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Abstract

In order to reduce power utilisation or allow higher propagation delay between flip-flops,
modern integrated circuits are composed of various sub-circuits operating at different clock
frequencies. The resulting clock signals delimit “clock domains”, which are the regions of the
circuit they affect.

When creating these integrated circuits, the transmission of data between the clock do-
mains is a significant point of interest by systems designers. Limited bandwidth in the trans-
missions can be responsible for a processing power bottleneck that affects the entire system
if, for example, functional blocks halt their operation while waiting for communications to be
processed by other blocks.

Transferring signals between clock domains is known as clock domain crossing (CDC).
Clock domain crossing is inherently expensive in terms of area and latency as it requires over-
coming issues related to the physical nature of integrated circuit latches, in particular metasta-
bility. Metastable behaviour is difficult to analyse as it does not manifest in register-transfer
level (RTL) simulation.

Due to the difficulty of analysing metastability, and in order to ensure that a product will
work, designers often opt for generic data synchronisation solutions that are not entirely suited
to the nature of the data being transferred. These generic solutions often equate to sub-optimal
results in both area and performance. These inefficiencies can be mitigated through the de-
velopment of clock synchronisation mechanisms that provide functional abstraction on top of
the domain-crossing data.

This dissertation presents a new clock domain crossing mechanism that allows two clock
domains to share a common random access memory (RAM) to transfer packet-based data. The
mechanism consists of a memory controller that coordinates commands from a push (write)
domain and a pop (read) domain.

During the design and development of the memory controller, focus lies in the study and
implementation of efficient synchronisation structures. Two of the primary goals are to cause
minimum performance overhead, and to eliminate the need for separate synchronisation and
packet storage memories. In essence, the controller is an extension of an asynchronous first-
in-first-out (FIFO) controller with added functionality, supporting multiple virtual FIFOs and
variable-length data packets. Additionally, it allows the pop domain to read packets in order
even if they were transmitted out of order.

Keywords— clock domain crossing, digital systems, metastability, segmented buffer, synchronisers
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Resumo

De forma a minimizar consumo energético ou permitir atrasos de propagação mais elevados
entre flip-flops, circuitos integrados modernos são compostos por vários sub-circuitos a trabal-
har a diferentes frequências. Os sinais de relógio resultantes delimitam “domínios de relógio”,
sendo estes regiões do circuito que os mesmos afetam.

Durante o desenvolvimento destes circuitos integrados, a transmissão de dados entre os
domínios de relógio é um dos principais focos de atenção por parte de projetistas de sistemas
digitais. Largura de banda reduzida nestas transmissões pode resultar numa limitação do
poder de processamento do sistema como um todo, por exemplo se alguns blocos funcionais
interrompem a sua própria atividade enquanto esperam que dados sejam processados por
outros blocos.

Sincronização de sinais entre domínios de relógio é inerentemente custosa em termos de
área e latência devido à necessidade de superar problemas de natureza física dos latches utiliza-
dos em circuitos integrados, nomeadamente metaestabilidade. Estes problemas não se mani-
festam em simulação register-transfer level (RTL), o que leva os projetistas a utilizar mecanis-
mos genéricos de sincronização de dados que podem não ser os ideais considerando a natureza
dos dados a transferir.

Estes mecanismos genéricos de sincronização tipicamente levam a problemas de eficiência
em termos de desempenho e de utilização de área. Estas ineficiências podem ser resolvidas
através do desenvolvimento de novos mecanismos de sincronização que providenciem fun-
cionalidades mais complexas como suplemento à sincronização de dados propriamente dita.

Esta dissertação apresenta um mecanismo de sincronização que permite que dois domínios
de relógio partilhem uma memória random access (RAM) comum, sendo esta uma plataforma
de retenção e transferência de dados organizados por pacotes. O mecanismo consiste num con-
trolador de memória que coordena comandos provenientes de um domínio de push (escrita)
e um domínio de pop (leitura).

No decorrer do desenvolvimento do controlador de memória, o foco situar-se-á no estudo
e implementação de estruturas de sincronização eficientes. Tem-se como principais objetivos a
redução do impacto de desempenho causado pelo mecanismo de sincronização, e a eliminação
da necessidade de existência de memórias separadas para sincronização e para armazena-
mento de pacotes. Em essência, o controlador é uma extensão de um controlador de memória
first-in-first-out (FIFO) assíncrona, adicionando suporte para múltiplas FIFOs virtuais, pacotes
de tamanho variável e possibilidade de re-ordenação de pacotes.

Palavras-chave— buffer segmentado, metaestabilidade, sincronizadores, sistemas digitais
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Chapter 1

Introduction

Chapter Outline

1.1 Motivation and Problem Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contibutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

DIGITAL systems have been at the forefront of technological evolution in recent years, being

responsible for significant advancements to human quality-of-life. Semiconductor man-

ufacturing processes have evolved at an exponential rate, modelled by “Moore’s Law” [23],

which states that the number of transistors in an integrated circuit doubles approximately

every two years.

As transistor density increases, the amount of logic that can fit in an integrated circuit in-

creases accordingly, allowing integrated circuits to perform more and more complex operations

in extremely small packages.

As integrated circuits evolve in processing capacity, they become feasible for integration in

new markets. The mobile communications market, especially with the advent of smartphones,

is an example where a race for processing power is critical in order to provide products that

more consumers will find appealing. The rapid growth of the mobile communications market

has propagated to growth in other markets, for example internet infrastructure and services,

which rely heavily on large server farms and thus creating a loop on integrated circuit reliance.

Parallely, the automotive industry has also seen an increase in integrated circuit utilisation

across all functionality of their products, from engine management and stability control to

infotainment.

In the mentioned examples, industry market capitalisation is defined by the functionality

that the competing companies can fit into their integrated circuit solutions. Furthermore,

these functionalities must also comply to engineering restrictions such as maximum power

utilisation, acceptable system performance, and reliability.

To fulfil this large amount of requirements, digital systems engineers typically develop

a System-on-Chip (SoC). This SoC is an immensely complex application-specific integrated

1



2 Introduction

circuit (ASIC) that combines circuits developed simultaneously by different teams in different

companies.

1.1 Motivation and Problem Overview

Modern integrated circuit development, particularly of SoCs, consists in the integration of

various functional blocks developed simultaneously by different teams. As power utilisation

must be kept to a minimum, each functional block is designed to work at the minimum clock

frequency that meets its design requirements.

Integration of various functional blocks leads to the existence of multiple clock domains

operating in parallel inside a single chip. A clock domain is any region of the circuit that

operates under a particular clock signal (i.e., with the same frequency and phase).

Communication between these clock domains is the source of various design problems.

Although there are standard specifications for SoC interconnect (an example being the Ad-

vanced Microcontroller Bus Architecture, AMBA) that allow the blocks to communicate on the

same terms, they must be designed in order to take full advantage of the buses’ communication

performance capabilities.

A block with poorly designed domain-crossing communications can cause needless per-

formance degradation on other blocks if it cannot accept all incoming data quickly enough,

causing a cascade of system halting as other blocks wait for the data to be read.

This document will focus on the communications that take place between clock domains.

Our focus will be to develop a communication mechanism that allows two blocks, working

under different clock domains, to streamline their data communications and maximise system

performance. For this, we associate the following goals to the domain-crossing data transmis-

sion:

• Provide simple data semantics: Provide a small abstraction layer on top of the raw data

that allows more complex transactions

• Minimise latency and area: Use a common memory as a data storage and transmission

platform

• Maximise performance: Allow both domains to work at their maximum speed and allow

asynchronous processing and out-of-order data arrival

The given list of goals can be re-written as a set of questions which will be considered

throughout the document:

• Question 1. How to map data transactions between functional blocks into a simple

structure that facilitates asynchronous processing?

• Question 2. How to map this data structure into a physical memory?
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• Question 3. How to allow this physical memory to be safely shared by two clock do-

mains?

• Question 4. How to do this while maximising performance?

Although our focus is on the domain-crossing part of the system, we must understand how

the data transmitted between domains is structured. As such, it will be described as part of the

problem. Questions 1 and 2 serve to define the data transmission context, while questions 3

and 4, which focus on the clock-domain crossing aspects, are the main focus of the dissertation.

Variable-length packets are the base of a preliminary answer to question 1. The trans-

mission is based upon the data structure shown in figure 1.1, which introduces many of the

critical concepts that should be understood throughout the document.

ID: N

Stage 1:
Elements

Stage 2:
Packets

ID: 0

ID: 1

Packet transmission domain Packet reception domain

Stage 3: Storage 
and transmission

Figure 1.1: Block diagram of element composition into packets and their storage

In the given data structure, the atomic transmission unit is the element. In order to support

variable-length data transmissions, the concept of packet is used. A packet is composed of one

or more related elements. As these packets may be received out of order, each packet is linked

to a unique identifier (ID), allowing the domains to know if packets are out-of-order and thus

facilitating re-ordering logic between packets (not between elements). The work described in

this dissertation will focus on the third stage, packet storage and transmission.

Figure 1.2 shows a simple application of this data transmission structure. A Peripheral

Component Interconnect (PCI) device listens for incoming requests with an associated request

ID. The PCI device processes and responds to the request with a completion, associated with

the same ID as the previously received request. In the presented packet data structure, each

completion is a packet.
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PCI	device

2. Completions
Completion ID = Request ID

1. Requests
w/	Request	ID

Completer domain Requester domain

Figure 1.2: Block diagram of store-&-forward packet transmission in a PCI device

The transmission side benefits from having more complex control logic. For example, an

internal device error can cause invalidation of a completion that is being written (i.e., that

contains some but not all elements that constitute the packet). In this case, dropping the

entire packet from memory is desired.

For question 2, in order to map this packet storage into a physical memory, we require a

memory structure that keeps track of the status of each packet. Typically, this involves segre-

gating a single memory into multiple segments, each segment pertaining to a specific packet.

This memory structure is known as a segmented buffer.

Figure 1.3 shows the structure of a typical segmented buffer. These segmented buffers are

usually single-clocked designs that abstract the RAM address space into independent segments.

Each segment is written to and read from as a FIFO and can be used to store one packet,

matching the packet ID with the segment ID.

The represented memory layout shows each segment as a contiguous section of memory.

Since different RAM address space abstraction techniques can be used, it is not necessary

for it to be contiguous. In this layout, however, since each segment has defined start and

end addresses, the segment depth must be limited by setting a maximum packet size. This

maximum packet size is known as the maximum transmission unit (MTU).

In data transmission between domains, a single-clocked segmented buffer can be used by

the transmission and reception side to store outgoing and incoming data, respectively. Data

synchronisation must be handled externally through a generic data synchroniser, which is

not optimal as it usually requires choosing between either a significant memory overhead or

performance degradation.

A dual-port RAM (DPRAM) could be used to write and read data directly by different clock
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Segmented Buffer
Controller

RAM

Data
in

Data
out

Seg
select

wen ren

Seg
select

segment 0

segment 1

segment 2

segment N

≡

≡

≡

≡

ID: 0

ID: 1

ID: 2

ID: N

Figure 1.3: Block diagram of a typical segmented buffer interface

domains. However, the segmented buffer controller must be adapted to support this change.

This adaptation, consisting in the decomposition of the segmented buffer controller (SBC) into

two isolated clock domains and the synchronisation mechanisms between them, is the core of

this work that aims to explore questions 3 and 4. For this, we will start by reviewing the

problems related to clock domain crossing.

1.2 Contibutions

In this dissertation we aim to extend the functionality of a segmented buffer controller to allow

asynchronous usage of the buffer by two independent clock domains.

Implementing this segmented buffer packet transmission functionality across clock do-

mains includes the work of separating the segmented buffer controller into two input-output

interfaces, each synchronous one of the clocks.

The main focus of the dissertation is in the choice of the internal synchronisation mecha-

nisms required to make the segmented buffer work simultaneously in both domains. As such,

a review of current clock domain crossing methodology is required.

The final goal of the dissertation is the introduction of a new clock domain crossing (CDC)

synchronisation mechanism. The mechanism allows two clock domains to share a common

memory to transmit data that is structured into packets. It is innovative in that it allows the

transmission domain to stream data continuously, possibly out of order, and only confirm it

later. The reception domain can choose to read the packets in the order it desires. Further-

more, it allows both domains to use the memory at each domains’ maximum speed (i.e., the

transmission bandwidth is not lowered by the required CDC synchronisation structures).
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1.3 Organisation

This dissertation is composed of five chapters and one appendix. The document chapters are

structured as follows:

• Chapter 1 - Introduction introduces the fundamental concepts of the problem and ex-

plains how a segmented buffer can be used to solve it for communication across blocks

in single-clocked designs.

• Chapter 2 - Background and Previous Work provides a review on the state of the art of

clock domain crossing, presenting the main problems related to it and current solutions.

• Chapter 3 - Approach describes an intermediate stage between planning and implemen-

tation. A generic top-level architecture for the module is introduced with black-boxed

synchronisation blocks. Afterwards, some synchronisation block candidates are detailed

and evaluated through simulation and synthesis measurements.

• Chapter 4 - Implementation and Results details the chosen synchronisation architec-

tures for the implemented module, which consists of a segmented buffer with integrated

CDC functionality. An existing generic solution consisting of a single-clocked segmented

buffer in series with an auxiliary generic data synchroniser is also presented to provide

a basis of comparison in terms of area and performance.

• Chapter 5 - Conclusions and Future Work concludes by presenting remarks and a

summary of the work performed, further detailing with suggestions for future work.
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CLOCK domain crossing issues have been the subject of many research efforts. These efforts

span in scope from the definition of the associated physical [3, 25, 32] and functional

[9, 26, 31] problems to practical designs that overcome them [4, 5, 6, 8, 13, 27] and verification

[14, 17, 18, 19, 20] of said designs.

The main issue behind clock domain crossing is metastability. Metastability is caused by

the physical properties of integrated circuit latches and in turn, may cause other functional

issues, including data incoherency and data loss or repetition. Data loss or repetition is not an

exclusively metastability-bound problem may also be caused by faulty synchronous logic on

either domain. If the reception or transmission domain synchronous logic does not account

for the possibility that the clock domains might be working at a significantly different speed,

data loss or repetition can also occur.

In practice, clock domain crossing problems are solved by employing synchronisation mech-

anisms known as synchronisers, as described in section 2.2. Although these mechanisms do

allow the design to overcome metastability, they are vulnerable to erroneous employment,

effectively rendering the synchroniser useless. In order to provide an understanding of why

and how synchronisers are used, this chapter summarises the concerns behind metastability,

synchronisation mechanisms that overcome its issues, and their usage restrictions.

7
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2.1 CDC Background

This section reviews the problems related to clock domain crossing, namely metastability, data

loss, data repetition, CDC jitter and data incoherency.

2.1.1 Metastability

Metastability is a state where a sampled digital signal holds an undefined value, neither 0 nor

1, instead holding an intermediate voltage value that will eventually decay into a defined logic

level. Metastability occurs when a signal generated in one clock domain changes too close to

the rising edge of a clock signal on another clock domain, causing a violation of setup or hold

times of the sampling flip-flops [20].

By definition, metastable behaviour is unpredictable. The time it takes to decay and its fi-

nal logic value are unknown, although the time it takes to decay can be modelled by a negative

exponential probability distribution [9]. As it cannot be avoided, the only option to overcome

metastability is to mitigate its propagation through the circuit so that the probability of it pass-

ing through combinational logic is low enough that it is unlikely for metastability to manifest

in the lifetime of the circuit.

Figure 2.1 highlights the issue with a representation of the input and output waveforms of

a D-type flip-flop affected by metastability. Metastability failure occurs when this metastable

value reaches combinational parts of the circuit, allowing the propagation of an undefined

logic value.

clk

d

q

Metastable

Figure 2.1: Waveforms of metastability in a D flip-flop

The susceptibility of a latch to metastability is technology dependent. Typically, smaller

latches are more resilient to it as they are capable of recovering faster [3]. A window of

metastability failure can be determined through equation 2.1 [25]. This is the time window

(i.e., the time difference between the sampling clock and input data edges) in which the latch

will not be able to resolve the metastability before it reaches the remainder of the circuit.

δ(tr) = T0etr/τ [s] (2.1)
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In equation 2.1, tr is the maximum allowed metastability resolution time. Assuming that a

typical D flip-flop is comprised of two latches in series, one triggered on the positive edge and

the other on the negative edge, the maximum allowed resolution time for the first latch of a

flip-flop is usually half a clock cycle, since the following latch is triggered on the complementary

clock edge.

The window of susceptibility to metastability, T0, dictates the maximum phase between

data and sampling clock edges where metastability resolution time is non-zero. In turn, τ is

the metastability regeneration time constant, which dictates how quickly the latch is capable

of driving the output voltage away from the metastable level.

The variables τ and T0 are dependent on the physical latch characteristics, which in turn

are dependant on technology, latch dimensions and fan-out. However, on purely digital de-

signs, latch dimensions and fan-out do not tend to be significant [25].

From this metastability failure window, we can deduce a “Mean-Time Between Failures”

(MTBF) statistic only additionally requiring the source data frequency ( fd) and the destination

clock frequency ( fc) variables.

M T BF(tr) =
etr/τ

fd fc T0
[s] (2.2)

Equation 2.2 shows the classic MTBF formula [8, 20]. The fd and fc variables show what

affects the probability of metastability occurring. For example, the likelihood of metastability

increases linearly with the data rate and destination clock frequency (although in practice it

scales quadratically with the destination frequency since tr is typically a function of 1/ fc).

The fd variable introduces a concept which may not be immediately evident. It does not

necessarily represent the source clock frequency as it may be fully asynchronous. It is instead

the maximum frequency of the input data. For example, if the data only changes once every

two source clock cycles, then fd can be safely defined as half the frequency of the source

domain.

This discrepancy between the source clock and data frequencies can result in dangerous

miscalculations of MTBF. In particular, combinational circuits may cause glitching in the CDC

path, which highly increases the number of transitions in the signal, increasing the likelihood

of metastability by unintentionally increasing fd [26]. Therefore, it is required to register all

signals at the exit of the transmission clock domain so that the CDC signal is not affected by

glitching.

Avoiding metastability involves designing circuits that increase the MTBF of all clock do-

main crossing paths up to a desired target. These circuits are known as synchronisers.

2.1.2 Data Loss, Repetition and CDC jitter

As long as each transition of the source signal is captured on the destination clock domain, data

is not lost. This highlights the cases where data loss may exist: if synchronising into a slower

clock domain, we must ensure that the source clock domain does not change the data for a
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long enough time to guarantee that the destination clock domain can sample it. In contrast,

if sampling into a faster clock domain, data repetition may occur, which consists in the same

bit value being sampled multiple times by the faster domain. In this case, it is necessary to

implement a mechanism that ensures the receiving clock domain knows when to recognise a

new bit. Data is considered to have integrity if it does not suffer from loss or repetition [20].

Metastability can cause the unpredictable introduction of data loss and repetition issues.

As shown in figure 2.2, signal d1, synchronous to the clk1 domain, is sampled into a faster clock

domain, clk2, which is approximately twice as fast. The d1 signal in the source domain follows

the pattern 0101, being reasonable to expect that it will follow 00110011 in the reception

domain. However if, for example, the first transition of d1 goes metastable, the resulting

sampled bit has an unknown value and we may sample either 00010011 or 00110011. This

issue is present for all clock frequency ratios and is known as CDC jitter.

clk1

clk2

d1

d2

First sample went metastable, only
last sample guaranteed to be 1

No metastability, both samples
guaranteed to be 1

Figure 2.2: Waveforms of CDC jitter caused by metastability

2.1.3 Data Convergence Incoherency

The issues in sections 2.1.1 and 2.1.2 were described for single-bit signals. For multi-bit signals,

the same issues arise in each of the bits. This is especially troublesome in the case of CDC

jitter. If one of the bits synchronises on the first clock edge, and another on the second clock

edge, data is incoherent during that first clock cycle, since it contains values sampled from

two different clock cycles of the transmitting domain. This means that, typically, we cannot

merely replicate single-bit synchronisation mechanisms for each bit of a multiple-bit signal,

as the synchronised signal could suffer from incoherency, and more complex synchronisation

methods must be employed [20].
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2.2 Current Synchronisation Approaches

Synchronisers are circuits designed to overcome the clock domain crossing issues shown in

section 2.1. These synchronisers can be characterised by tradeoffs in area, latency, throughput

and implementation difficulty.

The simplest synchroniser is the two-flip-flop (two-FF) synchroniser shown in figure 2.3,

consisting of two destination-clocked flip-flops in series. As the smallest and most basic syn-

chroniser, it is often used as a building-block for more complex synchronisers and therefore is

referred to as “fundamental synchroniser”. The more complex synchronisers overcome limita-

tions of the fundamental synchroniser, such as being vulnerable to data incoherency, data loss

and data repetition.

We will focus on the most common synchroniser types that support any arbitrary clock

frequency ratios although some niche designs exist for specific cases, e.g. domains that are

derivations of the same main clock or domains that only differ in phase and not frequency. All

shown synchronisers implement unidirectional data transmission as bidirectional synchroni-

sation consists of the mirrored replication of these synchronisers.

2.2.1 Fundamental Synchroniser

As previously mentioned, the simplest and most common synchroniser is the two-FF synchro-

niser [5], as shown in figure 2.3. This is a single-bit synchroniser that only contains metasta-

bility and does not protect against data coherency and integrity issues.

data_i

clk_b

clk_a
FF FF FF

data_o

Transmission domain Reception domain

Figure 2.3: Schematic of a two-FF synchroniser

The first flip-flop samples the asynchronous input signal into the new clock domain and

waits for a full clock cycle to allow any metastability on the first stage output to decay, then

the first stage output is sampled again by the same clock into a second stage flip-flop, with the

goal that the second stage signal is now a stable and valid signal in the new clock domain.

The two-FF synchroniser can be extended both in data width and pipeline stages, resulting

in a N x M matrix of flip-flops as shown in figure 2.4. Increasing the number of pipeline

stages (N) increases the MTBF according to section 2.2.1.2. Increasing the data width (M)

allows passing multi-bit signals across domains. However, this increase in data width must be
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supplemented by techniques that ensure that no data incoherency occurs. One such technique

is Gray-coding the data bus.

data_i[0]
FF

data_o[0]
FF FF

data_i[1]
FF

data_o[1]
FF FF

data_i[M-1]
FF

data_o[M-1]
FF FF

N flip-flops
Transmission domain Reception domain

Figure 2.4: Block diagram of the fundamental synchroniser as a N x M matrix

2.2.1.1 Gray Coding

Gray code is a binary numeral system where two consecutive values differ only in one bit.

This numeral system is compared with decimal and classic binary in figure 2.5 [5]. If using

Gray codification, multi-bit signals such as counters that only change in sequence (i.e., where

their value only increases or decreases by a maximum of 1 each source clock cycle) can be

synchronised by the fundamental synchroniser without being vulnerable to data incoherency.

This Gray-coded bus is not vulnerable to data incoherency because at any one point metasta-

bility can only occur in one of the bits of the signal, in which case it does not matter to which

logical value the metastability resolves to as both are valid.

Gray coding is typically used to synchronise counters and read/write pointers which can,

in turn, be used to create CDC mechanisms for data that cannot follow to the restrictions of

Gray encoding.

2.2.1.2 MTBF of a Fundamental Synchroniser

As data and sampling frequencies increase, the CDC MTBF decreases, which must be compen-

sated by increasing the number of pipeline stages. Due to this, very high-frequency circuits

may require 3 or more stages. This section presents a quick review of how to calculate the

MTBF of a fundamental synchroniser.

Physical characterisation of flip-flop and latch MTBF has been a topic of extensive research

[7, 12, 15, 16]. Equation 2.2 was extended to support chained latches by Jones et al. [13].
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Figure 2.5: Gray coding table for a 4-bit sequence

This introduces the concept of data arrival window where, for a particular latch at stage i, the

window of time between the two data arrival times that cause a metastability resolution time

equal to tr is shown in equation 2.3.

The data arrival window can be used to calculate the MTBF of a new latch appended to a

path with a specific MTBF. If chaining stage i + 1 after stage i, MTBF increases according to

equation 2.4.

Assuming all stages have the same tr , τ and T0 we may equate the MTBF for a chain of N

latches we can simplify to equation 2.5.

This gives us the MTBF for a single bit. If the data is not comprised of a single bit, the

aggregated MTBF of all bits must be calculated according to equation 2.6.

∆t ini(tri
) =

T0i

etri
/τi

(2.3)

M T BFi+1 = M T BFi ·
τi+1

∆t ini+1(tri+1
)

(2.4)

M T BF(tr , N) =

�

etr/τ

T0

�N

·
τN−1

fc fd
(2.5)

M T BFagr t =
1

M
∑

i=0

1
M T BFi

(2.6)



14 Background and Previous Work

Through equations 2.5 and 2.6, it is possible to obtain an estimation of the MTBF of a bus

synchronised through fundamental synchronisers. It is important to note that these equations

present only a very rough estimation of the MTBF. In particular, equation 2.5 already introduces

a large approximation by assuming all latches in a fundamental synchroniser have the same τ

and T0, where the two latches in a flip-flop typically do have different physical characteristics.

Secondly, equation 2.6 assumes all wires in the bus have the same MTBF. However, since the

purpose of this overview is to get a rough estimation of MTBF, these approximations will be

considered acceptable.

2.2.2 MUX Synchroniser

The multiplexer (MUX) synchroniser shown in figure 2.6, also known as MUX recirculation

synchroniser, is a multi-bit synchroniser that attempts to solve the data incoherency issue by

synchronising a single control bit which asserts that the asynchronous multi-bit data is stable

and ready to be sampled [26]. This requires control logic in the transmitting domain in order

to generate the control signal and block data transitions while the receiving domain samples

the signal. The control logic must be designed carefully in order to compensate for the latency

added by the fundamental synchroniser.

sampling
stage

sampling
stage

data_i
data_o

ctrltransmission
control

fundamental
synchroniser

clk_bclk_a

Transmission domain Reception domain

Figure 2.6: Block diagram of a MUX synchroniser

This synchroniser turns multi-bit synchronisation into a single-bit synchronisation problem

despite not solving the issue that data may be lost if the clock frequency ratios are unknown.

To solve this, a full handshake protocol may be implemented at the cost of extra latency, as

shown in section 2.2.3.

2.2.3 Handshake Synchroniser

The handshake synchroniser [21] shown in figure 2.7 is a multi-bit synchroniser similar to the

MUX synchroniser in that it synchronises single-bit control signals to ensure that a multi-bit

signal can be safely sampled.
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sampling
stage

sampling
stagedata_i data_o

en

REQ

transmission
FSM

en

ACK

reception
FSM

fundamental
synchroniser

fundamental
synchroniser

clk_bclk_a

Transmission domain Reception domain

Figure 2.7: Block diagram of a handshake synchroniser

The main difference between the MUX and the handshake synchronisers is that the hand-

shake synchroniser implements a feedback signal from the receiving to the transmitting do-

main that enables closed-loop transmission control. The two control bits, one in each direction,

are normally typically to as request (REQ) and acknowledge (ACK) [6].

The synchroniser can be designed with either a push or a pull interface depending on which

side initiates the transmission. On a push interface, the transmitter asserts REQ to write on

the receiver which then asserts ACK. On a pull interface, the receiver asserts REQ to request

data and the transmitter then asserts ACK when the data is valid. A push interface is shown

in figure 2.7.

To use this synchroniser, it is required that both the transmitter and receiver implement

state machines to manage REQ and ACK. The main disadvantage of the synchroniser is the

latency created by this request-acknowledge mechanism. The mechanism creates a latency

between transmissions of two fundamental synchronisers plus the state machine delay of each

domain. The transmitting domain must hold the data stable between these transmissions,

resulting in low throughput.

2.2.4 Asynchronous FIFO

A typical asynchronous first-in-first-out (FIFO) synchroniser is shown in figure 2.8 [4]. In this

configuration, the clock domains use a dual-port memory as a middleman for communication.

The main advantage with the use of the memory comes from its ability to allow data to ac-

cumulate in the case it is being written faster than it is read. This possibility of accumulation

eliminates the need to wait for the other clock domain when reading or writing, allowing both

domains to work independently and at their maximum speed while maintaining data integrity.

The read and write addresses generated to access the FIFO memory are synchronised be-

tween domains. The addresses are Gray encoded in order to allow usage of fundamental

synchronisers without data incoherency issues. The addresses are synchronised so that the
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read controllerwrite controller

renwen dual-port
memory

read pointer
generation

data_i data_o

fundamental
synchroniser

empty status
calculation

write pointer
generation

full status
calculation

fundamental
synchroniser

Gray encoded

Transmission domain Reception domain

Figure 2.8: Block diagram of an asynchronous FIFO synchroniser

reading domain may know when the FIFO is empty, and the writing domain when the FIFO is

full.

This synchroniser is particularly interesting as it implements some functionality that is

useful from a CDC store-and-forward perspective, namely sharing a common memory with

surrounding synchronisation to close the control loop.

2.2.4.1 FIFO Synchronisation Logic

To understand this memory sharing mechanism, let’s take a closer look on how and why access

pointer synchronisation is used to implement this synchroniser.

In a CDC architecture, the synchronised data is always delayed in relation to the “real”

data. That is, the reception sides’ perception of the synchronised data is a delayed copy of

it. This is because the synchronisation mechanism itself introduces latency, which is further

worsened by CDC jitter.

The FIFO architecture must be designed accounting for this. Each clock domain must

assume that the worst-case scenario has happened since the last synchronisation, and re-

synchronisations allow lifting this assumption.

In asynchronous FIFOs, the worst-case scenario is actually where the other domain has

idled since the last synchronisation. For example, the push domain worst-case scenario is when

the memory is full. The case where the memory fills quickest is when the pop domain is not

reading any data. Therefore, this is what the push domain must assume until the synchronised

data refreshes. The opposite case is also true for the pop domain, where it must assume the

push domain has not written any data unless it has explicitly received information confirming

so. These pessimistic assumptions are known as CDC pessimism.

The most commonly used synchronisation data is the read and write pointers of each do-

main into the other. This allows each side to keep track of the other sides’ activity and use

it to lift full and empty status flags. The pointers are already generated in each domain for
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memory access logic, and it is not crucial for the receiving domain to catch every transition of

the pointer, making this choice robust against arbitrary clock frequency ratios.

As it is synchronous to the write pointer, the push domain knows the exact clock cycle

where each data write happens, and it also has access to the last synchronised read pointer.

The FIFO fills when the write pointer, which is always ahead of the read pointer, catches up to

the synchronised read pointer which means it has wrapped around the FIFO and can no longer

write data without overwriting data which has still not been read. Due to CDC pessimism, this

data may have already been read although the push domain has no knowledge of this yet.

Consider the situation where the FIFO is full (e.g. rptr = 0, wptr = 0) and the pop domain

reads until empty before the next synchronisation of the read pointers to the push domain.

After re-synchronisation, the actual FIFO state is empty but the push domain has seen no

change in the read pointer, as illustrated in figure 2.9.

The push side now erroneously thinks the FIFO is full while in reality it is empty. Both

sides halt activity, stalling the system. This can be avoided by having an extra bit that encodes

the wrap state of the pointers. This bit toggles each time the pointer wraps around from the

end to the start of the FIFO. This bit can just be concatenated with the real read and write

pointers as their most-significant bit (MSb), making this encoding trivial in terms of pointer

arithmetics. Figure 2.10 shows the same situation with the wrap bit added, which allows for

solving this issue.
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wptr
3'b000

FIFO is full

8x pop

rptr
3'b000

FIFO is empty
but pointers did

not change

wptr
3'b000

rptr
3'b000

Figure 2.9: RAM status showing issue in CDC FIFO status flag calculation

wctr
4'b1000

FIFO is full

8x pop

rctr
4'b0000

FIFO is empty,
read pointer MSB

shows wrap-around

wctr
4'b1000

rctr
4'b1000

Figure 2.10: RAM status in CDC FIFO status flag calculation with added wrap-status bit

2.3 Summary of Synchronisers

Table 2.1 shows a summarised comparison of the main characteristics and tradeoffs of each

synchroniser. This table is only intended to represent a rough comparison as implementation

details may affect these characteristics.

Data frequency represents the maximum rate at which the synchronised data can change

and can be seen as the inverse of the minimum latency between consecutive transmissions.

The data frequency is high for the fundamental synchronisers as they are open loop, although

this high data frequency is not necessarily useful without data integrity and coherency.

Data integrity represents protection against data loss and data repetition. It ensures that

the receiving domain catches each transmitting domain change once and only once. The MUX

synchroniser only partially supports this, as the control logic must be designed manually ac-

cording to the clock frequency ratios.
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Table 2.1: Summary of studied synchronisers

Data freq.c y Data integ.r t y Data coh.nc y Area Implementation

Fund.tal High No No Small Very easy
Fund.tal (Gray) High No Yes Medium Easy
MUX Medium Partial Yes* Medium Moderate
Handshake Low Yes Yes Medium Moderate
FIFO High Yes Yes Large Difficult

Data coherency is the lack of the data incoherency problem. Only the non-Gray-encoded

fundamental synchroniser is vulnerable to incoherency. The Gray-encoded synchroniser does

not lose coherency regardless of any metastable bit resolution outcome. The other synchro-

nisers do not lose coherency by instead guaranteeing that the data is stable at the moment

it is sampled. In the MUX synchroniser, this also implies some manual implementation that

considers clock frequency ratios.

Area accounts for the circuit area required to perform the synchronisation. The funda-

mental synchroniser does not have any overhead as it is open-loop and requires no extra logic.

The Gray synchroniser requires binary-encoded data to be converted into Gray-encoded data,

although this conversion is relatively cheap in terms of area. The MUX and handshake syn-

chronisers require additional area for the control bits and the associated FSMs. The FIFO

controller requires read and write pointer generation and synchronisation plus empty and full

flag generation from these pointers, resulting in a large memory and control overhead.

An estimation of register transfer level (RTL) implementation difficulty for each synchro-

niser is also shown in the table. The fundamental synchroniser is very simple to implement

as it is merely a matrix of flip-flops. The Gray-encoded fundamental synchroniser is simply

the addition of Gray-to-binary and binary-to-Gray conversion unless the designer implements

logic that generates and uses Gray encoded signals directly. The MUX and handshake synchro-

nisers require implementing FSM and request-acknowledge detection logic. The FIFO requires

implementing pointer generation logic, auxiliary synchronisers that send the pointers across

domains and status flag generation from the pointer values plus connection to and possible

implementation of the shared dual-port memory.

2.4 CDC Verification

Clock domain crossing verification provides interesting problems that have been the subject of

various studies. There are two main reasons for the interest in this subject.

Firstly, there is the inherent difficulty behind performing CDC verification. Clock domain

crossing issues arise from the physical proprieties of integrated circuit latches so they do not

manifest during typical digital system simulations, requiring analog simulation instead. Analog

simulation of latch metastability is costly in terms of computational resources as it requires
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simulation precision levels in the order of femtoseconds (in the current technology node range

of 22nm – 7nm). As it is not feasible to perform analog simulation in large circuits, other

methods must be explored.

Secondly, there is an opportunity to improve verification efforts by automating some parts

of it. Clock domain crossing zones can be identified early and automatically by RTL analy-

sis tools [11] by tracing the clock domain affection range and identifying paths sampled by

different clock signals.

There are two main approaches used to perform CDC verification:

• Conventional testbench with injected CDC jitter: This approach focuses on simulating

the main effect of metastability within the synchroniser RTL logic.

On testbench environments, the fundamental synchroniser can be modified to randomly

insert extraneous delay on domain-crossing bits, effectively simulating CDC jitter [29].

Bad synchronisation modules would be unable to compensate for this jitter and would

cause data corruption.

This approach is advantageous because it is straight forward and familiar to verification

engineers. The main issue is that it is highly vulnerable to human error. Since CDC jitter

is injected in the synchronisation blocks, completely unsynchronised paths go unchecked

by this method. It also does not account for the frequency of metastability events, leaving

CDC glitching issues unchecked.

• Automated checking: As CDC paths can be identified automatically, it is possible to

implement processes that perform automated checks on them. They typically consist of

two main types of checks: structural and functional [29].

Functional checks typically consist in looking at the input and output of the synchroni-

sation modules and checking for data equivalence in both domains. These checks tend

to rely on simulation-based solutions that detect data integrity issues located inside the

synchronisation module.

Structural checks analyse the flow of CDC data in and around the synchronisation blocks.

It is typically used to detect complete lack of synchronisation, glitching issues at synchro-

niser inputs and data reconvergence issues on the outputs of multiple synchronisers in

one domain.

Synchroniser design intent can be used by the analysis tool to perform more sophisticated

checks. If the tool knows the synchroniser topology that the designer intends to imple-

ment (either by requiring the designer to specify them or by automatically inferring the

synchroniser type [17, 19]), it can perform structural checks against known valid syn-

chroniser types. Additionally, these checks can be further improved through the use of

formal verification methodology to obtain mathematical proof of good synchronisation

behaviour [18].
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2.5 Summary

This chapter presented an overview of clock domain crossing in the perspective of the issues

associated with it in section 2.1 and the standard digital system constructs used to overcome

them in section 2.2.

Section 2.3 presents a direct comparison between all mentioned synchronisers. Table 2.1

can be used as a quick reference to allow digital system designers to decide what synchroniser

is best for a particular application. Section 2.4 provides a small overview of the usual methods

that are employed to verify CDC.

For readers more familiarised with clock domain crossing that do not intend to to explore

the chapter in-depth, we would like to highlight a few chapter quirks:

• Fundamental synchroniser formulation

The simplest synchroniser was presented as a N x M matrix of flip-flops (section 2.2.1).

In most studies, this synchroniser is referred to as two-FF or three-FF synchroniser, which

translate into 2 x 1 and 3 x 1 fundamental synchronisers, respectively. In this disserta-

tion, we expanded this synchroniser type to a generic matrix in order to further explore

the impact of increasing data width (M) and the number of pipeline stages (N).

• FIFO synchronisation notes

Most studies do not go in-depth into the pointer generation and synchronisation struc-

tures in the asynchronous FIFO. During this dissertation, these concepts were explored in

some detail as the CDC segmented buffer controller will synchronise in a similar fashion.

Section 2.2.4.1 touches on why and how the synchronisation of read and write pointers

works to generate full and empty status flags, effectively allowing closed-loop control of

the FIFO data by both domains.
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THIS chapter provides a bridge between the theoretical and practical portions of the thesis.

With the main dissertation goals outlined in chapter 1 and the CDC background in chapter

2, this chapter presents a formulation of the proposed module architecture.

Firstly, an overview of the architecture and the data to synchronise is presented. After-

wards, the focus of the chapter lies in investigating which synchronisers fit best into the ar-

chitecture, and thus preliminary implementation and testing of synchronisers will begin here.

The goal of the chapter is to allow arrival at a final synchronisation architecture.

3.1 Functional Requirements Overview

Structuring the requirements introduced in chapter 1, figure 3.1 shows the use-case diagram

for the interactions in which the segmented buffer controller partakes. The segmented buffer

controller is responsible for translating the instructions received from the push and pop sides

into RAM read and write instructions and providing packet availability information.

When requesting a packet push or pop, the actor informs the segmented controller of the

associated packet ID which the segmented buffer controller then translates into the corre-

sponding memory addresses.

Push and pop use-cases redirect the request to the correct write or read memory address

while generating the next access pointer. While the pop side can only pop an element from a

23
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Figure 3.1: SysML use-case diagram of the segmented buffer controller

packet, the push side may choose various request types. It can choose between dropping the

current packet, which erases all unconfirmed elements, or push a new element to the packet.

When pushing to a packet, the push side may optionally signal that the current push is the

start of a new packet, or confirm all elements since the previous start.

In order to ensure safe behaviour, each actor must keep track of packet status through

the “ask if packet push available” and “ask if packet pop available” use-cases. The actor can

push to a packet if the corresponding segment is not full, and can pop from a packet if the

corresponding segment is not empty. For each side to know this packet status, synchronisation

is required.

3.2 Proposed Architecture

Figure 3.2 shows the block diagram of the proposed module architecture. The architecture

aims to provide resilience against implementation mistakes by clearly separating the design

into three types of sub-blocks: push-synchronous blocks, pop-synchronous blocks and syn-

chronisation blocks. Push-synchronous blocks can only use the push clock, pop-synchronous

blocks can only use the pop clock, and only the synchronisation blocks may use both. To clar-

ify, “push clock” and “pop clock” refer to the clock signals that drive the push domain (packet

transmission) and pop domain (packet reception), respectively.

The architecture allows for the implementation of sub-modules with a variable degree of

reliance on synchronised data. Pointer control does not require any synchronised data as it is

solely dependent on input stimulus (although the input stimulus should be dependent on the
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Figure 3.2: Block diagram of the proposed segmented buffer controller architecture

status flags). In turn, status flag calculation is dependent on synchronised data as described

in section 2.2.4.1.

The synchronisers will be used to transmit pop activity into the push domain and push

activity to the pop domain. Designing these synchronisers is the key issue highlighted in this

dissertation and will thus be detailed in sections 3.3, 3.4 and 3.5.

3.2.1 Data to Synchronise

The synchronisation problem is essentially an extension of the synchronisation problem for an

asynchronous FIFO where the FIFO push and pop sides synchronise write and read pointers

in order to generate full and empty status flags.

Our goal is similar but has some added complexity. Firstly, pointer generation is not linear

because the push domain can jump multiple pointer positions in the same clock cycle due

to packet confirmation or cancellation. Secondly, since the real read and write pointers are

associated with a single physical RAM, but status flag calculation is associated with a virtual

FIFO that does not have the same read and write addresses, the read and write pointers cannot

be synchronised directly.

The data to synchronise for status flag generation is the virtual FIFO read and write pointers

concatenated with the wrap-status bit as described in section 2.2.4.1. In order to distinguish

these from the real RAM pointers, they will henceforth be referred to as read and write coun-

ters. The array of read counters generated by the pop domain should be synchronised into
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the push domain, and the array of write counters generated by the push domain should be

synchronised into the pop domain.

Figure 3.3 shows the structure of the array of virtual FIFO counters and its correspondence

to the physical RAM. Each packet is stored in one memory segment and to it corresponds one

read counter and one write counter. To each counter value corresponds one physical memory

address. By accessing these counter values, each side can know the segment status (full or

empty).

one counter - ctrs[0]
ceil(log2(seg_dp))+1 bits

segment	1
(packet	id	1)

0	000

0	000

1	011

0	010data to synchronise:
counter array - ctrs[][]

n_segs counters

segment	0
(packet	id	0)

segment	2
(packet	id	2)

segment	3
(packet	id	3)

one	segment
seg_dp	elements

storage	RAM
n_segs	segments

virtual counter
to

physical pointer
convertion

Figure 3.3: Synchronised data correspondence to RAM (4 packets with 8-element MTU)

In order to provide explicit references to the counter values at each domain, we will use

the terms “local” and “remote” to refer to the counters in each domain. For example, the local

write counter is the write counter value on the push domain, and the remote write counter

is the write counter value on the pop domain which will be delayed in relation to the local

write counter. Furthermore, under the context of the synchronisation block which can be

implemented in any direction (from push to pop or from pop to push), “reception domain”

refers to the domain that is receiving synchronised data (not to be confused with the packet

reception domain), and the same logic applies for mentions of the “transmission domain”.

3.3 Synchroniser Candidates

The data to synchronise is simply an array of counters, where we highlight two main ap-

proaches: integral synchronisation where the entire counter array is synchronised as a whole,

and partial synchronisation where only one virtual FIFO counter is synchronised at a time.

3.3.1 Gray Synchroniser

The most common synchronisation scheme for pointer synchronisation is the Gray coded syn-

chroniser. Figure 3.4 shows how the synchroniser can be applied to this synchronisation con-

text. The advantage of this synchroniser is that, when used correctly, it is not vulnerable to

data incoherency while providing fast synchronisation due to its open-loop nature.
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Figure 3.4: Block diagram of the Gray synchroniser for the proposed architecture

Limitations and Restrictions

The main limitation of this mechanism is that the local counter may only increment or decre-

ment by at most 1 in each clock of the transmitting clock domain.

In the receiving clock domain, the signal does not have this limitation (that is, it can incre-

ment or decrement any arbitrary number of positions in the perception of the reception clock

domain). This is because, at any one particular reception clock edge, there can only be at most

1 bit vulnerable to metastability (metastability only occurs when both clock edges match, and

only one bit changes every transmission clock edge). If the bit does go metastable, we either

sample the previous or the next counter, both being valid.

This limitation is typically not a problem for asynchronous FIFOs as the pointers do tend to

follow these rules. However, some FIFO implementations require managing arbitrary pointer

jumps. Some examples:

• Resetting. For asynchronous resets this is typically not a big issue, however for syn-

chronous resets (i.e., functional re-initialisation requests) this would require dedicated

handshake mechanisms to ensure safe a reset.

• Complex FIFO functionality. Allowing a side to move multiple elements at once means

jumping multiple positions in its pointer. This can, for example, be eliminated by damp-

ening the pointer transitions on the transmitting domain at the cost of added latency.

• Non-power-of-two FIFO depths. For Gray encoding to synchronise correctly, pointer

generation must be implemented such that only one bit is toggled on wrap-around. As

shown in figure 2.5, this is possible for segment depths that are multiples of two. Oth-

erwise, we must start counters with a static offset, which also has implications for RAM

address and status flag calculation.
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Area Considerations

Area cost depends on the counter and pointer generation logic. All counter and pointer gen-

eration and utilisation logic can be implemented in Gray code, eliminating the need for Gray

code conversion (gray2bin, bin2gray). However, arbitrary status flag calculation (e.g., ‘full mi-

nus one’ and ‘empty plus two’) can be challenging in this codification. Due to this, and other

flexibility issues, we will not explore this possibility and instead opt for the implementation of

Gray encoding and decoding within the synchroniser.

The area cost is simply the cost of the fundamental synchronisers plus an additional sam-

pling stage before the synchronisers and, if Gray encoding is implemented, the cost of the

encoding and decoding logic. The additional sampling stage is required in order to prevent

glitches in the CDC path as described in section 2.1.1.

Performance Considerations

This synchroniser has very low performance overhead which consists of the latency of the

sampling stage plus the latency of the fundamental synchronisers.

If pointer dampening is implemented as previously described, there is an added latency of

one transmission domain clock cycle per jumped word.

3.3.2 Handshake Synchroniser

The read and write counters can be synchronised without codification through a handshake

mechanism. Figure 3.5 shows the handshake synchronisation scheme for this context. Like

the Gray synchroniser, this synchroniser performs integral data synchronisation.

sampling
stage

sampling
stagelctrs[ ][ ] rctrs[ ][ ]

en

REQ

transmission
FSM

en

ACK

reception
FSM

fundamental
synchroniser

fundamental
synchroniser

Transmission domain Reception domain

Figure 3.5: Block diagram of the handshake synchroniser for the proposed architecture

In this configuration, a state machine is used by the transmitting side to load the transmis-

sion domain data sample register. This state machine can have only two states (waiting state

and loading state).

The loading state is active for one clock cycle and loads the transmission domain data into

the sample register. One clock cycle later, the state machine enters the waiting state and the
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handshake request signal is asserted. When the reception domain receives the request, its data

sampling stage is enabled for one clock cycle, and an acknowledge signal is generated. When

the transmission domain receives the acknowledgement, its state machine moves again to the

loading state and the algorithm repeats.

Limitations and Restrictions

Unlike the Gray coded synchroniser, this design does not have any significant restrictions. The

tradeoff for this flexibility is reflected in the additional area and performance overhead.

Area Considerations

The reception data sample register output can be used directly by the reception clock do-

main as it is not vulnerable to metastability. The transmission data sample register must be

added to hold a copy of the pointer values stable during synchronisation. The transmission

state machine and request/acknowledge generation and detection do not have significant area

overhead.

Performance Considerations

The handshake mechanism causes a significant performance impact. Between each trans-

mission, there are at least two reception clock cycles until the request is detected and two

transmission clock cycles until the acknowledgement is detected.

3.3.3 Onehot Synchroniser

A method to avoid the restrictions behind Gray coding while maintaining synchronisation

through an array of fundamental synchronisers is to one-hot encode the addresses instead, as

shown in figure 3.6. Like the Gray and handshake synchronisers, this synchroniser performs

integral synchronisation.

Since between any two reception domain data changes there are always two one-hot bit

toggles, the reception domain can trivially detect whether there has been metastability data

corruption by counting the amount of set (equal to 1) bits in the signal.

Figure 3.7 illustrates the possible transitions between two one-hot-encoded states. The

reception domain can perform data validity checks by calculating the exclusive-or between all

bits of the received signal. The only case where data is lost is when all sampled bits are reset

(equal to 0). If two bits are set, the reception data is correctable by resetting the old bit.

Limitations and Restrictions

This synchronisation scheme does not present any notable functional restrictions. However,

this synchronisation method can be prohibitive in terms of area, and is only be feasible for

small virtual FIFO sizes.
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Figure 3.6: Block diagram of the one-hot synchroniser for the proposed architecture
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Figure 3.7: Possible onehot-encoded CDC transitions in each re-sample
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Area Considerations

Firstly, the signals must be encoded from binary to one-hot in the transmission domain and

encoded back to binary in the reception domain. It is possible to calculate status flags using

one-hot encoded signals, removing the need to decode the signal, but the reception domain

would require logic to compare binary encoded counters with one-hot encoded counters.

The one-hot encoded counters have a size of twice the virtual FIFO depth (in number

of bits) which must be sampled after encoding to prevent glitching in the CDC path. This

number of bits is required as the concatenation of the wrap-bit with the binary counter results

in a duplication of bits in one-hot codification. Then, there is the added cost of running the

signals through an array of fundamental synchronisers. While the other synchronisers scale

logarithmically with the segment size, this synchroniser scales linearly.

Performance Considerations

The performance impact of this synchroniser is low, although slightly higher than the Gray-

coded synchroniser as it is still vulnerable to metastability data loss. When metastable data

corruption occurs the receiving clock domain discards the data. When no metastability occurs,

there is no performance difference when comparing to the Gray-coded synchroniser.

3.3.4 Shared Synchronisation FIFO

A single synchronisation FIFO may be shared across all virtual FIFOs in other to transmit

counter update information. The word stored in the synchronisation FIFO would pack the

data referring to which virtual FIFO counter to update and the desired corresponding value.

This word stores counter update information relative to one counter value update and allows

the implementation of partial synchronisation, as shown in figure 3.8.
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Figure 3.8: Block diagram of the FIFO synchroniser for the proposed architecture
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Limitations and Restrictions

The shared synchronisation FIFO does not have any important functional limitations. However,

it does have the most difficult implementation out of all proposed synchronisers.

It benefits from some additional signals from the transmission domain. In particular, a bit

that indicates that a counter update was performed and a bus that indicates in what virtual

FIFO this counter update happened. Although this information can be obtained just by moni-

toring the counter array, it would needlessly increase area and make high-frequency synthesis

more difficult. Secondly, the transmission domain must be able to accept a halt signal from

the synchroniser that causes all transmission domain activity to stop.

Area Considerations

Most of the area cost comes from the synchronisation FIFO memory. The depth of memory

is configurable and equal to the maximum pending updates that are allowed to reside in the

synchronisation FIFO. Once the synchronisation FIFO is full, the synchroniser must halt the

transmitting domain because pointer update information can no longer be stored.

If trying to avoid any transmission side halting, the worst-case scenario is when the trans-

mitting domain fills the entire FIFO one-by-one before the receiving domain pops any data,

which means the FIFO depth has to match the total word count stored in the segmented buffer

RAM, which results in a prohibitive area overhead. However, if we know that the receiving

domain is working faster than the transmitting domain, the FIFO only needs to hold enough

words to compensate for the synchronisation latency, resulting in a very manageable area cost.

Performance Considerations

The FIFO synchroniser does not incur in a performance hit unless the FIFO memory fills, in

which case it causes halting of the transmitting domain. This architecture is effectively mod-

elled by leaky-bucket congestion, which will be elaborated in section 3.5.1.

3.4 Fundamental Synchroniser MTBF

Before performing synchroniser tests, the number of fundamental synchroniser stages must be

chosen according to a desired MTBF, as this choice impacts both the performance and the area

of the synchroniser.

Please note that this section only aims to provide a rough estimate for the MTBF values

as obtaining accurate values would require going in-depth into analog latch physics and av-

erage bit toggle frequency statistical analysis which falls outside of the intended scope of this

dissertation.

A target MTBF of 10000 years was chosen, and equation 2.5 will be used to get the target

number of pipeline stages [8, 20]. In order to solve the equation, some implementation details

still need to be exposed.
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Firstly, we must define the asynchronous data frequency ( fd) and the sampling clock fre-

quency ( fc). Through equation 2.2 we can conclude that MTBF decreases with an increase in

either frequency. Therefore, the most pessimistic MTBF scenario is when both frequencies are

at their highest possible values. Since this module is designed for compatibility with PCIe, the

latest PCIe specification was used to determine maximum frequencies, which translates into 1

GHz for both domains [22] (equation 3.1).

Following this, tr is defined as the maximum allowed resolution time for each latch in the

sequence of flip-flops. It is equal to half of a sampling clock cycle (equation 3.2).

fd = fc = 1 · 109 [Hz] (3.1)

tr =
1

2 · fc
= 5 · 10−10 [s] (3.2)

Lastly, the technological variables τ and T0 must be defined. These values typically depend

on analog circuit simulations with very high precision sweeps between clock and data edges.

Table 3.1 shows the resulting MTBF for some target technologies in function of the number

of fundamental synchronisation pipeline stages. The table also shows the minimum frequency

at which it is necessary to increase the number of pipeline stages to 3. This table is based

on Synopsys simulations for the smallest latches with Vsuppl y ∈ [0.625,0.670] V, T = −40C .

MTBF increases with the increase in supply voltage, however, obtaining accurate values for

higher voltages usually becomes too computationally intensive as the metastability window

tightens, therefore these are pessimistic calculations in terms of the supply voltage.

Table 3.1: Fundamental synchroniser MTBF per technology and synchroniser stage depth

Technology MTBF (1 FF) MTBF (2 FF) MTBF (3 FF) min_ f3F F

TSMC 22nm FinFET LVT 709 y rs 4.76 · 1020 y rs 3.19 · 1038 y rs 2.25 GHz
TSMC 16nm FinFET LVT 2590 y rs 5.71 · 1023 y rs 1.26 · 1043 y rs 2.44 GHz
TSMC 7nm FinFET LVT 6.7 · 106 y rs 1.56 · 1028 y rs 3.64 · 1049 y rs 2.46 GHz
TSMC 7nm FinFET ULVT 3.66 · 1018 y rs 2.95 · 1051 y rs 2.38 · 1084 y rs 3.94 GHz

The target technology for this module is 16 nm. Even for 22nm, both fc and fd would have

to rise to approximately 2.25 GHz for a three flip-flop synchroniser to be required to meet the

MTBF requirement.

The aggregated MTBF of the entire synchronisation stage can be calculated through equa-

tion 2.6. According to this equation and for TSMC 22nm FinFET we would need approximately

1015 bits for more synchroniser stages to be required. Therefore, for this application and tech-

nology nodes, two-stage fundamental synchronisers were chosen.
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3.5 Synchroniser Evaluation

From the synchroniser proposals mentioned above, we already have an idea of which synchro-

nisers will perform better depending on circumstances. These tradeoffs will be analysed in

further depth in order to understand their application consequences more clearly.

Three test scenarios were picked in order to obtain points of comparison from experimental

tests, as shown in table 3.2. These test scenario parameters define the segmented buffer di-

mensions and are extracted from real PCIe device configurations with different levels of data

rate and complexity. Although in scenario A both frequencies are 500 MHz, the clocks are

expected to have different phase, requiring synchronisation.

Table 3.2: Test scenarios used for synchroniser evaluation

Scenario Seg. Depth # Segs Data Wd. Fast freq. Slow freq.

A 18 4 67 500 MHz 500 MHz
B 18 32 133 500 MHz 125 MHz
C 18 256 265 1000 MHz 62.5 MHz

3.5.1 Area Evaluations

Shared Synchronisation FIFO Depth

The FIFO synchroniser is the only synchroniser that is flexible in terms of allowing parameter-

isation that directly correlates to its area. The depth of the shared synchronisation FIFO can

be modelled by the “leaky bucket as a queue” transmission topology [1, 2], as seen in figure

3.9.

Water can be added
intermittently

Water exits at a
constant rate

If full, water
overflows

Figure 3.9: Concept of leaky bucket, analogous to data transmission concepts

In this analogy, water (data) arrives at an unknown rate, the bucket (synchronisation FIFO

memory) holds the maximum burst that is allowed, and water (data) leaves at a constant rate.
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The synchronisation FIFO depth is equivalent to the size of the bucket. If the bucket fills,

additional water will leak out (if the memory fills the data will be lost).

The only way to guarantee that the shared FIFO memory does not fill is to never allow the

data rate at the transmitter to exceed the receiver data rate capacity (equation 3.3). In this

equation, atsmt is the transmitter activity, i.e. the average amount of clock cycles it is actively

pushing/popping divided by the total amount of clock cycles (equation 3.4).

atmst ·
ftsmt

frecv
< 1 (3.3)

atsmt = lim
N→∞

�

Nact ive

Nact ive + Nidle

�

(3.4)

Equation 3.3 is always fulfilled when ftsmt < frecv . In this case, the FIFO depth is the

maximum latency between domains through the fundamental pointer synchronisers, as the

FIFO will never fill beyond this latency. If this condition is not met, the FIFO depth dictates

the maximum burst at the transmitting domain.

Area tests were performed for two FIFO depth configurations: FIFO 1 (8 depth) and FIFO

2 (depth equal to segment depth). FIFO 1 is sized for slow-to-fast synchronisation while FIFO

2 allows the transmitting domain to burst an entire segment before synchronising to the other

domain. FIFO 1 depth was obtained through a simulation where both the transmission and

reception domains are working at maximum activity and, sweeping across frequencies where

ftsmt < frecv , the maximum observed number of pending counter updates was recorded.

Clock Domain Crossing Data Width

Although all synchronisers result in the transmission of the same data, the internal data width

that crosses domains and is vulnerable to metastability is different across the synchronisers.

The area scaling of the synchronisers across domain boundaries is related to the scaling of this

data width.

For small segmented buffers, CDC data width will not be significantly different across the

synchronisers. However, as the segmented buffer size increases, area differences caused due

to a discrepancy in domain crossing data width become noticeable.

For the Gray-code and handshake synchronisers, the synchronisation data width is the

same as the input data width (equation 3.5).

For the one-hot synchroniser, the data is one-hot-encoded and requires more area in the

CDC boundary, according to equation 3.6.

The FIFO synchroniser only crosses the segment identifier and current counter for that

segment, resulting in equation 3.7. This equation does not account for the shared synchro-

nisation FIFO pointer synchronisation area, which is a constant and dependant on the FIFO

depth parameterisation.
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data_wdgc,hs = n_segs · (dlog2(seg_dp)e+ 1) [bit] (3.5)

data_wdoh = n_segs · (2 seg_dp) [bit] (3.6)

data_wd f i f o = dlog2(n_segs)e+ (dlog2(seg_dp)e+ 1) [bit] (3.7)

The CDC data widths for each scenario are listed in table 3.3. The FIFO synchroniser has

the best data width results, which is expected as the data width scales logarithmically with both

the number of segments (n_segs) and the segment size (seg_dp). The Gray and handshake

synchronisers scale linearly with the number of segments instead. The One-hot synchroniser

scales linearly with both parameters.

Table 3.3: CDC data widths observed per test scenario

Synchroniser data_wd4x18 data_wd32x18 data_wd256x18

FIFO 12 30 48
Gray 24 192 1536
Handshake 24 192 1536
Onehot 144 1152 9216

The data width efficiency of the FIFO and One-hot synchronisers, relative to the data width

of the Gray and Handshake synchronisers, is resolved into the equations 3.8, 3.9 and plotted

in figure 3.10.

η f i f o(n_segs) = 100
n_segs

dlog2(n_segs)e
, ∀ n_segs ∈ N> 1 [%] (3.8)

ηoh(seg_dp) = 100
dlog2(seg_dp)e

2 seg_dp
, ∀ seg_dp ∈ N> 1 [%] (3.9)

Note that equations 3.8 and 3.9 are not defined for n_segs = 1 and seg_dp = 1 respectively,

although figure 3.10 plots the functions at these values. This is because log2(1) = 0 but the

value was considered to be equal to 1 for these plots as it is allows unified RTL across all

parameterisation values, although a segmented buffer with either of these variables set to 1 is

just a normal continuous memory.

From these plots we can visualise that the onehot synchroniser is only viable for very

small segment depths and the FIFO synchroniser becomes increasingly better as the number

of segments increase.

Despite being an interesting area reference, CDC data width only accounts for a small part

of the segmented buffer controller area. The biggest example of this is the FIFO synchroniser

that requires its own dedicated memory and does not follow the typical fundamental syn-

chroniser matrix configuration seen in the other synchronisers. Although we now know what
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Figure 3.10: Synchroniser tests – Relative synchroniser CDC data width
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results to expect, the area cost of each synchroniser will be further explored through synthesis

area results.

Post-Synthesis Area

The synchroniser candidates were implemented and synthesised in order to evaluate the full

area cost of each synchroniser. Synthesis was performed in Design Compiler [10] with Ultra

High Effort and both clock paths constrained to 1 GHz at 16nm TSMC FinFET technology. The

synthesis report data was grouped per scenario and plotted in figure 3.11.

In general, the synthesis results correspond to the expected. In scenario A, the Gray syn-

chroniser has the lowest area cost as the only overhead is the combinational conversion to and

from Gray code.

The FIFO synchroniser shows poor results in scenario A due to the required dedicated

memory overhead that stores pending updates. As the segmented buffer size increases, the

FIFO synchroniser becomes progressively better, and in scenario C it is the best synchronisers

in terms of area. This is mostly due to its CDC data width, which is the smallest out of all

synchronisers.

The One-hot-coded synchroniser has poor results starting in scenario A that get progres-

sively worse as the number of segments increases. Due to this area cost, the synchroniser was

considered not to be viable for further implementation.

The handshake synchroniser presents average area results, typically placing it in the middle

of the ranking and slightly below the Gray synchroniser for all scenarios. The handshake

synchroniser provides good results both in functional restrictions and limitations and in area.

However, its biggest drawback is the lower synchronisation speed as it is the only synchroniser

where the data path is halted by closed-loop control signal synchronisation. A comparison of

synchroniser performance will be presented in section 3.5.2.
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Figure 3.11: Synchroniser tests – Post-synthesis area results (in FFs)
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3.5.2 Performance Evaluations

Synchronisation Speed

Figure 3.12 shows the results of a synchronisation speed performed through through functional

simulation. A testbench was developed to count the number of successful synchronisations in a

1µs time span, which corresponds to 1000 clock cycles at the maximum 1 GHz clock frequency.

A successful synchronisation is considered to be the union of both domains refreshing their

synchronisation data. The count of successful synchronisations is the number of acknowledges,

n_acks.

0 20 40 60 80 100

Gray & Onehot

Handshake

FIFO

100

14.3

99.2

100

33.3

97.5

100

49.9

98.4

Scenario A Scenario B Scenario C

Figure 3.12: Synchroniser tests – Relative (%) synchronisation speed simulation results

Only steady-state speed is measured, which means that for the non-handshake synchronis-

ers, it is assumed that synchronisation data is already arriving at the start of the simulation.

For the handshake synchroniser, the acknowledge count can be measured directly by incre-

menting the counter each time the acknowledge signal arrives at the transmission domain. As

for the Gray-coded and one-hot-coded synchronisers which are open-loop configurations and

always in transmission, n_acks is determined by the number of slow clock cycles (equation

3.10).

For the FIFO synchroniser, the number of ACKs is calculated by counting the amount of

reception domain pops (equation 3.11).

n_acksgc,oh = n_slow_clock_c ycles (3.10)

n_acks f i f o = n_pops (3.11)

Figure 3.12 shows the measured synchronisation count for all scenarios as the percentage

of the maximum observed acknowledge count for that scenario. The results do not show any

significant performance differences between the Gray, onehot and FIFO synchronisers.
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The FIFO synchroniser has a slightly lower acknowledge count due to the CDC pessimism

present in both the transmission and reception sides where pointer synchronisation latency

halts some data refreshments, however, this does not result in a significant performance loss.

One characteristic that is not accounted for is that when the FIFO is full, the transmission side is

blocked and cannot change its pointers, while the other synchronisers allow the transmission

domain to continue working. Furthermore, the higher the word count inside the FIFO, the

higher the discrepancy between the transmission and reception domains. These problems do

not arise when the transmission domain is slower than the reception domain.

The relative speed of the handshake synchroniser has changed significantly across the sce-

narios. From these three data points, it seems that the synchroniser becomes better as the

discrepancy between frequencies increases. This relative speed efficiency will be further ex-

plored.

Handshake Synchronisation Speed Efficiency

The handshake synchronisation control path is characterised as a sequence of events, as shown

in table 3.4. These events were also characterised in terms of timing in order to provide a bet-

ter understanding of how much time is required between two consecutive synchronisations.

In this event sequence, event 1 can happen in parallel with the event 9 of the previous syn-

chronisation.

Table 3.4: Control path events in a handshake synchroniser

Event ∆t Domain

1 Send intent asserted – Transmission
2 Send data sampled Ttsmt Transmission
3 Send pulse asserted Ttsmt Transmission
4 REQ outbound Ttsmt Transmission
5 REQ inbound (meta) φ(ts→ rc , t) Reception
6 REQ caught Trecv Reception
7 ACK outbound ∆Tack Reception
8 ACK inbound (meta) φ(rc → ts, t) Transmission
9 ACK caught Ttsmt Transmission

In table 3.4, Ttsmt and Trecv are the clock periods of the transmission and reception do-

mains, respectively. Events 5 and 8 span a time of φ(ts → rc , t) which is the clock skew

from transmission to reception at t, and φ(rc → ts, t) which is the clock skew from reception

to transmission at t, respectively. This skew is not deterministic and is limited according to

equations 3.12 and 3.13.

0< φ(ts→ rc , t)< Trecv (3.12)

0< φ(rc → ts, t)< Ttsmt (3.13)
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The time ∆Tack is dependent on synchroniser design, in particular the functional timing

of the acknowledge response generation. The acknowledge response can be generated in the

same clock cycle as the detection of the request signal, which is known as early acknowledge.

The problem with early acknowledge is that the acknowledge is already in transit before the

data is sampled. If the transmission domain is much faster than the reception domain, then

there is a possibility that the transmission domain will trigger a data change before the re-

ception domain has actually finished sampling the data. The safe approach to acknowledge

generation is to wait for one clock cycle in order to ensure the data is sampled safely. Therefore,

∆Tack is defined according to equation 3.14.

Knowing this, the delay between two back-to-back transmissions, Tt r , is bound according

to equation 3.15.

∆Tack = 0 ∨ ∆Tack = Trecv (3.14)

4Ttsmt + 1Trecv +∆Tack < Tt r < 5Ttsmt + 2Trecv +∆Tack (3.15)

While we now know the transmission delay limits between two transmissions, the average

transmission delay for any two frequencies is difficult to find analytically. It depends on the

average of the instant clock skew values at events 5 and 8, which in turn also depends on

initial clock skew.

To obtain the average handshake transmission speed, functional frequency sweep simula-

tions were performed. The testbench initially described in this section was used to measure

the number of synchronisations in a 1µs timespan. The number of synchronisations were

measured and compared to the number of synchronisations that the Gray and one-hot syn-

chronisers would perform in the same timespan. The results are shown in figure 3.13.

By analysing the results, a few previous observations can be reaffirmed. Firstly, that the

transmission domain has a more considerable impact on the synchronisation speed as can be

seen by the speed efficiency plots where, for example, if the transmission domain is much

faster than the reception domain then the efficiency is around 50% (figure 3.13b) and if the

reception domain is much faster then the efficiency is around 20% (figure 3.13d).

Another interesting remark is that speed efficiency is lowest when the frequencies are sim-

ilar. This is mostly related to higher average φ for these frequency ratios in events 5 and 8 of

table 3.4.
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Figure 3.13: Synchroniser tests – Handshake speed frequency sweep simulation results
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3.6 Summary

This chapter focused on providing a bridge between theory and implementation. Firstly, sec-

tion 3.1 described the functionality that the segmented buffer controller module must imple-

ment.

An architecture that provides base support for the desired functionality was presented in

3.2. The remainder of the chapter was focused on studying synchronisation schemes that can

fit into the architecture, detailing their implementation and trade-offs in sections 3.3 and 3.4.

Finally, the synchronisers were further studied in section 3.5 by performing speed and area

tests.

With this chapter, we are now on course for full implementation of the segmented buffer

controller module with an informed decision on what synchronisers to pick. Presenting the

final synchronisation architecture and results from the synchroniser integration will be the

goal for chapter 4.
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FROM the synchroniser candidates and results presented in chapter 3, it is now possible

to integrate synchronisers into our architecture (section 3.2) with a clearer understand-

ing of which are better for each situation. The synchroniser choice is dependant on design

constraints, which will be quickly re-summarised.

Section 3.1 mentions the primary design constraints. In particular, packets must be con-

firmed before they are actually transmitted. This means that the write pointers may jump

multiple positions in each clock cycle, disallowing the use of the Gray synchroniser. The read

pointers do not follow this restriction.

The existence of different constraints for the push and pop sides suggests that a hybrid

synchronisation architecture may present the most interesting results. Additionally, the FIFO

synchroniser can be useful as it provides the best area results for large segmented buffers.

The implemented module was designed to be parameterisable concerning its CDC archi-

tecture according to table 4.1. These architectures aim to provide the best synchronisers for

each specific configuration case. The default architecture can be used if there is no guarantee

on the clock frequency ratios. Otherwise, a synchroniser may be replaced by the FIFO if one

domain is known to be faster.

45
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Table 4.1: Implemented CDC architectures with corresponding synchroniser types

Architecture push2pop pop2push

1 Default Handshake Gray
2 Pop is faster FIFO Gray
3 Push is faster Handshake FIFO
4 CDC disabled – –

4.1 Implementation

The module was implemented at register-transfer level in SystemVerilog. Appendix A provides

an overview of the structure of the module.

This section will further detail some implementation aspects which are critical to the CDC

segmented buffer functionality. In particular, how segment counters are generated and how

they are used for RAM access and segment status calculation.

4.1.1 Counter and Pointer Generation

The read and write counters, one for each virtual FIFO, must be generated according to the

Gray subspace restrictions shown in figure 2.5. Afterwards, the virtual FIFO counters must be

mapped into the corresponding physical RAM address. This section describes the implemented

generation logic.

To place the counters in the corresponding Gray subspace, we must restrict counter start

(c t r_star t) and end (c t r_end) values according to equations 4.1 and 4.2. Note how these

equations simplify if the segment depth is a power of two.

Virtual FIFO counter generation follows circular FIFO logic coupled with counter start and

end restrictions, resulting in equation 4.3 which shows the forward counter value, i.e. the next

value the counter should take after one RAM access. The write-side counter generation has

additional conditional branching related to packet confirmation and cancellation; however,

this extraneous logic is not included in this section.

c t r_star t = addr_o f f set = 2dlog2(seg_dp)e − seg_dp (4.1)

c t r_end = 2 ∗ seg_dp+ addr_o f f set − 1 (4.2)

c t r_ f wd(c t r) =

¨

c t r + 1 c t r 6= c t r_end

ct r_star t c t r = c t r_end
(4.3)

The physical RAM was segmented according to section 1.1, defining segment address limits

according to equations 4.4 and 4.5. Remapping the counter value into the physical RAM
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address involves aligning the counter to RAM space and then adding the segment start address

to the aligned counter (equation 4.10).

Aligning the counter to RAM space involves removing the wrap-status bit and, if the bit is

not set, removing the initial address offset (equation 4.9). In essence, counters with set wrap-

status bit are considered to be aligned, and counters with reset status bit are considered to be

unaligned. Equations 4.6, 4.7 and 4.8 define the necessary wrap-status bit access and removal

logic. Note how RAM alignment address offset compensation is not needed for segment depths

that are powers of two.

ram_seg_star t(i) = i ∗ seg_dp, i ∈ 0, ..., (n_segs− 1) (4.4)

ram_seg_end(i) = (i + 1) ∗ seg_dp− 1, i ∈ 0, ..., (n_segs− 1) (4.5)

c t r_wd = dlog2(seg_dp)e+ 1 (4.6)

msb(c t r) = c t r[c t r_wd − 1] (4.7)

st r ip_msb(c t r) = c t r[c t r_wd − 2 : 0] (4.8)

al gn_c t r(c t r) = st r ip_msb(c t r)−

¨

0 msb(c t r) = 1

addr_o f f set msb(c t r) = 0
(4.9)

ram_pt r(seg, c t r) = al gn_c t r(c t r) + ram_seg_star t(seg) (4.10)

Figure 4.1 shows these counter and pointer equations put in practice. With a segment

depth of 6, virtual FIFO counter values are 4-bit wide, therefore allowing values from 0 to 15.

To respect Gray restrictions on wrap-around, the counter values which would typically range

from 0 to 11 must be shifted up two positions and count from c t r_star t = 2 to c t r_end =

13. When aligning to RAM, in addition to stripping the MSb of the counter which indicates

wrap-around state, we must match the counter values for both wrap-around states, which is

done by shifting the MSb = 0 counter half upwards 2 positions, linking the counter value

c t r_star t = b0010 to the counter value c t r_star t+seg_dp = b1000. Afterwards, the virtual

FIFO address is mapped to the physical segment 2 by adding ram_seg_star t(2) to the aligned

counter.

4.1.2 Segment Status Calculation

Segment status calculation is implemented as described in section 2.2.4.1 coupled with the

counter alignment logic of section 4.1.1. For this, the virtual FIFO push and pop counter
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Figure 4.1: Flow of the virtual counter to physical pointer remap for segment 2, seg_dp = 6

values (push_c t r and pop_c t r) must be used, each domain receiving the counter value of the

other domain through the synchronisers.

Empty status occurs when both virtual FIFO counters, including the wrap-status bit, are

equal. No counter alignment is necessary as empty status only occurs when both counters have

the same wrap-status bit, so empty status is simply the direct comparison of both counters, as

shown in equation 4.11.

Full status occurs when both aligned virtual FIFO counters are the equal (equation 4.12)

and the wrap-status bit is different (equation 4.13), meaning that the write pointer has lapped

the read pointer. Alignment is required because full status implies a comparison of counter

values for counters with different wrap-status, leading to equation 4.14.

seg_empt y(seg) =

¨

1 push_c t r(seg) = pop_c t r(seg)

0 otherwise
(4.11)

al gn_eq(seg) =

¨

1 al gn_c t r(push_c t r(seg)) = al gn_c t r(pop_c t r(seg))

0 otherwise
(4.12)

msb_eq(seg) =

¨

1 msb(push_c t r(seg)) = msb(pop_c t r(seg))

0 otherwise
(4.13)

seg_ f ul l(seg) =

¨

1 al gn_eq(seg) = 1∧msb_eq(seg) = 0

0 otherwise
(4.14)
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4.2 Verification

This section describes how the implemented module was verified. We start by describing the

main approach which consisted in the development of a dedicated testbench, followed by other

verification methodology.

4.2.1 Dedicated Testbench

Verification of synchronous-side logic was verified through the implementation of a dedicated

testbench. The testbench was extended to verify clock-domain crossing functionality through

the generation of clock signals with randomised frequency changes and injection of CDC jitter

in the fundamental synchronisation blocks. The testbench architecture follows the structure

shown in figure 4.2.

Overseer

Profiler

Timekeeper

Monitor

Push driver

Pop driver

DUT

RAM Model

Golden
Queue

Supervisor
(Scoreboard)

Test delegation Clock-dependant blocks Test inspection

Figure 4.2: Block diagram of the implemented dedicated testbench

The testbench is comprised of four primary blocks characterised by their functionality:

• Overseer: Main test coordination block which iteratively commands the test delegation

block to run tests and validates the results obtained by the test inspection block.

• Test delegation: Enables or disables the stimulus driving blocks. Composed by a profiler

that generates randomised behavioural attributes that characterise the target activity of

each driver. Composed by a timekeeper that generates reset and clock signals injected

with randomised frequency changes.
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• Clock-dependant blocks: All blocks that use the generated clock signals, including the

design under test (DUT) coupled with a RAM model block with simulated internal la-

tency. The DUT is driven by two stimulus generation blocks that follow the behavioural

rules set by the test delegation. For push operations, the push driver generates com-

pletely random data.

• Test inspection: This block is responsible for collecting stimulus data and inspecting

the resulting outputs for good behaviour. All data corresponding to kept elements is

stored on a golden data queue which gets compared to the DUT data output when a pop

command is asserted.

The test consists in the injection of push and pop commands according to a randomised

behavioural profile which follows the set of attributes in table 4.2. This profile-based verifica-

tion method is advantageous in terms of coverage as it allows increasing coverage metrics by

running more test iterations and can be extended for corner-cases by forcing attributes.

Push behaviour is defined by sets of safety types according to table 4.3. Limiting the maxi-

mum complexity of the push behaviour depending on profile allows isolation and easier iden-

tification of problematic stimulus types.

Table 4.2: Testbench – Behavioural profile attributes

Attribute Domain Description

Activity Both Likelihood of asserting a request
Curiosity Pop Likelihood of reading without moving to next element
Granularity Both Tendency to burst in smaller sizes
Safety type Push Set of allowed push command types
Volatility Push Tendency to drop packets

Table 4.3: Testbench – Push safety types

Action Non
volatile

Safe
volatile

Unsafe
volatile

Description

Start 3 3 3 Packet start
Push 3 3 3 Packet push
Keep 3 3 3 Packet confirm
Single push 3 3 3 Single-element packet push and confirm
Drop 7 3 3 Packet drop
Redrop 7 7 3 Drop on dropped
Restart 7 7 3 Start on started (implicit drop)
(Re)Drop-start 7 7 3 (Re)Drop + Start
(Re)Drop-start-keep 7 7 3 (Re)Drop + Single push

The testbench is capable of detecting both synchronous logic and CDC synchronisation

problems as it performs full data integrity and status flag validity checks on both domains.
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Bad synchronous logic would cause data corruption or erroneous status flag activation while

problematic CDC paths would cause corruption of the remote counter values, therefore causing

the same issues.

4.2.2 Other Verification Methods

Apart from the dedicated testbench designed to verify the module as a whole, we highlight

two other verification stages the design underwent:

• Segmented buffer drop-in replacement: This test was performed in order to ensure

full synchronous compatibility of the new segmented buffer (with integrated CDC) with

an existing segmented buffer (single-clocked). It consists in instantiating the new seg-

mented buffer alongside the old and assert output equivalence.

The module was instantiated in complete PCIe subsystems in three instances. Full data

equivalence was verified (with constant latency offsets of 0 to 2 clock cycles). Status flag

equivalence was verified on an allow-pessimism basis (i.e., single-clocked SBC implies

CDC SBC status flags, the opposite not being true) due to unavoidable CDC pessimism.

In two of the three instances, full single-clocked SBC removal and replacement was per-

formed. In the remaining instance, verification consisted in instantiating both modules

side-by-side and comparing the outputs of both modules. This side-by-side approach was

chosen due to the high difficulty of a full replacement for that particular instance, due

to block interconnect complexity. Figure 4.3 shows the block diagram of the performed

side-to-side verification.

Interface 
adapter

Single-clocked
SBC

CDC SBC
(CDC disabled)

push

pop

clk

RAM

RAM

Scoreboard

Figure 4.3: Block diagram of the performed side-by-side verification

• Automated checks: The design was checked for CDC issues by RTL analysis tool Spy-

glass CDC [11]. The tool was configured to run the CDC abstract, CDC structural and

clock reset integrity goals.



52 Implementation and Results

In order to use the tool, some configuration options must be passed first. The Gray en-

coded synchroniser requires specifying which signals are intended to be Gray encoded.

This both allows the tool to constrain the input signals and allow them to pass through

fundamental synchronisers without assuming incoherency in the resulting signal. The

handshake synchroniser requires listing the REQ and ACK signals, allowing sampling

triggers off those signals. Lastly, the FIFO synchroniser requires listing the shared mem-

ory, memory access pointers and FIFO input and output data buses.

4.3 Results and Discussion

Figure 4.4 shows the two compared CDC segmented buffer implementations. The comparison

is between the existing solution, a single-clocked segmented buffer in series with a generic CDC

FIFO (as described in chapter 1, shown in figure 4.4a), and the proposed solution consisting of

the implemented segmented buffer module with integrated CDC (figure 4.4b). Additionally,

for the proposed solution, the various CDC architectures shown in table 4.1 will be compared.

Standalone synthesis tests and functional performance tests will be carried out following

the configurations of the scenarios A and C previously shown in table 3.2. These scenarios

consist of a small configuration, with 4 segments of 18 depth each, and a large configuration,

with 256 segments of 18 depth each. All tests will have the CDC FIFO parameterised to allow

a maximum burst of one packet (18 elements).

CDC
FIFO SBC packet

pop

RAM

Transmission domain Reception domain

packet
push

RAM

(a) Existing solution

CDC
SBC

packet
pop

RAM

Transmission domain Reception domain

packet
push

(b) Proposed solution

Figure 4.4: Existing vs proposed CDC packet transmission solutions

4.3.1 Synthesis Results and Area Evaluation

Post-synthesis area results were obtained for TSMC 16nm FinFET technology. Synthesis was

performed in Design Compiler [10] and configured at Ultra High Effort with 30% clock uncer-

tainty and 30% input delay on all ports.
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Due to clock uncertainty, all paths must propagate in a maximum time of 70% of a nom-

inal clock period and, additionally, lack of registering on the input and output lowers this by

another 30% of a clock period. For example, a path that is neither registered at the input nor

the output has a maximum allowed propagation delay of 10% of a clock cycle.

A significant problem of the existing solution is the second RAM used for the generic CDC

FIFO. Not only is the final area cost worsened with the overhead of the additional RAM, but

it also adds significant difficulties to the place-&-route phase. In particular, some RAM data

widths are not supported by memory compilers, and one RAM may need to be split into mul-

tiple RAMs in order to support the data width.

After compilation, the extra RAM still presents layout difficulties [28]. The geometry of

the block is dependant on its parameterisation: shallow RAMs with large data widths translate

into long but thin rectangular layouts that may be hard to place. Furthermore, the RAM

must be physically placed as close as possible to the stakeholder modules in order to minimise

propagation delay, which further complicates placement.

Table 4.4 shows the synthesis area results for the scenarios. In terms of area, the imple-

mented module is larger across the board even with CDC disabled. This can be explained by

some factors:

• Removal of some segmented buffer controller optimisation logic that cannot be applied

to CDC designs.

• Functional differences, e.g., the existing SBC does not support changing push packet ID

without confirming or dropping the previous packet, while the proposed SBC does.

• In the proposed solution, CDC area scales logarithmically with the segmented buffer

size, while in the existing solution it is constant.

Table 4.4: Results – Area (in thousands of gates)

Solution Scenario A (4x18) Scenario C (256x18)

Existing 17.8 (37% of RAM) 66.3 (0.54% of RAM)
Proposed (Default) 37.6 (78% of RAM) 409.6 (3.35% of RAM)
Proposed (Pop faster) 40.5 (84% of RAM) 238.2 (1.95% of RAM)
Proposed (Psh. faster) 42.3 (88% of RAM) 396.0 (3.24% of RAM)
Proposed (CDC off) 26.3 (54% of RAM) 176.4 (1.44% of RAM)

Regardless, when comparing the SBC size to the total RAM size, the SBC area remains

reasonable and relative size decreases as segmented buffer size increases.

Table 4.5 shows synthesis success results at the 1 GHz working frequency goal for very

large segmented buffer configurations. Two versions of the proposed solution were checked,

one with support for pointer realignment as described in section 4.1.1 and another with this

pointer realignment logic removed, meaning loss of support for the Gray encoded synchroniser.
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Table 4.5: Results – Synthesis success for large configurations

Configuration Existing Proposed
with realign

Proposed
no realign

256x18 3 3 3

1024x18 3 3 3

2048x18 7 7 3

4096x18 – – 3

8192x18 – – 7

The critical path of the proposed solution with support for pointer realignment is the gener-

ation of the RAM write pointer. This critical path consists of the conditional branching required

by packet confirmation and cancellation followed by counter realignment logic and the addi-

tion of the RAM segment start offset. The removal of the counter realignment logic directly

improves the propagation delay of this path.

4.3.2 Performance Results

Performance results were obtained based on functional simulations that measure the minimum

amount of time required for the push side to write a given number of elements. The simulations

start from reset and end when the push side has successfully pushed the required amount of

elements.

A limitation of the existing implementation is performance degradation when the transmis-

sion clock domain is faster than the reception clock domain. The CDC FIFO is limited in size

and can fill, causing transmission side halting while waiting for the reception side to process

the pending elements. The proposed solution does not present this back-pressure limitation

until the packet storage RAM is full.

Tables 4.6 and 4.7 show the push time simulation results for the comparison scenarios. In

both tests, the burst was equal to the entire packet RAM depth. These tables represent the

results for the best-case scenario for the proposed solution, as any future pushes would be

limited by the reception domain, just like in the existing solution.

The obtained results are expected. Firstly, in the first column, both solutions perform

similarly. This similarity is observed due to the push side being able to work at maximum

speed on both solutions, as in the existing solution the pop domain can empty the CDC FIFO

faster than the push domain can fill it.

On the second column, with frequencies reversed, the performance gain is significant with

the new solution performing about twice as fast. The discrepancy between solutions is fur-

ther steepened on the third column, where the proposed solution performs about 16 times

better. These performance ratios are not coincidental; they are the ratio between the clock

frequencies.
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Table 4.6: Final tests – Time to complete burst – 4x18 – 72 element burst

Solution
4x18

Pop 1GHz
Push 500MHz

4x18
Pop 500 MHz
Push 1 GHz

4x18
Pop 62.5 MHz
Push 1 GHz

Existing 150 ns 162 ns 1272 ns
Proposed (Default) 154 ns 78 ns 78 ns
Proposed (Pop faster) 152 ns – –
Proposed (Psh. faster) – 79 ns 78 ns

Table 4.7: Final tests – Average pushes per ns – 256x18 – 4608 element burst

Solution
256x18

Pop 1GHz
Push 500MHz

256x18
Pop 500 MHz
Push 1 GHz

256x18
Pop 62.5 MHz
Push 1 GHz

Existing 0.47 0.49 0.06
Proposed (Default) 0.47 0.95 0.95
Proposed (Pop faster) 0.47 – –
Proposed (Psh. faster) – 0.95 0.95

The performance difference between both solutions can be explored algebraically. The

push domain is either limited by its clock or the reception domain clock. Let us formulate this

burst performance comparison by assuming two things: that the storage RAM depth is larger

than the CDC FIFO depth (ram_dp > f i f o_dp), and that the push domain is working faster

than the pop domain ( f _push > f _pop). These assumptions can be mirrored in domains if

the single-clocked SBC is placed in the pop domain.

In the existing solution, the push domain is limited by its clock until the synchronisation

FIFO fills, thereafter being limited by the pop domain clock. This can be approximated by just

assuming the FIFO will fill after f i f o_dp pushes, which gets more accurate as the frequency

ratio increases. Therefore, the number of successful pushes (n_pushes) vs the size of the burst

attempt (push_clks) in the existing solution can be described by equation 4.15.

Likewise, the proposed solution gets limited by the pop domain when the storage RAM

fills, as seen in equation 4.16.

With this, we can trace three operating regions:

1. push_clks ∈ [0, f i f o_dp]: Both solutions limited by the push clock

2. push_clks ∈ [ f i f o_dp, ram_dp]: Existing solution now limited by the pop clock

3. push_clks ∈ [ram_dp,∞]: Both solutions limited by the pop clock

The burst performance gain of the proposed solution is obtained by dividing the number

of successful pushes of both solutions in all operating regions, as described by equation 4.17.

These equations are plotted for the rightmost column in figure 4.5. In figure 4.5a, n_pushes1
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is represented for the existing solution and n_pushes2 for the proposed solution. The push

efficiency of the proposed solution is plotted in figure 4.5b.

n_pushes1(push_clks) =

(

push_clks push_clks ≤ f i f o_dp

f i f o_dp+
fpop

fpush
(push_clks− f i f o_dp) otherwise

(4.15)

n_pushes2(push_clks) =

(

push_clks push_clks ≤ ram_dp

ram_dp+
fpop

fpush
(push_clks− ram_dp) otherwise

(4.16)

n_pushes2

n_pushes1
(push_clks) =























1 push_clks ≤ f i f o_dp
push_clks

f i f o_dp+
fpop
fpush

(push_clks− f i f o_dp)
f i f o_dp < push_clks < ram_dp

� fpush
fpop
−1
�

· f i f o_dp+push_clks
� fpush

fpop
−1
�

·ram_dp+push_clks
otherwise

(4.17)
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Figure 4.5: Final tests – Burst performance comparison, 1 GHz to 62.5 MHz, 256 segments
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4.4 Summary

This chapter expands on the implementation of the proposed CDC SBC solution by formulat-

ing the virtual FIFO counter (equation 4.3) and RAM pointer (equation 4.10) generation logic

required for desired segmented buffer functionality with support for Gray encoded synchro-

nisation. Equations 4.11 and 4.14 formulate how the generated (and synchronised) virtual

FIFO counters can be used to calculate segment full and segment empty status information.

Section 4.2 aided the implementation sections by giving an overview of the used verification

methodology.

The proposed CDC SBC implementation was compared against a generic implementation

consisting of a single-clocked segmented buffer controller in series with a generic CDC FIFO.

The proposed solution incurs in an additional area cost that scales logarithmically with seg-

mented buffer size but provides a significant burst performance improvement that scales up

to the domain clock ratios. For the generic implementation to reach this burst performance

improvement, it would need another RAM the size of the packet storage RAM dedicated to

synchronisation.

The proposed solution also provides other functional improvements, such as being able to

provide segment status information directly to both clock domains. In the generic solution,

this would require the addition of another synchroniser.
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Conclusions and Future Work

Chapter Outline
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AN ASIC module, consisting of a segmented buffer with integrated CDC, was designed and

implemented. In terms of IC design flow progress, the work spanned the logic specifica-

tion, logic design and early synthesis stages.

The performed work explored various concepts of clock domain crossing and data trans-

mission. It presented an architecture designed to be resilient against the latency and jitter

inherent to CDC, translating to a design where all single-clocked blocks show pessimistic be-

haviour until confirmation of non-worst-case status arrives through the synchronisation blocks.

The work provides insight on typical synchronisation structures and their tradeoffs, their im-

plementation and impact in physical metastability mitigation.

The implemented module feature set allows the usage of this segmented buffer in real PCIe

devices. Aside from the development of a dedicated testbench, verification efforts included its

instantiation alongside and, in some cases, full replacement of the previous segmented buffer

solution in PCIe device configurations, although full integration on a PCIe subsystem requires

changes outside of the scope of this work. Early synthesis results indicate successful synthesis

at the 1 GHz goal for TSMC 16nm FinFET even for very large segmented buffers, up to 4096

segments. Due to this, the module is preliminarily viable for full integration in industry PCIe

IP.

5.1 Review of Initial Questions

The questions posed in section 1.1 laid the groundwork for the goals of this dissertation by

presenting a few key questions. Here, we would like to present a review of these questions

and how they were explored.

59
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• Question 1. How do we map data transactions between functional blocks into a simple

structure that facilitates asynchronous processing?

This question highlights how the module was intended to fit into the bigger picture of

SoC interconnect. While not intended to be explored in-depth, it formulates the main

functional aspects of the module. Figures 1.1 and 1.2 present the data structure, which

is based on existing Synopsys designs.

This data structure facilitates asynchronous processing through two main approaches.

Firstly, packet confirmation or cancellation allows the transmitting domain to continu-

ously write a data stream which does not have to be confirmed as valid immediately,

allowing processing blocks to work in parallel with control blocks. Secondly, the as-

signment of a packet to a unique ID allows packets to be transmitted out of order and

optionally re-ordered at reception. In the request/completion application shown in fig-

ure 1.2, this allows devices to send and receive request and completion data without

requiring additional processing order control.

• Question 2. How do we map this data structure onto a physical memory?

This question highlights another important aspect of the module as it is intended to

control a single external RAM, which in turn serves as a shared platform for data storage.

Mapping this data structure to RAM consists in assigning address regions to each data

packet, as shown in figure 1.3. Similarly to question 1, this question was intended to

build a base for the functional specification of the module and not intended to be stud-

ied in-depth. Some consequences of this RAM address mapping were further explored

in sections 2.2.4.1 and 4.1.2, which shows how these RAM addresses can be used to cal-

culate segment status flags, and sections 3.3.1 and 4.1.1, in which these RAM address

regions must be compensated with an offset in order to allow segment depths that are

not powers of two.

• Question 3. How do we allow this physical memory to be safely shared by two clock

domains?

This question provides the main point of exploration of this dissertation – the conse-

quences of the consideration of this question span the entire length of the document.

Chapter 2 served as a starting point, which revealed the critical problems of data shar-

ing across clock domains. Chapters 3 and 4 detail the progress towards an architecture

and module implementation that allow integration of CDC into the module. The goal of

this CDC integration is to provide the domain-crossing conditions required for safe data

sharing.

• Question 4. How do we do this while maximising performance?

This question highlights a metric of quality that must be achieved through the devel-

opment of the module. The question sets the goal to achieve the maximum module
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performance while retaining acceptable area constrains. To achieve these restrictions,

synchroniser performance was tested through RTL simulation as shown in section 3.5,

and the full SBC implementation performance in section 4.3.2. Furthermore, the module

must be designed to achieve high synthesis frequencies, meaning RAM address alloca-

tion and status flag calculation needs short combinational paths, thus studied in sections

2.2.4.1 and 4.1.1. Additionally, the architecture presented in section 3.2 had not only to

be designed accounting for the latency and jitter of CDC but also to minimise latency to

RAM access and to synchronisation across the push and pop sides. Chapter 4 presents

an evaluation of the final module on this metric.

5.2 Future Work

The work presented in this thesis can be further explored and improved. We suggest the

following routes:

• Improved comparisons and benchmarks: The performance evaluation for both the

synchroniser tests (section 3.5.2) and the final module tests (section 4.3.2) were per-

formed in standalone tests designed with this module in mind. This type of evaluation

can result in a biased comparison and a better way to approach this evaluation would

be to implement these changes in generic benchmarks (e.g., Gaussian Blur, Matrix Ad-

dition, Edge Detection, ...). Implementing generic benchmarks would require either

finding benchmarks directly suited to testing CDC or adapting other benchmarks for this

purpose.

• Sharing the same RAM for packet data and synchronisation data: The implemented

module uses the RAM solely for the storage of packet data, with CDC data synchronisa-

tion handled externally in flip-flop-based logic. For very large segmented buffers this is

not ideal as the flip-flop utilisation may grow to proportions where it would benefit from

a dedicated RAM. An alternative to this is to store synchronisation data alongside packet

data in the RAM. For example, the RAM data could be concatenated with an extra bit

that indicates if there is more data available to read. When popping, the pop side could

calculate “empty” status directly from this bit. Another option is having a dedicated

memory region where all synchronisation data is stored. The main difficulty behind

this is handling RAM access, as it would require developing a system that switches from

packet read and write to pointer synchronisation activity. Furthermore, a small addi-

tional synchronisation mechanism would be required to avoid simultaneous accesses to

synchronisation memory regions.

• Dynamic segment sizes: A significant limitation of the proposed design are the hard

boundaries in segment size. Segment depth is static and defined through parameteri-

sation to be equal to the MTU, which results in relatively inefficient usage of the RAM
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space as in some cases the segments could remain empty almost all of the time, awaiting

packet arrival.

RAM utilisation efficiency can be improved through various approaches in exploration

of dynamic memory architectures. One approach is reworking RAM address abstraction

to allow flexible segment size, allowing a reduction of the RAM size. However, flexi-

ble segment sizes introduce other conceptual issues. If the segmented buffer controller

allows one segment to take the entire RAM space, packets may be completely blocked

from entry, causing propagation of back-pressure through the system. The implemen-

tation of a dynamic segment depth solution provides an opportunity for the study and

development of a scheduler or arbiter that manages quality of service.



Appendix A

Implementation: SysML to

SystemVerilog

The module implementation followed Synopsys methodology consisting of automatic RTL gen-

eration from SysML based on work by Oliveira et al. [24]. This appendix includes the relevant

SysML Enterprise Architect [30] structural diagrams.

«enumeration,enumSV»
pushCommand_e

 E_PUSH_IDLE = 3'b000
 E_START = 3'b001
 E_DROP = 3'b010
 E_KEEP = 3'b011
 E_PUSH = 3'b100
 E_DROPSTART = 3'b101

«enumeration,enumSV»
popCommand_e

 E_POP_IDLE = 2'b00
 E_POP = 2'b01
 E_PEEK = 2'b10

«enumeration,enumSV»
syncType_e

 E_SYNC_HSK = 2'b00
 E_SYNC_GRAY = 2'b01
 E_SYNC_FIFO = 2'b10
 E_SYNC_OFF = 2'b11

«enumeration,enumSV»
syncArch_e

 E_DEFAULT_ARCH = 2'b00
 E_PSH_FASTER = 2'b01
 E_POP_FASTER = 2'b10
 E_CDC_DISABLED = 2'b11

«enumeration,enumSV»
bool_e

 E_TRUE = 1'b1
 E_FALSE = 1'b0

Figure A.1: SysML SystemVerilog enumeration definitions
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b_clk:
DW_sbc_cdc_clk_if

b_push: DW_sbc_cdc_push_if

b_pop: DW_sbc_cdc_pop_if

b_finfo: DW_sbc_cdc_f_info_if

b_einfo: DW_sbc_cdc_e_info_if

b_ramw: ramWr_if

b_ramr: ramRd_if

P_NSEGS : parameter = 4
P_RAM_W : parameter = 64
P_RAM_AW : parameter = 6
P_HOLD_RADDR : parameter = 1
P_SEG_AW : parameter = $clog2(P_NSEGS)
P_SEG_DP : parameter = 16
LP_CTR_W : localparam = $clog2(P_SEG_DP)+1
syncArch_e P_CDC_ARCH : parameter = E_DEFAULT_ARCH
P_FIFO_DP : parameter = 8
syncType_e LP_PUSH2POP_SYNCTYPE : localparam = getPush2popSyncType(P_CDC_ARCH)
syncType_e LP_POP2PUSH_SYNCTYPE : localparam = getPop2pushSyncType(P_CDC_ARCH)
P_RAM_LATENCY : parameter = 1
P_FFLAGS_EARLY : parameter = 0
P_EFLAGS_EARLY : parameter = 0

DW_sbc_cdc

b_clk:
DW_sbc_cdc_clk_if

b_push: DW_sbc_cdc_push_if

b_pop: DW_sbc_cdc_pop_if

b_finfo: DW_sbc_cdc_f_info_if

b_einfo: DW_sbc_cdc_e_info_if

b_ramw: ramWr_if

b_ramr: ramRd_if

Figure A.2: SysML SystemVerilog top-level block definition



Implementation: SysML to SystemVerilog 65

«interfaceBlock»
DW_sbc_cdc_clk_if

~ pop_clk: logic = master_out
~ pop_rst_n: logic = master_out
~ push_clk: logic = master_out
~ push_rst_n: logic = master_out

DW_sbc_cdc_pkg : DW_sbc_cdc_pkg

«interfaceBlock»

LP_CTR_W : parameter = 5

DW_sbc_cdc_push_ctl_if

~ pop_ctr_remote: logic [P_NSEGS-1:0] [LP_CTR_W-1:0] = master_out
~ push_ctr_local: logic [P_NSEGS-1:0] [LP_CTR_W-1:0] = master_in

«interfaceBlock»

P_NSEGS : parameter = 4
P_RAM_W : parameter = 64
P_SEG_AW : parameter = $clog2(P_NSEGS)

DW_sbc_cdc_push_base_if

~ push: pushCommand_e = master_out
~ push_data: logic [P_RAM_W-1:0] = master_out
~ push_seg: logic [P_SEG_AW-1:0] = master_out

«interfaceBlock»

LP_CTR_W : parameter = 5
P_NSEGS : parameter = 4
P_SEG_AW : parameter = 2

DW_sbc_cdc_sync_if

~ active_last: logic = master_out
~ counter: logic [P_NSEGS-1:0] [LP_CTR_W-1:0] = master_out
~ seg_active_last: logic [P_SEG_AW-1:0] = master_out

«interfaceBlock»

P_NSEGS : parameter = 4
LP_CTR_W : parameter = 5

DW_sbc_cdc_f_info_if

~ full: logic [P_NSEGS-1:0] = master_out
~ full_m1: logic [P_NSEGS-1:0] = master_out

«interfaceBlock»

P_NSEGS : parameter = 5
P_SEG_AW : parameter = $clog2(P_NSEGS)

DW_sbc_cdc_pop_base_if

~ pop: popCommand_e = master_in
~ pop_seg: logic [P_SEG_AW-1:0] = master_in

«interfaceBlock»

P_RAM_W : parameter = 64

DW_sbc_cdc_pop_data_base_if

~ pop_data_d: logic [P_RAM_W-1:0] = master_out
~ pop_data_valid: logic = master_out

«interfaceBlock»
DW_sbc_cdc_push_if

«interfaceBlock»
DW_sbc_cdc_pop_if «interfaceBlock»

LP_CTR_W : parameter = 5

DW_sbc_cdc_pop_ctl_if

~ pop_ctr_local: logic [P_NSEGS-1:0] [LP_CTR_W-1:0] = master_out
~ push_ctr_remote: logic [P_NSEGS-1:0] [LP_CTR_W-1:0] = master_in

«interfaceBlock»

P_NSEGS : parameter = 4
LP_CTR_W : parameter = 5

DW_sbc_cdc_e_info_if

~ empty: logic [P_NSEGS-1:0] = master_out
~ empty_p1: logic [P_NSEGS-1:0] = master_out

«interfaceBlock»

P_RAM_W : parameter = 64
P_RAM_AW : parameter = 6

ramRd_if

~ raddr: logic [P_RAM_AW-1:0] = master_in
~ rdata: logic [P_RAM_W-1:0] = master_out
~ ren_n: logic = master_in

«interfaceBlock»

P_RAM_W : parameter = 64
P_RAM_AW : parameter = 6

ramWr_if

~ waddr: logic [P_RAM_AW-1:0] = master_out
~ wdata: logic [P_RAM_W-1:0] = master_out
~ wen_n: logic = master_out

«interfaceBlock»

LP_CTR_W : parameter = 5
P_NSEGS : parameter = 4

DW_sbc_cdc_counters_if

~ pop_ctr: logic [P_NSEGS-1:0] [LP_CTR_W-1:0] = master_out
~ pop_ctr_nxt: logic [P_NSEGS-1:0] [LP_CTR_W-1:0] = master_out
~ push_ctr: logic [P_NSEGS-1:0] [LP_CTR_W-1:0] = master_out
~ push_ctr_nxt: logic [P_NSEGS-1:0] [LP_CTR_W-1:0] = master_out

«import»

«import»

«import»

Figure A.3: SysML SystemVerilog interface hierarchy
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«flowPort» b_push:
DW_sbc_cdc_push_if

«flowPort» b_clk

«flowPort» b_ramw:
ramWr_if

«flowPort» b_finfo:
DW_sbc_cdc_f_info_if

«flowPort» b_ramr:
ramRd_if

«flowPort» b_einfo:
DW_sbc_cdc_e_info_if

«flowPort» b_pop:
DW_sbc_cdc_pop_if

ibd [block] DW_sbc_cdc [DW_sbc_cdc]

«flowPort» b_push:
DW_sbc_cdc_push_if

«flowPort» b_clk

«flowPort» b_ramw:
ramWr_if

«flowPort» b_finfo:
DW_sbc_cdc_f_info_if

«flowPort» b_ramr:
ramRd_if

«flowPort» b_einfo:
DW_sbc_cdc_e_info_if

«flowPort» b_pop:
DW_sbc_cdc_pop_if

«flowPort» /b_clk

«flowPort» /b_push_sync_local

«flowPort» /b_push_ctl

«flowPort» /b_push

«flowPort» /b_pop_sync_remote

u_push_tap: 
DW_sbc_cdc_push_tap

«flowPort» /b_clk

«flowPort» /b_push_sync_local

«flowPort» /b_push_ctl

«flowPort» /b_push

«flowPort» /b_pop_sync_remote

«flowPort» /b_sync_ib

«flowPort» /b_sync_ob

«flowPort» /b_clk

u_push2pop: 
DW_sbc_cdc_sync_wrapper

«flowPort» /b_sync_ib

«flowPort» /b_sync_ob

«flowPort» /b_clk

«flowPort» /b_clk

«flowPort» /b_pop

«flowPort» /b_pop_ctl

«flowPort» /b_pop_sync_local «flowPort» /b_push_sync_remote

u_pop_tap: DW_sbc_cdc_pop_tap

«flowPort» /b_clk

«flowPort» /b_pop

«flowPort» /b_pop_ctl

«flowPort» /b_pop_sync_local «flowPort» /b_push_sync_remote

«flowPort» /b_clk

«flowPort» /b_sync_ib

«flowPort» /b_sync_ob

u_pop2push: 
DW_sbc_cdc_sync_wrapper

«flowPort» /b_clk

«flowPort» /b_sync_ib

«flowPort» /b_sync_ob

«flowPort» /b_clk

«flowPort» /b_push_ctl

«flowPort» /b_ramw

«flowPort» /b_finfo

u_push_ctl: 
DW_sbc_cdc_push_ctl

«flowPort» /b_clk

«flowPort» /b_push_ctl

«flowPort» /b_ramw

«flowPort» /b_finfo

«flowPort» /b_pop_ctl
«flowPort» /b_ramr

«flowPort» /b_einfo«flowPort» /b_clk

u_pop_ctl: DW_sbc_cdc_pop_ctl

«flowPort» /b_pop_ctl
«flowPort» /b_ramr

«flowPort» /b_einfo«flowPort» /b_clk

{LP_CTR_W,
P_NSEGS,
P_SEG_AW}

{LP_CTR_W,
P_NSEGS,
P_RAM_W,
P_SEG_AW}

{LP_CTR_W,
P_NSEGS,

P_SEG_AW}

{LP_CTR_W,
P_NSEGS,
P_SEG_AW}

{LP_CTR_W,
P_NSEGS,
P_SEG_AW}

{LP_CTR_W,
P_NSEGS,
P_RAM_W,
P_SEG_AW}

Figure A.4: SysML SystemVerilog top-level internal block diagram
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