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Chapter

Use of Hyperspectral Remote 
Sensing to Estimate Water Quality
Mbongowo Mbuh

Abstract

Approximating and forecasting water variables like phosphorus, nitrogen, 
chlorophyll, dissolved organic matter, and turbidity are of supreme importance due 
to their strong influence on water resource quality. This chapter is aimed at showing 
the practicability of merging water quality observations from remote sensing with 
water quality modeling for efficient and effective monitoring of water quality. We 
examine the spatial dynamics of water quality with hyperspectral remote sensing 
and present approaches that can be used to estimate water quality using hyperspec-
tral images. The methods presented here have been embraced because the blue-
green and green algae peak wavelengths reflectance are close together and make 
their distinction more challenging. It has also been established that hyperspectral 
imagers permit an improved recognition of chlorophyll and hereafter algae, due to 
acquired narrow spectral bands between 450 nm and 600 nm. We start by describ-
ing the practical application of hyperspectral remote sensing data in water quality 
modeling. The surface inherent optical properties of absorption and backscatter-
ing of chlorophyll a, colored dissolved organic matter (CDOM), and turbidity are 
estimated, and a detailed approach on analyzing ARCHER data for water quality 
estimation is presented.

Keywords: water quality, field spectroscopy, ARCHER, chlorophyll a, colored 
dissolved organic matter, turbidity, total phosphorus, nitrogen

1. Introduction

Water is one of the valuable and essential resources of life on earth. There is ever-
increasing stress on water resources, and as population increases, there is an ever-
increasing pressure placed on water resources [1–3]. Several nations depend on water 
resources for economic growth [4]. Water serves as a source of food, income, and 
livelihood for many [4, 5]. Equally, important information on resources that support 
life in an ecosystem is delivered by the quality of surface water [6]. An increase in 
water pollution deteriorates water quality and also threatens human health, aquatic 
ecosystem balance, economic development, and social prosperity [7, 8].

Supportable water resources management requires continuous and accurate 
monitoring. Satellite observations [1, 9] have provided data for such tracking for 
several years [10] and have served at a time- and the cost-effective way to carry 
out large-scale monitoring [11, 12]. Water pollution is an important environmental 
issue, further limiting the availability of water for human and environmental 
use [1, 13]. Though nutrients are indispensable for plant and animal growth and 
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nourishment, an excess of some nutrients in water can disturb the river [1, 14, 15]. 
Excellent and clear water is imperative to the plants and animals that live in any 
watershed.

A significant difficulty in assessing surface water quality is identifying the 
sources of pollutants and the contribution of the parameters/variables that explain 
water quality variation [1, 6, 16–18]. Determining the conditions and parameters of 
water quality is one of the significant advantages of hyperspectral remote sens-
ing technologies. Hyperspectral reflectance technology has been broadly used to 
examine and monitor the water quality conditions of many open water aquatic eco-
systems [19, 20]. Hyperspectral remote sensing has been used to characterize algal 
blooms [21] and assess ammonia dynamics for wetland treatments [22, 23]. Tilley 
et al. [23] also developed remotely sensed hyperspectral signatures of macrophytes 
to monitor changes in wetland water quality predictors of total ammonia concentra-
tions [24] Hyperspectral remote sensing has similarly been used to determine water 
quality parameters like temperature, chlorophyll a, total suspended solids  
[25, 26], total phosphorus [27, 28], and turbidity; Lillesand et al. [29] and Lathrop 
and Lillesand [30] studied lakes and reservoirs, estuaries [31, 32], and tropical 
coastal areas [33, 34]. Other water quality studies on monitoring surface water 
bodies in different parts of the world (e.g., [35–40]) have all been interested in 
modeling and development of concentration distribution maps for different water 
quality parameters based on its reflectance characteristics. Algal concentrations 
in water through hyperspectral remote sensing images have been undertaken in 
the estimation of chlorophyll that is then used as an estimate for monitoring algal 
content and hence water quality. This approach has been adopted because wave-
lengths corresponding with the peak reflectance of blue-green and green algae are 
close together; it is harder to differentiate between them [19, 41, 42]. Hakvoorth 
et al. [43], however, demonstrate that hyperspectral imagers permit for improved 
detection of chlorophyll and hereafter algae, as a result of acquired narrow spectral 
bands between 450 nm and 600 nm [20, 44].

1.1 Remote sensing for water quality

The spectral signature changes in the water can be measured and relate them 
to empirical or analytical models to a water quality parameter through remote 
sensing techniques [25, 45]. Since the 1960s, the earth’s resources have been 
monitored from space by the National Aeronautics and Space Administration 
(NASA) with multispectral scanners, which collect data sets in about 5–10 bands 
of relatively large bandwidths (70–400 nm) [10, 46]. The spectral resolution of 
data from the multispectral scanners was limited, inadequately evaluating water 
quality and starting in the mid-1980s. Hyperspectral remote sensing with a higher 
spectral resolution (i.e., 224 bands) and 30 meters in spatial resolution covering 
wavelengths from the 400–2500 nm “in the visible and near-infrared bands of the 
spectrum” (Field Assessment of a Fiber Optic Spectral Reflectance System http://
horttech.ashspublications.org/content/6/1/73.full.pdf) became available for earth 
sciences including water quality monitoring. Some of these hyperspectral sensors 
include FTHSI on MightySat II, Hyperion on NASA EO-1, airborne visible/infrared 
imaging spectrometer (AVIRIS), Airborne real-time cueing hyperspectral enhanced 
reconnaissance (ARCHER), Hyperspectral Digital Imagery Collection Experiment 
(HYDICE), PROBE-1, Compact Airborne Spectrographic Imager (CASI), and 
HyMap. The ARCHER sensor, which is of interest to this research, is used to 
estimate the water quality parameters. The very high spectral resolution of hyper-
spectral sensors gives them the advantage over multispectral sensors in facilitating 
exceptional differentiation of objects based on their spectral response in the narrow 
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bands [10, 47]. This spectral information has made hyperspectral sensor data very 
useful in estimating dissolved organic matter, chlorophyll, and total suspended 
matter concentrations from optical remote sensing technologies [43, 48, 49]. Our 
objective is to review the literature of water quality as it relates to remote sensing, 
water quality modeling, and data fusion.

The application of hyperspectral remote sensing techniques to water resource 
problems is proving to be the most in-depth way of examining spatial, spectral, and 
temporal variations to derive more accurate estimates of information required for 
water resource applications [19]. This emergence offers the capability of covering 
large areas on a real-time scale to directly monitor and characterize environmental 
pollutants entering a body of water. Addressing the problem of colored dissolved 
organic matter (CDOM), Nelson and Guarda [50], in the South Atlantic Bight, and 
Vodacek et al. [51], in the Mid-Atlantic, examined the visible absorption spectra 
and characteristics of particulate and dissolved materials. Both studies demon-
strated that colored dissolved organic matter comes mostly from riverine runoff, 
and it is also widespread and abundant in natural waters, which have a significant 
portion of the dissolved organic matter (10–90%), and influences water-leaving 
radiances [52]. Another chlorophyll retrieval study by Fell et al. [53] used chloro-
phyll algorithms to describe coastal properties in the Monterey Bay through hyper-
spectral remote sensing. Using a composite AVIRIS to examine marine environment 
changes, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) algorithm was 
applied to derive chlorophyll information. The study showed the importance of 
high spatial resolution in representing the coastal ocean in the Monterey Bay, 
though additional research using higher hyperspectral resolution on the phyto-
plankton pigment spectral absorbance was recommended.

Kirkpatrick et al. [54] indicate that a considerable portion of the organic carbon 
in the oceans is found as dissolved organic matter (DOM) and a better understand-
ing of the distribution and dynamics of DOM is necessary for understanding 
global carbon cycles. The authors also demonstrate that CDOM is often present 
in concentrations sufficient to affect the color of lakes, estuaries, and nearshore 
coastal waters, although other studies have shown that CDOM absorption does not 
correlate with chlorophyll a [55, 56]. Brando and Dekker [57] used spectroscopy to 
test for its capabilities over a range of water targets in eastern Australia using open 
ocean flushing and a combination of turbid and humic river inputs, to determine 
the water quality of the bay. Integrated atmospheric and hydro-optical radiative 
transfer models (MODTRAN- 4, Hydrolight) were developed to estimate the 
underwater light field. A matrix inversion approach was used to retrieve chlorophyll 
a, dissolved organic matter, and suspended matter concentrations. The research 
demonstrated that Hyperion has enough sensitivity to map optical water quality 
concentrations of total suspended matter, dissolved organic matter, chlorophyll, 
and concurrently the complex waters of estuarine and coastal systems of the 
Moreton Bay. The results obtained from this retrieval were comparable to those 
estimated in the field campaigns, which were coincident with Hyperion overpasses. 
[38], in a similar study, collected three sets of remote sensing and ground-truth data 
to evaluate the correlations between reflection data and water quality analyses to 
develop optical indicators of water quality constituents. Imagery and field reflec-
tance data and water quality samples were collected in the river in 1999 concur-
rently, and 2001, in southwest Ohio, and results showed a correlation between the 
spectral data and water quality parameters.

Brezonik et al. [36] used Landsat-based remote sensing to characterize chloro-
phyll a, total suspended sediments (TSS), turbidity, and Secchi disk transparency 
(SDT) of lake water quality. All three variables demonstrated a high correlation 
with each other, and all act as direct or indirect measures of algal abundance in 
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Minnesota lakes. This study also showed that chl-a and turbidity could be estimated 
from Landsat data if the near-contemporaneous ground measurements are avail-
able for calibration. Also, Kneubühler et al. [58], in evaluating total chlorophyll 
content (TCHL) concentration, used spectral reflectance data measured at 1 m 
above the water surface with a handheld field spectroradiometer and applied the 
semi-analytical algorithms. The results proved to be valuable for an enormous range 
of observed TCHL concentrations (0–460 μg/L), high r2, and low mean deviations. 
Dingtian et al. [59] used hyperspectral remote sensing images and field reflectance 
measurements with Field spec, to characterize chl-a and suspended solids in Taihu 
Lake, China. Their results showed the relationship between chl-a and wavelengths 
in Taihu Lake in different seasons, with an average correlation coefficient of more 
than 0.65. This research showed success in the application of hyperspectral remote 
sensing in retrieving chl-a and suspended solid concentrations.

Giardino et al. [60] used hyperspectral data to map chlorophyll a and tripton 
concentrations in Lake Garda based on the forward and inverse bio-optical model-
ing. The research demonstrated that Hyperion-derived levels were on average 
comparable to in situ data for chlorophyll a. The authors, however, mentioned that 
the same analysis was more complicated for tripton since some incompatibilities of 
methods occurred. This study demonstrated that the spatial and spectral resolu-
tions of Hyperion and the capability of physics-based approaches were considered 
highly suitable, although more research was necessary to address the compatibilities 
of methods for monitoring waterbody features with a high rate of wind or wave-
driven change. This study also showed that procedures used can be transferred to 
other water bodies if the optical characterization of the water body is known and 
information about atmospheric properties during the satellite overpass is accessible.

Equally, Giardino et al. [61] used satellite data and field spectrometer data 
to estimate chl-a as an indicator of the trophic level and CDOM in the Curonian 
Lagoon. A PANalytical handheld spectroradiometer in situ Rrs spectra can be used 
to parameterize a semi-empirical algorithm in retrieving chl-a concentrations and 
validate the performances of two atmospheric correction algorithms, to build a 
bond ratio algorithm for chl-a and to validate MERIS-derived maps. Results from 
this combined in situ and calibration study confirmed the hypertrophic/dystrophic 
conditions of the Curonian Lagoon.

Santini et al. [62], to analyze colored dissolved organic matter, used hyper-
spectral remote sensing techniques ranging from empirical algorithm to complex 
physics-based models to retrieve water quality constituent. With the empirical 
approach, acceptable results for the CDOM concentrations were returned. The 
study also showed a correlation index of over 0.82, between the laboratory CDOM 
concentrations and model output. The study showed that the physical model could 
be used to retrieve simultaneously of chlorophyll and the total suspended matter 
concentrations. Another research studying the relationship between suspended 
sediments and reflectance has been demonstrated to rely on physical and optical 
characteristics of sediment type and sensor zenith angle [63], and the properties of 
scattering and absorption of sediment type affect water reflectance [64].

Xiao et al. [65] explored the potential of in situ hyperspectral remote sensing for 
estimating chlorophyll a and phycocyanin concentrations of a water body. In situ 
measurements of the lake surface reflectance at the five sites were examined using 
PANalytical FieldSpec3 spectroradiometer to investigate the relationship between 
PANalytical-based reflectance data and chlorophyll a and phycocyanin concentra-
tions at different depths of water. The study shows significant correlations between 
lake surface reflectance and chlorophyll a and phycocyanin concentrations in upper 
mixed surface waters (0 to 1 m depth) at these five sites. Hommersom et al. [66] 
also used PANalytical field spec to carry out measurements in the central basin 
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of Lake Vänern, and matrix inversion algorithms were used to derive parameters 
such as the concentrations of chl-a and suspended particulate matter (SPM) and 
the absorption by colored dissolved organic matter at 440 nm. Maltese et al. [67] 
retrieved turbidity from MODIS data, and PANalytical handheld spectrometer 
was used to obtain underwater irradiances at 11 depths from just below the water’s 
surface, up to 5.5 meters. In situ data, acquired during the spring and summer, 
were used to enhance the retrieval of water surface nephelometric turbidity locally 
through satellite images.

2. Remote sensing of water quality analysis approaches

2.1 Empirical approach and analytical methods

There exist two main approaches to examining water quality from remotely 
sensed data: the (semi-) empirical approach and the (semi-) analytical method  
[60, 68–72]. The most common are the semi-empirical and empirical approaches 
where water quality is determined by statistical relationships between measured 
spectral properties (reflectance) and the measured water quality parameter of 
interest [72]. Ocean color derivation algorithms for chlorophyll a concentration 
have applied this approach to high correlations between chl-a and the blue and 
green spectral regions (chl-a has absorption maxima at 430–450 nm and  
660–680 nm (nanometers)) (Reif [73]). However, Dall’Olmo and Gitelson [74] 
have illustrated that these spectral regions typically do not work, and this problem 
has been fixed by subtracting the contributions of other factors on reflectance 
nearby the peak at 670 nm with a three-band reflectance model [75, 76].

With the use of empirical approaches, statistical regressions are recognized 
among reflectance values extracted from the image with synchronized in situ water 
quality measurements for correlation and validation well for retrieval of chl-a in 
waters with increased turbidity and overlapping absorption of dissolved organic 
matter and tripton [73, 76]. Using this method wavelengths are naturally evaluated 
and selected from regions in the spectrum in which absorption and reflectance are 
strongly impacted by the parameter of interest [68]. Band ratio algorithms between 
a reflectance peak near 700 nm and an absorption peak (red chl-a absorption band) 
around 670–680 nm have been developed for turbid water environments to retrieve 
chlorophyll [73]. Though the empirical approach has shown some success, it has the 
disadvantages that they require in situ samplings for testing and validation and they 
tend to be scene dependent, to apply locally to the explicit data from which they 
were derived [60, 68, 72, 77].

To solve this problem, analytically and semi-analytical approaches that mention 
modeling that is more complex where water parameter concentrations are related 
physically to the measured reflectance spectra by evaluating their absorption and 
scattering coefficients at multiple wavelengths are necessary to take care of the 
problems [73]. This method establishes sophisticated radiative transfer equations, 
relationships between water reflectance and the concentration of constituents 
and their specified inherent optical properties (SIOPS) [60, 68, 70, 72]. Using the 
analytical approach, the radiative transfer equation is inverted to determine water 
quality parameters, and several inversion procedures have been established for this 
purpose [78, 79] and have been revealed to optimize unknown parameters when 
measured input does not exist [60, 62, 78].

The inversion approach has been vital to separate bottom reflectance from water 
column spectra, in superficial waters where the water-leaving radiance/reflectance 
possibly encompasses some spectral evidence from the bottom reflectance and in 
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the water column [73, 80]. Using the simple methods like the empirical method, 
optically, shallow water can result in an overestimation of water column constitu-
ents caused by high reflectance values primarily from the bottom reflectance [81]. 
Comparing empirical and analytical approaches, it can be noted that analytical and 
semi-analytical methods are preferred for subsequent reasons: (1) they can be used 
to estimate both optically profound and shallow water optical properties, and the 
bottoms of optically shallow waters with physics-based modeling; (2) the approach 
does not require in situ water quality measurements to model, resulting in its inde-
pendence; and (3) analytical and semi-analytical methods can be applied regionally 
in multiple lakes, reservoirs, and rivers with varied circumstances. Notwithstanding 
these benefits, nonetheless, they are computationally intensive and more expensive 
and difficult to use, thus requiring information of the inherent optical properties 
of the water body [73]. This research relies on the analytical approach to analyzing 
spectroscopic data.

2.2 Use of hyperspectral remote sensing methods and standard water quality 
approach in measuring the water quality parameters

Although the standard methods provide accurate measurement for a point 
in time and space, spatial or temporal view of water quality required for precise 
assessment of large water systems is usually not available [72]. It is necessary to 
integrate the use of calibrated image data with field spectral measurements to 
solve this problem, so as entirely to deploy the spatial and spectral information of 
hyperspectral remote sensing data. Hyperspectral images are critical for the water 
quality assessments where field data collection is planned to coincide with flight 
overpasses followed by the retrieval of the apparent and inherent optical properties 
of the basin or watershed of interest.

An in situ sampling water quality survey for nutrients is necessary at multiple 
sites in the study area, using the EPA-approved quality control/quality assurance 
procedures. A sample collected procedure is required, and we recommend 15 to 20 
samples from each sampling area separated by at least 100 m from each other; using 
handheld spectrometer and paying particular attention to just the deep portions of 
the river for sample collection, above surface water reflectance was also measured. 
In situ data for chlorophyll a and other nutrients of interest can also be obtained 
from water quality databases, which contain data for fixed monitoring stations 
throughout the watershed of interest.

Using the handheld spectrometer to measure all the relevant quantities from above 
the surface, three types of measurements were carried out at each sampling site with 
the spectrometer: total upwelling radiance (LT), downwelling sky radiance (LSky), 
and “gray-card” radiance (LG, 3) reflected from a diffuse reflector (Spectralon®) 
[71]. All measurements were carried out at about 2:30 pm (local time), under clear 
skies, minor cloud cover, a wind speed of 4 m s−1, and very calm water, at roughly 
0.5 m above the water surface using a canoe. The above-water reflectance needs to 
be measured at 40° from the nadir and 90° from the azimuth and the sky reflectance 
measured in the same plane as the water, except for the angle from the zenith, which 
was 40°. To determine the downwelling irradiance, the Spectralon is assumed to have 
a Lambertian reflector in which, Ed = πLG/R, where LG is the average of the four 
grayscale scans and RG the reflectance of the diffuse reflector (~10%) [71].

2.3 Hyperspectral image processing

For the quantitative assessments of water quality parameters, detectable from 
hyperspectral data, data preprocessing is required by performing robust corrections 
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for atmospheric effects of adjacency effects and those effects occurring at the 
water surface level (sunglint, specular reflection of direct irradiance, and diffuse 
skylight).

Hyperspectral imagery requires an atmospheric correction to retrieve the 
surface reflectance from remotely sensed imagery by removing the atmospheric 
effects such as water vapor and other trace gasses. In an atmospheric correction, the 
radiance values are transformed into reflectance data to obtain water reflectance 
by removing surface reflectance [82], measuring the fraction of radiation reflected 
from the surface [83]. This procedure is particularly important for quantitative 
image analysis or change detection using hyperspectral data; image calibration is 
essential for remote sensing (Figure 1) to convert the instrument’s digital numbers 
(DNs) to a substantial value to correct atmospheric instrument effect.

Image-driven empirical correction procedures have been suggested [57, 84, 85] 
for use with the Hyperspectral Imager for the Coastal Ocean (HICO), airborne vis-
ible/infrared imaging spectrometer (AVIRIS), Compact Airborne Spectrographic 
Imager (CASI-2), and Hyperion [86]. The empirical correction approach is based 
on the facts that clear ocean waters have water-leaving reflectance above 800 nm 
close to zero and sunglint and cirrus reflectance in the 400–1000 nm region. In this 
dissertation, we use the empirical line approach, which is an atmospheric correction 
method that serves as an alternative to radiative transfer modeling approaches [87]. 
This method calculates the empirical relation between radiance and reflectance 
using a dark and a bright target, well-characterized by field and image spectra. Our 
targets were measured in the area during data collection for optimal representation.

This method has been applied to correct both land and ocean data [88] and has 
shown great success with both coarser spatial resolution satellite sensor data and 
airborne data approaches [87]. This technique is only suitable for regional data 
correction where reflectance properties of bright and dark targets such as sand and 
water over uniform areas are measured coincidentally with the aircraft or airborne 
overpass [89].

A minimum of two known materials is required to use this method to carry out 
the calibration, and selecting one bright object and one dark object is also crucial 
for this exercise. This calibration method is recommended to use on two targets; 
however, using more targets will better estimate the relationship between target 
reflectance and at-sensor radiance [87, 88]. Using the image and field spectra, the 
two targets are regressed linearly against the reflectance spectra measured on the 

Figure 1. 
ARCHER color composite (RGB of 726 nm, 668 nm, and 551 nm) for areas around Edinburg, the NorthFork of 
Shenandoah River in Virginia, USA. Image location: 38°49′55. 32″N 78°33’1. 53″W, North Edinburg, NF.
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field to derive the gain and offset coefficients [88]. Once the gains and offsets are 
obtained, they are then applied to the entire image to derive surface reflectance, 
by producing reflectance values that are comparable to field measured values 
[88] (Figures 1 and 2). The empirical line method uses the following equation to 
calculate the gains and offsets:

Reflectance (field spectrum) = gain* radiance (input data) + offset.
Remote sensing data is also impeded by the effect of wave-induced sun glint 

[90], and this has become a limiting factor in estimating water quality efficiently 
from airborne data with high accuracy. The environmental and atmospheric effects 
resulting in inaccuracies in remote sensing classification results remain a growing 
concern in remote sensing classification [91]. For an adequate estimation of water 
quality with remote sensing data that is void of inaccuracies, the sun glint needs 
to be examined. After performing atmospheric correction on our image, sunglint 
removal was required to correct atmospheric effects on the visible wavelength 
region (0.45–0.69 μm). The sunglint is the specular reflection of sunlight directly 
transmitted from the air-water interfaces [92]. Under clear skies and irregular water 
surface, specular reflectance can result in sun glint on the image, which reduces the 
accuracy of retrievals [93]. The sunglint often occurs on an image when the orienta-
tion of the water surface is directly reflected toward the sensor as a function of the 
position of the sun, the viewing angle, and the state of the water surface [92].

These circumstances have resulted to the more excellent specular reflection of 
light from water “than the water-leaving radiance from the sub-surface features.” 
The necessity to remove the sun glint contribution for better image classification or 
information retrieval has been recognized by several researchers [90]. The approach 
adopted for this research estimates the amount of glint in the image by using data 
from the near-infrared (NIR), with the assumption that water-leaving radiance is 
negligible in this part of the spectrum, and any NIR signal left after atmospheric 
correction is undoubtedly from the sunglint. A relationship is established between the 
NIR and glint radiance while using the spectrum of the deep-water part of the image 
[92]. We use the shallow water sunglint removal approach that assumes that all the 
radiance from the NIR reaching the sensor is from atmospheric scattering and surface 
reflection, and any signal at the NIR after atmospheric correction is sunglint [92].

Figure 2. 
Atmospherically corrected ARCHER using empirical line calibration approach with a color composite of RGB 
726 nm, 668 nm, and 551 nm for areas around Edinburg (above), for North Fork of the Shenandoah River 
taken on July 12, 2014. Image location: 38°49′55. 32″N 78°33’1. 53″W, North Edinburg, NF.
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3. Sunglint background and removal approach

There are five critical processes through which a remote sensing detector 
receives radiance reaching it, as shown in Figure 3 from Kay et al. [92].

Several approaches have been proposed for glint correction for estimating the 
contribution of glint to the “ the sensor reaching radiance, and then subtract it 
from the received signal” [92]. Hochberg et al. [94] proposed a sunglint removal 
method, which assumed that the NIR brightness is only made up of sunglint and 
a spatially constant ambient NIR component. This method also believes that the 
sunglint present in the visible band is linearly related to the brightness of the NIR 
band. However, all two assumptions were proven weak because the first assump-
tion models a constant ambient NIR brightness, which is removed from all pixels 
during analysis, and secondly, only two pixels are used to establish a linear rela-
tionship assumption. Selecting only one bright and one dark pixel could result to 
a bright pixel chosen from the land, which necessitated masking for results from 
this method to be efficient, and, this makes it very difficult and time-consuming. 
Thus, the difficulty of being able to identify an appropriate bright pixel can result 
in significant errors, which undermine the effectiveness of the method proposed by 
Hochberg et al. [94].

Hedley et al. [95], after acknowledging how sensitive this approach was to 
outlier pixel, proposed a revised method in which glint intensity is obtained using 
several pixels rather than two to establish a linear relationship between regression 
between the NIR and visible bands to allow sunglint contribution removal [90]. 
Hedley et al. [93] proposes using single or several regions on the image where 
sunglint is evident with consistent spectral brightness. The linear regression uses 
NIR brightness (x-axis) against the visible band’s intensity (Figure 4) of all the 
selected pixels.

As recommended by Hedley et al. [93], the first step is to select the minimum 
NIR brightness NIR Min deep-water pixels having a variety of glint intensities from 
which a sample is calculated. The next step in deglinting the image is to use each 
visible spectrum (VIS) Band i and perform a linear regression on the NIR pixel 

Figure 3. 
Diagram showing routes by which light can arrive at a remote sensing detector from Kay et al. (2005). 

 (A) Molecules or aerosols scattering in the atmosphere, which is either single or multiple. 
 (B) Surface-water scattering from the atmosphere followed by reflection to the detector—known as 

“sky glint.”  (C) Whitecaps reflections from the sea surface.  (D) Surface-water specular 
reflection directly transmitted from the sun to the atmosphere to the surface and from the surface to the 
detector—also called “sun glint.”  (E) Atmosphere and air-water interface transmission, which is 
followed by reflection or scattering below the water surface and transfer back to the detector through the 
atmosphere.



Processing and Analysis of Hyperspectral Data

10

brightness R NIR against the pixel value of VIS band R i. A user-based selection 
process is used to collect the samples, and land or cloud masking is not necessary. 
The product of slope bi and RNIR minus MinNIR is subtracted from Ri to obtain the 
pixel Ri with glint removed using the following equation:

    R  ′  i    =  R  i    -   b  i   (  R  NIR    -    Min  NIR  )    (1)

where   b  i    is the regression slope.
  R  i    is the visible band.
  R  NIR    is the NIR pixel value.
  Min  NIR    is the ambient NIR value, which is NIR pixel with no sunglint, which is 

either estimated from the figure above or from the entire image, and it is less prone 
to outliers caused by nonoptically deep pixels.

The result of the sunglint corrects brightness in band i, by minimizing outlier 
effects caused by surface objects [92]. This approach can be applied on either before 
or after atmospheric correction since it works entirely on the relative magnitude 
of values, and the pixel units are not very necessary for image deglinting. We 
initially corrected out the image with the empirical line method before removing 
the sunglint. It should, however, be mentioned that, if there are variations in the 
atmosphere properties, this will also affect the regression slope, thus making glint 
effect to be confounded [92]. As outlined by Hedley et al. [93], this approach is 
attained in four steps:

Step-by-step implementation

1. Image is radiometrically corrected.

2. Area of the image displaying a range of sun glint, with a more or less homo-
geneous surface, is selected. The minimum NIR brightness value is determined.

3. The newly created region of interest is used as a subset to create a new im-
age with only the glare pixel subset and all image bands saved individually in 
ASCII. A linear regression of NIR brightness (x-axis) against the visible band 
(y-axis) is performed using the selected pixels in Excel to remove the sunglint 
from each band. The output of interest from the linear regression analysis for 
each band is the slope, which is called bi in the equation above.

4. To individually glint each band i or all pixels in the image, the product of bi 
and NIR brightness of the pixel (minus MinMIN) subtracted the pixel value in 
band i as illustrated in Eq. (1).

Figure 4. 
Graphical interpretation of sunglint correction method from Hedley et al. [93].
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4. Conclusion

The combination of several hundred spectral bands in a single acquisition has 
been made feasible by hyperspectral systems, which produce more detailed spectral 
data. Before advances in hyperspectral remote sensing, the multispectral imagery 
was the only data source in land and water observational remote sensing from 
airborne and spacecraft operations since the 1960s [10]. However, multispectral 
remote sensing data were only collected in three to six spectral bands in a single 
observation from the visible near-infrared and shortwave infrared regions of the 
electromagnetic spectrum, making it challenging to examine water quality from 
this data source. The present chapter covered hyperspectral remote sensing data 
analysis using field spectrometer data and remote sensing of water quality. Research 
has shown that remote sensing, GIS, and hydrological models can be integrated to 
solve hydrological problems [96, 97]. Here we review relevant literature on research 
in hyperspectral remote sensing that examines water quality parameters like sus-
pended sediments, turbidity, chlorophyll a, and total phosphorus as investigated by 
numerous researchers. Unique characteristics of hyperspectral remote sensing data 
are introduced. This chapter shows that field observations/ spectroscopy, and water 
quality modeling is very instrumental in the accuracy of remote sensing analysis. 
We also presented the methodology for the study of visible to infrared hyperspec-
tral remote sensing data from ARCHER aircraft and data collected with a handheld 
field portable spectroradiometer, to retrieve and establish a relationship between 
water quality parameters like chlorophyll a, colored dissolved organic matter, 
turbidity, phosphorus, and nitrogen in the Shenandoah River Basin.

Author details

Mbongowo Mbuh
Department of Geography and Geographic Information Science, University of 
North Dakota, USA

*Address all correspondence to: mbongowo.mbuh@und.edu

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 



12

Processing and Analysis of Hyperspectral Data

[1] Mbuh MJ, Houser PR, Heidari A. 
Water quality estimation using 
combined water chemistry and field 
spectroscopy in the Shenandoah River, 
Virginia. International Journal of 
Applied Geospatial Research (IJAGR). 
2016;7(2):14-37. DOI: 10.4018/
ijagr.2016040102

[2] Mcgwire K, Minor T, 
Fenstermaker L. Hyperspectral mixture 
modeling for quantifying sparse 
vegetation cover in arid environments. 
Remote Sensing of Environment. 
2000;72:360-374

[3] Hinrichsen D, Tacio H. The 
Coming Freshwater Crisis is Already 
Here. Population and Water. 2019. 
p. 26. Available from: https://www.
wilsoncenter.org/sites/default/files/
popwawa2.pdf

[4] UNESCO. Water for a sustainable 
world. Paris: UNESCO.Unesco 
2015a, Water for a sustainable world.
pdf. 2015. Available from: https://
sustainabledevelopment.un.org/
content/documents/1711Water%20
for%20a%20Sustainable%20World.
pdf

[5] Cook SE, Fisher MJ, Andersson MS, 
Rubiano J, Giordano M. Water, food 
and livelihoods in river basins. Water 
International. 2009;34(1):13-29. DOI: 
10.1080/02508060802673860

[6] Mustapha A, Aris AZ. Spatial aspects 
of surface water quality in the Jakara 
Basin, Nigeria, using chemometric 
analysis. Journal of Environmental 
Science and Health, Part A. 
2012;47(10):1455-1465

[7] Milovanovic M. Water quality 
assessment and determination of 
pollution sources along the Axios/
Vardar River, Southeast Europe. 
Desalination. 2007;213:159-173

[8] Verma S. Analysis of Water Quality 
by Physico-Chemical Parameters in 
Fateh Sagar Talab in Bagar, Dist. Of 
Jhunjhunu (Raj.), India; 2015

[9] Sheffield J, Wood EF, Pan M, Beck H, 
Coccia G, Serrat-Capdevila A, et al. 
Satellite remote sensing for water 
resources management: Potential for 
supporting sustainable development 
in data-poor regions. Water Resources 
Research. 2018;54(12):9724-9758

[10] Landgrebe D. Some fundamentals 
and methods for hyperspectral 
image data analysis. In: Systems and 
Technologies for Clinical Diagnostics 
and Drug Discovery II. Vol. 
3603. Society of Photo-Optical 
Instrumentation Engineers; 1999. 6 pp

[11] Okin SG, Roberts AD, Murray B, 
William J, Okin JW. Practical limits on 
hyperspectral vegetation discrimination 
in arid and semiarid environments. 
Remote Sensing of Environment. 
2001;77:212-225

[12] Wang X, Yang W. Water quality 
monitoring and evaluation using 
remote-sensing techniques in China: A 
systematic review. Ecosystem Health 
and Sustainability. 2019;5(1):47-56

[13] Cosgrove WJ, Loucks DP. Water 
management: Current and future 
challenges and research directions. 
Water Resources Research. 
2015;51(6):4823-4839

[14] Bhateria R, Jain D. Water 
quality assessment of lake water: A 
review. Sustainable Water Resources 
Management. 2016;2(2):161-173

[15] David MK, Dennis HR. Nutrients 
in the Nation’s Waters—Too Much of a 
Good Thing? (Report No. 1136). Vol. 
1136. U.S. Geological Survey Circular; 
1996. 24p. DOI: 10.3133/cir1136

References



13

Use of Hyperspectral Remote Sensing to Estimate Water Quality
DOI: http://dx.doi.org/10.5772/intechopen.89222

[16] Dunca A-M. Water Pollution and 
Water Quality Assessment of Major 
Transboundary Rivers from Banat 
(Romania) [Research Article]. 2018

[17] Fataei E. Assessment of surface 
water quality using principle component 
analysis and factor analysis. World 
Journal of Fish and Marine Sciences. 
2011;3:159-166

[18] Meng W, Zhang N, Zhang Y, 
Zhang BH. Integrated assessment of 
river health based on water quality, 
aquatic life, and physical habitat. 
Journal of Environmental Sciences. 
2009;21:1017-1027

[19] Govender M, Chetty K, 
Bulcock H. A review of hyperspectral 
remote sensing and its application in 
vegetation and water resource studies. 
Water SA. 2006;2007:33(2)

[20] Mbuh MJ. Optimization 
of airborne real-time cueing 
Hyperspectral enhanced reconnaissance 
(ARCHER) imagery, in situ data 
with chemometrics to evaluate 
nutrients in the Shenandoah River, 
Virginia. Geocarto International. 
2018;33(12):1326-1349. DOI: 
10.1080/10106049.2017.1343395

[21] Stumpf RP. Applications of satellite 
ocean color sensors for monitoring 
and predicting harmful algal 
blooms. Human and Ecological Risk 
Assessment. 2001;7:1363-1368

[22] Kang W, Chai H, Xiang Y, Chen W, 
Shao Z, He Q. Assessment of low 
concentration wastewater treatment 
operations with dewatered alum sludge-
based sequencing batch constructed 
wetland system. Scientific Reports. 
2017;7(1):17497

[23] Tilley DR, Ahmed M, Son JH, 
Badrinarayanan H. Hyperspectral 
reflectance of emergent macrophytes 
as an indicator of water column 

ammonia in an oligohaline, subtropical 
marsh. Ecological Engineering. 
2003;21:153-163

[24] Guo M, Li J, Sheng C, Xu J, Wu L. A 
review of wetland remote sensing. 
Sensors. 2017;17(4):777. DOI: 10.3390/
s17040777

[25] Gholizadeh MH, Melesse AM, 
Reddi L. A comprehensive review on 
water quality parameters estimation 
using remote sensing techniques. 
Sensors (Basel, Switzerland). 
2016;16(8). DOI: 10.3390/s16081298

[26] Vos RJ, Hakvoort JHM, Jordans RWJ, 
Ibelings BW. Multiplatform optical 
monitoring of eutrophication in 
temporally and spatially variable lakes. 
Science of the Total Environment. 
2003;312:221-243

[27] Gao Y, Gao J, Yin H, Liu C, 
Xia T, Wang J, et al. Remote sensing 
estimation of the total phosphorus 
concentration in a large lake using 
band combinations and regional 
multivariate statistical modeling 
techniques. Journal of Environmental 
Management. 2015;151:33-43

[28] Koponen S, Pulliainen J, 
Kallio K, Kallikainen M. Lake water 
quality classification with airborne 
hyperspectral spectrometer and 
simulated MERIS data. Remote Sensing 
of Environment. 2002;79:51-59

[29] Lillesand TM, Johnson WL, 
Deuell RL, Lindstrom OM, Meisner DE. 
Use of Landsat data to predict the 
trophic state of Minnesota Lakes. 
Photogrammetric Engineering and 
Remote Sensing. 1983;49(2):219-229

[30] Lathrop RG, Lillesand TM. 
Monitoring water quality and river 
plume transport in Green Bay, Lake 
Michigan with SPOT-1 imagery. 
Photogrammetric Engineering and 
Remote Sensing. 1989;55(3):349-354



Processing and Analysis of Hyperspectral Data

14

[31] Harding LW, Itsweire EC, 
Esaias WE. Algorithm development 
for recovering chlorophyll 
concentrations int Chesapeake Bay 
using aircraft remote sensing 1989-91. 
Photogrammetric Engineering and 
Remote Sensing. 1995;61:177-185

[32] Zhang Y, Giardino C, Li L. Water 
optics and water colour remote sensing. 
Remote Sensing. 2017;9(8):818

[33] Devlin MJ, Petus C, Da Silva E, 
Tracey D, Wolff NH, Waterhouse J, 
et al. Water quality and river plume 
monitoring in the great barrier reef: An 
overview of methods based on ocean 
colour satellite data. Remote Sensing. 
2015;7(10):12909-12941

[34] Ruiz-Azuara P. Multitemporal 
analysis of “simultaneous” Landsat 
imagery (MSS and TM) for monitoring 
primary production in a small tropical 
coastal lagoon. Photogrammetric 
Engineering & Remote Sensing. 
1995;61(2):877-198

[35] Bagheri S, Dios RA. Utility of 
hyperspectral data for bathymetric 
mapping in a turbid estuary. 
International Journal of Remote 
Sensing. 1998;19(6):1179-1188

[36] Brezonik P, Menken KD, 
Bauer M. Landsat-based remote sensing 
of lake water quality characteristics, 
including chlorophyll and colored 
dissolvedorganic matter (CDOM). 
Lake and Reservoir Management. 
2005;21(4):373-382

[37] Goodenough A. Evaluating water 
quality monitoring with hyperspectral 
imagery [Senior Research Thesis]. 
Rochester Institute of Technology: 
Center for Imaging Science; 2001

[38] Shafique NA, Fulk F, Autrey BC, 
Flotemersch J. Hyperspectral remote 
sensing of water quality parameters 
for large rivers in the Ohio River Basin. 

In: Proceedings of the 1st Interagency 
Conference on Research in the 
Watersheds. Benson, AZ, USA; 27-30 
October 2003

[39] Usali N, Ismail MH. Use of 
remote sensing and GIS in monitoring 
water quality. Journal of Sustainable 
Development. 2010;3(3):228. DOI: 
10.5539/jsd.v3n3p228

[40] Yang S, Ding P, Zhu J, Zhao Q , 
Mao Z. Tidal flat morphodynamic 
processes of the Yangtze estuary and 
their engineering implications. China 
Ocean Engineering. 2000;14:307-320

[41] Gokul EA, Shanmugam P. An 
optical system for detecting and 
describing major algal blooms in 
coastal and oceanic waters around 
India: Detecting algal blooms. Journal 
of Geophysical Research, Oceans. 
2016;121(6):4097-4127

[42] Mcilwaine B, Casado MR, 
Leinster P. Using 1st derivative 
reflectance signatures within a 
remote sensing framework to identify 
macroalgae in marine environments. 
Remote Sensing. 2019;11(6):704

[43] Hakvoorth H, deHaah J, Jordan R, 
Vos R, Rijkeboer MP. Towards airborne 
remote sensing of water quality in 
the Netherlands-validation and error 
analysis. Journal of Photogrammetry 
and Remote Sensing. 2002;57:171-183

[44] Gao B-C, Li R-R. FVI—A floating 
vegetation index formed with three 
near-ir channels in the 1.0-1.24 μm 
spectral range for the detection of 
vegetation floating over water surfaces. 
Remote Sensing. 2018;10(9):1421

[45] Shafique NA, Autrey BC, Fulk F, 
Cormier SM. Hyperspectral narrow 
wavebands selection for optimizing 
water quality monitoring on the great 
Miami River, Ohio. Journal of Spatial 
Hydrology. 2001;1(1):1-22



15

Use of Hyperspectral Remote Sensing to Estimate Water Quality
DOI: http://dx.doi.org/10.5772/intechopen.89222

[46] Helder D, Markham B, Morfitt R, 
Storey J, Barsi J, Gascon F, et al. 
Observations and recommendations 
for the calibration of Landsat 8 OLI 
and sentinel 2 MSI for improved data 
interoperability. Remote Sensing. 
2018;10(9):1340

[47] Ortega S, Fabelo H, Iakovidis DK, 
Koulaouzidis A, Callico GM. Use of 
Hyperspectral/multispectral imaging 
in gastroenterology. Shedding some–
different–light into the dark. Journal of 
Clinical Medicine. 2019;8(1):36

[48] Jensen D, Simard M, Cavanaugh K, 
Sheng Y, Fichot CG, Pavelsky T, et al. 
Improving the transferability of 
suspended solid estimation in wetland 
and deltaic waters with an empirical 
hyperspectral approach. Remote 
Sensing. 2019;11(13):1629

[49] Xi H, Hieronymi M, Röttgers R, 
Krasemann H, Qiu Z. Hyperspectral 
differentiation of phytoplankton 
taxonomic groups: A comparison 
between using remote sensing 
reflectance and absorption spectra. 
Remote Sensing. 2015;7(11):14781-14805

[50] Nelson JR, Guarda S. Particulate 
and dissolved spectral absorption on the 
continental shelf of the southeastern 
United States. Journal of Geophysical 
Research. 1995;100:8715-8732

[51] Vodacek A, Blough NV, 
DeGranpre MD, Peltzer ET, Nelson RK. 
Seasonal variations of CDOM and 
DOC in the middle Atlantic bight: 
Terrestrial inputs and photooxidation. 
Limnology and Oceanography. 
1997;42:674-686

[52] Carder KL, Hawes SK, Baker KA, 
Smith RC, Steward RG, Mitchell BG. 
Reflectance model for quantifying 
chlorophyll-a in the presence of 
productivity degradation products. 
Journal of Geophysical Research. 
1991;96:20599-20611

[53] Fell F., Fischer J, Schaale M, 
Schroeder T. Retrieval of chlorophyll 
concentration from MERIS 
measurements in the spectral range of 
sun-induced chlorophyll fluorescence. 
2003. DOI: 10.1117/12.467267

[54] Kirkpatrick GJ, Orrico C, 
Moline MA, Matthew O, Schofield OM. 
Continuous hyperspectral absorption 
measurements of colored dissolved 
organic material in aquatic 
systems. Journal of Applied Optics. 
2003;42(33):6564

[55] Rochelle-Newall EJ, Fisher TR, 
Fan C, Glibert PM. Dynamics of 
chromophoric dissolved organic 
matter and dissolved organic carbon in 
experimental mesocosm. International 
Journal of Remote Sensing. 
1999;20(3):627-641

[56] Rochelle-Newall EJ, Fisher TR. 
Chromophoric dissolved organic 
matter and dissolved organic carbon 
in Chesapeake Bay. Marine Chemistry. 
2002;77:23-41

[57] Brando V, Dekker A. Satellite 
hyperspectral remote sensing 
estimatingestuarine and coastal 
water quality. IEEE Transactions on 
Geoscience and Remote Sensing. 
2003;41(6):1378-1381

[58] Kneubühler M, Gemperli C,  
Schläpfer D, Zah R, Itten K.  
Determination of water quality 
parameters in Indian ponds using 
remote sensing methods. In: 
Zagajewski B, Sobczak M, Wrzesień M, 
editors. Proceedings of 4th EARSeL 
Workshop on Imaging Spectroscopy. 
New Quality in Environmental Studies. 
Zurich Open Repository and Archive 
(ZORA), University of Zurich; 2005. 
DOI: 10.5167/uzh-97035

[59] Dingtian Y, Delu P, Xiaoyu Z,  
Xiaofeng Z, Xianqiang H, Shujing L.  
Retrieval of chlorophyll a and 



Processing and Analysis of Hyperspectral Data

16

suspended solid concentrations by 
hyperspectral remote sensing in 
Taihu Lake, China. Chinese Journal 
of Oceanology and Limnology. 
2006;24(4):428-434

[60] Giardino C, Brando EV, Dekker GA, 
Strömbeck N, Candiani G. Assessment 
of water quality in Lake Garda (Italy) 
using Hyperion. Remote Sensing of 
Environment. 2007;109:183-195

[61] Giardino C, Bresciani M, 
Pilkaityte R, Bartoli M, Razinkovas A. 
In situ measurements and satellite 
remote sensing of case 2 waters: First 
results from the Curonian lagoon. 
Oceanologia. 2010;52(2):197-210

[62] Santini F, Alberotanza L, Braga F, 
Cavalli RM, Pignatti S. Hyperspectral 
applications for the improvement 
of water quality assessment and 
monitoring in coastal areas. In: Proc. 
‘Hyperspectral 2010 Workshop’, 
Frascati, Italy; 17-19 March 2010 (ESA 
SP-683, May 2010)

[63] Chen Z, Hanson JD, Curran PJ. The 
form of the relationship between 
suspended sediment concentration and 
spectral reflectance: Its implication 
for the use of Daedalus 1268 data. 
International Journal of Remote 
Sensing. 1991;12:215-222

[64] Novo EMM et al. The effect of 
viewing geometry and wavelength on 
the relationship between reflectance 
and suspended sediment concentration. 
International Journal of Remote 
Sensing. 1989;10:1357-1372

[65] Xiao X, Hambright K, Zhang L, 
Biradar C, Puls R. Integrating in-situ 
field measurements and satellite 
remote sensing to monitor harmful 
algae blooms in Oklahoma lakes. 
2012. Available from: http://
Oklahomawatersurvey.org/?p=531

[66] Hommersom A, Kratzer S, 
Laanen M, Ansko I, Ligi M, Bresciani M, 

et al. Intercomparison in the field 
between the new WISP-3 and other 
radiometers (TriOS Ramses, ASD 
FieldSpec, and TACCS). Journal of 
Applied Remote Sensing. 2012;6:2012

[67] Maltese A, Capodici F, 
Ciraolo G, Loggia GL. Coastal zone 
water quality: Calibration of a water-
turbidity equation for MODIS data. 
European Journal of Remote Sensing. 
2013;46(1):333-347. DOI: 10.5721/
EuJRS20134619

[68] Kallio K. Remote sensing as 
a tool for monitoring lake water 
quality. In: Heinonen P, Ziglio G, van 
der Beken A, editors. Hydrological 
and Limnological Aspects of Lake 
Monitoring. Chichester, England: 
John Wiley & Sons, Ltd; 2000.  
pp. 237-245

[69] Kong J-L, Sun X-M, Wong DW, 
Chen Y, Yang J, Yan Y, et al. A semi-
analytical model for remote sensing 
retrieval of suspended sediment 
concentration in the Gulf of 
Bohai, China. Remote Sensing. 
2015;7(5):5373-5397

[70] Knaeps E, Raymaekers D, Sterckx S, 
Odermatt D. An intercomparison of 
analytical inversion approaches to 
retrieve water quality for two distinct 
inland waters. In: Lacoste-Francis H, 
et al. editors. Proceedings of the 
‘Hyperspectral Workshop 2010’ ESRIN, 
Frascati, Italy (ESA SP-683, May 2010); 
2010. p. 7

[71] Lee Z-P, Arnone R, Hu C, 
Werdell PJ, Lubac B. Uncertainties 
of optical parameters and their 
propagations in an analytical ocean 
color inversion algorithm. Applied 
Optics. 2010;49:369-381

[72] Ritchie JC, Zimba PV, Everitt JH. 
Remote sensing techniques to assess 
water quality. Photogrammetric 
Engineering and Remote Sensing. 
2003;69(6):695-704



17

Use of Hyperspectral Remote Sensing to Estimate Water Quality
DOI: http://dx.doi.org/10.5772/intechopen.89222

[73] Reif M. Remote sensing for inland 
water quality monitoring: A U.S. Army 
Corps of Engineers Perspective Engineer 
Research and Development Center/
Environmental Laboratory Technical 
Report (ERDC/EL TR)-11-13; 2011. 44pp

[74] Dall’Olmo G, Gitelson AA. Effect 
of bio-optical parameter variability on 
the remote estimation of chlorophyll-a 
concentration in turbid productive 
water: Experimental results. Applied 
Optics. 2005;44(3):412-422

[75] Dall’Olmo G,Gitelson AA, 
Rundquist DC. Towards a unified 
approach for remote estimation of 
chlorophyll-a in both terrestrial vegetation 
and turbid productive waters. Geophysical 
Research Letters. 2003;30:1038. DOI: 
10.1029/2003GL018065

[76] Gitelson AA, Gritz U, 
Merzlyak MN. Relationships between 
leaf chlorophyll content and spectral 
reflectance and algorithms for non-
destructive chlorophyll assessment in 
higher plant leaves. Journal of Plant 
Physiology. 2003;160:271-282

[77] Lathrop RG. Landsat thematic 
mapper monitoring of turbid inland 
water quality. Photogrammetric 
Engineering and Remote Sensing. 
1992;58:465-470

[78] Lee Z, Carder KL, Mobley CD, 
Steward RG, Patch JS. Hyperspectral 
remote sensing for shallow waters: 2. 
Deriving bottom depths and water 
properties by optimization. Applied 
Optics. 1999;14:417-427

[79] Mobley CD, Sundman LK, 
Davis CO, Bowles JH, Downes TV, 
Leathers RA, et al. Interpretation 
of hyperspectral remote-sensing 
imagery by spectrum matching 
and look-up tables. Applied Optics. 
2005;44:3576-3592

[80] Cannizzaro JP, Carder KL. 
Estimating chlorophyll-a concentrations 

from remote sensing reflectance data in 
optically shallow waters. Remote Sensing 
of Environment. 2006;101(1):13-24

[81] Lee ZP, Carder KL, Arnone R. 
Deriving inherent optical properties 
from water color: A multi-band 
quasi-analytical algorithm for 
optically deep waters. Applied Optics. 
2001;41:5755-5772

[82] Zhu WN, Yu Q , Tian YQ , 
Chen RF, Gardner GB. Estimation 
of chromophoric dissolved organic 
matter in the Mississippi and 
Atchafalaya river plume regions using 
above-surface hyperspectral remote 
sensing. Journal of Geophysical 
Research-Oceans. 2011;116:C02011

[83] Morillo S. Atmospheric Correction 
User’s Guide; Laboratory for Applied 
Remote Sensing and Image Processing. 
Puerto Rico: University of Puerto Rico at 
Mayagüez; 2005. pp. 21-30

[84] Lee ZP, Hu C. Global distribution 
of Case-1 waters: An analysis 
from SeaWiFS measurements. 
Remote Sensing of Environment. 
2007;101(2006):270-276

[85] Cao L, Li P, Zhang L, Chen T. 
Remote Sensing Image-Based Analysis 
of the Relationship Between Urban Heat 
Island and Vegetation Fraction. 2008

[86] Pahlevan N, Schott JR. Leveraging 
EO-1 to evaluate capability of new 
generation of Landsat sensors for 
coastal/inland water studies. IEEE 
Journal of Selected Topics in Applied 
Earth Observations and Remote 
Sensing. 2013;6(2):360-374

[87] Karpouzli E, Malthus T. The 
empirical line method for the 
atmospheric correction of IKONOS 
imagery. International Journal of 
Remote Sensing. 2003;24(5):1143-1150

[88] Gao BC, Davis CO, Goetz AFH. A 
review of atmospheric correction 



Processing and Analysis of Hyperspectral Data

18

techniques for hyperspectral remote 
sensing of land surfaces and ocean 
colour. In: Proceedings of the IEEE 
International Conference on Geoscience 
and Remote Sensing Symposium, 
IGARSS 2006; USA: Denver, CO; 31 
July-4 August 2006. pp. 1979-1981

[89] Pahlevan N, Schott JR. Leveraging 
EO-1 to evaluate capability of new 
generation of Landsat sensors for 
coastal/inland water studies. IEEE 
Journal of Selected Topics in Applied 
Earth Observations and Remote 
Sensing. 2013;6(2):360-374

[90] Kutser T, Vahtmäe E, Praks J. 
A sun glint correction method for 
hyperspectral imagery containing areas 
with non-negligible water leaving NIR 
signal. Remote Sensing of Environment. 
2009;113(10):2267-2274

[91] Lillesand TM, Johnson WL, 
Deuell RL, Lindstrom OM, Meisner DE. 
Use of Landsat data to predict the 
trophic state of Minnesota Lakes. 
Photogrammetric Engineering and 
Remote Sensing. 1983;49(2):219-229

[92] Kay S, Hedley JD, Lavender S. Sun 
glint correction of high and low spatial 
resolution images of aquatic scenes: A 
review of methods for visible and near-
infrared wavelengths. Remote Sensing. 
2009;1(4):697-730

[93] Hedley JD, Harborne AR, 
Mumby PJ. Technical note: Simple and 
robust removal of sun glint for mapping 
shallow-water benthos. International 
Journal of Remote Sensing. 
2005;26(10):2107-2112

[94] Hochberg EJ, Andrefouet S, 
Tyler MR. Sea surface correction of 
high spatial resolution Ikonos images 
to improve bottom mapping in near-
shore environments. IEEE Transactions 
on Geoscience and Remote Sensing. 
2003;41(7):1724-1729

[95] Hedley JD, Harborne AR, 
Mumby PJ. Technical note: Simple and 
robust removal of sun glint for mapping 
shallow‐water benthos. International 
Journal of Remote Sensing. 
2005;26(10):2107-2112

[96] Wang Q , Li S, Jia P, Qi C, Ding F. A 
review of surface water quality models. 
The Scientific World Journal. 
2013;2013:7

[97] Wang X, Gu X, Wu Z, 
Wang C. Simulation of flood inundation 
of Guiyang city using remote 
sensing, GIS, and hydrologic model. 
The International Archives of the 
Photogrammetry, Remote Sensing 
and Spatial Information Sciences. 
2008;XXXVII(Part B8)


