.

116



The significant distance between the average number of inliers for same chip and

different chip comparisons implies that it may be possible to authenticate most of the

plastic packages by their fingerprints, although further experiments would be needed

to give confidence. Interestingly, based on this preliminary data, the ceramic package

(14-CDIP) also appears to be highly identifiable. Two packages that are notably

unsuitable for the style of package fingerprinting used in this paper are the final

two entries in the table – the TO-39 metal can package and 20-WLCSP wafer-level

package. In these two cases, the reflective surfaces cause very few keypoints to be

extracted from the image, and the extracted keypoints do not match well between

enrollment and verification.

5.6 Summary

In this chapter we have presented CounterFoil, a system that verifies prove-

nance by extracting unique fingerprints from surface features of integrated circuit

packages imaged using inexpensive cameras. The work is a low-cost strategy that

can help to address the significant problem of counterfeit integrated circuits which

results in billions of dollars of losses each year. Our approach enrolls unique features

of each chip during packaging, and requires no chain-of-custody. During verification

features are matched against cryptographically signed enrollment records. We’ve

demonstrated the approach to work on a large population of two different chips, have

used different models of low-cost microscope cameras, and have evaluated resiliency

of fingerprints. Crucially, we’ve shown that even an adversary possessing an exact

duplicate of the mold used to produce a chip’s package will not be able to create a

high-quality counterfeit of the chip.

117



CHAPTER 6

CONCLUSION

In this thesis we have addressed the important problem of security of ICs in the IoT

application space, with a specific focus on block ciphers. When implementing block

ciphers there is a choice of implementation style depending on design and resource

constraints. For low latency requirements, our Combinational Checkpointing scheme

(Ch. 2) is shown to be the most efficient way to implement unrolled implementations

of block ciphers but the 2-10x area costs of unrolling are unappealing. In low area

implementations, our novel lightweight AES architecture (Ch. 3) based on register

renaming greatly reduces inefficiencies in data movement and clocking, making it

twice as efficient as state-of-the-art. Side channel resilience is also improved by adding

shuffling capability to randomize sub-round operations of the AES algorithm. We

successfully taped out our designs in a commercial 16nm FinFET technology (Ch. 4)

and at 0.55 pJ/bit our renaming architecture is to the best of our knowledge the most

efficient one to date, making it an attractive candidate for low power applications.

We also present a novel cost-effective methodology, denoted as CounterFoil,

to tackle the serious problem of IC counterfeiting (Ch. 5). CounterFoil leverages

the variability in IC packaging to extract unique fingerprints from package surface

texture and uses them to verify chip provenance. Our technique is shown to work with

different types of plastic packages and is resilient to imaging conditions and, to some

degree, wear-and-tear. The low cost and ease of integration make CounterFoil a

compelling solution to ensure supply chain security.

118



LIST OF PUBLICATIONS

• SN Dhanuskodi, D Holcomb, Enabling Microarchitectural Randomization in

Serialized AES Implementations to Mitigate Side Channel Susceptibility, IEEE

Computer Society Annual Symposium on VLSI (ISVLSI), 2019.

• C Ramesh, S Patil, SN Dhanuskodi, G Provelengios, S Pillement, D Hol-

comb, R Tessier, FPGA Side Channel Attacks without Physical Access, IEEE In-

ternational Symposium on Field-Programmable Custom Computing Machines

(FCCM), 2018.

• SN Dhanuskodi, D Holcomb, An improved clocking methodology for energy

efficient low area AES architectures using register renaming, IEEE/ACM Inter-

national Symposium on Low Power Electronics and Design (ISLPED), pp 1-6,

2017.

• SN Dhanuskodi, D Holcomb, Techniques to Reduce Switching and Leakage

Energy in Unrolled Block Ciphers, IEEE Transactions on Computers, Aug.

2017.

• SN Dhanuskodi, D. Holcomb, Energy Optimization of Unrolled Block Ci-

phers using Combinational Checkpointing, RFIDSec: 12th Workshop on RFID

and IoT Security, published as post-proceedings in Springer Lecture Notes in

Computer Science (LNCS), pp 47-61, 2016.

• SN Dhanuskodi, S. Keshavarz, D. Holcomb, LLPA: Logic State Based Leak-

age Power Analysis, IEEE Computer Society Annual Symposium on VLSI

(ISVLSI), pp 218-223, 2016.

119



BIBLIOGRAPHY

[1] Amazon F1 web site. https://aws.amazon.com/ec2/instance-types/f1/.

[2] Ncsu free pdk 45. http://www.eda.ncsu.edu/wiki/FreePDK45:Contents.

[3] Crypto++ Library 8.1.0, Feb 2019. https://www.cryptopp.com/.

[4] A. Putnam et al. A reconfigurable fabric for accelerating large-scale datacenter
services. In ISCA (June 2014), pp. 13–24.

[5] Akkaya, N. E. C., Erbagci, B., and Mai, K. Secure chip odometers using inten-
tional controlled aging. In 2018 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST) (April 2018), pp. 111–117.

[6] Alioto, M., Bongiovanni, S., Djukanovic, M., Scotti, G., and Trifiletti, A. Effec-
tiveness of leakage power analysis attacks on DPA-resistant logic styles under
process variations. IEEE Transactions on Circuits and Systems I: Regular Pa-
pers 61, 2 (Feb 2014), 429–442.

[7] Alliance Memory Inc. AS6C6264: 8k x 8bit Low Power CMOS
SRAM, 2017. https://www.alliancememory.com/wp-content/uploads/

pdf/Alliance%20Memory_64K_AS6C6264v2.0July2017.pdf.

[8] Asadizanjani, Navid, Dunn, Nathan, Gattigowda, Sachin, Tehranipoor, Mark,
and Forte, Domenic. A database for counterfeit electronics and automatic defect
detection based on image processing and machine learning. ISTFA, Nov (2016).

[9] Banik, S., Bogdanov, A., Regazzoni, F., Isobe, T., Hiwatari, H., and Akishita,
T. Round gating for low energy block ciphers. In 2016 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST) (May 2016),
pp. 55–60.

[10] Banik, Subhadeep, Bogdanov, Andrey, and Regazzoni, Francesco. Exploring
energy efficiency of lightweight block ciphers. In International Conference on
Selected Areas in Cryptography (2015), Springer, pp. 178–194.

[11] Batina, Lejla, Das, Amitabh, Ege, Barış, Kavun, Elif Bilge, Mentens, Nele,
Paar, Christof, Verbauwhede, Ingrid, and Yalçın, Tolga. Dietary recommen-
dations for lightweight block ciphers: Power, energy and area analysis of re-
cently developed architectures. In Radio Frequency Identification. Springer,
2013, pp. 103–112.

120

https://aws.amazon.com/ec2/instance-types/f1/
http://www.eda.ncsu.edu/wiki/FreePDK45:Contents
https://www.cryptopp.com/
https://www.alliancememory.com/wp-content/uploads/pdf/Alliance%20Memory_64K_AS6C6264v2.0July2017.pdf
https://www.alliancememory.com/wp-content/uploads/pdf/Alliance%20Memory_64K_AS6C6264v2.0July2017.pdf


[12] Bay, Herbert, Tuytelaars, Tinne, and Van Gool, Luc. Surf: Speeded up ro-
bust features. In Computer Vision – ECCV 2006 (Berlin, Heidelberg, 2006),
Aleš Leonardis, Horst Bischof, and Axel Pinz, Eds., Springer Berlin Heidelberg,
pp. 404–417.

[13] Beaulieu, Ray, Shors, Douglas, Smith, Jason, Treatman-Clark, Stefan, Weeks,
Bryan, and Wingers, Louis. The simon and speck families of lightweight block
ciphers. Cryptology ePrint Archive, Report 2013/404, 2013. http://eprint.

iacr.org/2013/404.

[14] Benini, L., Micheli, G. De, Macii, A., Macii, E., Poncino, M., and Scarsi, R.
Glitch power minimization by selective gate freezing. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 8, 3 (June 2000), 287–298.

[15] Benson, Richard C, Farrar, Dawnielle, and Miragliotta, Joseph A. Polymer
adhesives and encapsulants for microelectronics applications. Johns Hopkins
APL Technical Digest 28, 1 (2008), 58.

[16] Bergman, T. D., Manager, C. P., and Liszewski, K. T. Battelle barricade: A
nondestructive electronic component authentication and counterfeit detection
technology. In 2016 IEEE Symposium on Technologies for Homeland Security
(HST) (May 2016), pp. 1–6.

[17] Bertoni, Guido, Macchetti, Marco, Negri, Luca, and Fragneto, Pasqualina.
Power-efficient ASIC synthesis of cryptographic sboxes. In Proceedings of the
14th ACM Great Lakes Symposium on VLSI (New York, NY, USA, 2004),
GLSVLSI ’04, ACM, pp. 277–281.

[18] Biryukov, Alex, and Wagner, David. Slide attacks. In Proceedings of the 6th
International Workshop on Fast Software Encryption (London, UK, UK, 1999),
FSE ’99, Springer-Verlag, pp. 245–259.

[19] Boemo, Eduardo, Oliver, Juan P., and Caffarena, Gabriel. Tracking the
pipelining-power rule along the FPGA technical literature. In Proceedings of
the 10th FPGAworld Conference (New York, NY, USA, 2013), FPGAworld ’13,
ACM, pp. 9:1–9:5.

[20] Bouesse, G. F., Renaudin, M., Witon, A., and Germain, F. A clock-less low-
voltage AES crypto-processor. In Proceedings of the 31st European Solid-State
Circuits Conference, 2005. ESSCIRC 2005. (Sept 2005), pp. 403–406.

[21] Bradski, G. The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000).

[22] Brier, Eric, Clavier, Christophe, and Olivier, Francis. Cryptographic Hard-
ware and Embedded Systems - CHES 2004: 6th International Workshop. 2004,
ch. Correlation Power Analysis with a Leakage Model, pp. 16–29.

121

http://eprint.iacr.org/2013/404
http://eprint.iacr.org/2013/404


[23] Calhoun, B. H., Wang, A., and Chandrakasan, A. Modeling and sizing for
minimum energy operation in subthreshold circuits. IEEE Journal of Solid-
State Circuits 40, 9 (Sept 2005), 1778–1786.

[24] Canright, David. A very compact S-box for AES. In International Workshop on
Cryptographic Hardware and Embedded Systems (2005), Springer, pp. 441–455.

[25] Christopher Henderson. Transfer Molding, 9 2012. In InfoTracks Semitracks
Monthly Newsletter; Available: http://www.semitracks.com/newsletters/

september/2012-september-newsletter.pdf.

[26] Cobb, W. E., Laspe, E. D., Baldwin, R. O., Temple, M. A., and Kim, Y. C.
Intrinsic physical-layer authentication of integrated circuits. IEEE Transactions
on Information Forensics and Security 7, 1 (Feb 2012), 14–24.

[27] Czajkowski, T. S., and Brown, S. D. Using negative edge triggered FFs to
reduce glitching power in FPGA circuits. In 2007 44th ACM/IEEE Design
Automation Conference (June 2007), pp. 324–329.

[28] DeJean, Gerald, and Kirovski, Darko. RF-DNA: Radio-Frequency Certificates
of Authenticity. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 346–
363.

[29] Dhanuskodi, Siva Nishok, and Holcomb, Daniel. Energy optimization of un-
rolled block ciphers using combinational checkpointing. In RFIDSec 2016: 12th
Workshop on RFID and IoT Security, 2016 (Dec 2016).

[30] Dhanuskodi, Siva Nishok, and Holcomb, Daniel. Techniques to reduce switching
and leakage energy in unrolled block ciphers. IEEE Transactions on Computers
(2017), 1–1.

[31] Dhanuskodi, Siva Nishok, and Holcomb, Daniel. Enabling microarchitectural
randomization in serialized AES implementations to mitigate side channel sus-
ceptibility. In IEEE Computer Society Annual Symposium on VLSI (ISVLSI)
(2019).

[32] Dhanuskodi, Siva Nishok, and Holcomb, Daniel E. An improved clocking
methodology for energy efficient low area AES architectures using register re-
naming. In IEEE/ACM International Symposium on Low Power Electronics
and Design (ISLPED) (July 2017).

[33] Dhanuskodi, Siva Nishok, Keshavarz, Shahrzad, and Holcomb, Daniel. LLPA:
logic state based leakage power analysis. In IEEE Computer Society Annual
Symposium on VLSI (ISVLSI) (2016).

[34] Digilent. Cmod A7: Breadboardable Artix-7 FPGA Module. https://store.
digilentinc.com/cmod-a7-breadboardable-artix-7-fpga-module/.

122

http://www.semitracks.com/newsletters/september/2012-september-newsletter.pdf
http://www.semitracks.com/newsletters/september/2012-september-newsletter.pdf
https://store.digilentinc.com/cmod-a7-breadboardable-artix-7-fpga-module/
https://store.digilentinc.com/cmod-a7-breadboardable-artix-7-fpga-module/


[35] Dumpala, Naveen Kumar, Patil, Shivukumar B, Holcomb, Daniel, and Tessier,
Russell. Energy efficient loop unrolling for low-cost FPGAs. In Field-
Programmable Custom Computing Machines (FCCM), 2017 IEEE 25th Annual
International Symposium on (2017), IEEE, pp. 117–120.

[36] Dworkin, Morris J. SHA-3 standard: Permutation-based hash and extendable-
output functions. Tech. rep., 2015.

[37] Feldhofer, Martin, Dominikus, Sandra, and Wolkerstorfer, Johannes. Strong
authentication for RFID systems using the AES algorithm. In International
Workshop on Cryptographic Hardware and Embedded Systems (2004), Springer,
pp. 357–370.

[38] Fischler, Martin A., and Bolles, Robert C. Random sample consensus: A
paradigm for model fitting with applications to image analysis and automated
cartography. Commun. ACM 24, 6 (June 1981), 381–395.

[39] Galton, Francis. Fingerprint directories. Macmillan and Company, 1895.

[40] Garrido-Jurado, S., Muñoz Salinas, R., Madrid-Cuevas, F.J., and Maŕın-
Jiménez, M.J. Automatic generation and detection of highly reliable fiducial
markers under occlusion. Pattern Recogn. 47, 6 (June 2014), 2280–2292.

[41] Gassend, B, Clarke, D, and Van Dijk, M. Silicon physical random functions. In
Proceedings of the IEEE Computer and Communications Society (2002).

[42] Giechaskiel, Ilias, Rassmussen, Kasper B., and Eguro, Ken. A robust covert
channel on FPGAs based on long wire delays. CoRR abs/1611.08882v2 (2017).

[43] Giorgetti, Jacopo, Scotti, Giuseppe, Simonetti, Andrea, and Trifiletti, Alessan-
dro. Analysis of data dependence of leakage current in CMOS cryptographic
hardware. In Proceedings of the 17th ACM Great Lakes Symposium on VLSI
(2007), GLSVLSI ’07, pp. 78–83.

[44] Guajardo, J, Kumar, S, Schrijen, GJ, and Tuyls, P. FPGA intrinsic PUFs and
their use for IP protection. Cryptographic Hardware and Embedded Systems
(2007).

[45] Guin, Ujjwal, Huang, Ke, DiMase, Daniel, Carulli, John M, Tehranipoor, Mo-
hammad, and Makris, Yiorgos. Counterfeit integrated circuits: a rising threat in
the global semiconductor supply chain. Proceedings of the IEEE 102, 8 (2014),
1207–1228.

[46] Guin, Ujjwal, Zhang, Xuehui, Forte, Domenic, and Tehranipoor, Mohammad.
Low-cost on-chip structures for combating die and IC recycling. In Proceedings
of the 51st Annual Design Automation Conference (New York, NY, USA, 2014),
DAC ’14, ACM, pp. 87:1–87:6.

123



[47] Hamalainen, P., Alho, T., Hannikainen, M., and Hamalainen, T. D. Design and
Implementation of Low-Area and Low-Power AES Encryption Hardware Core.
In 9th EUROMICRO Conference on Digital System Design (DSD’06) (2006),
pp. 577–583.

[48] Hayward, James A, and Meraglia, Janice. DNA marking and authentication:
A unique, secure anti-counterfeiting program for the electronics industry. In
International Symposium on Microelectronics (2011), vol. 2011, International
Microelectronics Assembly and Packaging Society, pp. 000107–000112.

[49] Holcomb, Daniel E., Burleson, Wayne P., and Fu, Kevin. Power-up SRAM
state as an identifying fingerprint and source of true random numbers. IEEE
Transactions on Computers 58, 9 (Sept. 2009), 1198–1210.

[50] Huang, Wan-Chiech, Hsu, Chao-Ming, and Yang, Cheng-Fu. Recycling and
refurbishing of epoxy packaging mold ports and plungers. Inventions 1, 2 (2016),
11.

[51] Huda, Safeen, and Anderson, Jason. Towards PVT-tolerant glitch-free opera-
tion in FPGAs. In Proceedings of the 2016 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays (New York, NY, USA, 2016), FPGA
’16, ACM, pp. 90–99.

[52] IHS Technology. Top 5 most counterfeited parts represent a $169 bil-
lion potential challenge for global semiconductor market, 2012. Available:
http://www.isuppli.com/Semiconductor-Value-Chain/News/pages/Top-5-
Most-Counterfeited-Parts-Represent-a-$169-Billion-Potential-Challenge-for-
Global-Semiconductor-Market.aspx.

[53] Ironwood Electronics. BGA socket, 2018. https://www.

ironwoodelectronics.com/catalog/Content/Templates/PartGrids.

cfm?StartRow=161&cPart=SG-BGA-6455&Grid=SG-BGA_TABLE-1mm.

[54] Jarvinen, T., Salmela, P., Hamalainen, P., and Takala, J. Efficient byte permu-
tation realizations for compact AES implementations. In 2005 13th European
Signal Processing Conference (Sept 2005), pp. 1–4.

[55] Kae-Nune, N., and Pesseguier, S. Qualification and testing process to implement
anti-counterfeiting technologies into IC packages. In 2013 Design, Automation
Test in Europe Conference Exhibition (DATE) (March 2013), pp. 1131–1136.

[56] Kaps, Jens-Peter, and Sunar, Berk. Energy comparison of AES and SHA-
1 for ubiquitous computing. In International Conference on Embedded and
Ubiquitous Computing (2006), Springer, pp. 372–381.

[57] Karaklaji, D., Schmidt, J., and Verbauwhede, I. Hardware designer’s guide
to fault attacks. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 21, 12 (Dec 2013), 2295–2306.

124

https://www.ironwoodelectronics.com/catalog/Content/Templates/PartGrids.cfm?StartRow=161&cPart=SG-BGA-6455&Grid=SG-BGA_TABLE-1mm
https://www.ironwoodelectronics.com/catalog/Content/Templates/PartGrids.cfm?StartRow=161&cPart=SG-BGA-6455&Grid=SG-BGA_TABLE-1mm
https://www.ironwoodelectronics.com/catalog/Content/Templates/PartGrids.cfm?StartRow=161&cPart=SG-BGA-6455&Grid=SG-BGA_TABLE-1mm


[58] Kerckhof, Stéphanie, Durvaux, François, Hocquet, Cédric, Bol, David, and
Standaert, François-Xavier. Towards Green Cryptography: A Comparison of
Lightweight Ciphers from the Energy Viewpoint. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012, pp. 390–407.

[59] Kerry, C, and Gallagher, P. FIPS PUB 186-4: Digital Signature Standard
(DSS). FEDERAL INFORMATION PROCESSING STANDARDS PUBLI-
CATION. National Institute of Standards und Technology (2013).

[60] Keysight. B2901A Precision Source/Measure Unit.
https://www.keysight.com/en/pd-1983568-pn-B2901A/

precision-source-measure-unit-1-ch-100-fa-210-v-3-a-dc-105-a-pulse?

cc=US&lc=eng.

[61] Keysight. MSOX4154A Mixed Signal Oscilloscope.
https://www.keysight.com/en/pdx-x201943-pn-MSOX4154A/

mixed-signal-oscilloscope-15-ghz-4-analog-plus-16-digital-channels?

cc=US&lc=eng.

[62] Khovratovich, Dmitry, and Nikolić, Ivica. Rotational cryptanalysis of arx. In
Fast Software Encryption (Berlin, Heidelberg, 2010), Seokhie Hong and Tetsu
Iwata, Eds., Springer Berlin Heidelberg, pp. 333–346.

[63] Kocher, Paul, Jaffe, Joshua, Jun, Benjamin, and Rohatgi, Pankaj. Introduction
to differential power analysis. Journal of Cryptographic Engineering 1, 1 (2011),
5–27.

[64] Kocher, Paul C., Jaffe, Joshua, and Jun, Benjamin. Differential power analy-
sis. In Proceedings of the 19th Annual International Cryptology Conference on
Advances in Cryptology (1999), CRYPTO ’99, pp. 388–397.

[65] Koziel, Eric, Thurmer, Kate, Milechin, Lauren, Grossmann, Peter, Vai, Michael,
Khazan, Roger, Bergevin, Keith, and Comer, Philip. Side channel authenticity
discriminant analysis for device class identification.

[66] Lamoureux, J., Lemieux, G. G. F., and Wilton, S. J. E. Glitchless: Dynamic
power minimization in FPGAs through edge alignment and glitch filtering.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 16, 11
(Nov 2008), 1521–1534.

[67] Leef, Serge. Supply Chain Hardware Integrity for Electronics Defense
(SHIELD), 2018. Available: https://csrc.nist.gov/CSRC/media/Projects/
cyber-supply-chain-risk-management/documents/SSCA/Winter_2018/

TuePM2.1-SHIELD.pdf.

[68] Leutenegger, S., Chli, M., and Siegwart, R. Y. BRISK: binary robust invariant
scalable keypoints. In 2011 International Conference on Computer Vision (Nov
2011), pp. 2548–2555.

125

https://www.keysight.com/en/pd-1983568-pn-B2901A/precision-source-measure-unit-1-ch-100-fa-210-v-3-a-dc-105-a-pulse?cc=US&lc=eng
https://www.keysight.com/en/pd-1983568-pn-B2901A/precision-source-measure-unit-1-ch-100-fa-210-v-3-a-dc-105-a-pulse?cc=US&lc=eng
https://www.keysight.com/en/pd-1983568-pn-B2901A/precision-source-measure-unit-1-ch-100-fa-210-v-3-a-dc-105-a-pulse?cc=US&lc=eng
https://www.keysight.com/en/pdx-x201943-pn-MSOX4154A/mixed-signal-oscilloscope-15-ghz-4-analog-plus-16-digital-channels?cc=US&lc=eng
https://www.keysight.com/en/pdx-x201943-pn-MSOX4154A/mixed-signal-oscilloscope-15-ghz-4-analog-plus-16-digital-channels?cc=US&lc=eng
https://www.keysight.com/en/pdx-x201943-pn-MSOX4154A/mixed-signal-oscilloscope-15-ghz-4-analog-plus-16-digital-channels?cc=US&lc=eng
https://csrc.nist.gov/CSRC/media/Projects/cyber-supply-chain-risk-management/documents/SSCA/Winter_2018/TuePM2.1-SHIELD.pdf
https://csrc.nist.gov/CSRC/media/Projects/cyber-supply-chain-risk-management/documents/SSCA/Winter_2018/TuePM2.1-SHIELD.pdf
https://csrc.nist.gov/CSRC/media/Projects/cyber-supply-chain-risk-management/documents/SSCA/Winter_2018/TuePM2.1-SHIELD.pdf


[69] Lim, Hyeonmin, Lee, Kyungsoo, Cho, Youngjin, and Chang, Naehyuck. Flip-
flop insertion with shifted-phase clocks for FPGA power reduction. In ICCAD-
2005. IEEE/ACM International Conference on Computer-Aided Design, 2005.
(Nov 2005), pp. 335–342.

[70] Lin, Lang, and Burleson, W. Leakage-based differential power analysis (LDPA)
on sub-90nm CMOS cryptosystems. In Circuits and Systems, 2008. ISCAS
2008. IEEE International Symposium on (May 2008), pp. 252–255.

[71] Liu, D., Yu, C., Zhang, X., and Holcomb, D. Oracle-guided incremental SAT
solving to reverse engineer camouflaged logic circuits. In 2016 Design, Automa-
tion Test in Europe Conference Exhibition (DATE) (March 2016), pp. 433–438.

[72] Lowe, David G. Distinctive image features from scale-invariant keypoints. In-
ternational Journal of Computer Vision 60, 2 (Nov 2004), 91–110.

[73] Lukáš, Jan, Fridrich, Jessica, and Goljan, Miroslav. Digital camera identifica-
tion from sensor pattern noise. IEEE Transactions on Information Forensics
and Security 1, 2 (2006), 205–214.

[74] Maes, Roel, and Verbauwhede, Ingrid. Physically unclonable functions: a study
on the state of the art and future research directions. In in Towards Hardware-
Intrinsic Security, Security and Cryptology (2010).

[75] Maiti, Abhranil, Gunreddy, Vikash, and Schaumont, Patrick. A systematic
method to evaluate and compare the performance of physical unclonable func-
tions. cryptology eprint archive, report 2011/657, 2011.

[76] Manncorp. SMT Pick and Place Machines, 2019. https://www.manncorp.

com/component-placement-and-handling.

[77] Massad, Mohamed El, Garg, Siddharth, and Tripunitara, Mahesh V. Integrated
circuit (IC) decamouflaging: Reverse engineering camouflaged ICs within min-
utes. In 22nd Annual Network and Distributed System Security Symposium,
NDSS 2015 (2015).

[78] Mathew, S., Satpathy, S., Suresh, V., Anders, M., Kaul, H., Agarwal, A., Hsu,
S., Chen, G., and Krishnamurthy, R. 340 mV;1.1 V, 289 Gbps/W, 2090-Gate
NanoAES Hardware Accelerator With Area-Optimized Encrypt/Decrypt GF(2
4 ) 2 Polynomials in 22 nm Tri-Gate CMOS. IEEE Journal of Solid-State
Circuits 50, 4 (April 2015), 1048–1058.

[79] Michael L. Jones. DNA marking technology improves qual-
ity through fraud prevention, Sept 2016. Available: http:

//www.dla.mil/AboutDLA/News/NewsArticleView/Article/958928/

dna-marking-technology-improves-quality-through-fraud-prevention/.

126

https://www.manncorp.com/component-placement-and-handling
https://www.manncorp.com/component-placement-and-handling
http://www.dla.mil/AboutDLA/News/NewsArticleView/Article/958928/dna-marking-technology-improves-quality-through-fraud-prevention/
http://www.dla.mil/AboutDLA/News/NewsArticleView/Article/958928/dna-marking-technology-improves-quality-through-fraud-prevention/
http://www.dla.mil/AboutDLA/News/NewsArticleView/Article/958928/dna-marking-technology-improves-quality-through-fraud-prevention/


[80] Microchip Technology Inc. 23A1024/23LC1024: 1Mbit SPI Serial SRAM with
SDI and SQI Interface, 2015. http://ww1.microchip.com/downloads/en/

DeviceDoc/20005142C.pdf.

[81] Monteiro, J., Devadas, S., and Ghosh, A. Retiming sequential circuits for
low power. In Computer-Aided Design, 1993. ICCAD-93. Digest of Technical
Papers., 1993 IEEE/ACM International Conference on (Nov 1993), pp. 398–
402.

[82] Muja, Marius, and Lowe, David G. Fast approximate nearest neighbors with
automatic algorithm configuration. In VISAPP (1) (2009), Alpesh Ranchordas
and Helder Arajo, Eds., INSTICC Press, pp. 331–340.

[83] Musoll, Enric, and Cortadella, Jordi. Low-power array multipliers with
transition-retaining barriers. In Power and Timing Modeling, Optimization and
Simulation (PATMOS) (Oct. 1995), pp. 227–238.

[84] NASA JPL/OSMS Assurance Technology Program Office. Electric, Elec-
tronic and Electromechanical Parts Bulletin newsletter, 2011. available at
https://nepp.nasa.gov/files/20647/2011%20EEE%20Parts%20Bulletin%

20MayJune11%206_22_11.pdf.

[85] National Research Council. Counterfeit deterrent features for the next-
generation currency design, vol. 472. National Academies Press, 1993.

[86] Nohl, Karsten, Evans, David, Starbug, Starbug, and Plötz, Henryk. Reverse-
Engineering a Cryptographic RFID Tag. In USENIX security symposium
(2008), vol. 28.

[87] Paar, Christof, and Pelzl, Jan. Understanding Cryptography: A Textbook for
Students and Practitioners, 1st ed. Springer Publishing Company, Incorporated,
2009.

[88] Pecht, M., and Tiku, S. Bogus: electronic manufacturing and consumers con-
front a rising tide of counterfeit electronics. IEEE Spectrum 43, 5 (May 2006),
37–46.

[89] Popp, Thomas, Kirschbaum, Mario, Zefferer, Thomas, and Mangard, Stefan.
Cryptographic Hardware and Embedded Systems - CHES 2007: 9th Interna-
tional Workshop. 2007, ch. Evaluation of the Masked Logic Style MDPL on a
Prototype Chip, pp. 81–94.

[90] Popp, Thomas, and Mangard, Stefan. Masked dual-rail pre-charge logic: DPA-
resistance without routing constraints. In Cryptographic Hardware and Embed-
ded Systems – CHES 2005 (2005).

[91] Pub, NIST FIPS. 197: Advanced encryption standard AES. Federal Informa-
tion Processing Standards Publication 197 (2001), 441–0311.

127

http://ww1.microchip.com/downloads/en/DeviceDoc/20005142C.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/20005142C.pdf
https://nepp.nasa.gov/files/20647/2011%20EEE%20Parts%20Bulletin%20MayJune11%206_22_11.pdf
https://nepp.nasa.gov/files/20647/2011%20EEE%20Parts%20Bulletin%20MayJune11%206_22_11.pdf


[92] Rajendran, Jeyavijayan, Sam, Michael, Sinanoglu, Ozgur, and Karri, Ramesh.
Security analysis of integrated circuit camouflaging. In Proceedings of the
2013 ACM SIGSAC Conference on Computer &#38; Communications Secu-
rity (2013), CCS ’13, pp. 709–720.

[93] Ramesh, Chethan, Patil, Shivukumar B., Dhanuskodi, Siva Nishok, Prove-
lengios, George, Pillement, Sébastien, Holcomb, Daniel, and Tessier, Russell.
FPGA side channel attacks without physical access. In 26th IEEE Annual In-
ternational Symposium on Field-Programmable Custom Computing Machines
(FCCM) 2018 (2018).

[94] Report of the Committee on Armed Services United States Senate; 112th
congress. INQUIRY INTO COUNTERFEIT ELECTRONIC PARTS IN
THE DEPARTMENT OF DEFENSE SUPPLY CHAIN, 2012. Avail-
able: https://www.armed-services.senate.gov/imo/media/doc/Counterfeit-
Electronic-Parts.pdf.

[95] Roche, Thomas, Lomné, Victor, and Khalfallah, Karim. Combined Fault and
Side-channel Attack on Protected Implementations of AES. In Proceedings of
the 10th IFIP WG 8.8/11.2 International Conference on Smart Card Research
and Advanced Applications (Berlin, Heidelberg, 2011), CARDIS’11, Springer-
Verlag, pp. 65–83.

[96] Rublee, Ethan, Rabaud, Vincent, Konolige, Kurt, and Bradski, Gary. ORB: an
efficient alternative to SIFT or SURF. In Proceedings of the 2011 International
Conference on Computer Vision (Washington, DC, USA, 2011), ICCV ’11,
IEEE Computer Society, pp. 2564–2571.

[97] SAE International. Counterfeit Electronic Parts; Avoidance, Detection, Miti-
gation, and Disposition, Users, 2012. Revised 2016-09-12.

[98] Senate Armed Services Committee Hearing on Counterfeit Electronic Parts
in the Defense Supply Chain. TESTIMONY OF RALPH L. DENINO
Vice President Corporate Procurement L-3 Communications Corporation, Nov
2011. Available: https://www.armed-services.senate.gov/imo/media/

doc/DeNino%2011-08-11.pdf.

[99] Sharma, Ashlesh, Srinivasan, Vidyuth, Kanchan, Vishal, and Subramanian,
Lakshminarayanan. The fake vs real goods problem: Microscopy and machine
learning to the rescue. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (New York, NY, USA,
2017), KDD ’17, ACM, pp. 2011–2019.

[100] Singh, A., Kar, M., Ko, J. H., and Mukhopadhyay, S. Exploring power attack
protection of resource constrained encryption engines using integrated low-drop-
out regulators. In 2015 IEEE/ACM International Symposium on Low Power
Electronics and Design (ISLPED) (July 2015).

128

https://www.armed-services.senate.gov/imo/media/doc/DeNino%2011-08-11.pdf
https://www.armed-services.senate.gov/imo/media/doc/DeNino%2011-08-11.pdf


[101] Skorobogatov, Sergei, and Woods, Christopher. Breakthrough Silicon Scan-
ning Discovers Backdoor in Military Chip. In Proceedings of the 14th Interna-
tional Conference on Cryptographic Hardware and Embedded Systems (2012),
CHES’12, pp. 23–40.

[102] Skudlarek, J. P., Katsioulas, T., and Chen, M. A platform solution for secure
supply-chain and chip life-cycle management. Computer 49, 8 (Aug 2016), 28–
34.

[103] SparkFun Electronics Blog. Fake ICs Identified, July 2010. Available: https:

//www.sparkfun.com/news/395.

[104] Spreitzer, Raphael, Moonsamy, Veelasha, Korak, Thomas, and Mangard, Ste-
fan. Systematic classification of side-channel attacks: A case study for mobile
devices. IEEE Communications Surveys and Tutorials 20, 1 (2018), 465–488.

[105] Tiri, K., and Verbauwhede, I. A logic level design methodology for a secure DPA
resistant ASIC or FPGA implementation. In Proceedings Design, Automation
and Test in Europe Conference and Exhibition (2004).

[106] Tiri, K., and Verbauwhede, I. A digital design flow for secure integrated cir-
cuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 25, 7 (July 2006), 1197–1208.

[107] Tiri, Kris, et al. Prototype IC with WDDL and differential routing–DPA resis-
tance assessment. In International Workshop on Cryptographic Hardware and
Embedded Systems (2005).

[108] Tokunaga, C., and Blaauw, D. Secure AES engine with a local switched-
capacitor current equalizer. In 2009 IEEE International Solid-State Circuits
Conference - Digest of Technical Papers (Feb 2009).

[109] Tong, KW, Kwong, CK, and Ip, KW. Optimization of process conditions for
the transfer molding of electronic packages. Journal of Materials Processing
Technology 138, 1 (2003), 361–365.

[110] Tu-Hsiung Tsai, Hung-Ming Chen, Hung-Chun Li, Shi-
Hao Chen. An efficient RDL routing for flip-chip designs.,
2013. https://www.edn.com/design/systems-design/4419930/

An-efficient-RDL-routing-for-flip-chip-designs.

[111] Tummala, Rao R. Fundamentals of microsystems packaging.

[112] Tuyls, Pim, Schrijen, Geert-Jan, Škorić, Boris, van Geloven, Jan, Verhaegh,
Nynke, and Wolters, Rob. Read-proof hardware from protective coatings. In
Cryptographic Hardware and Embedded Systems - CHES (Berlin, Heidelberg,
2006), Springer Berlin Heidelberg, pp. 369–383.

129

https://www.sparkfun.com/news/395
https://www.sparkfun.com/news/395
https://www.edn.com/design/systems-design/4419930/An-efficient-RDL-routing-for-flip-chip-designs
https://www.edn.com/design/systems-design/4419930/An-efficient-RDL-routing-for-flip-chip-designs


[113] ViTiny USA. ViTiny UM12 Long Working Distance 5MP USB Digital Micro-
scope, 2018. http://www.vitiny-usa.com/vitiny-um12.html.

[114] Wilton, Steven J. E., Ang, Su-Shin, and Luk, Wayne. The Impact of Pipelining
on Energy per Operation in Field-Programmable Gate Arrays. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2004, pp. 719–728.

[115] Yang, K., Blaauw, D., and Sylvester, D. Hardware Designs for Security in
Ultra-Low-Power IoT Systems: An Overview and Survey. IEEE Micro 37, 6
(November 2017), 72–89.

[116] Zhao, W., Ha, Y., and Alioto, M. AES architectures for minimum-energy
operation and silicon demonstration in 65nm with lowest energy per encryption.
In 2015 IEEE International Symposium on Circuits and Systems (ISCAS) (May
2015), pp. 2349–2352.

[117] Zheng, Yu, Basak, Abhishek, and Bhunia, Swarup. CACI: Dynamic current
analysis towards robust recycled chip identification. In Proceedings of the 51st
Annual Design Automation Conference (New York, NY, USA, 2014), DAC ’14,
ACM, pp. 88:1–88:6.

[118] Zygo. Nexview 3D Optical Surface Profiler. https://www.zygo.com/?/

met/profilers/nexview/&utm_source=zygo&utm_medium=QualityMag&utm_

content=NexviewPage&utm_campaign=PrintAd.

130

http://www.vitiny-usa.com/vitiny-um12.html
https://www.zygo.com/?/met/profilers/nexview/&utm_source=zygo&utm_medium=QualityMag&utm_content=NexviewPage&utm_campaign=PrintAd
https://www.zygo.com/?/met/profilers/nexview/&utm_source=zygo&utm_medium=QualityMag&utm_content=NexviewPage&utm_campaign=PrintAd
https://www.zygo.com/?/met/profilers/nexview/&utm_source=zygo&utm_medium=QualityMag&utm_content=NexviewPage&utm_campaign=PrintAd

	EFFICIENT HARDWARE PRIMITIVES FOR SECURING LIGHTWEIGHT SYSTEMS
	Recommended Citation

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	Background
	Block ciphers
	AES
	SIMON

	Energy efficiency in block ciphers implementations
	Side Channel Attacks
	Differential Power Analysis and metrics
	Existing countermeasures
	Logic State Based Leakage Power Analysis
	Remote Side Channel Attack on FPGAs

	Supply Chain Security

	Efficiency in unrolled block ciphers
	Glitches and glitch filtering
	Checkpointing to improve energy efficiency
	Evaluation of Checkpointing
	Methodology
	Comparison of Average Switching Rates
	Energy Comparison in Fully Unrolled Designs
	SIMON-128
	AES-128

	Optimal Placement of Checkpoints for Glitch Filtering
	Checkpointing in Partially Unrolled Designs
	SIMON-128
	AES-128

	Area Cost of Checkpointing
	Power Gating
	Voltage Scaling

	Summary

	Efficiency in lightweight AES
	Novel architecture
	Improved clocking
	Register renaming
	Implementation

	Microarchitectural Randomization
	Enable Generator design for Word and Byte shuffling
	Mix Columns design to handle permutation
	Sequencing of Rounds and Key Expansion

	Evaluation
	Efficiency and overheads
	Susceptibility to Side Channel Attacks

	Summary

	Testchip
	Design methodology
	RTL design and synthesis
	Physical design
	Chip packaging and Printed Circuit Board design

	Chip Testing
	Efficiency, power
	Side Channel resilience

	Summary

	Package Identification
	Transfer Molding for IC packaging
	CounterFoil anti-counterfeiting scheme
	Enrollment
	Verification
	Attacker Capabilities and Security Considerations

	Image Processing and Analysis
	Aruco marker labels and detection of ROI
	Feature Enrollment
	Feature Verification
	Feature matching and RANSAC based homography computation
	Projection and Scoring


	Evaluation
	Package Authentication
	Runtime
	Practicality and Costs
	Algorithm Difference
	Camera Differences
	Varying Magnification and Lighting

	Further Investigation of Fingerprints
	Testing Resilience of Fingerprints
	Testing Fingerprint Uniqueness
	Scoring under Controlled Alignment
	PUF-like evaluation using Pixel Intensity
	PUF-like evaluation using Feature Distance

	Additional Package Types

	Summary

	Conclusion
	List of publications
	Bibliography

