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Abstract 

Cyanobacteria harmful algal blooms (cyanoHABs) are a global problem with human health, 

environmental, and economic concerns. The severity and frequency of toxic cyanoHABs are 

expected to increase with climate change. Remote sensing has proven to be a useful tool in 

monitoring cyanoHABs. This study uses remote sensing observations from Sentinel-3 Ocean Land 

Color Imager (OLCI) combined with the Spectral Shape Algorithm (SSA) to detect the presence 

of cyanobacteria in numerous waterbodies throughout the Northeast United States over 2016 to 

2020. The ACOLITE processor was used for the atmospheric correction of the Sentinel-3 OLCI 

data, as it has been shown to provide more accurate results over water bodies. Citizen scientist data 

from two EPA apps, BloomWatch and CyanoScope, were used to guide the cyanoHAB detection 

results. This study focuses on  three different aspects of using the remote sensing methods to detect 

cyanobacteria harmful algal blooms: (1) examine two different reflectance center band 

combinations of the SSA at 665 nm and 681 nm, (2) compare SSA controls for non-bloom periods 

in winter/spring to the summer bloom periods, and (3) examine bloom areas within waterbodies. 

The SSA method with the center band at 665 nm was found to perform better than the SSA method 

with the center band at 681 nm. Additionally, cyanoHAB environmental precursors were 

determined and their effects on the formation of cyanoHABs were assessed, with maximum air 

temperature having the greatest impact on cyanoHABs formation.  
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1. Introduction 
 

1.1. CyanoHABs 

Harmful algal blooms (HABs) are generally defined as an overgrowth of algae that results in 

negative environmental and human health consequences. Cyanobacteria harmful algal blooms 

(cyanoHABs) are the most common form of inland freshwater HABs, inflicting widespread public 

health, water supply, and economic consequences. Concentrations of cyanobacteria naturally live 

in fresh waterbodies, in which they play essential roles in primary production, nitrogen fixation, 

and other nutrient and sediment cycling (Howarth et al., 1988). Nevertheless, cyanobacteria pose 

major health hazards when the concentration of cyanobacteria increases rapidly creating 

cyanoHABs. The increase and accumulation of cyanobacteria can be linked to many different 

factors, including environmental factors, climate change, over-fishing, land-use changes, and 

agricultural activities (Glibert et al., 2015).  

 

Certain species of cyanobacteria produce highly potent toxins, known as cyanotoxins. These toxins 

are termed secondary metabolites because they are not essential for their own growth and 

metabolism (Carmichael, 1992). The compounds produced are considered toxins because they 

cause health risks and poisoning to humans and animals (Glibert et al., 2005; O’Neil et al., 2012). 

More than one hundred types of cyanotoxins exist and can be categorized in three different groups: 

(1) hepatotoxin, that target the liver, (2) neurotoxins that affect the nervous system, and (3) 

dermatoxins that cause skin irritation (Merel et al., 2013). In a 1999 World Health Organization 

study, an estimated 60% of global cyanobacteria samples from inland waterbodies contained 

cyanotoxins (WHO, 1999). The cyanotoxins frequently found throughout U.S. inland waterbodies 

include microcystins, cylindrospermopsin, anatoxins and saxitoxins (US EPA, 2020). The human 



 
 
Using Remote Sensing and Environmental Precursors to Detect and Predict Cyanobacteria Harmful Algal Blooms in 
Northeastern US Waterbodies 

4 
 

health effects include skin and eye irritation, damage to liver and kidney function, and severe flu-

like symptoms (Carvalho et al., 2011). Humans can be exposed to cyanotoxins through dermal 

contact, ingestion and inhalation during recreational activities, contaminated drinking water, 

consumption of fish and other shellfish, and the use of algal supplements (Loftin et al., 2016). 

CyanoHABs have caused illness and/or death to humans and animals in almost every US state and 

many countries (Backer et al., 2015). 

 

The effects of cyanoHABs extend beyond human and animal health, causing great economic 

burden. The US EPA estimated the costs associated with nutrient pollution and HABs with US 

data from 2000 to 2012, and found significant costs associated with HABs. The EPA study 

specifically reviewed Ohio lakes over a two-year period and found associated costs of tourism and 

recreation and drinking water treatment due to HABs as $47 million and $13 million, respectively. 

Additionally, the study documented increased emergency room visit costs in Sarasota County, 

Florida from human contact with algal blooms, which can cost the county more than $130, 000 

per bloom season (US EPA, 2015). CyanoHABs deteriorate water quality, threaten aquatic 

ecosystem health, threaten drinking water supply, and cause human illness (Huisman et al., 2018). 

CyanoHABs deteriorate water quality by reducing clarity (increasing the turbidity), increasing pH, 

and depleting dissolved oxygen. Millions of Americans rely on surface waterbodies for drinking 

water, which have the potential for cyanotoxin contamination. In 2014, more than 500,000 

residents in Toledo, Ohio lost access to drinking water due to toxic cyanoHABs near the drinking 

water supply intake. Toledo reported 2.5 μg/L microcystin in the finished drinking water, which 

exceeds the World Health Organization’s recommended 1.0 μg/L threshold for cyanotoxins in 

finished drinking water (Steffen et al., 2017).  
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1.2. Environmental Precursors to CyanoHABs 

The severity and frequency of toxic cyanoHABs are increasing globally due to climate change, 

causing increased threats to public health, increased costs associated with cyanoHABs, and water 

supply disruption. Inland waterbody phytoplankton communities are greatly influenced spatially 

and temporally through changes in water quality parameters that include surface water temperature, 

nutrient concentrations, rainfall, water clarity, wind, and sunlight availability (Watson et al., 1997; 

Paerl et al.; 2001; Glibert et al., 2005; Heisler et al., 2008; O’Neil, 2015; Beaver et al., 2018; 

Cermona et al., 2018). Several studies determined that increased nutrients, specifically phosphorus, 

shifted algal populations towards cyanobacteria domination (Watson et al., 1997; Paerl, 2008; 

Beaver et al., 2018). Algal populations are found to be dominated by cyanobacteria at total 

phosphorus concentrations of approximately 100-1000 μg L-1 (Watson et al., 1997; O’Neil et al., 

2015). Phosphorus may control the cyanobacteria presence because cyanobacteria have the ability 

for nitrogen fixation (O’Neil et al., 2015).  

 

The ability for short-term forecasting of  future cyanoHABs would be of highest interest to water 

managers and public health officials. Many studies have tried to predict cyanoHABs with the 

presence of environmental precursors; the common precursors studied include water temperature, 

phosphorus concentrations, nitrogen concentrations, sunlight availability, and water clarity 

(Bukowska et al., 2017; Xiao et al. 2017; Duan et al. 2018; Russo et al., 2020). Russo et al. (2020) 

found that water temperature, phosphorus concentration and sunlight availability are positively 

correlated to cyanoHABs through increasing growth rates, whereas, water clarity or Secchi Disk 

depth was negatively correlated to CyanoHABs. Nitrogen concentrations were found to have 

mixed correlations to cyanoHABs.  
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Earlier studies used linear and multiple regressions in single lake or a small number of lakes in the 

same region to predict cyanoHABs with environmental precursors, such as the Baltic Sea, Lake 

Taihu, China, and Lake Erie, USA (Kanoshina et al., 2003; Xu et al., 2010; Stumpf et al., 2016; 

Steffen et al., 2017). Many of these studies use cyanobacteria data at a genus level and disregard 

differences among species of cyanobacteria, which can be affected differently given varying 

environmental precursors (Beaver et al., 2018). Recently, studies have expanded the approach to 

find trends across larger geographic regions in numerous ways: (i) examined how different 

cyanobacteria react to different environmental precursors; (ii) created frameworks to be applied to 

lakes that have not yet experienced blooms; (iii) aided analyses with the use of neural networks 

and models (Bukowska et al., 2017; Beaver et al., 2018; Zhao et al., 2019; Pyo et al., 2020). Beaver 

et al. (2018) used the USEPA National Lakes Assessment to find regional trends in environmental 

precursors and cyanobacteria species. The study found correlation between total phosphorus and 

water clarity with lake phytoplankton composition. Moreover, increased concentrations of the 

cyanobacteria toxin microsystin strongly correlated with high phosphorus levels and watersheds 

with low forest cover (Beaver et al. 2018).   

1.3. Remote Sensing of CyanoHABs 

Comprehensive cyanoHAB trends have not been well documented due to historical paucity of in 

situ sampling programs and standard analytical methods (Urquhart et al., 2017). Rigorous, 

widespread in situ sampling efforts to thoroughly document cyanoHAB trends would require 

significant time, costs, and human-power resources. Remote sensing data has proven to be a useful 

tool in monitoring cyanoHABs. Many studies have used remote sensing data to identify 

cyanobacteria throughout inland waterbodies using data from various satellites and sensors, such 
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as Envisat MERIS (Wynne et al., 2008; Wynne et al., 2011; Kahru and Elmgren, 2014; Stumpf et 

al., 2016), Sentinel-3 OLCI (Urquhart et al., 2017; Mishra et al., 2019; Coffer et al., 2020), 

Landsat/TM (Oyama et al., 2015), and MODIS/ASTER (Hu et al., 2009; Kudela et. al, 2015; Jia 

et al., 2019). 

Remote sensing methods use surrogate identification methods to detect cyanobacteria presence 

and estimate biomass. The two primary surrogate identifiers are phycocyanin (PC) and 

chlorophyll-a (chl-a). According to Stumpf et al. (2016), the decision on which surrogate 

parameter to choose, should be decided by three factors: availability of data, specificity of the 

surrogate identifier, and sensitivity regarding its reflectance. Stumpf et al. (2016) establish that 

chl-a data is more widely available, and PC does not have standard laboratory methods. PC is more 

specific because it is a pigment indicator found specifically in cyanobacteria, whereas chl-a is 

found in both cyanobacteria and other algal species. Lastly, Chl-a has an absorbance peak that is 

better suited for broad remote sensing, falling between 665 and 681 nm, which wavelength is found 

on many sensors. Specific sensors, including MERIS and OLCI, have available bands near 620 

nm, which is advantageous for PC detection (Stumpf et al., 2016). 

Previous studies have established many different approaches to measuring these surrogate 

identifiers, through analytical, semi-analytical and derivative methods. Analytical methods, first 

outlined in Simis et al. (2005), successfully used in situ radiometry data to extract the spectral 

absorption and solve for PC. Analytical methods become less accurate when scaled to remote 

sensing data due to sediment backscatter and atmospheric corrections (Stumpf et al., 2016). Next 

semi-analytical algorithms, or bio-optical algorithms, commonly use satellite band ratios to isolate 

algal pigments, from the determined water reflectance. Studies have used two-band and three-band 

ratio algorithms to calculate the algal surrogate parameters, chl-a (Gilerson et al., 2010; Le et al., 
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2013; Toming et al., 2017; Pyo et al., 2018; Keith et al., 2019) and PC (Mishra et al., 2009, 2014; 

Ogashawara et al., 2013; Pyo et al., 2018). Semi-analytical algorithms have been widely used with 

sensors that have fewer bands, such as Landsat, and are not limited to specific sensors with narrow 

band wavelengths (MERIS and OLCI).  

Lastly, the more complex, derivative, also known as curvature or baseline algorithms, include the 

Spectral Shape Algorithm, (Wynne et al., 2008; Lunetta et al., 2015) and the Floating Algal Index 

(Hu et al., 2009; Oyama et al., 2015).  Derivative algorithms are used by determining the presence 

of the surrogate parameter, chl-a, using the extreme changes in the reflectance peaks and valleys. 

Chl-a is absorbed strongly at 665 and 681 nm, and water is absorbed around 754 nm; thus, the chl-

a is estimated using this absorption difference, known as the “red-edge” (Stumpf et al., 2016). The 

Spectral Shape Algorithm (SSA) is a commonly used derivative algorithm in reviewed literature, 

which was first done to determine cyanobacteria presence in Lake Erie by Wynne et al. (2008) and 

later updated by Lunetta et al. (2015). The SSA is a useful method in determining cyanobacteria 

presence across many different waterbodies, ranging from individual waterbodies to resolvable 

waterbodies across the entire US (Wynne et al. 2008, 2011, 2013; Kudela et al., 2015; Lunetta et 

al., 2015; Urquhart et al., 2017; Schaffer et al., 2018; Coffer et al., 2020). 

 

The use of remote sensing data can provide relatively dense observations both temporally and 

spatially with only minor regional wintertime limitations due to ice and snow cover (Coffer et al., 

2020). However, the ability to observe a specific waterbody depends on its size and shape due to 

the spatial resolution and orbit of the satellite. A 2017 study by Clark et al. used Envisat MERIS 

and Sentinel-3 OLCI data, with 300 m nadir resolution, to determine resolvable Continental US 

lakes  using the 2012 National Hydrography Dataset. The study found that 5.6% of waterbodies 
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were resolvable using 300 m resolution, and when these data were overlain with the US public 

water surface intake (PWSI) data, 57% of drinking water supply lakes were resolvable (Clark et 

al., 2017). Urquhart and Schaeffer’s (2019) noted that lakes with a surface area smaller than 27 ha 

(0.104 square mile) were unresolvable and could not be used in remote sensing analyses. 

Nevertheless, remotes sensing is a powerful tool that can be used to detect cyanoHABs, determine 

trends, and forecast future blooms given environmental precursors.  

1.4. Citizen Scientist CyanoHAB Data 

Previous studies have validated remote sensing methods with in situ samples; however, many 

waterbodies that experience cyanoHABs lack current standard field sampling campaigns and 

cyanoHAB trends cannot be assessed in these waterbodies. The use of citizen scientist data is vital 

to future remote sensing methods to detect cyanoHABs. Current US EPA mobile applications, 

such as BloomWatch1 and CyanoScope2, allow Citizen scientists to document HABs and collect 

water samples to test for cyanobacteria. Citizen scientists can upload pictures, descriptive bloom 

information, document location, and even determine the algae species through their water samples. 

These data help inform water managers of cyanoHABs in order to warn waterbody visitors of 

potential blooms, enact beach closures at these waterbodies, ensure toxins are not found in finished 

drinking water. The objective of this study is to examine the presence of cyanoHABs in multiple 

waterbodies throughout the northeastern region of the US using the SSA with Sentinel-3 OLCI 

data to detect cyanobacteria and citizen scientist data to direct remote sensing methods to which 

waterbodies cyanoHABs occurred and knowledge of bloom descriptors. This study uses satellite 

remote sensing data and the Spectral Shape Algorithm to detect the presence of cyanobacteria 

across northeastern US waterbodies. In contrast to other studies, we used citizen scientist data for 

1 https://cyanos.org/bloomwatch/ 
2 https://cyanos.org/cyanoscope/ 
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waterbody selection and to aid in cyanobacteria detection. The objectives of our research revolve 

around three questions:  

1. Are citizen scientist data an effective tool to guide remote sensing detection of 

cyanobacteria in waterbodies? 

2. Can the Spectral Shape Algorithm be used to detect cyanobacteria presence in these 

waterbodies? 

3. Can meteorological environmental precursors be used to predict the presence of 

cyanoHABs? 

We used two different cyanobacteria detection methods along with a cross-correlation analysis to 

address the study goals. First, the Wynne et al. (2008) and Lunetta et al. (2015) Spectral Shape 

Algorithm band combinations are used to determine the best SSA band combinations for detecting 

cyanobacteria in waterbodies during summer/fall reported bloom events. Next, the SSA was 

calculated for winter/spring non-bloom periods and compared to the summer/fall bloom periods 

for each lake. Specific cyanobacteria bloom areas within lakes were examined to better understand 

the magnitude, duration, and spatial extent of the bloom event. Further, meteorological data was 

used to understand how environmental precursors correspond to bloom formation in these 

waterbodies. Cross-correlation was determined between meteorological data and SSA values in 

waterbodies. 

2. Materials and Methods 
 

2.1. Study Area  
 
Sentinel-3 OLCI data acquisitions were compiled for nine resolvable waterbodies across six states 

in the Northeastern United States, shown in Figure 1. The waterbodies were located in the EPA 

Level 1 North American Ecoregions Northern Forests and Eastern Temperate Forests. According 
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to the Fourth National Climate Assessment in 2018, the largest land-use sectors in the northeast 

were 54.8% forests, 14.4% agriculture, 10.2% developed, and 10.2% water (Sleeter et al., 2018). 

General land-use change in the past decades have observed losses in forests, agricultural, and 

wetland land covers and increases in developed areas (Sleeter et al., 2018). Runoff from 

agricultural and developed land-use, containing increased nutrient concentrations of nitrogen and 

phosphorus, accelerate cyanoHABs in the northeast (Lunetta et al., 2015). 

 

Figure 1. Study Area of 9 Northeastern Waterbodies 
  
The nine waterbodies examined in this study vary in use, that include, water supply, power 

generation and recreation. The selected waterbodies were all found to be resolvable and have a 

minimum surface area 0.48 square miles. This study used lakes having 10 pixels or greater to be 

resolvable. Sentinel-3 OLCI has a resolution of 300 m nadir. The cyanoHAB events in each 

waterbody varied temporally during the summer/fall months of 2016 to 2020. The characteristics 

1. Province Lake, NH 
2. Lovell Lake, NH 
3. Great East Lake, NH/ME 
4. Wilson Lake, ME 
5. Wakeby Pond/Mashpee Pond, 
MA 
6. Lake Wallenpaupack, PA 
7. Cayuga Lake, NY 
8. Oneida Lake, NY 
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of each waterbody and bloom events can be found in Table 1. The lake area polygons were 

downloaded from State GIS databases or created with QGIS by manually digitizing the lake extent. 

Table 1. Waterbody Surface Area and CyanoHAB Descriptors 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.2. Determination of waterbodies experiencing cyanoHABs using citizen scientist apps 
 
Two EPA Mobile Applications, BloomWatch and CyanoScope, were used concurrently to 

determine waterbodies that experienced cyanoHABs. The BloomWatch App allows citizen 

scientists to document observed HABs using their smartphones to capture images of the blooms, 

tag the latitude and longitude location of the bloom, and note additional waterbody and bloom 

descriptors, including approximate size of bloom and waterbody conditions. The second EPA App, 

CyanoScope, allows citizen scientists to obtain a water sampling kit, collect water samples of a 

waterbody experiencing a HAB, and test the sample to identify the cyanobacteria species. The 

samples species results are then uploaded to an open-source platform with the determined species, 

location, and time of sample. Both apps encourage interactive communities that inform citizen 

scientists and stakeholders about cyanoHAB conditions in US waterbodies(US EPA, 2021).  

 

  Waterbody Surface 
Area (sq. 
mi.) 

Reported CyanoHAB Event 
Occurrence 

1. Province Lake, NH 1.51 August/September 2019  
2. Lovell Lake, NH 0.84 July-September 2018 
3. Great East Lake, ME/NH 2.86 August/September 2016 
4. Wilson Lake, ME 0.48 August/September 2018 
5. Wakeby Pond, MA 1.14 September 2020 
6. Lake Wallenpaupack, PA 8.91 July-September 2020 
7. Cayuga Lake, NY 66.41 August/September 2019 
8. Oneida Lake, NY 79.80 July-September 2019 
9. Lake Champlain, NY/VT 490  July/August 2019 
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This study used the BloomWatch to first determine which specific waterbodies in the northeastern 

US were experiencing HABs, the time period of the bloom, and additional bloom descriptors. Then, 

CyanoScope was used to determine if the algae sample was a cyanobacteria species. The most 

commonly found cyanobacteria species were Microcystis, Dolichospermum, and Gloeotrichia, 

which are all capable of producing cyanotoxins. Waterbodies and samples recorded in both apps 

did not consistently align, and additional resources on specific cyanoHABs were used to fill 

knowledge gaps, such as State Department of Environmental Protection information on 

waterbodies experiencing blooms and beach closures due to cyanobacteria in each state. 

Waterbodies with the most available bloom data and resolvable surface area were subsequently 

selected to be used with remote sensing methods to detect cyanoHABs (Table 1). 

2.3. Remote Sensing Data 
 

This study used the Ocean and Land Color Instrument (OCLI) onboard the Sentinel-3A and 

Sentinel-3B satellites that were launched in 2016 and 2018, respectively. The sensor has a spatial 

resolution of 300 m nadir and temporal resolution of 2-3 days. Sentinel-3 OLCI data was 

downloaded from the Copernicus Open Access Hub (https://scihub.copernicus.eu) provided by the 

European Space Agency (ESA) Copernicus. The OLCI data were downloaded for weekly 

observations or finer were used over the entire summer/fall months to capture the broad bloom 

period. Additional finer-scale time-step data, subject to OLCI data availability, were downloaded 

for the reported citizen scientist bloom occurrence to capture the exact bloom period.  

2.4. ACOLITE Atmospheric Correction 
 

The ACOLITE processor was used for the atmospheric correction of the OLCI data. ACOLITE 

was developed by the Royal Belgian Institute for Natural Science initially for Landsat and 

Sentinel-2 imagery, with newer capabilities added to include Sentinel-3 OLCI imagery. ACOLITE 



 
 
Using Remote Sensing and Environmental Precursors to Detect and Predict Cyanobacteria Harmful Algal Blooms in 
Northeastern US Waterbodies 

14 
 

was developed to process imagery over coastal areas and inland waterbodies by applying the 

default dark spectrum (DSF) fitting approach for atmospheric correction (Vanhellemont and 

Ruddick, 2018, Vanhellemont, 2019). Few studies have used the ACOLITE DSF approach for the 

atmospheric correction of Sentinel-3 OLCI data, but this atmospheric correction method has been 

proven effective by Renosh et al. (2020) and Vanhellemont and Ruddick (2021). The DSF 

approach is an automated process that works by selecting multiple dark spots in the image scene 

to create a “dark spectrum” that is then used to approximate the atmospheric path reflectance 

(Vanhellemont, 2019). Python was used to run the ACOLITE processing software and apply the 

atmospheric correction for the downloaded OLCI imagery. 

2.5. Cyanobacteria Detection Algorithm 

The Spectral Shape Algorithm (SSA) was used for the detection of cyanobacteria presence in each 

waterbody, shown in Equation 1,  

SS(λ) =  𝜌𝑠(λ) - 𝜌𝑠(λ–) + {𝜌𝑠(λ–) - 𝜌𝑠(λ+)}      (1) 
 

where 𝜌𝑠 is the top of atmosphere corrected reflectance, λ is the central band, λ+ is the adjacent 

upper band, and  λ_ is the adjacent lower band. The SSA was first used by Wynne et al. (2008) 

around the 681 nm fluorescence band, with λ = 681 nm, λ+ = 709 nm and  λ_ = 665 nm. By selecting 

the center band at 681 nm, the algorithm covered peaks in the chlorophyll-a absorption and 

fluorescence regions. Water not experiencing blooms has a fluorescence peak at 681 nm, shown 

in Figure 2; whereas cyanobacteria-laden water has negligible fluorescence. Wynne et al. (2008) 

defined a baseline between the adjacent upper and lower bands to determine cyanobacteria 

presence. The presence of cyanobacteria is most likely if the fluorescence band (681 nm) 

reflectance falls below the baseline between 709 nm and 665 nm, which yields a negative SS(681). 

Wynne et al. (2008) derived this as the Cyanobacteria Index (CI), so CI = -SS(681). For the 
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instances where cyanobacteria is not present, the reflectance at 681 nm is above the baseline, which 

yields a positive SS(681). This version of the SSA was found to identify other types of algal blooms, 

besides cyanobacteria, causing inaccurate SSA values.  

 

 
Figure 2. Remote Sensing Reflectance compared to handheld radiometer wavelengths; 
adapted from Stumpf et al. (2016)  
 

To distinguish cyanobacteria from other algal species, Matthews et al. (2012) first changed the 

SSA band combinations to include 620 nm, which is sensitive to phycocyanin, in order to separate 

cyanobacteria from other blooms in African Lakes. Lunetta et al. (2015) is responsible for devising 

the Matthews et al. (2012) band updates as the CI-multi. Lunetta et al. (2015) used the changed 

center band at 665 nm and the adjusted baseline between 620 nm and 681 nm, and so λ = 665 nm, 

λ+ = 681 nm and  λ_ = 620 nm. The Lunetta et al. (2015) SSA adjustment accounted for poor 

atmospheric conditions and was more sensitive to phycocyanin, which strongly absorbs at 620 nm 

(Figure 2). The increased phycocyanin absorption was found to decrease the reflectance at 620 nm, 

which changes the SS(665) from negative to positive. (Simis et al., 2005). For the Lunetta et al. 
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(2015) SSA center band method, cyanobacteria are assumed present when SS(665) is positive, and 

absent when SS(665) is negative, which is the reverse of the Wynne et al. (2008) SSA band 

combinations.  

2.6. Cyanobacteria Bloom Analyses 

Three different analyses were used for cyanobacteria detection in the nine study lakes: (1) SSA 

center band method comparison; (2) winter/spring non-bloom period comparison; (3) determining 

specific bloom areas within each lake. First, both SSA center band methods (Wynne et al., 2008 

and Lunetta et al., 2015) were used to calculate SSA values for pixels within each lake over the 

reported summer/fall bloom period. The performance of each method was compared, and SSA 

results were analyzed to determine trends regarding lake size and location. A winter/spring non-

bloom period was selected for each lake, and the SSA was calculated for each pixel within the lake 

polygon for this non-bloom period. The SSA non-bloom and bloom period values were compared 

for each lake. For larger lakes, the reported cyanoHAB location was marked and used to determine 

the exact bloom area. Smaller polygons of these lakes were created in QGIS to better visualize the 

magnitude and duration of the cyanoHABs.  

 
2.7. Environmental Precursor Methods 
 
Lagged cross-correlations were calculated to determine the relationship of meteorological 

environmental precursors and cyanobacteria presence/absence within each lake. Maximum 

temperature, minimum temperature, and precipitation daily summaries were downloaded from the 

NOAA NCDC database for the closest weather station to each lake. The SSA statistics, namely 

mean, median, max, and min, were calculated for the lake bloom periods. The meteorological 

variables were lagged and the cross-correlation was determined between the meteorological 
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environmental precursors and the SSA statistic values. Cross-correlation trends were determined 

to provide comprehension of how environmental precursors affect cyanoHAB formation. 

3. Results 
 

3.1. Cyanobacteria Detection Results 
 

3.1.1. SSA Method Comparisons 
 

The Wynne et al. (2008) and Lunetta et al. (2015) SSA center band methods were calculated for 

each lake. The Sentinel-3 OLCI spectral band combinations and cyanobacteria detection criteria 

for each method are shown in Table 2.  

Table 2. Sentinel-3 OLCI Spectral Bands and Cyanobacteria Detection Criteria for each 
SSA Method 

SSA Method Spectral Bands Cyanobacteria Detection Criteria 
Wynne et al., 2008 λ = 681 nm  

λ_ = 665 nm 
λ+ = 709 nm  

SS(681) > 0 – cyanobacteria absent 
SS(681) < 0 – cyanobacteria present 

Lunetta et al., 2015 λ = 665 nm  
λ_ = 620 nm 
λ+ = 681 nm 

SS(665) > 0 – cyanobacteria present 
SS(665) < 0 – cyanobacteria absent  

 
Previous studies determined that the Lunetta et al. (2015) SSA method performed better than the 

Wynne et al. (2008) SSA method. Both SSA methods were used to examine cyanobacteria 

detection and evaluate lake size and regional trends for lakes in this study (Mishra et al., 2019; 

Coffer et al., 2020). The Lunetta et al. (2015) SSA method is more sensitive to phycocyanin and 

distinguishes cyanobacteria from other algal blooms, whereas the Wynne et al. (2008) SSA method 

can detect other algal species besides cyanobacteria. Both methods were used for cyanobacteria 

detection in this study to evaluate their cyanobacteria detection ability and confirm the better 

performance of the Lunetta et al. (2015) algorithm. Because this study used citizen scientist data, 

not in situ sampling data, to select and guide the cyanobacteria detection in each lake, both SSA 

methods were used to provide better understanding of the cyanoHABs in the study area lakes.  
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The SSA center band methods for Oneida Lake and Province Lake are shown in Figures 3 through 

6. Both SSA methods were applied for every pixel over the reported cyanoHAB event in each lake. 

These lakes were selected for comparisons due to their differing sizes, lake characteristics, and 

geographic locations. Oneida Lake is in Upstate New York northeast of Syracuse, near Lake 

Ontario. The lake area is 79.8 square miles and has a maximum and average depth of 55 ft and 22 

ft, respectively (NY DEC, 2021). Cyanobacteria was reported in the summer/fall month of 2019 

in the eastern portion of the lake. Province Lake is located on the border of New Hampshire and 

Maine, near Effingham, NH. The lake area is 1.51 square miles and has a maximum and average 

depth of 16 feet and 9 feet, respectively (NHFGD, 2013). Cyanobacteria was reported in Province 

Lake mid-August 2019.  
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Figure 3. Lunetta et al. (2015) SSA Method for the Oneida Lake, NY 2019 CyanoHAB 
 
Positive SSA values, shown as red pixels on the Lunetta et al. (2015) maps, indicate the presence 

of cyanobacteria, whereas negative SSA values, shown as blue pixels on the Lunetta et al. (2015) 

maps, indicate the absence of cyanobacteria. The Lunetta et al. (2015) method indicates 

cyanobacteria throughout the summer/fall of 2019, with a highly concentrated cyanoHAB in the 

eastern portion of the lake. The Lunetta et al. (2015) SSA values show the 2019 cyanoHAB 

intensity peaking on multiple days and moving to the west across the lake throughout different 
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dates of the bloom period. Cyanobacteria was detected in early-July 2019 and remained through 

early-September 2019. The Oneida Lake 2019 cyanoHAB had multiple peak events in the eastern 

portion of the lake on July 24th, August 14th, and September 3rd before dissipating by September 

18th. The New York Department of Environmental Conservation (NY DEC) reported suspicious, 

confirmed or confirmed with high cyanotoxin concentrations in Oneida Lake every year since 

2013 (NY DEC, 2019). In 2019, the NY DOH reported 32 beach closure days for Oneida Lake 

due to cyanobacteria (2020). 

Figure 4. Wynne et al. (2008) SSA Method for the Oneida Lake, NY 2019 CyanoHAB  
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The Wynne et al. (2008) SSA negative values, shown in red pixels, indicate cyanobacteria 

presence, whereas the SSA positive values, shown in blue pixels, indicate cyanobacteria absence 

(Figure 4). For the Oneida Lake 2019 cyanoHAB event, the Lunetta et al. (2015) SSA method 

performs better than the Wynne et al. (2008) SSA method for cyanobacteria detection. The Wynne 

et al. (2008) SSA method indicated the same cyanoHAB pattern with peak events in the eastern 

portion of the lake; however, the Wynne et al. (2008) SSA pixel values over Oneida Lake are 

generally negative or near zero overpredicting cyanobacteria presence. Additionally, lake pixels 

along the water coastline interface are largely negative, affecting the SSA scale values of the 

heatmaps. The Wynne et al. (2008) SSA method calculated false negative values for Oneida Lake, 

and confirms that the Lunetta et al. (2015) SSA method better predicts cyanobacteria in Oneida 

Lake.  

 

Consistent with Oneida Lake, calculated Lunetta et al. (2015) SSA positive pixel values in 

Province Lake, indicate cyanobacteria presence, and the SSA negative pixel values indicate 

cyanobacteria absence. The Lunetta et al. (2015) SSA method detects cyanobacteria presence in 

Province Lake starting in July with a significant cyanoHAB peak occurring on September 9, 2019. 

On the EPA App CyanoScope, a citizen scientist reported the cyanobacteria species Anabaena on 

August 9, 2019 in Province Lake. Additionally, the NH DES issued a cyanobacteria advisory for 

Province Lake on July 25, 2019 based on collected water samples from the same day. The samples 

collected contained the cyanobacteria species Anabaena with a concentration above the New 

Hampshire state threshold of 70,000 cells/mL of cyanobacteria. The advisory lasted from July 25 

to July 31, 2019 (NH DES, 2019). The Lunetta et al. (2015) SSA map contains positive pixel 

values during this advisory period, indicating cyanobacteria presence.  
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Figure 5. Lunetta et al. (2015) SSA Method for Province Lake, NH 2019 CyanoHAB 
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Figure 6. Wynne et al. (2008) SSA Method for Province Lake, NH 2019 CyanoHAB 
 
The negative SSA pixel values are shown in red, indicating cyanobacteria presence for the Wynne 

et al. (2008) SSA method. The Wynne et al. (2008) SSA values do not match the cyanobacteria 

detection trends shown in the Lunetta et al. (2015) SSA values  (Figure 5 and 6). The Wynne et al. 
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(2008) method overestimates cyanobacteria presence as all lake pixel values for Province Lake are 

negative. For both Oneida Lake and Province Lake, which differ in lake size, depth and location, 

the Lunetta et al. (2015) SSA method performed better than the Wynne et al. (2008) SSA method 

for cyanobacteria detection. The SSA method comparison results for Oneida Lake and Province 

Lake are representative for all the lake in this study, with the Lunetta et al. (2015) performing 

better than the Wynne et al. (2008) method, and the Wynne et al. (2008) method flagging false 

negative SSA values. Additional SSA method comparisons of Lunetta et al. (2015) and Wynne et 

al. (2008) can be found in Appendix A and B. For the rest of the analysis, we used the Lunetta et 

al. (2015) SSA method for the cyanobacteria detection.  

3.1.2. SSA Winter/Spring Comparison  

The SSA was calculated using the Lunetta et al. (2015) SSA method for a non-bloom period during 

the winter/springtime to compare with the SSA summer bloom period results. The non-bloom 

period was selected for each lake from February to May when there was no reported or expected 

cyanobacteria in these waterbodies. Past ecological trends suggest that cyanoHABs usually occur 

during warmer months in the summer and early fall. The non-bloom period Lunetta et al. (2015) 

SSA comparisons for Oneida Lake and Province Lake, the same diverse representative lakes as 

used in section 3.1.1., are shown in Figures 7 through 9. 
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Figure 7. SSA Values over Oneida Lake Non-Bloom Period 2019 
 
Oneida Lake experienced ice and snow cover over the lake surface area into April in 2019. The 

ice and snow cover result in false positive SSA values, shown in red, for February 19, 2019 through 

April 4, 2019. As the ice and snow melts, the SSA values return to negative values, indicating clear 
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water, free of ice, snow, and cyanobacteria. The reflectance values for the Sentinel-3 OLCI SSA 

spectral bands (620, 665, and 681 nm) for snow and ice cover are shown in Figure 8. 

 

  
 
Figure 8. SSA Reflectance Band Values for Oneida Lake Ice and Snow Cover on March 9, 
2019 (left side) compared to Oneida Lake Clear Water (no ice and snow cover) on May 21, 
2019 (right side) . 
 
The SSA reflectance values for snow and ice cover over Oneida Lake on March 9, 2019 are 

significantly greater than the SSA reflectance values for clear water over Oneida Lake on May 21, 

2019 (Figure 8). Snow and ice cover have much larger reflectance than water in the visible 
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spectrum, and thus, the increased reflectance values for snow and ice cover result in positive SSA 

values. 

 
 
 
 
 
 
 
 
 

Figure 9. SSA Values over Province Lake Non-Bloom Period 2019 
 
The SSA values for the non-bloom period for Province Lake are shown in Figure 9. Province Lake 

experiences ice and snow cover into April, similar to Oneida Lake, before returning to clear water 

in May. Other lakes in this study had similar snow and ice cover patterns for the non-bloom period. 

The non-bloom period effectively shows SSA trends in the study lakes during the winter and spring 

months. The lakes show negative SSA values, indicating clear water without cyanobacteria present 

once the snow and ice have melted. Due to snow and ice cover during winter months, the non-
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bloom comparison lacks data to be compared cyanoHAB ecological patterns. Ecological patterns 

indicate cyanoHABs occur in the summer and fall month, disappear over the winter into spring, 

and do not form again until the next summer in warmer months.  

3.1.3. Determining Bloom Areas within Lakes 
 

Larger lakes in the study area, including Lake Champlain and Cayuga Lake, required further 

analysis to identify the reported cyanoHAB event. Smaller polygons were created to identify and 

examine cyanobacteria presence using the Lunetta et al. (2015) SSA method. Both the entire lake 

polygon and the smaller reported bloom area polygons are shown for Lake Champlain and Cayuga 

Lake (Figures 10 through 13). The SSA was calculated over the entire Lake Champlain surface 

area (Figure 10). Lake Champlain has experienced an increase in cyanoHABs in recent years 

(Bockwoldt et al., 2018). Citizen scientist data have been reported in the BloomWatch and 

CyanoScope apps beginning in 2017. In 2019, cyanobacteria were detected along the beaches near 

Burlington, VT. The City of Burlington Parks, Recreation and Waterfront reported beach closures 

for North, Texaco, and Leddy beaches on July 12, 2019 continuing through July 23, 2019 (2021). 

The Burlington beaches area used for the bloom area analysis is shown in Figure 11. The SSA was 

calculated over the Burlington, VT beaches to identify cyanoHABs that were associated with the 

2019 Burlington beach closures (Figure 12). 
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Figure 10. SSA over Lake Champlain (Entire Lake Area) for 2019 CyanoHAB  
 

 
Figure 11. Burlington Beaches Sub-Area 
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Figure 12. SSA over Lake Champlain (Smaller Reported Bloom Area) for 2019 CyanoHAB  

 
The SSA values for the Burlington bloom area indicate cyanobacteria presence within the 

timeframe of the Burlington beach closures on July 18th. The cyanobacteria detection did not 

indicate a large bloom in this area but rather sporadic positive pixels in the SSA results over the 

reported beach closure period. Lake Champlain is the largest lake in the study, and the smaller 

Burlington beaches sub-area is still approximately eight miles in length, with a larger surface area 
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than many of the other lakes in this study. Because of the larger size of this sub-area and 

availability of Sentinel-3 OLCI data, the cyanoHAB event that caused the Burlington beach 

closures on July 12th may not have been accurately detected in the SSA results.    

 

The SSA was calculated over Cayuga Lake over July 9th to September 6th to capture the 2019 

cyanoHAB event (Figure 13). Cyanobacteria was detected in Cayuga Lake beginning August 13th 

continuing throughout the summer/fall bloom period, before dissipating in early September. The 

detected cyanobacteria are concentrated mainly in the northern and southern portions of Cayuga 

Lake with peak bloom events covering much of the lake surface, observed on August 22, 2019. 

The New York DEC has tracked harmful algal blooms throughout New York waterbodies since 

2012 and reports the waterbody bloom status as suspicious bloom, confirmed bloom, or confirmed 

with high toxin blooms. The New York DEC reported HABs in Cayuga Lake beginning in 2014, 

and confirmed with high toxin cyanoHABs every year since 2017 in Cayuga Lake (NY DEC, 

2019). Citizen scientist data reported cyanobacteria species Microcystis and Dolichospermum 

across Cayuga Lake on August 15-16, 2019, with many of the reports in the southern portion of 

the lake, specifically Taughannock Falls State Park beaches and beaches near Ithaca, NY.  
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Figure 13. SSA over Cayuga Lake (Entire Lake Area) for 2019 CyanoHAB  

The cyanoHAB in the southern portion of Cayuga Lake was isolated for further analysis due to the 

citizen scientists’ cyanobacteria reports and public health concerns; southern Cayuga Lake is a 

critical drinking water source and has many popular beaches for recreation and tourist attractions. 
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Southern Cayuga Lake supplies drinking water to the majority of Tompkins County, including the 

city of Ithaca and Cornell University. Currently, there have not been any reports of finished 

drinking water that have exceeded the New York microcystin health advisory limit of 0.3 μg/L. 

However, microcystin concentrations have been reported in raw water prior to treatment (NY DEC, 

2019). The southern bloom area is shown in Figure 14.  The SSA was calculated over the southern 

Cayuga Lake bloom area (Figure 15). 

 

 
Figure 14. Cayuga Lake Southern Bloom Area 
 
 



 
 
Using Remote Sensing and Environmental Precursors to Detect and Predict Cyanobacteria Harmful Algal Blooms in 
Northeastern US Waterbodies 

34 
 

 

Figure 15. SSA over Cayuga Lake (Smaller Reported Bloom Area) for 2019 CyanoHAB  

 
Cyanobacteria was detected beginning August 15, 2019 and continuing over the southern Cayuga 

Lake bloom area until early September. Over the bloom period, cyanobacteria were concentrated 

in the southern parts of the lake near drink water intakes and popular recreation beaches located in 
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the top left of the smaller bloom polygon. The calculated SSA values support the CyanoScope 

citizen scientists reports of cyanobacteria in southern Cayuga Lake. The bloom area analysis is 

beneficial in identifying specific cyanoHABs in lager waterbodies in this study area. The specific 

bloom area analysis allows for more comprehensive documentation of cyanoHABs that can be 

used to validate citizen scientist reports and inform water managers and public health official of 

cyanoHABs. 

3.2. Cyanobacteria Detection Validation 

As validation of the remote sensing cyanobacteria detection performance, the agreement between 

the citizen scientist cyanoHAB observations, State reports of cyanobacteria, and remote sensing 

cyanobacteria detection were analyzed for each lake (Table 3). The reported citizen scientist 

observation date and location were used for the validation, as well as the remote sensing detection 

for the corresponding date and lake pixels for location. Additionally, resources from specific state 

warnings and beach closures for individual waterbodies and cyanoHAB events were recorded to 

provide further descriptors for the reported cyanoHAB events.  
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Table. 3 Remote Sensing CyanoHAB Detection Validation 

Waterbody 
CyanoHAB 
Observation 

Date(s) 

CyanoHAB 
Observation 

Location 

Did remote 
sensing 

detect the 
cyanoHAB? 

Additional Information 

Province Lake, NH July 25, 2019 Center of lake Yes NH DES2 cyanobacteria 
advisory July 25-30, 2019 

Lovell Lake, NH Aug 20, 2018 
Sept 4, 2018 

Eastern cove Yes 
Unknown1 

N/A 

Great East Lake, 
ME/NH 

July 18, 2016 
Aug 17, 2016 
 

Center of lake Yes 
Unknown1 

N/A 

Wilson Lake, ME July 23, 2018 
Sept 4, 2018 

Center of lake Yes 
Unknown1 

N/A 

Wakeby Pond, MA 
Sept 29, 2020 N/A Yes MA DPH3 posted lake closure 

due to toxic cyanoHAB on 
September 29 

Lake 
Wallenpaupack, PA 

July 25, 2020 
Aug 22, 2020 

Southwestern 
portion of lake 

Yes 
Yes 

PLEON4 reported lake-wide 
cyanoHABs throughout July and 
August 2020 

Cayuga Lake, NY 
July 11, 2019 
Aug 16, 2019 

Southern 
portion 

Unknown1 

Yes 
NY DEC5 reported highly toxic 
cyanoHABs during July-
September 2019 

Oneida Lake, NY 

July 21, 2019 
July 26, 2019 
Aug 14, 2019 

Eastern portion 
near Verona 
Beach 

Yes 
Unknown1 

Yes 
 

NY DEC reported highly toxic 
2019 cyanoHAB; NY DOH6 
reported 32 beach closure days 
in 2019 due to cyanobacteria 

Lake Champlain, 
NY/VT 

July 12, 2019 
July 18, 2019 
 

7/12 – North, 
Texaco and 
Leddy Beach; 
7/18 – 
Oakledge Cove 
and Blanchard 
Beach 

Yes 

Yes  
 

Burlington Parks, Recreation and 
Waterfront7 reported beach 
closures for North, Texaco and 
Leddy Beach on July 12; North 
and Texaco beaches remained 
closed through July 23; 
Oakledge Cove and Blanchard 
Beach closed on July 18 

1.  No Sentinel-3 OLCI Data available for this exact date. 
2.  NH DES, 2019 
3.  Town of Sandwich, MA, 2020 
4.  LACAWAC, 2020 
5.  NY DEC, 2019 
6.  NY DOH, 2020 
7.  Burlington, VT Parks, Recreation and Waterfront, 2021 
 
 
The accuracy classification metric was used to evaluate the remote sensing cyanobacteria detection 

performance. The accuracy can be defined as the fraction of cyanoHAB events that are correctly 
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detected by the remote sensing methods over the total number dates that citizen scientist reported 

cyanobacteria throughout the study waterbodies. The accuracy of the remote sensing cyanoHAB 

detection was calculated for each citizen scientist reported observation date and location and the 

corresponding remote sensing detection for that date and pixels corresponding to the specified 

location. The accuracy for the remote sensing cyanoHAB detection was 71%. The main limitation 

affecting the accuracy of the remote sensing cyanobacteria detection methods was the availability 

of the Sentinel-3 OLCI data, marked as “Unknown” in Table 3. The remote sensing cyanoHAB 

detection patterns leading up to and following the absent Sentinel-3 OLCI data, when the 

cyanoHABs were reported, commonly show evidence of cyanobacteria present on the missing data; 

however, it can not be certain due to the lack of Sentinel-3 OLCI data on specific dates. When 

excluding the missing data points, the accuracy of the remote sensing cyanobacteria detection was 

100%.  

3.3. Environmental Precursor Results 
 
Lagged cross-correlations were calculated between three pairs of variables: maximum temperature 

and maximum SSA values, precipitation and minimum SSA values, and precipitation and 

maximum SSA values. The Lunetta et al. (2015) method was used to calculate SSA statistics 

values for every study lake during the selected summer/fall bloom period. The maximum SSA 

value, or most positive, corresponds to cyanobacteria detection in the study lakes. Theoretically, 

maximum temperature would result in increased cyanoHAB growth and formation (Kanoshina et 

al., 2003). The lagged cross-correlation of maximum SSA values and maximum temperatures did 

not show strong positive relationship (Figure 16). Several lakes show positive cross-correlation 

after a certain daily lag step, such as Lovell Lake, Great East Lake, Wilson Lake, and Wakeby 

Pond, suggesting that periods of warmer temperatures influence the presence in cyanobacteria. 
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However, some study lakes oscillate between negative and positive cross-correlations, which could 

be due to the small sample size of this study. Additionally, maximum air temperature was used at 

the nearest NOAA weather station, whereas water surface temperature measurements may be a 

more accurate indicator for the cross-correlation analysis.  

 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
Figure 16. Lagged Cross-Correlation of SSA Maximums and Maximum Temperature 
 
The lagged cross-correlation of precipitation and minimum SSA values and precipitation and 

maximum SSA values was calculated for the bloom period of each lake (Figures 17 & 18). The 

impacts of precipitation on cyanoHABs are less understood than temperature (Rousso et al., 2020). 

Previous studies have observed mixed immediate and long-term effects of precipitation on 

cyanoHAB growth and formation in waterbodies. Climate change increases the severity and 

frequency of heavy rainfall events, and heavy rainfall may decrease cyanobacteria biomass through 

increased hydraulic flushing (Richardson et al., 2019). Conversely, climate change effects the 

frequency and intensity of rainfall patterns; however, longer dry periods are expected between 

rainfall events due to climate change. The increased nutrient loading into waterbodies by rainfall 
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runoff combined with the prolonged dry periods are favorable conditions for accelerating 

cyanobacteria growth (Reichwaldt and Ghadouani, 2012). 

   

 
Figure 17. Lagged Cross-Correlation of SSA Minimums and Precipitation 
 

 
Figure 18. Lagged Cross-Correlation of SSA Maximums and Precipitation 
 
The cross-correlation results for precipitation in this study confirm the mixed effects of 

precipitation and cyanoHAB growth in waterbodies. The number of lagged days was increased for 

the precipitation cross-correlation to cover both the immediate and long-term effects of the rainfall 
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events. Both the SSA minimum values and SSA maximum values were used to evaluate the 

potential effects on cyanoHABs in waterbodies. Precipitation was not found to have strong trends 

with either SSA maximums or minimums among the study lakes. For both the SSA maximum and 

minimum with precipitation, the cross-correlation values fluctuate between negative and positive. 

Few lakes have periods of positive cross-correlation after certain lagged day. Precipitation may 

have differing effects on cyanoHAB growth and formation depending on the lake, specific rainfall 

event, and additional weather factors. The cross-correlation of the additional meteorological 

variables and SSA variables can be found in Appendix C. 

4. Discussion 
 

The results of this study demonstrate the ability to use citizen scientist data to select and guide the 

remote sensing detection of cyanobacteria throughout inland waterbodies. Further, the use of 

remote sensing was vital to visualizing the magnitude and duration of cyanoHABs in waterbodies. 

Combined, remote sensing and citizen scientist data were determined to accurately detect and 

model cyanoHAB events in study lakes. The calculated SSA values over the selected summer/fall 

bloom period indicated cyanobacteria presence corresponding to citizen scientist data in each lake. 

This study relied solely on citizen scientist observations for lake selection and to guide remote 

sensing methods, unlike similar studies that used in situ sampling to validate cyanobacteria remote 

sensing detection results.  

 

Citizen scientist data has the potential for human error when recording cyanoHAB observations, 

such as noting the correct observation time, marking the exact location coordinates of the 

cyanoHAB, bloom characteristics, or identifying the correct cyanobacteria species, that could 

result in inaccurate cyanobacteria detection. Another consideration that could potentially cause 
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remotes sensing detection inaccuracy is the temporal resolution of the Sentinel-3 OLCI data, 

causing gaps in available Senteinl-3 OCLI data on dates of reported cyanoHABs. Despite the 

potential for reported observation errors and Sentinel-3 OLCI data availability, this study carefully 

selected the study lakes and was highly successful in detecting cyanoHABs that corresponded to 

citizen scientists’ reports. As both the number of users and citizen scientists’ observations increase, 

remote sensing methods utilizing citizen scientist data could become more comprehensive and 

widespread.  

 

The SSA was used to successfully detect cyanobacteria presence in the study lakes. The Lunetta 

et al. (2015) SSA method better detected the cyanoHAB events corresponding to the citizen 

scientist observations than the Wynne et al. (2008) SSA method. The Wynne et al. (2008) SSA 

method displayed negative SSA pixels, indicating cyanobacteria, that trended with reported 

cyanoHAB events; however, the Wynne et al. (2008) SSA method flagged numerous invalid pixels 

that did not correspond with cyanoHAB events. This made it difficult to distinguish between 

cyanobacteria pixels and clear water pixels throughout the study area lake bloom areas and the 

winter/springtime non-bloom period comparisons for the Wynne et al. (2008) SSA method. 

Additionally, this method calculated false negative SSA values for the water-coastline pixels of 

water bodies in this study, caused by the false identification of the coastline vegetation. Because 

the Lunetta et al. (2015) SSA method was more sensitive to phycocyanin and could differentiate 

cyanobacteria from other algal species and vegetation, the water-coastline pixels did not pose 

significant issues, unlike the Wynne et al. (2008) SSA Method.  
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The previous confirmed performance of the Lunetta et al. (2015) SSA method at distinguishing 

cyanobacteria from other erroneous algal was proven in this study. The Lunetta et al. (2015) SSA 

method clearly distinguished between cyanobacteria pixels and clear water pixels during the bloom 

periods and the non-bloom comparison period in the study lakes. The Lunetta et al. (2015) SSA 

method flagged false positive SSA values over wintertime ice cover. This is due to the strong 

reflectance properties of snow and ice, which caused highly positive SSA values. The ecological 

patterns of cyanoHABs in the northeastern US seasonal climate were generally found to experience 

peak cyanoHAB events during the warmer summer and fall months before dissipating in late falls 

as the temperature and light availability decrease. Cyanobacteria are not commonly present during 

the colder winter and spring months in the northeastern US (Coffer et al., 2020). However, few 

studies report cyanobacteria presence in colder winter conditions. Ma et al., (2015) reported winter 

Microcystis cyanoHABs in Lake Taihu, China that persisted in water temperatures below 10°C. 

Cyanobacteria was also found surviving under ice cover in lakes at higher latitudes, including a 

study in Lake Nero, Russia that discovered the presence of certain cyanobacteria species under 

thicker wintertime ice cover with nearly complete lack of oxygen (Babanazarova et al., 2013).   

 

CyanoHAB patterns were similar across the study lakes with cyanoHAB peak events occurring 

July through September depending on the specific lake, which matches known historical 

cyanoHAB patterns in this region (Coffer et al., 2020). The magnitude and duration of the 

cyanoHAB events varied between lakes. The lake size did not significantly influence the 

magnitude or duration of the cyanoHAB events in the study lakes. Other factors, specific for each 

lake, most likely controlled the cyanoHAB magnitude and duration, such as, nutrient 

concentrations, water temperature, lake mixing. Certain study lakes in the same area of the 
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northeast region experienced similar timelines on when blooms began and the duration of the 

cyanoHAB event. Wilson Lake and Lovell Lake, both located in close proximity in New 

Hampshire/Maine and have comparable lake sizes, experienced cyanoHABs in the summer of 

2018. The cyanoHAB events both peaked mid-August 2018 and lasted until early September 2018. 

The severity of the Wilson Lake cyanoHAB was significant, covering the entire the water surface, 

whereas the Lovell Lake cyanoHAB was less severe covering only a portion of the water surface. 

Lovell Lake has a slightly larger surface area than Wilson Lake, but both lakes have similar water 

depths.  

 

Cayuga Lake and Oneida Lake both experienced cyanoHAB events during the 2019 summer and 

fall. Cayuga Lake and Oneida Lake had larger surface areas compared to other study lakes at 66.4 

and 79.8 square miles, respectively. The lakes are both located in close proximity in upstate New 

York. The southern cyanoHAB event in Cayuga Lake peaked at different location over mid-

August to early-September, with a large peak occurring August 22-24, 2019. Because of the long 

shape of Cayuga Lake, the lake experienced several different isolated cyanoHABs across the lake 

area in this timeframe. Conversely, Oneida Lake had one main cyanoHAB event across much of 

the lake that experienced several distinct peaks during the lakes longer bloom period of early-July 

to early-September. The cyanoHAB in Oneida Lake can also be observed moving across the lake 

surface area during the bloom period (Figure 3). Oneida Lake experienced a longer bloom period 

than Cayuga Lake, yet both lakes experienced major peaks in mid-August and both cyanoHAB 

events dissipated in early-September. Additional factors, aside from lake surface area and location, 

may control cyanoHAB events in these specific lakes, including water temperature, water depth, 

water column mixing, and nutrient concentrations.  
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We also explored environmental precursors to cyanoHABs to determine trends and potentially 

predict future cyanoHABs. Because this study did not have in situ measurements for study lakes, 

meteorological data was used for the environmental precursor analysis. Like the citizen scientist 

data used in this study, publicly accessible daily meteorological data was used for the 

environmental precursor analysis. The environmental precursor analysis did not find strong trends 

in the lagged cross-correlation of the meteorological data and cyanobacteria presence. The cross-

correlation of maximum temperature and SSA maximum values resulted in the best trends between 

study lakes. The results of environmental precursor analysis were highly variable, and trends were 

not well established between the cyanoHAB events and meteorological data in the study lakes. 

Further, the environmental precursor analysis could not be used to predict future cyanoHAB events 

in the study lakes. The small sample size of the bloom area limited the environmental precursor 

analysis. Additional data over longer time periods could potentially show better environmental 

precursor cross-correlation. Other environmental precursors data, not meteorological data, would 

be more appropriate for the environmental precursor analysis, such as water surface temperature 

or nutrient concentrations. 

5. Conclusion 
 

Sentinel-3 OLCI data was used to calculate the SSA over the study lakes to determine 

cyanobacteria presence. This study used the ACOLITE processor for the atmospheric correction 

of Sentinel-3 OLCI data. ACOLITE has been widely used for the atmospheric correction of 

Landsat and Sentinel-2 data; however, few studies have used the ACOLITE DSF approach for 

Sentinel-3 OLCI atmospheric correction. Vanhellemont and Ruddick (2021) validated the 

performance of the ACOLITE DSF approach for Sentinel-3 OLCI data, and this study 

demonstrated the proven performance of this method for Sentinel-3 OLCI atmospheric correction. 
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Cyanobacteria was detected throughout nine lakes in the northeastern US, which were selected 

with citizen scientist reported cyanobacteria observations. This study was solely relied on citizen 

scientist data to guide the cyanobacteria remote sensing methods. Although citizen scientist data 

can show these cyanoHABs, real-time remote sensing data is critical to show the full extent of 

cyanoHAB events. With lack of in situ sampling efforts for lakes in this study, citizen scientist 

data proved to be an effective tool to guide remote sensing methods. Future work should be done 

to expand the citizen scientist and remote sensing cyanobacteria detection framework, detailed in 

this study, to include additional waterbodies and cyanoHAB events. With increasing citizen 

scientist cyanoHAB app users and increasing cyanoHAB reports, this framework could be applied 

in widespread waterbodies. The remote sensing detection of cyanobacteria and the use of citizen 

scientist data for guidance framework has the potential for widespread use. This approach provides 

a solution for cyanobacteria detection in waterbodies that lack in situ sampling efforts. This 

framework would be highest interest to water manager, public health officials, and other 

stakeholders to provide valuable information regarding cyanoHABs in widespread waterbodies. 

Water managers and public health stakeholders must know the limitations of remote sensing 

methods for effective use.   

 

There are limitations associated with the remote sensing detection of cyanobacteria and the use of 

citizen scientist data. Remote sensing methods can only be used for waterbodies with sufficient 

size and shape due to the 300 m spatial resolution of the Sentinel-3 OLCI data. Pixels along the 

water-coastline interface were used for this study and have the potential to produce false SSA 

values. Cyanobacteria is commonly found along waterbody edges, and future work should be done 
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to address the water-coastline pixels. Remote sensing cyanobacteria detection methods also have 

wintertime snow and ice cover limitations, causing gaps in data availability in waterbodies that 

experience wintertime snow and ice cover. Lastly, well mixed lakes may have cyanobacteria 

concentrations further down the water column, yet remote sensing measurements can only detect 

surface cyanobacteria biomass. The citizen scientist observations had the potential for human error 

that could cause inaccuracies in the reported cyanoHAB events, as discussed in Section 4.  

 

This study did not find strong trends with in the meteorological environmental precursor analysis 

and future cyanoHABs events could not be predicted. The main limitation of the environmental 

precursor analysis was the use of meteorological data due to the lack of specific in situ water 

quality measurements. Water quality parameters, such as nutrient concentrations and water surface 

temperature, were shown is various studies to be the environmental precursors that most 

corresponded to cyanoHAB growth and formation. The environmental precursor may be more case 

dependent between different waterbodies on what controls cyanoHAB formation. Future work 

could be done using additional in situ water quality measurements for environmental precursor 

analysis.    
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Appendix A – Bloom Period SSA calculated over each Study Lake using the Lunetta et al. 
(2015) SSA Method  
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Appendix B – Bloom Period SSA calculated over each Study Lake using the Wynne et al. 
(2008) SSA Method  
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Appendix C – Cross-Correlation of Meteorological Environmental Precursors and SSA 
Statistical Values for each Study Lake     
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