117 research outputs found

    Total Phosphorus and Nitrogen Dynamics and Influencing Factors in Dongting Lake Using Landsat Data

    Get PDF
    Total phosphorus (TP) and total nitrogen (TN) reflect the state of eutrophication. However, traditional point-based water quality monitoring methods are time-consuming and labor-intensive, and insufficient to estimate and assess water quality at a large scale. In this paper, we constructed machine learning models for TP and TN inversion using measured data and satellite imagery band reflectance, and verified it by in situ data. Atmospheric correction was performed on the Landsat Top of Atmosphere (TOP) data by removing the effect of the adjacency effect and correcting differences between Landsat sensors. Then, using the established model, the TP and TN patterns in Dongting Lake with a spatial resolution of 30 m from 1996 to 2021 were derived for the first time. The annual and monthly spatio-temporal variation characteristics of TP and TN in Dongting Lake were investigated in details, and the influences of hydrometeorological elements on water quality variations were analyzed. The results show that the established empirical model can accurately estimate TP with coefficient (R2) ≥ 0.70, root mean square error (RMSE) ≤ 0.057 mg/L, mean relative error (MRE) ≤ 0.23 and TN with R2 ≥ 0.73, RMSE ≤ 0.48 mg/L and MRE ≤ 0.20. From 1996 to 2021, TP in Dongting Lake showed a downward trend and TN showed an upward trend, while the summer value was much higher than the other seasons. Furthermore, the influencing factors on TP and TN variations were investigated and discussed. Between 1996 and 2003, the main contributors to the change of water quality in Dongting Lake were external inputs such as water level and flow. The significant changes in water quantity and sediment characteristics following the operation of the Three Gorges Dam (TGD) in 2003 also had an impact on the water quality in Dongting Lake

    Use of Hyperspectral Remote Sensing to Estimate Water Quality

    Get PDF
    Approximating and forecasting water variables like phosphorus, nitrogen, chlorophyll, dissolved organic matter, and turbidity are of supreme importance due to their strong influence on water resource quality. This chapter is aimed at showing the practicability of merging water quality observations from remote sensing with water quality modeling for efficient and effective monitoring of water quality. We examine the spatial dynamics of water quality with hyperspectral remote sensing and present approaches that can be used to estimate water quality using hyperspectral images. The methods presented here have been embraced because the blue-green and green algae peak wavelengths reflectance are close together and make their distinction more challenging. It has also been established that hyperspectral imagers permit an improved recognition of chlorophyll and hereafter algae, due to acquired narrow spectral bands between 450 nm and 600 nm. We start by describing the practical application of hyperspectral remote sensing data in water quality modeling. The surface inherent optical properties of absorption and backscattering of chlorophyll a, colored dissolved organic matter (CDOM), and turbidity are estimated, and a detailed approach on analyzing ARCHER data for water quality estimation is presented

    Remote sensing and bio-geo-optical properties of turbid, productive inland waters: a case study of Lake Balaton

    Get PDF
    Algal blooms plague freshwaters across the globe, as increased nutrient loads lead to eutrophication of inland waters and the presence of potentially harmful cyanobacteria. In this context, remote sensing is a valuable approach to monitor water quality over broad temporal and spatial scales. However, there remain several challenges to the accurate retrieval of water quality parameters, and the research in this thesis investigates these in an optically complex lake (Lake Balaton, Hungary). This study found that bulk and specific inherent optical properties [(S)IOPs] showed significant spatial variability over the trophic gradient in Lake Balaton. The relationships between (S)IOPs and biogeochemical parameters differed from those reported in ocean and coastal waters due to the high proportion of particulate inorganic matter (PIM). Furthermore, wind-driven resuspension of mineral sediments attributed a high proportion of total attenuation to particulate scattering and increased the mean refractive index (n̅p) of the particle assemblage. Phytoplankton pigment concentrations [chlorophyll-a (Chl-a) and phycocyanin (PC)] were also accurately retrieved from a times series of satellite data over Lake Balaton using semi-analytical algorithms. Conincident (S)IOP data allowed for investigation of the errors within these algorithms, indicating overestimation of phytoplankton absorption [aph(665)] and underestimation of the Chl-a specific absorption coefficient [a*ph(665)]. Finally, Chl-a concentrations were accurately retrieved in a multiscale remote sensing study using the Normalized Difference Chlorophyll Index (NDCI), indicating hyperspectral data is not necessary to retrieve accurate pigment concentrations but does capture the subtle heterogeneity of phytoplankton spatial distribution. The results of this thesis provide a positive outlook for the future of inland water remote sensing, particularly in light of contemporary satellite instruments with continued or improved radiometric, spectral, spatial and temporal coverage. Furthermore, the value of coincident (S)IOP data is highlighted and contributes towards the improvement of remote sensing pigment retrieval in optically complex waters

    A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques

    Get PDF
    Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM), chlorophyll-a, and pollutants). A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water’s surface. In this review paper, various properties (spectral, spatial and temporal, etc.) of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD)

    Remote Estimation of Regional Lake Clarity with Landsat TM and MODIS Satellite Imagery

    Get PDF
    Water clarity is an ideal metric of regional water quality because clarity can be accurately and efficiently estimated remotely on a landscape scale. Remote sensing of water quality is useful in regions containing numerous lakes that are prohibitively expensive to monitor regularly using traditional field methods. Field-assessed lakes generally are easily accessible and may represent a spatially irregular, non-random sample. Remote sensing provides a more complete spatial perspective of regional water quality than existing, interest-based sampling; however, field sampling accomplished under existing monitoring programs can be used to calibrate accurate remote water clarity estimation models. We developed a remote monitoring procedure for clarity of Maine lakes using Landsat Thematic Mapper (TM) and Moderate-Resolution Imaging Spectroradiometer (MODIS) satellite imagery. Similar Landsat-based procedures have been implemented for Minnesota and Wisconsin lakes, however, we modified existing methods by incorporating physical lake variables and landscape characteristics that affect water clarity on a landscape scale. No published studies exist using MODIS data for remote lake monitoring owing to the coarse spatial resolution (500 m) (Landsat=30 m), however, daily image capture is an important advantage over Landsat (16 days). We estimated secchi disk depth during 1990-2010 using Landsat imagery (1,511 lakes) and during 2001-2010 using MODIS imagery (83 lakes) using multivariate linear regression (Landsat: R²=0.69-0.89; 9 models; MODIS: R²=0.72-0.94; 14 models). Landsat is useful for long-term monitoring of lakes \u3e 8 ha and MODIS is applicable to annual and within-year monitoring of large lakes (\u3e 400 ha). An important application of remote lake monitoring is the detection of spatial and temporal patterns in regional water quality and potential downward shifts in trophic status. We applied the Landsat-based methods to examine trends in Maine water clarity during 1995-2010. Remote change detection of water clarity should be based on August and early September (late summer) imagery only owing to seasonally poor clarity conditions and stratification dynamics, so our analysis was restricted to years in which late summer imagery were available. We focused on the overlap region between Landsat TM paths 11-12 to increase late summer image availability. We divided Maine intro three lake regions (northeastern, south-central and western) to examine spatial patterns in lake clarity. The overlap region contains 570 lakes \u3e 8 ha and covers the entire north-south gradient of Maine. We found an overall decrease in average statewide lake water clarity of 4.94-4.38 m during 1995-2010. Water clarity ranged 4-6 m during 1995-2010, but consistently decreased during 2005-2010. Clarity in both the northeastern and western regions has experienced declines from 5.22 m in 1995 to 4.36 and 4.21 m respectively in 2010, whereas clarity in the south-central region remained unchanged since 1995 (4.50 m)

    Water Quality Modelling Using Multivariate Statistical Analysis and Remote Sensing in South Florida

    Get PDF
    The overall objective of this dissertation research is to understand the spatiotemporal dynamics of water quality parameters in different water bodies of South Florida. Two major approaches (multivariate statistical techniques and remote sensing) were used in this study. Multivariate statistical techniques include cluster analysis (CA), principal component analysis (PCA), factor analysis (FA), discriminant analysis (DA), absolute principal component score-multiple linear regression (APCS-MLR) and PMF receptor modeling techniques were used to assess the water quality and identify and quantify the potential pollution sources affecting the water quality of three major rivers of South Florida. For this purpose, a 15-year (2000–2014) data set of 12 water quality variables, and about 35,000 observations were used. Agglomerative hierarchical CA grouped 16 monitoring sites into three groups (low pollution, moderate pollution, and high pollution) based on their similarity of water quality characteristics. DA, as an important data reduction method, was used to assess the water pollution status and analysis of its spatiotemporal variation. PCA/FA identified potential pollution sources in wet and dry seasons, respectively, and the effective mechanisms, rules, and causes were explained. The APCS-MLR and PMF models apportioned their contributions to each water quality variable. Also, the bio-physical parameters associated with the water quality of the two important water bodies of Lake Okeechobee and Florida Bay were investigated based on remotely sensed data. The principal objective of this part of the study is to monitor and assess the spatial and temporal changes of water quality using the application of integrated remote sensing, GIS data, and statistical techniques. The optical bands in the region from blue to near infrared and all the possible band ratios were used to explore the relation between the reflectance of a waterbody and observed data. The developed MLR models appeared to be promising for monitoring and predicting the spatiotemporal dynamics of optically active and inactive water quality characteristics in Lake Okeechobee and Florida Bay. It is believed that the results of this study could be very useful to local authorities for the control and management of pollution and better protection of water quality in the most important water bodies of South Florida

    Satellite monitoring of harmful algal blooms in the Western Basin of Lake Erie: A 20-year time-series

    Get PDF
    Blooms of harmful cyanobacteria (cyanoHABs) have occurred on an annual basis in western Lake Erie for more than a decade. Previously, we developed and validated an algorithm to map the extent of the submerged and surface scum components of cyanoHABs using MODIS ocean-color satellite data. The algorithm maps submerged cyanoHABs by identifying high chlorophyll concentrations (\u3e18 mg/m3) combined with water temperature \u3e20 °C, while cyanoHABs surface scums are mapped using near-infrared reflectance values. Here, we adapted this algorithm for the SeaWiFS sensor to map the annual areal extents of cyanoHABs in the Western Basin of Lake Erie for the 20-year period from 1998 to 2017. The resulting classified maps were validated by comparison with historical in situ measurements, exhibiting good agreement (81% accuracy). Trends in the annual mean and maximum total submerged and surface scum extents demonstrated significant positive increases from 1998 to 2017. There was also an apparent 76% increase in year-to-year variability of mean annual extent between the 1998–2010 and 2011–2017 periods. The 1998–2017 time-series was also compared with several different river discharge nutrient loading metrics to assess the ability to predict annual cyanoHAB extents. The prediction models displayed significant relationships between spring discharge and cyanoHAB area; however, substantial variance remained unexplained due in part to the presence of very large blooms occurring in 2013 and 2015. This new multi-sensor time-series and associated statistics extend the current understanding of the extent, location, duration, and temporal patterns of cyanoHABs in western Lake Erie

    Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index

    Get PDF
    Eutrophication of inland waters is considered a serious global environmental problem. Satellite remote sensing (RS) has been established as an important source of information to determine the trophic state of inland waters through the retrieval of optically active water quality parameters such as chlorophyll-a (Chl-a). However, the use of RS techniques for assessment of the trophic state of inland waters on a global scale is hindered by the performance of retrieval algorithms over highly dynamic and complex optical properties that characterize many of these systems. In this study, we developed a new RS approach to assess the trophic state of global inland water bodies based on Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and the Forel-Ule index (FUI). First, the FUI was calculated from MODIS data by dividing natural water colour into 21 indices from dark blue to yellowish-brown. Then the relationship between FUI and the trophic state index (TSI) was established based on in-situ measurements and MODIS products. The water-leaving reflectance at 645 nm band was employed to distinguish coloured dissolved organic matter (CDOM)-dominated systems in the FUI-based trophic state assessment. Based on the analysis, the FUI-based trophic state assessment method was developed and applied to assess the trophic states of 2058 large inland water bodies (surface area >25 km2) distributed around the world using MODIS data from the austral and boreal summers of 2012. Our results showed that FUI can be retrieved from MODIS with a considerable accuracy (92.5%, R2 = 0.92) by comparing with concurrent in situ measurements over a wide range of lakes, and the overall accuracy of the FUI-based trophic state assessment method is 80.0% (R2 = 0.75) validated by an independent dataset. Of the global large water bodies considered, oligotrophic large lakes were found to be concentrated in plateau regions in central Asia and southern South America, while eutrophic large lakes were concentrated in central Africa, eastern Asia, and mid-northern and southeast North America

    Extraction of Spatial and Temporal Patterns of Concentrations of Chlorophyll-a and Total Suspended Matter in Poyang Lake Using GF-1 Satellite Data

    Get PDF
    Poyang Lake is the largest freshwater lake in China. Its ecosystem services and functions, such as water conservation and the sustaining of biodiversity, have significant impacts on the security and sustainability of the regional ecology. The lake and wetlands of the Poyang Lake are among protected aquatic ecosystems with global significance. The Poyang Lake region has recently experienced increased urbanization and anthropogenic disturbances, which has greatly impacted the lake environment. The concentrations of chlorophyll-a (Chl-a) and total suspended matter (TSM) are important indicators for assessing the water quality of lakes. In this study, we used data from the Gaofen-1 (GF-1) satellite, in situ measurements of the reflectance of the lake water, and the analysis of the Chl-a and TSM concentrations of lake water samples to investigate the spatial and temporal variation and distribution patterns of the concentrations of Chl-a and TSM. We analyzed the measured reflectance spectra and conducted correlation analysis to identify the spectral bands that are sensitive to the concentration of Chl-a and TSM, respectively. The study suggested that the wavelengths corresponding to bands 1, 3, and 4 of the GF-1 images were the most sensitive to changes in the concentration of Chl-a. The results showed that the correlation between the reflectance and TSM concentration was the highest for wavelengths that corresponded to band 3 of the GF-1 satellite images. Based on the analysis, bands 1, 3, and 4 of GF-1 were selected while using the APPEL (APProach by ELimination) model and were used to establish a model for the retrieval of Chl-a concentrations. A single-band model that was based on band 3 of GF-1 was established for the retrieval of TSM concentrations. The modeling results revealed the spatial and temporal variations of water quality in Poyang Lake between 2015 and 2016 and demonstrated the capacities of GF-1 in the monitoring of lake environment
    corecore