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Water clarity is an ideal metric of regional water quality because clarity can be 

accurately and efficiently estimated remotely on a landscape scale. Remote sensing of 

water quality is useful in regions containing numerous lakes that are prohibitively 

expensive to monitor regularly using traditional field methods. Field-assessed lakes 

generally are easily accessible and may represent a spatially irregular, non-random 

sample. Remote sensing provides a more complete spatial perspective of regional water 

quality than existing, interest-based sampling; however, field sampling accomplished 

under existing monitoring programs can be used to calibrate accurate remote water clarity 

estimation models.  We developed a remote monitoring procedure for clarity of Maine 

lakes using Landsat Thematic Mapper (TM) and Moderate-Resolution Imaging 

Spectroradiometer (MODIS) satellite imagery. Similar Landsat-based procedures have 



 
 

been implemented for Minnesota and Wisconsin lakes, however, we modified existing 

methods by incorporating physical lake variables and landscape characteristics that affect 

water clarity on a landscape scale. No published studies exist using MODIS data for 

remote lake monitoring owing to the coarse spatial resolution (500 m) (Landsat=30 m), 

however, daily image capture is an important advantage over Landsat (16 days). We 

estimated secchi disk depth during 1990-2010 using Landsat imagery (1,511 lakes) and 

during 2001-2010 using MODIS imagery (83 lakes) using multivariate linear regression 

(Landsat: R²=0.69-0.89; 9 models; MODIS: R²=0.72-0.94; 14 models). Landsat is useful 

for long-term monitoring of lakes > 8 ha and MODIS is applicable to annual and within-

year monitoring of large lakes (> 400 ha).  

An important application of remote lake monitoring is the detection of spatial and 

temporal patterns in regional water quality and potential downward shifts in trophic 

status. We applied the Landsat-based methods to examine trends in Maine water clarity 

during 1995-2010. Remote change detection of water clarity should be based on August 

and early September (late summer) imagery only owing to seasonally poor clarity 

conditions and stratification dynamics, so our analysis was restricted to years in which 

late summer imagery were available. We focused on the overlap region between Landsat 

TM paths 11-12 to increase late summer image availability. We divided Maine intro three 

lake regions (northeastern, south-central and western) to examine spatial patterns in lake 

clarity. The overlap region contains 570 lakes > 8 ha and covers the entire north-south 

gradient of Maine. We found an overall decrease in average statewide lake water clarity 

of 4.94-4.38 m during 1995-2010. Water clarity ranged 4-6 m during 1995-2010, but 

consistently decreased during 2005-2010. Clarity in both the northeastern and western 



 
 

regions has experienced declines from 5.22 m in 1995 to 4.36 and 4.21 m respectively in 

2010, whereas clarity in the south-central region remained unchanged since 1995 (4.50 

m).  
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CHAPTER 1 

COMBINING LAKE AND WATERSHED CHARACTERISTICS  

WITH LANDSAT TM DATA FOR REMOTE ESTIMATION  

OF REGIONAL LAKE CLARITY 

1.1. INTRODUCTION 

Water clarity (or transparency) is a common metric of lake water quality often 

measured as secchi disk depth (SDD). Lake clarity is closely linked to other water quality 

variables such as trophic status, chlorophyll-a and total phosphorus and is a generally 

strong indicator of lake health (Carlson 1977). Assessments are relatively cheap, simple 

and efficient and can be performed by lakeshore residents who may own and operate 

boats on the lakes they monitor and are direct stakeholders in lake water quality. 

Increased lake clarity increases lakefront property value in Maine (Michael et al. 1996, 

Boyle et al. 1999) and New Hampshire (Gibbs et al. 2002) and also enhances user-

perception of Minnesota lake water quality (Heiskary and Walker 1988). Because clarity 

assessments are widely used and have strong ecological and economic implications, 

clarity is an ideal metric of regional lake water quality. Regional water quality 

assessments, however, are logistically challenging owing to costs, lake accessibility and 

the number of waterbodies requiring repeated sampling. These restrictions lead to field 

assessments concentrated in developed, easily accessible areas, which create spatially 

irregular, non-random samples. Many lakes are rarely or never monitored, so an accurate 

assessment of their status and change over time cannot be made. 

Remote data collection in regional water quality monitoring reduces costs 

associated with inaccessibility of remote lakes and enables monitoring to occur 
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simultaneously across an extensive area. Remote sensing, however, has a number of 

limitations. Clouds constrain usable imagery and affect reliability of monitoring on 

targeted dates. Haze in the atmosphere (Rayleigh scatter) interferes with spectral-

radiometric responses and may cause inaccurate assessments. Cost potentially is a 

limiting factor; although some platforms are free (e.g., Landsat Thematic Mapper - TM), 

others are more costly in routine assessments, particularly high-resolution sensors such as 

those carried on WorldView and GeoEye satellites. Calibration of remotely collected data 

requires site-based sampling that is nearly concurrent with remote data capture, 

illustrating that remote sensing is not entirely independent of field-based monitoring.  

Regional remote monitoring procedures have been developed for lakes in 

Wisconsin (Chipman et al. 2004) and Minnesota (Kloiber et al. 2002b, Olmanson et al. 

2008) using Landsat TM imagery and volunteer-collected SDD data. These programs 

considerably increased knowledge of regional water quality, however, their procedures 

rely solely on spectral data and do not consider additional factors that potentially affect 

water clarity. In this study, we developed models to estimate water clarity of lakes in 

Maine, USA from Landsat data, and we improved model performance by including 

physical lake characteristics and landscape features to explain variability in lake clarity 

consistently across years. 

1.2. DESCRIPTION OF STUDY AREA 

Located in the northeastern United States, Maine contains over 5,500 lakes and 

ponds > 1 ha in surface area across a total area of approximately 90,000 km² (Fig. 1.1). 

Maine ranks first among states east of the Great Lakes in total area of inland surface 
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waters (Davis et al. 1978). Maine is a cold-temperate climate with long, cold winters and 

short, warm summers. Western Maine is rural and mountainous, whereas southern coastal 

areas are more developed. Lakes are well-distributed throughout the state and average 

depth ranges 1-32 m. Lakes range in size from small ponds < 1 ha to Moosehead Lake 

(30,542 ha), the largest lake in Maine. The state’s lake water clarity monitoring program 

began in 1970 and SDD has ranged 0.1-21.3 m since 1970. The average annual SDD 

consistently has remained 4-6 m, with a historical average of 5.27 m during 1970-2009, 

and was 5.14 m in 2009 (n=457) (Maine Department of Environmental Protection, 

MDEP; Bacon 2010, Maine Volunteer Lake Monitoring Program 2010). The number of 

lakes sampled changes annually and generally has increased from 18 lakes sampled in 

1970 to consistently > 400 lakes since 1999. 

1.3. METHODS 

1.3.1. Landsat data selection 

Most of Maine is covered by Landsat paths 11-12, rows 27-30 (Fig. 1.1). Paths of 

images captured during mid-late summer were selected every 3-7 years from 1990-2010 

based on image quality and temporal adjacency of images from both paths. Mid-late 

summer (July 15-September 15) is the best time to estimate lake clarity remotely, because 

lake clarity is relatively stable during this time (Stadelmann et al. 2001). This also is the 

period with the greatest abundance of volunteer-collected calibration data. Owing to 

cloud cover, suitable images were available only during August 9-September 14 over the 

20-year period, with most images from early September (Table 1.1). A 20-year window 

was chosen to assess model applicability over time. All images except 1 date were 

Landsat 5, owing to better image quality on targeted dates and the 2003 scan line 
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corrector (SLC) failure in Landsat 7. SLC-off images can be used to estimate SDD 

(Olmanson et al. 2008), however, this requires careful pixel extraction and more 

processing time. No suitable images were available for path 11 to correspond with path 

12 images from 1990  

 

 

 

 

 

 

Fig. 1.1. Landsat TM paths 11 and 12 over Maine, USA. 
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Table 1.1. Landsat imagery used for remote estimation of lake clarity 

Path
a 

Rows Acquisition Date % Clouds Satellite/Sensor 

12 27-30 8/30/2010 0 Landsat 5 TM 

12 27-30 9/14/2004 0 Landsat 5 TM 

12 27-30 9/1/1999 0 Landsat 5 TM 

12 27-30 9/6/1995 0 Landsat 5 TM 

12 27-30 9/8/1990 0 Landsat 5 TM 

11 28-29 9/5/2009 6 Landsat 5 TM 

11 27-29 8/9/2005 8 Landsat 5 TM 

11 27-29 8/9/2002 0 Landsat 7 ETM+ 

11 27-29 8/14/1995 2 Landsat 5 TM 
a 
Path 11, row 27 scene omitted due to cloud cover on 9/5/2009 

 

1.3.2. Supplementary lake data 

Although satellite imagery previously has been used to monitor lake water clarity 

(Kloiber et al. 2002a, Chipman et al. 2004, Olmanson et al. 2008), ancillary lake 

variables were not considered in these applications. We combined satellite imagery data 

with variables describing physical lake characteristics and watershed disturbance in our 

models. We obtained previously collected average and maximum depth data to 

characterize lake bathymetry (MDEP; Bacon 2011). We used a watershed perimeter layer 

(MDEP; Suitor 2011) combined with an enhanced National Wetlands Inventory (NWI) 

layer (Houston 2008) to calculate the proportion of wetland area in lake watersheds 

(ArcGIS ® version 10.0; Environmental Systems Research Inc., Redlands, CA, United 

States). We used wetland area as a proxy for watershed disturbance because wetlands 

help regulate lake clarity and inversely indicate land potentially available for 

development. The proportion of wetland area in lake watersheds is positively correlated 

with lake color, which is significantly associated with water clarity of Minnesota lakes 

(Detenbeck et al. 1993). Water color is regulated by dissolved organic carbon (DOC), 
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which negatively affects water clarity (Gunn et al. 2001). DOC has a particularly strong 

influence on water clarity in oligotrophic lakes (Gunn et al. 2001), of which there are 

many in Maine. Lake area, perimeter and surface area/perimeter ratio were calculated 

from a lakes layer downloaded from the Maine Office of GIS (MEGIS 2010).   

1.3.3. Image processing 

We mosaicked paths of consecutive images from a single date in ERDAS Imagine 

® (version 10.0; ERDAS Inc., Norcross, GA, United States). Unsupervised classification 

(ISODATA clustering) and the visible/thermal infrared band combination (RGB 1, 6, 6) 

were used to interpret extent of clouds and cloud shadows. Cloud pixels were reclassified 

as null values and removed in ArcGIS. Cloud shadows could not be removed by 

unsupervised classification without simultaneously removing unaffected lake pixels, so 

images were visually inspected to remove lakes affected by shadows. We reduced the 

negative effects of Rayleigh scattering by normalizing all images from each path to the 

clearest swath of images of the respective path with orthogonal regression. Orthogonal 

regression differs from ordinary least squares by assuming error in both horizontal and 

vertical directions and calculating the perpendicular distance from the regression line 

(Rencher 1995). We selected bright (e.g., large buildings, airport tarmacs) and dark (e.g., 

deep lake centers) ground targets distributed across the state that appeared spectrally 

invariant over the study period. We identified only 6 ground targets in path 12, owing to 

few developed features. We increased the number of ground targets for path 11 because 

clouds often obscured targets in this path. For path 12, the targets were digitized as points 

and buffered 10 m. An average of the encompassed pixel values (up to 4 adjacent pixels) 

was regressed against the average value of pixels of the same area in the reference image 
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for path 12 collected 1 September 1999. For path 11, we minimized inter-annual cloud 

interference by normalizing to a single pixel in the target center instead of using pixels in 

a buffered target. The reference image used for path 11 was captured on 14 August 1995. 

We used principal components analysis (PCA) to complete our orthogonal regressions. 

PCA uses an orthogonal transformation and because our analyses each contained two 

components (reference and non-reference image paths), the second eigenvector of each 

PCA allowed easy calculation of the gain and offset to apply to each non-reference image 

path.  

1.3.4. Secchi sampling site representation 

We uniquely identified each secchi disk sampling station in a geographic 

information system (GIS) points layer. We estimated sampling site locations in the 

deepest region of lakes based on georeferenced bathymetric maps (Maine PEARL 2011). 

Bathymetric data were not available for 163 lakes; we placed those stations at lake 

centers to avoid spectral interference from the shoreline, lake bottoms or aquatic plants. 

We created circular buffers with 50, 75 and 100 m radii around each sampling station to 

define the area for satellite data extraction. We calculated the average pixel value for 

each zone with zonal statistics. A 75 m zone captured approximately 20 pixels and 

yielded the greatest R² values for SDD estimates from satellite data. We excluded lakes < 

8 ha (Olmanson et al. 2001) as well as larger lakes that are narrow and could not contain 

a 75 m area in the imagery without overlapping shoreline. Water clarity of a total of 

1,511 Maine lakes can be estimated remotely from Landsat paths 11 and 12. 
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1.3.5. Model development 

Kloiber et al. (2002b) and (Olmanson et al. 2008) determined secchi data 

collected ± 7 days of the Landsat overpass are acceptable for use in lake clarity 

estimation regressions. Secchi data collected ± 10 days may be usable owing to late 

summer stability (Olmanson et al. 2008). Although a longer time window increases the 

sample size and geographic extent of the calibration dataset, less estimation error is 

introduced if calibration data are collected close to the time of the satellite overpass. We 

used windows of 1, 3 and 7 days determined by the amount of calibration data available, 

which generally was greater for later years in the study. Longer time windows help 

ensure a wide distribution of SDD values is captured in the calibration, which is critical 

for model accuracy (Nelson et al. 2003). We used historic SDD field data collected by 

MDEP and the Maine Volunteer Lake Monitoring Program in our regressions. 

We estimated natural log-transformed SDD from the 75 m zonal means of spectral 

band data with linear ordinary least squares regression (R version 2.12.0; R Foundation 

for Statistical Computing, Vienna, Austria). We identified models that performed 

consistently over several images with forward stepwise regression. We included spectral 

and supplementary lake variables in the models. Spectral variables were zone means 

calculated from Landsat TM bands 1-4. Bands 1-3 are correlated with lake water clarity 

(Kloiber et al. 2002b). The wavelength of band 4 may be too long to penetrate beyond the 

water surface, however, we included these data because they are correlated with 

chlorophyll and suspended solids in eutrophic waters (Lathrop 1992). The TM1/TM3 

band ratio has been used to estimate water clarity (Kloiber et al. 2002, Nelson et al. 2003, 

Chipman et al. 2004, Olmanson et al. 2008) and we included this ratio in regressions 



9 
 

when TM1 and TM3 were significant in accordance with model hierarchy. We validated 

regression assumptions with standard tests and regression coefficients with subsampled 

datasets and jackknifing following Sahinler and Topuz (2007). We used jackknifing when 

n < 50 lake stations to minimize the influence of individual data points with small sample 

size. We compared predicted residual sum of squares (PRESS) statistics to SSE of 

regressions using subsampled datasets when n ≥ 50 lake stations to compare the fitness of 

full and subsampled models.  

1.4. RESULTS 

Landsat TM bands 1 and 3 were consistent predictors of ln(SDD) for calibration 

datasets ranging 31-119 lake stations and ± 1-7 day field data capture windows (Table 

1.2). The TM1/TM3 ratio was inconsistently significant and created redundancies in 

models. Average depth was positively correlated with ln(SDD) and wetland area was 

negatively correlated with ln(SDD) only in path 11 models. Lake area, perimeter and 

area/perimeter ratio were not strong predictors of lake water clarity. Path 11 model R² 

values were consistent, ranging 0.79-0.90 (RMSE=1.18-1.23 m); however, path 12 

models were more variable with R² values ranging 0.69-0.89 (RMSE=1.15-1.30 m). 

Relationships between observed and estimated ln(SDD) consistently were strong 

throughout 1990-2010 (Figs. 2-3). Estimated SDD ranged < 0.10-18.10 m. Average 

absolute difference between observed and satellite-estimated SDD ranged 0.65-1.03 m 

(Table 1.4). Estimates consistently were more accurate for eutrophic (SDD ≤ 4m) and 

mesotrophic (SD =4-7 m) than oligotrophic lakes (SDD ≥ 7 m) (Table 1.4), based on 

established relationships between trophic status and SDD (Maine PEARL 2011). 

Estimates for eutrophic and mesotrophic lakes consistently were on average within 1 m 
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of observed conditions, however, estimates for oligotrophic lakes on average deviated > 1 

m from observed conditions in all but one model (Table 1.4). 

We used the same methods to fit alternate models for 163 lakes for which 

bathymetric data were not available. These models consistently produced smaller R² 

values and larger average absolute differences between estimated and observed SDD 

(Tables 1.3, 1.5). Primary model R² averaged 0.85 for path 11 (Std. dev; SD=0.04) and 

0.80 for path 12 (SD=0.08) and alternate model R² averaged 0.78 (SD=0.06; RMSE= 

1.24-1.26 m) for path 11 and 0.76 (SD=0.08; RMSE=1.20-1.32 m) for path 12. Average 

absolute difference between estimated and observed SDD was 0.75 m for paths 11 (SD= 

0.12) and 0.88 for path 12 (SD=0.12) over all primary models and 0.89 m for path 11 (SD 

=0.13) and 1.01 m (SD=0.08) for path 12 in all alternate models.  

  



 
 

 

Table 1.2. Summary of primary regression models
a
 for remote clarity estimation 

   
Date Path Rows Band Combination R² Days n 

8/30/2010 12 27-30 (-0.244) TM3 + (8.39x10
-3

) AvgDepth + 5.22 0.7305 1 65 

9/14/2004 12 27-30 (0.134) TM1 - (0.392) TM3 + 2.484 0.8342 1 44 

9/1/1999 12 27-30 (-0.427) TM3 + (4.48x10
-3

) AvgDepth + 6.20 0.8939 1 31 

9/6/1995 12 27-30 (6.28x10
-2

) TM1 - (0.361) TM3 + (1.03x10
-2

) AvgDepth + 7.96 0.8439 3 73 

9/8/1990 12 27-30 (0.145) TM1 - (0.436) TM3 + (6.40x10
-3

) AvgDepth + 2.93 0.6916 7 117 

9/5/2009 11 28-29 (3.72x10
-2

) TM1 - (0.320) TM3 + (7.77x10
-3

) AvgDepth - (3.61x10
-4

) Wetland + 5.51 0.8631 3 65 

8/9/2005 11 27-29 (0.113) TM1 - (0.315) TM3 + (7.89 x10
-3

) AvgDepth - (3.70 x10
-4

) Wetland - 0.868 0.8244 3 55 

8/9/2002 11 27-29 (-3.22x10
-2

) TM3 + (1.29x10
-2

) AvgDepth - (7.51x10
-4

) Wetland + 4.25 0.9010 1 35 

8/14/1995 11 27-29 (9.35x10
-3

) TM1 - (5.87x10
-2

) TM3 + (9.83x10
-3

) AvgDepth - (3.06x10
-4

) Wetland + 3.91 0.7919 7 119 
a 
TM1 = Landsat band 1, TM3 = Landsat band 3, AvgDepth = average lake depth, Wetland = proportion of watershed covered by wetland 

 

Table 1.3. Summary of alternate regression models
a
 for remote clarity estimation without knowledge of depth 

  
Date Path Rows Band Combination R² Days n 

8/30/2010 12 27-30 (-0.257) TM3 +  5.57 0.7018 1 65 

9/14/2004 12 27-30 (0.134) TM1 - (0.392) TM3 + 2.48 0.8342 1 44 

9/1/1999 12 27-30 (-0.479) TM3 +  6.90 0.8248 1 31 

9/6/1995 12 27-30 (6.37x10
-2

) TM1 - (0.366) TM3 + 8.25 0.8168 3 73 

9/8/1990 12 27-30 (0.157) TM1 - (0.467) TM3 +  3.10 0.6313 7 117 

9/5/2009 11 28-29 (4.30x10
-2

) TM1 - (0.334) TM3 - (4.29x10
-4

) Wetland + 5.56 0.8273 3 65 

8/9/2005 11 27-29 (0.135) TM1 - (0.364) TM3  - (4.07x10
-4

) Wetland - 1.40 0.7019 3 55 

8/9/2002 11 27-29 (-3.10x10
-2

) TM3 - (8.90x10
-4

) Wetland + 4.54 0.8642 1 35 

8/14/1995 11 27-29 (1.30x10
-2

) TM1 - (6.75x10
-2

) TM3 - (3.46x10
-4

) Wetland + 3.95 0.7412 7 119 
a 
TM1 = Landsat band 1, TM3 = Landsat band 3, Wetland = proportion of watershed covered by wetland

1
1
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Fig. 1.2. Scatter plots of Landsat-estimated and observed secchi disk depth (m) for 

primary path 12 models with 1:1 fit line. Observed values are based on field data 

gathered by the Maine Volunteer Lake Monitoring Program (VLMP) ± 1-7 days of the 

Landsat satellite overpass. RMSE = root mean squared error. 
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Fig. 1.3. Scatter plots of Landsat-estimated and observed secchi disk depth (m) for 

primary path 11 models with 1:1 fit line. Observed values are based on field data 

gathered by the Maine Volunteer Lake Monitoring Program (VLMP) ± 1-7 days of the 

Landsat satellite overpass. RMSE = root mean squared error. 
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Table 1.4. Average absolute difference (m) between observed and 

remotely estimated SDD among lake types
a
 in primary models 

Date Path Eutrophic Mesotrophic Oligotrophic Overall 

8/30/2010 12 0.90 0.97 1.33 1.03 

9/14/2004 12 0.73 0.65 1.49 0.87 

9/1/1999 12 0.60 0.54 0.81 0.66 

9/6/1995 12 0.75 0.82 1.22 0.93 

9/8/1990 12 0.91 0.89 1.47 0.91 

      9/5/2009 11 0.58 0.62 1.20 0.73 

8/9/2005 11 0.33 0.67 1.08 0.68 

8/9/2002 11 0.41 0.71 1.05 0.65 

8/14/1995 11 0.78 0.85 1.31 0.95 
a 
Eutrophic < 4m, Mesotrophic = 4-7 m, Oligotrophic ≥ 7 m 

  

 

 

Table 1.5. Average absolute difference (m) between observed and 

remotely estimated SDD among lake types
a
 in alternate models 

Date Path Eutrophic Mesotrophic Oligotrophic Overall 

8/30/2010 12 0.87 0.95 1.61 1.08 

9/14/2004 12 0.73 0.65 1.49 0.87 

9/1/1999 12 0.75 0.85 1.27 1.03 

9/6/1995 12 0.79 0.78 1.38 0.97 

9/8/1990 12 1.00 0.89 1.89 1.09 

      9/5/2009 11 0.65 0.68 1.79 0.89 

8/9/2005 11 0.45 0.73 1.85 0.88 

8/9/2002 11 0.52 0.66 1.45 0.72 

8/14/1995 11 0.84 0.82 1.81 1.08 
a 
Eutrophic < 4m, Mesotrophic = 4-7 m, Oligotrophic ≥ 7 m 

  

1.5. DISCUSSION 

1.5.1.  Trophic state affects model accuracy 

 Although the primary model R² values indicate good agreement between TM3, 

TM1 and ln(SDD), model-estimated SDDs consistently were more accurate for eutrophic 
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and mesotrophic lakes. TM3 is correlated with chlorophyll reflectance and is an effective 

indicator of clarity of turbid waters. Chlorophyll and suspended solids, associated with 

increased turbidity and phytoplankton abundance, increase the amount of energy received 

by the satellite (Lathrop 1992), rendering TM3 a less accurate predictor of SDD in clear 

water. In shallower oligotrophic lakes, the longer wavelength of TM3 may bottom out 

before the deepest potential SDD is reached, which could potentially produce misleading 

results. SDD may be more of a function of lake depth in clear water where fewer particles 

reflecting transmitted light are present. From a management perspective, eutrophic and 

mesotrophic lakes are of greater interest owing to their susceptibility to development-

related eutrophication. Although our model predictions applied to oligotrophic lakes are 

less accurate, the models may be useful indicators of deteriorating water clarity as 

predicted SDD decreases. Consideration of factors such as depth and lake water quality 

history may improve interpretation of lake clarity estimates for oligotrophic lakes.  

1.5.2. Applying ancillary data in models for water clarity monitoring 

TM1 and TM3 are strong predictors of Maine lake clarity, providing a tool to 

track potential changes from the current overall high clarity of Maine lakes. Olmanson et 

al. (2008) reported an average Minnesota statewide lake clarity of 2.25 m from 1985-

2005, considerably more eutrophic than the average annual clarity of Maine lakes (4-6 m) 

since 1970. Lathrop’s (1992) finding that TM3 is strongly correlated with turbid waters 

such as those found in lakes in the Upper Midwest supports the results of Olmanson et al. 

(2008) for an overall eutrophic dataset. Models predicting Minnesota lake clarity 

explained 71-96% of the variation in lake clarity with only spectral data (Olmanson et al. 

2008), similar to our alternate models (R²=0.63-0.86). Considering the trophic conditions 
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in Maine, our reduced model fitness is not surprising, however, the inclusion of physical 

lake variables in our primary models helps explain additional variability in lake clarity in 

a relatively clearer set of lakes despite small differences in RMSE. Satellite data alone 

may be sufficient for monitoring of eutrophic inland waters, however, physical lake 

characteristics and landscape features improve models applied to remote monitoring of 

clearer waters, especially when eutrophic lakes are uncommon.   

The family of models that best estimates lake water clarity across a range of 

biophysical regions emphasizes the relationship between lake water clarity and watershed 

characteristics. Maine is a relatively small and undeveloped state spanning several 

biophysical regions (e.g., western mountains to eastern lowlands and foothills; Krohn et 

al. 1999). Eastern Maine falls largely in the eastern lowlands and foothills biophysical 

region and contains more wetland area, likely explaining the lack of significance of 

wetland area in path 12 models. Differing trends in lake clarity across U.S. 

Environmental Protection Agency Ecoregions have been found in Wisconsin (Peckham 

and Lillesand 2006) and Minnesota (Olmanson et al. 2008), suggesting there is a 

recognition of regional lake clarity variation. It may not be practical to model lake clarity 

according to ecoregion owing to calibration data availability, however, ecoregions 

capture general landscape characteristics and are useful aids in interpreting and detecting 

potential patterns in lake clarity estimates. 

1.5.3. Limitations 

There are limitations to monitoring water clarity with Landsat imagery. Landsat 

returns every 16 days, limiting the number of available mid-late summer images each 
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year. Cloud cover affects image availability, especially for coastal areas such as path 11 

in Maine. Over our 20 year study period, clear imagery was available for path 12 

(western Maine) in late August-early September every 4-5 years, however, clear imagery 

for coastal path 11 was less consistently available. The compromised utility of Landsat 7 

and potential expiration of Landsat 5 are additional complications that may be alleviated 

by the expected 2013 deployment of the Landsat Data Continuity Mission. Other satellite 

remote sensors such as MODIS with greater temporal resolution (2 images per day) may 

be a useful alternative for large lakes (McCullough et al. in review). Minnesota, Michigan 

and Wisconsin contain 388, 108 and 90 lakes respectively that can be routinely sampled 

remotely for SDD using MODIS 500 m imagery (Chipman et al. 2009). 

 The need for alternate models demonstrates the problem with including ancillary 

variables such as depth and wetland area. Although these variables are acceptably 

consistent year-to-year at the landscape scale, depth requires field-collected data and 

wetland area requires spatial data in addition to the satellite data, which may not be 

practical for some areas. An intention of this study is to estimate water clarity without 

visiting lakes and ideally, added variables would be restricted to those that could be 

easily remotely sensed. In our study, remotely sensed variables such as lake size, 

perimeter and surface area/perimeter ratio were inconsistent predictors of lake water 

clarity, however, these variables may still be useful in other landscapes. Lake depth, 

however, should be considered regardless of its predictive capacity. It can be argued that 

lake clarity estimates without knowledge of depth are less useful because it is helpful to 

know the proportion of the water column exposed to visible light. For example, a 10 m 

deep lake with SD=2 m should be viewed differently from a 3 m deep lake with SDD=2 
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m. It is our opinion that when additional information is known about certain lakes, this 

information should be used when it considerably improves estimates. As this study 

demonstrates, alternate, less accurate models can be used when ancillary data are lacking.  

We would ideally develop an operational model that would not have to be 

calibrated specifically for each future image. Under this scenario, we could apply this 

model to future Landsat images with minimal or no field calibration data. Unfortunately, 

developing an accurate operational model is unrealistic with Landsat imagery. At the 

landscape scale, there is already a fairly large amount of error included in SDD estimates 

when models are calibrated with concurrent satellite and field data; attempting to use 

models calibrated with non-concurrent field data introduces additional error associated 

with changing lake or atmospheric conditions and pushes the limit of error acceptability. 

Known field SDD values cannot be accurately predicted with a model calibrated for a 

different date. We recommend calibrating future models with concurrent satellite and 

field data. It would be a useful and efficient strategy to direct management and volunteer 

agencies to collect field data near satellite overpass dates to maximize calibration data 

availability. 

1.6. CONCLUSION 

 Accurate long-term water quality monitoring programs are essential for effective 

lake management. Simultaneous monitoring of a large number of lakes is facilitated by 

data that can be gathered remotely. Landsat TM bands 1 and 3 are consistent predictors of 

water clarity of Maine lakes and those predictions are more accurate when average depth 

and watershed wetland area are included in models. Bands 1 and 3 previously were found 
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to be strong indicators of water clarity in lakes considerably less clear than those in 

Maine, demonstrating the wide applicability of Landsat data for monitoring lake trophic 

condition. Estimates are more accurate for eutrophic and mesotrophic than oligotrophic 

lakes, owing to the lack of suspended particles in oligotrophic lakes that are detectable by 

satellite sensors and the longer TM3 wavelength that may bottom out before the deepest 

potential SDD is reached. Although the spatial and temporal resolution of Landsat TM 

are limited, Landsat is useful for monitoring lake clarity over long time periods because 

satellite-based monitoring alleviates the non-random lake sampling employed by 

agencies and volunteers and greatly increases knowledge of regional water quality. We 

are currently conducting a separate study examining spatial and temporal patterns of 

Maine lake clarity using the methods described in this manuscript. The continuation of 

field-based lake water clarity monitoring is essential for calibration and spot validation of 

future remote clarity estimation models and remote monitoring should not replace field-

based programs. The long-term clarity estimates produced by this study are available 

electronically at the USGS Maine Cooperative Fish and Wildlife Research Unit website 

(http://www.coopunits.org/Maine/). 

 

 

 



20 
 

CHAPTER 1 REFERENCES 

Boyle, K. J., Poor, P.J. and Taylor, L. O. (1999). Estimating the demand for protecting                     

freshwater lakes from eutrophication. American Journal of Agricultural 

Economics 81 (5): 1118-1122. 

 

Carlson, R. E. (1977). A trophic state index for lakes. Limnology and Oceanography  

22(2): 361-369. 

 

Chipman, J. W., Lillesand, T. M., Schmaltz, J. E., Leale, J. E. and Nordheim, M. J.  

(2004). Mapping lake clarity with Landsat images in Wisconsin, U.S.A. Canadian 

Journal of Remote Sensing 30(1): 1-7. 

 

Chipman, J. W., Olmanson, L. G. and Gitelson, A. A. (2009). Remote sensing methods  

for lake management: a guide for resource managers and decision-makers. 

Developed by the North American Lake Management Society in collaboration 

with Dartmouth College, University of Minnesota, University of Nebraska and 

University of Wisconsin for the United States Environmental Protection Agency.  

 

Davis, R. B., Bailey, J. H., Scott, M, Hunt, G. and Norton, S. A. (1978). Descriptive and  

comparative studies of Maine lakes. Life Sciences and Agricultural Experiment 

Station. Technical Bulletin 88. 

 

Detenbeck, N. E., Johnston, C. A. and Niemi, G. J. (1993). Wetland effects on lake water  

quality in the Minneapolis/St. Paul metropolitan area. Landscape Ecology 8(1): 

39-61. 

 

Gibbs, J. P., Halstead, J. M., Boyle, K. J. and Huang, J. (2002). An hedonic analysis of  

the effects of lake water clarity on New Hampshire lakefront properties. 

Agricultural and Resource Economics Review  31(1): 39-46. 

 

Gunn, J. M., Snucins, E., Yan, N. D. and Arts, M. T. (2001). Use of water clarity to  

monitor the effects of climate change and other stressors on oligotrophic lakes. 

Environmental Monitoring and Assessment 67: 69-88. 

 

Heiskary, S. A. and Walker. W. W. (1988). Developing phosphorus criteria for  

Minnesota lakes. Lake and Reservoir Management 4(1): 1-9. 

 

Houston, B. (2008). Coastal Maine updates. U.S. Fish and Wildlife Service. Gulf of  

Maine Coastal Program. Falmouth, ME 04105. 

 

Kloiber, S. M., Brezonik, P. L. and Bauer, M. E. (2002a). Application  

of Landsat imagery to regional-scale assessments of lake clarity. Water Research 

36: 4330-4340. 

 

 



21 
 

Kloiber, S. M., Brezonik, P. L., Olmanson, L. G. and Bauer, M. E. (2002b). A procedure  

for regional lake water clarity assessment using Landsat multispectral data. 

Remote Sensing of Environment 82: 38-47. 

 

Krohn, W. B., Boone, R. B. and Painton, S. L. (1999). Quantitative delineation and  

characterization of hierarchical biophysical regions on Maine. Northeastern 

Naturalist 6: 139-164. 

 

Lathrop, R. G. (1992). Landsat thematic mapper monitoring of turbid inland water  

quality. Photogrammetric Engineering and Remote Sensing 58(4): 465-470. 

 

Maine PEARL. (2011). Lakes Guide. Senator George J. Mitchell Center for  

Environmental Research, University of Maine, Orono.  

http://www.pearl.maine.edu/windows/community/default.htm. Accessed 1/18/11. 

 

Maine Volunteer Lake Monitoring Program. (2010).  

http://www.mainevolunteerlakemonitors.org/. Accessed 12/17/10.  

 

McCullough, I. M., Loftin, C. S. and Sader, S. A. In review. High-frequency remote  

monitoring of large lakes with MODIS 500 m imagery. Remote Sensing of 

Environment. 

 

MDEP; Bacon, L. (2010). Maine Department of Environmental Protection. Augusta, ME  

04333. 

 

MDEP; Bacon, L. (2011). Maine Department of Environmental Protection. Augusta, ME  

04333. 

 

MDEP; Suitor, D. (2011). Maine Department of Environmental Protection. Augusta, ME  

04333. 

 

MEGIS. (2010). Maine Office of GIS Data Catalog.  

http://www.maine.gov/megis/catalog/. Accessed 10/15/10. 

 

Michael, H. J., Boyle, K. J. and Bouchard. R. (1996). Water quality affects property  

prices: a case study of selected Maine lakes. Maine Agricultural and Forest  

Experiment Station, University of Maine, Orono, ME. 

 

Nelson, S. A. C., Soranno, P. A., Cheruvelil, K. S., Batzli, S. A. and Skole, D. L. (2003).  

Regional assessment of lake water clarity using satellite remote sensing. Journal 

of Limnology 62: 27-32. 

 

Olmanson, L. G., Bauer, M. E. and Brezonik. P. L. (2008). A 20-year Landsat water  

clarity census of Minnesota’s 10,000 lakes. Remote Sensing of Environment 112: 

4086-4097. 

 



22 
 

 

Olmanson, L. G., Kloiber, S. M., Bauer, M. E. and Brezonik, P. L. (2001). Image  

processing protocol for regional assessments of lake water quality. Water 

resources center and remote sensing laboratory, University of Minnesota, St. Paul, 

MN, 55108, October 2001. 

 

Peckham, S. D. and Lillesand, T. M. (2006). Detection of spatial and temporal trends in  

Wisconsin lake water clarity using Landsat-derived estimates of secchi depth. 

Lake and Reservoir Management 22(4): 331-341. 

 

Rencher, A. C. 1995. Methods of multivariate analysis. New York: John Wiley & Sons.  

 

Sahinler, S. and Topuz, D. (2007). Bootstrap and jackknife resampling algorithms for  

estimation of regression parameters. Journal of Applied Quantitative Methods 

2(2): 188-199. 

 

Stadelmann, T. H., Brezonik, P. L. and Kloiber, S. M. (2001). Seasonal patterns of  

chlorophyll a and Secchi disk transparency in lakes of East-Central Minnesota: 

Implications for design of ground- and satellite-based monitoring programs. Lake 

and Reservoir Management, 17(4): 299-314. 

  



23 
 

CHAPTER 2 

APPLICATION OF LANDSAT TM IMAGERY REVEALS  

DECLINING CLARITY OF MAINE’S 

LAKES DURING 1995-2010 

2.1. INTRODUCTION 

Water clarity is a measurement of visible light attenuation in the water column. 

Often quantified in terms of secchi disk depth (SDD), water clarity is strongly correlated 

with chlorophyll-a, total phosphorus and trophic status (Carlson 1977). Trophic status is 

an indicator of lake productivity and can be evaluated based on SDD (eutrophic < 4 m, 

mesotrophic = 4-7m and oligotrophic > 7 m) (Maine PEARL 2011). Unlike these 

variables, however, clarity can be accurately and efficiently estimated with spectral 

reflectance captured remotely on a landscape scale (Kloiber et al. 2002, Chipman et al. 

2004, Olmanson et al. 2008, McCullough et al. in press), thus making clarity an ideal 

metric of regional water quality. SDD measurements are widely conducted and less 

costly than other water quality assessments requiring chemical analyses; however, large-

scale field sampling programs often gather a spatially irregular, non-random 

representation of regional water quality owing to limited lake accessibility. Remote 

sensing can eliminate spatial biases associated with non-random sampling, particularly in 

regions with numerous lakes that cannot be monitored efficiently with traditional field 

methods. Much of existing field data are amassed by volunteer lakeshore residents who 

not only collectively make regional assessments more feasible by collecting necessary 

data for remote model calibration, but also are important stakeholders in lake water 

quality. Increased lake clarity positively affects lakefront property value in Maine 
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(Michael et al. 1996, Boyle et al. 1999) and New Hampshire (Gibbs et al. 2002) and also 

enhances human-perception of lake water quality in Minnesota (Heiskary and Walker 

1988). 

Remote sensing frequently is used in landscape change detection and can be 

similarly applied to monitor change in regional lake water quality. Peckham and 

Lillesand (2006) and Olmanson et al. (2008) used Landsat TM satellite imagery to 

evaluate long-term patterns in water quality of Wisconsin and Minnesota lakes, 

respectively. Identification of areas experiencing downward trends in water quality 

enables management agencies to direct limited resources more effectively and efficiently 

to remediate causes for water quality decline. Accuracy of long-term change detection is 

maximized with assessments on or near anniversary dates to minimize error associated 

with seasonal variation. Existing remote lake clarity monitoring procedures have focused 

on mid-late summer (July 15-September 15), a period of relative stability in lake algal 

communities and lake stratification ideal for remote estimation of water clarity. 

Assessments during this time period typically capture the seasonally poorest conditions in 

lake water clarity (Stadelmann et al. 2001, Kloiber et al. 2002, Chipman et al. 2004, 

Olmanson et al. 2008). We applied a procedure we previously developed for remote 

estimation of lake clarity to analyze spatial and temporal patterns in clarity of 570 Maine 

lakes during 1995-2010 with Landsat 5 and 7 satellite imagery and field-collected SDD 

data. Our analyses also allowed us to examine whether existing field sampling programs 

adequately characterize regional water quality in Maine.  

The Landsat satellite program was first launched in 1972 and 2 satellites currently 

are in operation. Landsat 5, launched in 1984, was temporarily suspended in November 
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2011 after a mechanical failure; however, Landsat 5 is an important historical data 

source. Landsat 7 was launched in 1999; however, the 2003 failure of the scan-line 

corrector (SLC), an instrument that corrects for the forward motion of the satellite, has 

since compromised image quality. Post SLC failure (SLC-off) images contain lines with 

no data and require additional processing. The expected 2013 launch of the Landsat Data 

Continuity Mission (LDCM), if successful, will ensure future availability of Landsat data 

for remote lake monitoring. Both Landsat 5 and 7 contain three visible bands and four 

infrared bands at 30-m resolution, and Landsat 7 contains a 15-m panchromatic band. 

Images (scenes) of the same location are captured every 16 days and cover approximately 

185 km². Scenes are indexed by path and row and are freely downloadable from the U.S. 

Geological Survey Global Visualization Viewer (http://glovis.usgs.gov/).   

2.2. DESCRIPTION OF STUDY AREA 

Maine is located in the northeastern United States and ranks first among states 

east of the Great Lakes in total area of inland surface waters (Davis et al. 1978). Maine 

contains over 5,500 lakes and ponds > 1 ha in surface area across an area of 

approximately 90,000 km², and wetlands cover 26% of the state (Tiner 1998). The 

climate is cold-temperate and moist with long, cold winters and short, warm summers. 

Maine is dominated by the Northeastern Highlands (#58) and the Acadian Plains and 

Hills (#82) Level III Ecoregions (Omernik 1987). The Northeastern Highlands are 

remote, mostly forested, mountainous, and contain numerous high-elevation, glacial 

lakes. The Acadian Plains and Hills are comparatively more populated and less rugged; 

however, the area is also heavily forested and contains dense concentrations of glacial 

lakes (U.S. EPA 2010). Lakes are well-distributed throughout the state and average 

http://glovis.usgs.gov/
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depths ranges 1-32 m. Lakes range in size from small ponds < 1 ha to Moosehead Lake 

(30,542 ha), the largest lake in Maine. Statewide lake water clarity monitoring began in 

1970. The average annual SDD consistently has remained 4-6 m, with a historical 

average of 5.27 m during 1970-2009, and was 5.14 m in 2009 (n=457; Maine Department 

of Environmental Protection; MDEP; Bacon, Maine Volunteer Lake Monitoring 

Program; VLMP 2010). The number of lakes sampled in the field by state biologists and 

volunteers changes annually and generally has increased from 18 lakes in 1970 to 

consistently > 400 lakes since 1999. We focused our study on the overlap region of 

Landsat TM paths 11 (rows 27-29) and 12 (rows 27-30), which captures a strong north-

south gradient over an area of 3,000,000 ha, and includes 570 lakes > 8 ha (Fig. 2.1). 

Lakes < 8 ha cannot be reliably estimated with 30-m Landsat data (Olmanson et al. 

2008). We partitioned Maine’s lakes (> 8 ha) into three geographic regions (northeastern: 

227 lakes; south-central: 256 lakes; western: 162 lakes) based on cluster analysis of 

morphometric and chemical lake variables including surface area, flushing rate, average 

and maximum depth, elevation, color, alkalinity and specific conductance (Bacon and 

Bouchard 1997) (Fig. 2.1).  
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Fig. 2.1. Lake regions of Maine and the overlap area between Landsat TM paths 11 and 

12, containing 570 lakes > 8 ha.  
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2.3. METHODS 

2.3.1. Catalog of lake clarity estimates during 1995-2010  

Our methods used to create the catalog of lake clarity estimates are detailed in 

McCullough et al. (in press) and are summarized here. We estimated regional lake clarity 

with field-collected SDD data ± 1-7 days of satellite image capture, Landsat TM 

brightness values from bands 1 (blue visible; 0.45-0.52 μm) and 3 (red visible; 0.63-0.69 

μm), average lake depth (MDEP 2010) and the proportion of a lake watershed in 

wetlands (National Wetlands Inventory [NWI]) with linear regression. Landsat bands 1 

and 3 are strongly correlated with SDD (Kloiber et al. 2002, Chipman et al. 2004, 

Olmanson et al. 2008, McCullough et al. in press) and lake depth and landscape 

characteristics that affect water clarity improve model accuracy (McCullough et al. in 

press). We extracted spectral data from areas delineated by a 75 m buffered GIS points 

layer in ArcGIS® (version 10.0) of digitized sample stations where SDD data are 

collected in the field. We extracted data from the deepest areas of lakes or lake centers in 

the absence of established sampling locations. Calibration of the relationship between 

lake conditions and Landsat brightness values that targets deep portions of lakes away 

from the shoreline avoids spectral interference from aquatic plants, lake bottoms and 

shoreline features (Kloiber et al. 2002, Olmanson et al. 2008). We analyzed 

radiometrically normalized, mostly cloud-free (< 10% cloud cover) Landsat 5 and 7 

images captured in 1995, 1999, 2002, 2003, 2005 (two dates), 2008, 2009 and 2010. We 

restricted our image dates to late summer (1 August - 5 September) to capture the 

seasonally poor clarity conditions that occur in late summer before fall turnover. 

Although dimictic lakes can undergo turnover as early as late August in northern Maine 
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(Davis et al. 1978), we found SDD estimates generated from 5 September 2009 were 

consistent with late summer, pre-turnover clarity conditions (McCullough et al. in press). 

SLC-off images have been used to calibrate remote SDD estimation models for 

Minnesota lakes with strong fitness (R²=0.72-0.86) (Olmanson et al. 2008); however, we 

used only Landsat 5 and 7 SLC-on images (Table 2.1) owing to inconsistencies in our 

calibrations of models generated with SLC-off images (e.g., 17 August 2003, 8 August 

2005, and 1 September 2008). We calibrated six primary models (R²=0.73-0.90) during 

1995-2010 (Table 2.1). We calibrated six similar, alternate models with slightly reduced 

fitness (R²=0.70-0.86) corresponding to each primary model when ancillary lake data 

were unavailable (102 lakes). Calibration datasets included 31-119 field-collected SDD 

data points based on the number of lakes sampled within the ± 1-7 day calibration 

window.



 
 

Table 2.1. Regression models
a
 for remote clarity estimation in Maine’s lakes.  

 

 

 

 

 

 

 

 

 
 

a 
TM1 = Landsat band 1, TM3 = Landsat band 3, AvgDepth = average lake depth, Wetland = proportion of watershed covered by wetland 

  

Date Satellite Path Model R² 

8/14/1995 Landsat 5 11 (9.35x10
-3

) TM1 - (5.87x10
-2

) TM3 + (9.83x10
-3

) AvgDepth - (3.06x10
-4

) Wetland + 3.91 0.7919 

9/1/1999 Landsat 5 12 (-0.427) TM3 + (4.48x10
-3

) AvgDepth + 6.20 0.8939 

8/9/2002 Landsat 7 11 (-3.22x10
-2

) TM3 + (1.29x10
-2

) AvgDepth - (7.51x10
-4

) Wetland + 4.25 0.9010 

8/9/2005 Landsat 5 11 (0.113) TM1 - (0.315) TM3 + (7.89x10
-3

) AvgDepth - (3.697x10
-4

) Wetland - 0.868 0.8244 

9/5/2009 Landsat 5 11 (3.72x10
-2

) TM1 - (0.320) TM3 + (7.77x10
-3

) AvgDepth - (3.61x10
-4

) Wetland + 5.51 0.8631 

8/30/2010 Landsat 5 12 (-0.244) TM3 + (8.39x10
-3

) AvgDepth + 5.22 0.7305 

  

3
0
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2.3.2. Statistical analyses 

Our dataset consisted of nearly the entire population of lakes > 8 ha in the Landsat 

overlap region. We used SDD data from a minimum of 455 lake estimates in 2005 to a 

maximum of 645 lake estimates in 2010 (some lakes have > 1 sample station). We tested 

for differences in SDD according to lake region and year with a three by five analysis of 

variance (ANOVA) (with three and five levels of two factors) based on type III sum of 

squares and unequal sample sizes to avoid eliminating data points (R version 2.12.0/ R 

Foundation for Statistical Computing, Vienna, Austria). We considered using a repeated 

measures design, however, shifting positions of clouds (which prevent remote sampling) 

resulted in incomplete spectral data prohibiting sampling of the same lakes across all 

years. Furthermore, part of the intention of remote monitoring of water quality is to 

reduce the need for extrapolations based on incomplete data. Restricting our dataset to 

lakes sampled in each year of the study would reduce our dataset to 347 lake estimates, 

whereas maintaining a larger sample size during the 15-year time interval reduced the 

risk of committing type I and II errors. We compared average SDD between pairs of 

years and lake regions with pairwise t-tests (α=0.05). We did not pool standard deviation 

and we assumed equal variance within group pairs. We also used pairwise t-tests to 

compare average SDD data collected remotely on our six image dates to all field data 

collected in the overlap region during theoretical calibration windows (± 7 days of image 

capture  constrained within 1 August -5 September; McCullough et al. in press). Basing 

our comparison on field data gathered during this time frame reduced error introduction 

associated with changing lake conditions, as field data collected within this window were 

eligible for model calibration. We considered comparing remotely sensed data to all field 
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data collected in Maine during the ± 7 day window, however, including lakes outside the 

overlap region could introduce unnecessary error attributable to geographic variability. 

These analyses allowed us to evaluate the effectiveness of current field monitoring for 

assessing regional water quality in Maine. We were unable to analyze lake regions 

separately owing to insufficient field data in the northeastern and western regions.  

2.4. RESULTS 

2.4.1. Temporal analysis 

Water clarity estimated by SDD during 1995-2010 was related to year (ANOVA, 

F=16.472, df=5, 10, p<0.001). Average SDD decreased from 4.94 to 4.38 m during 1995-

2010 (Table 2.2, Fig. 2.2). SDD varied during this 15-year period, with a statewide peak 

at 5.64 m in 1999, followed by a consistently more shallow SDD (< 5.00 m) since 2002. 

The 0.56 m estimated decrease during 1995-2010 was a significant reduction (t=4.725, 

df=1230, p<0.001) representing an 11% overall reduction in lake clarity.  

The proportion of eutrophic lakes in Maine increased from 35.3% to 42.6% 

during 1995-2010 (Fig. 2.3), based on all lakes remotely assessed. The proportion of 

mesotrophic lakes was unchanged since 1995, however, the proportion of oligotrophic 

lakes decreased from 14.8% in 1995 to 6.8% in 2010 (Fig. 2.3), suggesting that Maine 

lakes are generally becoming more eutrophic. Of the 547 lakes from which SDD data 

were retrieved during 1995-2010, 79 (14.4%) previously mesotrophic lakes became 

eutrophic and 66 (12.1%) previously oligotrophic lakes became mesotrophic, whereas 

327 (59.8%) lakes were unchanged in trophic status, 72 (13.2%) lakes improved and 

three (0.55%) previously oligotrophic lakes became eutrophic (Fig. 2.4).  
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Table 2.2. Remotely estimated annual secchi disk depth (m) in Maine (1995-

2010). 

  1995 1999 2002 2005 2009 2010 

Mean 4.94 5.64 4.64 4.81 4.65 4.38 

Median 4.75 6.09 4.36 4.67 4.52 4.27 

Min 0.43 0.02 0.30 0.86 0.34 0.02 

Max 14.25 11.83 15.02 11.65 10.90 11.41 

n
a 

587 644 630 455 517 645 
a
 n varied among years due to cloud cover 

 

 

Fig 2.2. Remotely estimated average annual late summer secchi disk depth (m) (with 

95% confidence intervals) of Maine lakes during 1995-2010 based on the overlap area 

between Landsat TM paths 11-12. N=455-645 lake samples (Table 2.2). 
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Fig. 2.3. Proportions of Maine lakes in trophic states during 1995-2010 based on 

remotely sensed data in the Landsat TM paths 11-12 overlap area. Eutrophic SDD < 4 m, 

mesotrophic SDD = 4-7 m, and oligotrophic SDD > 7 m.  
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Fig. 2.4. Trophic state change in Maine lakes based on remotely estimated secchi 

disk depth (m) during 1995-2010 in the overlap region between Landsat TM paths 

11-12. Eutrophic SDD < 4 m, mesotrophic = 4-7 m and oligotrophic > 7 m.  
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2.4.2. Regional analysis 

Water clarity estimated by SDD during 1995-2010 was related to lake region 

(ANOVA, F=8.015, df=2, 5, p<0.001). Average SDD was slightly greater than 5 m in 

both the northeastern and western lake regions and approximately 0.5 m less than this in 

the south-central lake region, except in 2005, when SDD was fairly uniform throughout 

Maine, and in 2010, when SDD in the south-central region exceeded SDD in the other 

two regions (Table 2.3, Fig. 2.5). Pairwise t-tests revealed significant differences 

(α=0.05, p<0.001 except where specified) between average SDD in the northeastern and 

south-central lake regions in 1995 (t=3.320, df=436), 1999 (t=3.808, df=480) and 2009 

(t=3.902, df=358) and in the western and south-central lake regions in 1995 (t=3.496, 

df=376), 1999 (t=2.026, df=415, p=0.043), 2002 (t=4.121, df=406) and 2009 (t=5.488, 

df=401). In 1995, average SDD in both the northeastern and western regions was 

estimated at 5.22 m, however, it decreased to 4.36 and 4.21 m, respectively, in 2010. 

Conversely, average SDD in the south-central lake region fluctuated within a 1 m range 

and was nearly the same in 1995 as in 2010 (4.50 m) (Table 2.3, Fig. 2.5).   

2.4.3. Analysis of existing sampling record 

The existing water clarity field sampling program in Maine does not consistently 

provide a representative sample of regional water quality. We compared the average SDD 

of all remote estimates of lakes > 8 ha in the overlap region on each of our six dates 

(Table 2.1) to the average field-collected SDD during theoretical model calibration 

windows (± 7 days of image capture, constrained within 1 August – 5 September). 

Pairwise t-tests indicated that remotely sensed average SDD estimates differed 
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significantly from field data in 3 of 6 years: 1995 (t=1.985, df=676, p=0.048), 2002 

(t=2.165, df=709, p=0.031) and 2010 (t=3.837, df=714, p=0.001) (Table 2.3). The 

absolute differences between annual average SDD measured in the field and remotely 

ranged 0.13-0.97 m and remote estimates under-predicted field conditions in four of six 

years (Table 2.3). 

 

 

Fig. 2.5. Average annual late summer secchi disk depth (m) of Maine lakes by lake 

region during 1995-2010 based on remotely sensed data from the Landsat TM paths 11-

12 overlap area. Bars represent standard error. 
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Table 2.3. Average annual late summer secchi disk depth (m) ± one standard error by lake region (remote assessment)  

and assessment type in the Landsat path 11-12 overlap area of Maine (1995-2010). 

  1995 1999 2002 2005 2009 2010 

Lake region 

      Northeastern 5.22 (± 0.19) 6.07 (± 0.18) 4.82 (± 0.17) 4.89 (± 0.17) 5.02 (± 0.22) 4.36 (± 0.14) 

 n
a
=209

 
n=227 n=222 n=152 n=114 n=227 

South-central 4.51 (± 0.10) 5.21 (± 0.14) 4.20 (± 0.12) 4.79 (± 0.10) 4.18 (± 0.10)  4.50 (± 0.12) 

 n=229 n=255 n=248 n=168 n=246 n=256 

Western 5.22 (± 0.20) 5.69 (± 0.18) 5.06 (± 0.19) 4.76 (± 0.13) 5.11 (± 0.14)  4.21 (± 0.12) 

 n=149 n=162 n=160 n=135 n=157 n=162 

Assessment 

      Field 5.46 (± 0.57)  5.51 (± 0.69) 5.22 (± 0.58) 4.96 (± 0.54) 4.43 (± 0.68) 5.31 (± 0.63) 

 n=91 n=63 n=81 n=84 n=43 n=71 

Remote 4.94 (± 0.20) 5.64 (± 0.22) 4.64 (± 0.18) 4.81 (± 0.23) 4.65 (± 0.20) 4.38 (± 0.17) 

 n=587 n=644 n=630 n=455 n=517 n=645 
a
 n varied in remote assessments due to cloud cover and in field assessments due to data availability 

3
8
 



39 
 

2.5. DISCUSSION 

2.5.1. Spatial and temporal patterns in Maine lake clarity 

 Water clarity of Maine lakes appears to be declining statewide. Although average 

SDD in both the northeastern and western regions exceeded 5 m in 2009, depths similar 

to 1995 levels (Table 2.3), we may be witnessing a downwardly shifting baseline and 

general trend toward eutrophication in Maine lakes. The proportion of Maine lakes in 

mesotrophic status appears stable, however, 79 formerly mesotrophic lakes have become 

eutrophic and 66 previously oligotrophic lakes have become mesotrophic, which are 

further evidence of a general trend toward eutrophication (SDD<4 m). Based on our 

regional analysis, the disproportional shifts in the northeastern and western regions were 

not surprising (Fig. 2.4). Lakes with increased SDD during 1995-2010 generally occurred 

in the south-central region (52 of 72 lakes) and were comparatively smaller in size 

(average=49 ha), whereas lakes with reduced clarity occurred disproportionately in the 

rural northeastern and western lake regions (55 of 66 lakes) and were relatively larger 

(average=403 ha). Overall, clarity in the south-central lake region remained unchanged 

during this time.  

Possible explanations for the disproportionate decline in lake clarity in the 

northeastern and western lake regions are climate change and forest harvest. Warmer 

temperatures and extended growing seasons associated with climate change may be 

creating conditions for increased lake productivity. The dominant land use (forest 

harvest) in northern Maine may also be affecting the region’s lake water clarity. Although 

we found no correlation between the proportion of lake watersheds harvested for timber 

during 1991-2007 based on Landsat-derived forest change detection data (Noone and 
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Sader in press) and the decline in SDD, the total area of forest harvest is insensitive to 

harvest intensity, which has varied considerably throughout the history of Maine’s 

forests. Additional research is necessary to evaluate potential influences of harvest 

intensity on regional lake clarity in northern Maine. 

2.5.2. Evaluation of existing sampling record 

  Maine’s current water clarity sampling approach does not necessarily acquire a 

representative sample of regional water quality owing to spatially biased field sampling 

and omission of inaccessible, rural lakes. Remote lake monitoring schemes enable 

spatially balanced sampling because assessment is not limited by access. Although 

Landsat-based models produce accurate estimates of water clarity in Maine overall 

(McCullough et al. in press), there is greater prediction error in regions with few field-

sampled lakes. Discrepancies between remote SDD estimates and field-collected SDD in 

Maine are attributable to spatially biased, non-random field sampling. Landsat-based 

models developed for assessing statewide water clarity can be calibrated with these non-

random field data, however, a spatially imbalanced calibration dataset potentially 

decreases water clarity prediction accuracy. During the selected six study years, field data 

were available for 43-91 unique lakes, representing only 8-16% of the 570 lakes > 8 ha in 

the imagery overlap region. There were insufficient field-collected data (≤ 5 sampled 

lakes within ± 7 day calibration windows) in the northeastern and western lake regions to 

evaluate model predictions for lakes in those regions, underscoring the spatial biases in 

current field sampling programs. Seasonal dynamics in lake water clarity also potentially 

contribute to discrepancies between remotely-sensed and field-collected SDD data, 
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however, restricting analysis to the ± 7 day calibration window constrained to August 1 – 

September 5 minimizes this error.   

2.5.3. Application of Landsat imagery for change detection of regional water quality 

Landsat TM data are an effective tool in regional water quality monitoring 

because the spatial extent of Landsat imagery eliminates the biases of non-random 

sampling typically employed in the field. Although near-concurrent (± 7 days of satellite 

overpass) field data must be collected for model calibration, remote water quality 

monitoring with Landsat TM data potentially reduces lake monitoring costs substantially, 

especially if field sampling efforts were planned to coincide with satellite overpasses. 

Despite these considerable advantages, this procedure has some notable limitations. 

Restricting usable imagery to late summer, when lakes are expected to be least clear, 

reduces image availability. Cloud-free late summer images may not be available owing to 

cloud cover and the 16 day revisit cycle. The reduced quality of Landsat 7 SLC-off 

images and the age of Landsat 5 exacerbate the issue of future image availability; 

however, a successful launch of the Landsat Data Continuity Mission in 2013 would help 

alleviate issues of future image availability. Using scene overlap areas between Landsat 

paths is a practical approach to increase image availability.  

The poor image quality of Landsat 7 SLC-off imagery limits its use for remote 

water clarity monitoring. Calibration of SLC-off models required we eliminate as many 

as 100 lake stations per Landsat path owing to missing satellite data in deep areas of 

lakes. Lake sample stations shifted to within the working scan lines may not be 

representative of conditions at the actual sample station (i.e., the SDD estimate is 
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calculated for a shallower area than where the SDD data were or would be collected in 

the field), potentially reducing model fit and accuracy of SDD predictions. Smaller lakes 

(~ 8 ha) with less surface area for remote data extraction are more likely to be affected or 

requiring of omission.  

The R² values of models we produced using SLC-off imagery (R² =0.74-0.82) 

were comparable to those reported by Olmanson et al. (2008) (R² =0.72-0.86), however, 

we found that our SLC-off models could not accurately estimate SDD in areas lacking 

field calibration data. Approximately 90% of our calibration data consisted of lakes in the 

south-central lake region; consistently ≤ 5 lakes from the northeastern and western lake 

regions combined were available in calibrations. Average south-central SDD between the 

8 August 2005 (SLC-off) and 9 August 2005 (Landsat 5) models differed 0.05 m, a 

negligible difference, whereas average northeastern and western SDD differed > 1 m 

between the two days. Satellite data loss in SLC-off images exacerbated the limited 

availability of calibration data in these remote areas. Management agencies intending to 

use SLC-off imagery for remote lake monitoring should consider increasing field data 

collection in remote areas to increase model accuracy for these areas. Although SLC-off 

imagery can be used to calibrate models with strong fitness, spatially unbalanced 

calibration datasets cause inaccurate SDD predictions in regions lacking calibration data.
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CHAPTER 3 

HIGH-FREQUENCY REMOTE MONITORING OF LARGE  

LAKES WITH MODIS 500 M IMAGERY 

3.1. INTRODUCTION 

Water clarity is a widely used metric of lake water quality often measured as 

secchi disk depth (SDD). Lake water clarity is closely associated with water quality 

indicators such as trophic status, chlorophyll-a, and total phosphorus and is a strong 

indicator of overall lake productivity (Carlson 1977). Increased lake clarity increases 

lakefront property value in Maine (Michael et al. 1996, Boyle et al. 1999) and New 

Hampshire (Gibbs et al. 2002) and enhances user-perception of lake health in Minnesota 

(Heiskary and Walker 1988). Because clarity assessments are easy to administer and have 

important ecological and economic implications, clarity is an ideal metric of regional lake 

water quality. Regional assessments, however, are logistically challenging and expensive 

to perform regularly. Consequently, field assessments tend to exclude rural and relatively 

inaccessible areas, thereby producing spatially irregular, non-random samples.  

An approach to reducing costs and eliminating problems associated with lake 

accessibility is use of remote sensing. Recently, there has been an emergence of 

published procedures for remote monitoring of regional lake water clarity with satellite 

imagery (Kloiber et al. 2002a, Chipman et al. 2004, Olmanson et al. 2008, McCullough et 

al. in press). These procedures rely on continued access to Landsat Thematic Mapper 

(TM) data. The Landsat platform has a number of key advantages including nearly 30 

years of archived imagery, a 185 km scene width suitable for regional analyses, free data 

access, and good resolution in the visible and infrared portions of the electromagnetic 
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spectrum. The 30 m spatial resolution of Landsat permits simultaneous assessment of 

hundreds of lakes ≥ 8 ha and within-lake assessment of large lakes. Repeated application 

of Landsat underscores its usefulness in regional water quality monitoring, however, 

Landsat still has limitations. Of two Landsat satellites currently in operation, Landsat 7 

ETM+ has compromised image quality owing to the 2003 scan-line corrector (SLC) 

failure. Landsat 5 TM, launched in 1984, has long exceeded its life expectancy and was 

suspended in November 2011 in an attempt to restore operation after an amplifier 

malfunction. Image availability limitations could be mitigated by the intended launch of 

the Landsat Data Continuity Mission (LDCM) in 2013. In addition, Landsat has a 16 day 

temporal resolution, which can be problematic when short time windows are of interest, 

particularly in the presence of cloud cover.  

 Moderate-Resolution Imaging Spectroradiometer (MODIS) sits aboard two 

NASA satellites: Terra, launched in 1999, and Aqua, launched in 2002. Each satellite 

captures daily images of the entire Earth surface, yielding two images per day. Many 

MODIS image products arrive pre-converted to surface reflectance, eliminating potential 

need for radiometric correction. MODIS contains 29 bands at 1,000 m, five bands 

spectrally similar to Landsat TM at 500 m, and two bands (red visible and near infrared) 

at 250 m resolution. Scenes are approximately 2,300 km wide. The large pixel size 

restricts application only to large area analyses; however, the greater temporal resolution 

and pre-conversion to surface reflectance are notable, potential advantages over Landsat.  

 There are relatively few previous applications of MODIS for lake water quality 

monitoring. Koponen et al. (2004) classified water quality of Finnish lakes into broad 

categories (i.e. excellent, good, satisfactory and fair) with 250 m MODIS data, and 
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various MODIS band combinations were used to estimate seasonal chlorophyll-a of 

Taihu Lake, China (Zhu et al. 2005). Dall’Olmo et al. (2005) found simulated MODIS 

and SeaWiFS imagery could be used to estimate chlorophyll-a concentrations in turbid, 

productive waters including lakes. MODIS data were used to estimate chlorophyll-a, total 

phosphorus, total nitrogen and water clarity in Chaohu Lake, China, with R² values > 

0.60 for clarity and chlorophyll-a (Wu et al. 2009). Chipman et al. (2009) showed that the 

visible blue (500 m resampled to 250 m)/visible red (250 m) MODIS band ratio was 

strongly correlated (R²=0.79) with natural log-transformed chlorophyll-a in Minnesota 

and Ontario lakes and used various band combinations at 500 m to map water clarity in 

Lake Michigan. Olmanson et al. (2011) were the first to demonstrate that MODIS 250, 

500 and 1,000 m imagery can be effectively used in regional estimation of clarity and 

chlorophyll-a in Minnesota lakes using concurrent August imagery, however, they note 

that the number of lakes monitored is limited by spatial resolution.  

Despite these recent advances in the use of MODIS imagery for remote lake 

monitoring, previous research has not yet evaluated the application of the high temporal 

resolution of MODIS data for intra-annual lake monitoring, which is a potentially major 

advantage of MODIS over conventionally-used Landsat. Additionally, our past analyses 

of Maine lakes using Landsat imagery indicate that incorporation of physical lake 

features and watershed characteristics improve accuracy of remote SDD estimates 

(McCullough et al. in press), however, it is unclear if these findings are applicable at the 

scale of MODIS-based lake monitoring. The objectives of this study were to (1) 

investigate the effectiveness of MODIS 500 m data in regional lake clarity monitoring 

during May-September, (2) evaluate the contributions to MODIS model performance of 
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physical lake features and watershed characteristics that drive regional water clarity at the 

scale and resolution of Landsat, and (3) compare the respective utilities of MODIS and 

Landsat data in regional lake clarity monitoring.  We developed a reliable and efficient 

MODIS-based remote monitoring protocol for water clarity of large lakes that is 

applicable over time and incorporates knowledge of seasonal lake dynamics and 

landscape characteristics that contribute to regional water clarity. We propose that 

MODIS is a valuable complement to Landsat-based monitoring programs and 

hypothesize that whereas Landsat is useful for long-term, low-frequency lake assessment, 

especially of historical clarity owing to its long data archive, MODIS may be more 

effective for recent and future intra-annual monitoring of large lakes. 

3.2. DESCRIPTION OF STUDY AREA 

Maine, USA contains over 1,500 lakes ≥ 8 ha in surface area distributed across 

approximately 90,000 km². Maine ranks first among all states east of the Great Lakes in 

total area of inland surface waters (Davis et al. 1978) and 26% of the state is covered by 

wetlands (Tiner 1998). The climate is cold-temperate with long, cold winters and short, 

warm summers. Maine is dominated by the Northeastern Highlands (#58) and the 

Acadian Plains and Hills (#82) Level III Ecoregions (Omernik 1987). The Northeastern 

Highlands are remote, mostly forested, mountainous, and contain numerous high-

elevation, glacial lakes. The Acadian Plains and Hills are comparatively more populated 

and less rugged; however, the area also is heavily forested and contains many glacial 

lakes (U.S. EPA 2010). Lakes range in size from small ponds < 1 ha to Moosehead Lake 

(30,542 ha), the largest lake in Maine. The average SDD of Maine lakes was 5.14 m in 

2009 (n=457; Maine Department of Environmental Protection; MDEP; Bacon, Maine 
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Volunteer Lake Monitoring Program; VLMP 2010). Since statewide monitoring began in 

1970, average annual SDD consistently has ranged 4-6 m, with a statewide average of 

5.27 m during 1970-2009. The number of lakes sampled annually generally has increased 

since 1970 and consistently has exceeded 400 lakes since 1999 (MDEP, VLMP 2010).  

3.3. METHODS 

3.3.1. Selection of MODIS imagery 

We retrieved archived, free Level 1B daily surface reflectance imagery (MOD 09) 

at 500 m resolution collected on Aqua and Terra satellites (http://glovis.usgs.gov/). We 

selected 500 m over 250 m resolution because the spectral sensitivity of MODIS 250 m 

imagery does not span both the blue and red visible portions of the electromagnetic 

spectrum correlated with lake water clarity (Kloiber et al. 2002a, Chipman et al. 2004, 

Olmanson et al. 2008, McCullough et al. in press). We conducted date-specific analyses 

of images in 2001, 2004 and 2010 during May-September to evaluate within-year lake 

clarity monitoring with MODIS data. We analyzed additional images captured 20 

October 2004 and 5 October 2010 to evaluate model accuracy in mid-fall. We also 

analyzed images captured 9 August 2002, 5 September 2009 and 30 August 2010 to 

compare respective SDD predictions derived from concurrently captured Landsat TM 

imagery (McCullough et al. in press). We restricted our dataset to imagery with minimal 

cloud cover, although imagery chosen to coincide with Landsat imagery contained some 

clouds owing to comparative lack of flexibility in Landsat image selection. We attempted 

to analyze MODIS and Landsat imagery collected on 9 August 2005, however, clouds 

obscured too many of the large lakes necessary to calibrate MODIS models.  

 

http://glovis.usgs.gov/
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3.3.2. Ancillary lake data 

Physical lake variables and landscape characteristics improve Landsat-based 

predictions of SDD of Maine lakes (McCullough et al. in press). We included average 

lake depth and the proportion of wetland coverage in lake watersheds (wetland area) in 

our calibrations of MODIS data because these variables were significant predictors of 

Maine lake clarity using Landsat imagery; however, different ancillary variables may be 

strongly correlated with lake clarity in other regions. We obtained bathymetric data 

(MDEP; Bacon 2011) and a watershed boundary geographic information system (GIS) 

layer (MDEP; Suitor 2011). We used the watershed layer to calculate wetland area 

(ArcGIS ® version 10.0; Environmental Systems Research Inc., Redlands, CA, United 

States). Our wetland dataset was an updated NWI (National Wetlands Inventory) GIS 

layer (Houston 2008). No lakes in our calibrations were missing ancillary data because 

we selected large, relatively well-mapped lakes for model development. 

3.3.3. Lake size and shape limitations 

Clarity of many small lakes cannot be estimated reliably with MODIS imagery 

owing to the 500 m spatial resolution. Lakes < 400 ha were omitted from a statewide 

study of Wisconsin (Lillesand 2002) and Minnesota (Olmanson et al. 2011) lakes 

conducted at 500 m resolution. Although lake size provides a threshold for unsuitable 

lakes, shape also affects lake eligibility. Pixels overlapping with lake boundaries 

introduce spectral interference from shoreline features (Chipman et al. 2009). Lakes with 

a large surface area owing to a long axis and convoluted shoreline will be represented 

with few water-only pixels. At 500 m resolution, 385 lakes can be monitored in 
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Minnesota (Olmanson et al. 2011) and 108 and 90 lakes can be monitored in Michigan 

and Wisconsin respectively (Chipman et al. 2009). We used the lake perimeter 

(m)/surface area (m²) ratio to characterize lake shape and determine eligibility for remote 

monitoring with MODIS 500 m data. We generated this ratio with GIS-derived lake 

perimeter and area metrics and limited our dataset to lakes with a perimeter/surface area 

ratio < 0.019. The smaller this ratio, the greater the likelihood of avoiding mixed pixels. 

Based on size and shape requirements, 83 Maine lakes can be routinely monitored using 

MODIS 500 m imagery (Fig. 3.1).  
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Fig. 3.1. Eighty-three Maine lakes can be monitored routinely with MODIS 500 m 

imagery. This imagery was captured by the Aqua satellite on 2 September 2004. 
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3.3.4. Image pre-processing 

Level 1B images are pre-converted to surface reflectance, requiring only minimal 

additional pre-processing. We reprojected all images to WGS1984 UTM Zone 19 N with 

nearest neighbor resampling with the MODIS Reprojection Tool 

(https://lpdaac.usgs.gov/lpdaac/tools/modis_reprojection_tool). We mosaicked images 

(ERDAS Imagine ® version 10.0; ERDAS Inc., Norcross, GA, USA) and clipped them to 

the state boundary. We mostly used completely cloud-free imagery; however, if clouds 

were present, we used an unsupervised classification (ISODATA clustering) to identify 

cloud pixels, which we reclassified as null values and removed from further analysis. 

Cloud shadows could not be removed by unsupervised classification without 

simultaneously removing unaffected lake pixels, so images were visually inspected to 

remove lakes affected by shadows. 

3.3.5. Data extraction and model development 

We created a remote sampling GIS points layer of SDD sampling stations 

delineated on bathymetric maps (Maine PEARL 2011). SDD sampling stations generally 

are located in the deepest areas of lakes; however, we manually relocated these sites to 

lake centers when lake boundaries compromised water-only pixels. We assigned 

sampling stations to lake centers in the absence of established locations. We buffered the 

points by 500 m for pixel extraction. A buffer size of 500 m captures 4-9 pixels and 

provides a general characterization of lake surface reflectance. Larger samples may 

improve correlation with SDD; Kloiber et al. (2002b) found including up to 25 pixels 

improved model fitness with Landsat imagery. Use of > 4-9 pixels at 500 m resolution, 

https://lpdaac.usgs.gov/lpdaac/tools/modis_reprojection_tool
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however, restricts assessment to a small number of very large lakes. We also applied 300 

and 400 m buffers as well as single pixels; however, a 500 m buffer yielded the greatest 

R² values. A disadvantage of this method is that the requirement of several water-only 

pixels inevitably limits the number of lakes sampled. We calculated the average pixel 

value for MOD 09 bands 1 (red visible; 620-670 nm) and 3 (blue visible; 459-479 nm) in 

each buffered area with zonal statistics. Bands 1 and 3 correspond to the visible portions 

of the electromagnetic spectrum most strongly correlated with clarity of Maine lakes 

using Landsat (McCullough et al. in press). Other Landsat-based studies determined the 

blue/red band ratio is a strong predictor of SDD (Kloiber et al. 2002a, Chipman et al. 

2004, Olmanson et al. 2008), however, we found the individual red and blue TM bands 

were more consistently, strongly correlated with SDD in Maine than green or near 

infrared TM bands or various combinations and ratios of TM bands 1-4 (McCullough et 

al. in press).  

SDD data collected ± 10 days of the satellite overpass in mid-late summer (July 

15-September 15) are acceptable for use in remote clarity estimation models because 

water clarity is relatively stable at this time of year (Kloiber et al. 2002a); however, time 

windows of ± 10 days are not ideal and should be used only when insufficient data are 

available within shorter time frames. Lake clarity usually is at a seasonal low during late 

summer owing to peak development in algal communities, making late summer the 

optimal period for remote clarity estimation (Stadelmann et al. 2001). Outside late 

summer, however, field calibration data should be collected as closely as possible to 

satellite image capture dates to minimize variability associated with changing lake 

conditions, such as stratification and mixing, which may vary across a landscape. We 
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used time windows of ± 3-7 days of the satellite overpass based on SDD data availability, 

using ± 7 day windows during August only when necessary. 

We used spectral data (bands 1 and 3) average depth and wetland area to estimate 

natural log-transformed SDD with linear regression (R Version 2.12.0; R Foundation for 

Statistical Computing, Vienna, Austria). We included the MODIS band 1/3 ratio owing to 

its established, strong correlation with ln(SDD) (Kloiber et al. 2002a, Chipman et al. 

2004, Olmanson et al. 2008). We validated all regression models with leave-one-out 

jackknifing (Sahinler and Topuz 2007) and verified standard regression assumptions. We 

identified and eliminated outliers with the Bonferroni outlier test and case-by-case 

inspection of residuals and input parameters. Non-outlying influential cases were not 

removed unless considerable model fitness was gained. 

3.4. RESULTS 

3.4.1. Regression results 

We found strong correlations (R²=0.72-0.94; RMSE=1.18-1.39 m) between 

ln(SDD), MODIS bands 1 and 3, average depth and wetland area (Table 3.1). Band 1 was 

negatively correlated and band 3 was positively correlated with ln(SDD). Band 3 was 

generally correlated with ln(SDD) during May-August, although during May only in 

2010. The band 1/3 ratio created model redundancies and was less consistently correlated 

with ln(SDD) than individual bands 1 and 3. Average lake depth was positively 

correlated with ln(SDD) during the stratified period (mid-June-August) and wetland area 

was consistently negatively correlated with ln(SDD) in May. Our best-performing 

MODIS models were produced for July-September, however, models with R² > 0.70 
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were produced throughout the study (Table 3.1, Fig. 3.2). We failed to calibrate models 

for 9 May 2004 and October dates owing to lack of calibration data.  

 The average absolute difference between all observed and model-estimated SDD 

values was 1.04 m (± 0.88; one standard deviation), however, lake trophic status affected 

this difference (Table 3.2). Eutrophic lakes (SDD < 4 m) generally were estimated most 

accurately, differing 0.77 m (± 0.58) on average from observed conditions. Estimates for 

mesotrophic lakes (SDD=4-7 m) averaged 0.96 m (± 0.71) from observed SDD and 

estimates for oligotrophic lakes (SDD > 7 m) were the least accurate, differing 1.50 m (± 

1.07) on average from observed conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

a
 Band 1 = visible red (620-670 nm), 

b
 AvgDepth = average lake depth, 

c
 Band 3 = visible blue (459-479 nm), 

d 
Wetland =  

proportion of watershed covered by wetland. We failed to create models for imagery captured 5/9/2004, 10/20/2004 and  

10/5/2010 owing to lack of calibration data. 

Table 3.1. Summary of clarity estimation models with MODIS 500 m imagery 

   
Date Satellite Model R² ± Days n 

9/18/2010 Terra -1.31x10
-2

 (Band 1
a
) + 2.65 0.9237 3 20 

8/29/2010 Terra -1.08x10
-2

 (Band 1) + 1.37x10
-2

 (AvgDepth
b
) + 2.58 0.7941 3 19 

8/19/2010 Terra -9.65x10
-3

 (Band 1) + 9.29x10
-3

 (AvgDepth) + 2.41 0.8231 3 20 

6/15/2010 Terra -9.04x10
-3

 (Band 1) + 2.16x10
-2

 (AvgDepth) + 2.25 0.8040 3 22 

5/21/2010 Terra -1.02x10
-2 

(Band 1) + 7.25x10
-3

 (Band 3
c
) - 3.61x10

-4
 (Wetland

d
) + 2.20 0.7651 3 13 

      

9/14/2004 Aqua -8.63x10
-3

 (Band 1) + 2.60 0.8797 3 20 

9/2/2004 Aqua -3.58x10
-2

 (Band 1) + 3.54x10
-2

 (Band 3) + 1.99 0.9376 3 10 

8/24/2004 Aqua -1.53x10
-2

 (Band 1) + 1.22x10
-2

 (Band 3) + 6.08x10
-3

 (AvgDepth) + 1.83 0.8173 7 37 

7/7/2004 Aqua -1.29x10
-2

 (Band 1) + 1.48x10
-2

 (Band 3) + 7.27x10
-3

 (AvgDepth) + 1.46 0.8856 3 15 

6/5/2004 Aqua -1.24x10
-2

 (Band 1) + 2.18x10
-2

 (Band 3) + 0.866 0.7204 3 17 

      9/9/2001 Terra -7.91x10
-3

 (Band 1) + 2.21 0.7403 3 22 

8/1/2001 Terra -1.42x10
-2

 (Band 1) + 1.11x10
-2

 (Band 3) + 5.48x10
-3

 (AvgDepth) + 1.80 0.7742 7 31 

7/20/2001 Terra -6.24x10
-3

 (Band 1) + 5.31x10
-3

 (Band 3) + 4.83x10
-3

 (AvgDepth) + 2.47 0.7064 3 18 

5/25/2001 Terra -1.11x10
-2

 (Band 1) + 1.50x10
-2

 (Band 3) - 3.58x10
-4

 (Wetland) + 1.70 0.8910 3 13 

5/8/2001 Terra -9.29x10
-3

 (Band 1) + 2.16x10
-2

 (Band 3) - 5.37x10
-4

 (Wetland) - 0.877 0.7194 3 13 

5
7
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a
 Eutrophic SDD < 4 m, Mesotrophic SDD = 4-7 m, Oligotrophic SDD > 7 m 

 

 

 

 

Table 3.2. Average absolute difference (m) between MODIS-estimated and 

observed SDD by lake trophic state
a 

Date Satellite Eutrophic Mesotrophic Oligotrophic Overall 

9/18/2010 Terra 0.36 0.67 1.21 0.67 

8/29/2010 Terra 0.77 0.96 1.64 1.09 

8/19/2010 Terra 0.68 1.07 1.39 1.12 

6/15/2010 Terra 0.43 0.83 1.29 0.91 

5/21/2010 Terra 1.42 0.65 2.14 1.17 

Average 
 

0.64 0.86 1.47 0.98 

Std Dev 

 

0.58 0.61 0.93 0.78 

      9/14/2004 Aqua 0.53 1.23 1.15 0.99 

9/2/2004 Aqua 0.30 0.89 1.70 1.17 

8/24/2004 Aqua 0.55 0.94 1.78 1.11 

7/7/2004 Aqua 0.16 0.92 1.48 0.83 

6/5/2004 Aqua 0.49 0.66 1.82 0.81 

Average 
 

0.45 0.92 1.57 1.00 

Std Dev 
 

0.47 0.62 1.08 0.86 

      9/9/2001 Terra 0.76 0.86 2.43 1.41 

8/1/2001 Terra 0.61 1.64 1.57 1.38 

7/20/2001 Terra 1.10 0.85 1.17 0.94 

5/25/2001 Terra 0.42 0.83 1.12 0.83 

5/8/2001 Terra 1.04 0.95 1.91 1.28 

Average 
 

0.77 1.09 1.50 1.13 

Std Dev   0.97 0.67 1.21 0.97 

6
0
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Fig. 3.2. Plotted relationships between observed and estimated secchi disk depth (m) for 

2004 MODIS models with 1:1 fit line. Observed values are based on field data gathered 

by the Maine Volunteer Lake Monitoring Program (VLMP) ± 3-7 days of satellite 

overpass. RMSE = root mean squared error.  
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3.4.2. Comparison to same-date Landsat models 

Predictive capacities (R²) were greater for Landsat than MODIS models on three 

of four occasions, except on 14 September 2004 (Table 3.3). Significant predictors 

generally were similar in corresponding models (Table 3.3). Similarly, the average 

absolute difference between model-estimated and field-collected SDD measurements 

consistently was less in Landsat models, except on 14 September 2004. The window of 

days for usable calibration data varied in all years except 2009 based on calibration data 

availability (Table 3.3). The same calibration datasets could not be used in respective 

MODIS and Landsat models owing to lake size/shape requirements for MODIS models 

and the larger geographic extent of MODIS imagery. SDD estimates from MODIS and 

concurrently collected Landsat data were not different across all years (n=279; paired t-

test, p=0.243), nor in any individual year (Table 3.4). The absolute difference between 

annual average MODIS and Landsat SDD estimates ranged 0.06-0.33 m across all four 

years (Table 3.4). 

 



 
 

a 
Band 1 = MODIS visible red, 

b
 AvgDepth = average lake depth, 

c 
TM3 = Landsat visible red, 

d 
Band 3 = MODIS visible blue, 

e
 Wetland = proportion of 

watershed covered by wetlands, 
f
 TM1 = Landsat visible blue, 

g
 Avg Abs Diff = average absolute difference between observed and satellite-estimated SDD 

values. 

 

Table 3.4. Paired t-test comparisons of 

MODIS and Landsat estimates 

Date 

Abs diff 

(m)
a 

p value n 

2010 0.06 0.779 72 

2009 0.07 0.828 47 

2004 0.33 0.106 81 

2002 0.11 0.555 79 

All 0.13 0.243 279 

 
a
 Abs diff (m) = absolute difference between  

annual average MODIS and Landsat SDD estimates 

 

Table 3.3. Comparison of MODIS and Landsat models predicting SDD on coincident dates 

    
 Date Satellite Model R² 

± 

Days n 

Abs Diff 

(m)
g 

8/30/2010 Aqua -8.08x10
-3

 (Band 1
a
) + 7.71x10

-4
 (AvgDepth

b
) + 2.52 0.6528 3 22 1.51 

8/30/2010 Landsat -0.244 (TM3
c
) + 8.39x10

-3
 (AvgDepth) + 5.22 0.7305 1 65 1.03 

       9/5/2009 Terra -1.31x10
-2 

(Band 1) + 1.62x10
-2

 (Band 3
d
) - 3.41x10

-4
 (Wetland

e
) + 1.95 0.7667 3 22 1.45 

9/5/2009 Landsat -3.20x10
-1

 (TM3) + 3.72x10
-2

 (TM1
f
) + 7.78x10

-3
 (AvgDepth) - 3.61x10

-4
 (Wetland) + 5.51 0.8631 3 66 0.73 

       9/14/2004 Aqua -8.63x10
-3

 (Band 1) + 2.60 0.8797 3 20 0.99 

9/14/2004 Landsat -0.298 (TM3) + 6.44 0.6693 1 44 1.27 

       8/9/2002 Terra -1.13x10
-2

 (Band 1) + 8.26x10
-3

 (Band 3) + 1.06x10
-3

 (AvgDepth) + 1.57 0.7787 3 16 1.37 

8/9/2002 Landsat -3.22x10
-2

 (TM3) + 1.29x10
-2

 (AvgDepth) - 7.51x10
-4 

(Wetland) + 4.25 0.9010 1 36 0.65 

6
1
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3.5. DISCUSSION 

3.5.1. Application of MODIS imagery in remote lake clarity monitoring 

MODIS 500 m imagery is usable for regional remote clarity estimation of large 

lakes from late spring through late summer; however, MODIS predictions of lake clarity 

are more consistently accurate in mid-late summer. Inconsistency during late spring and 

early summer likely reflects seasonally unstable, unpredictable lake conditions that result 

from annual fluctuations in algal community development. Algal growth peaks 

consistently cause water clarity to be at its lowest in late summer, creating conditions 

most easily detectable by remote platforms sensitive to the visible portions of the 

electromagnetic spectrum correlated with lake water clarity (Kloiber et al. 2002a, 

Chipman et al. 2004, Olmanson et al. 2008). Given seasonally dynamic clarity 

conditions, mid-late summer estimates potentially are more valuable indicators than 

estimates outside this window. Furthermore, volunteers gather more calibration data in 

summer than in spring or fall, accounting for our inability to calibrate models for October 

or consistently for May. 

Various combinations of MODIS bands 1 and 3 and physical lake parameters 

provided best-fitting models across years and seasons, which can be explained by 

seasonal lake dynamics and fluctuations in weather. The short wavelength of the visible 

blue band (band 3) poorly penetrates turbid or productive water and is less strongly 

correlated with ln(SDD) than the visible red band (band 1) (Lathrop 1991). Consequently, 

we would expect band 3 to be a weak predictor of water clarity during periods of high 

algal biomass, which typically occurs in late summer. This was the case in our study in 
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2001 and 2004, but not in 2010, which experienced an unusually dry and warm summer 

(June-August) (NOAA 2011) that likely lowered lake levels and concentrated algal 

productivity in lake water columns. Statewide lake clarity was at a 15 year low in August 

2010 (McCullough et al. in review), which coupled with weather likely explains the lack 

of predictive capacity of band 3 after late May. Average depth is a major determining 

factor in lake water clarity during the stratified period, which begins between late April 

and early June and typically lasts 4-6 months in Maine (Davis et al. 1978). Therefore, we 

would expect that average depth would not be a consistent predictor of SDD during May, 

early June and early-mid September, which our results confirm (Table 3.1). Wetlands 

contain the most water in spring as a result of snowmelt and decrease in volume later 

during the year. Consequently, we would expect the effects of wetlands on lake water 

clarity to be most pronounced in May, which our results also confirm; however, 2009 

experienced record summer rainfall (NOAA 2011), which explains the significance of 

wetlands in our 5 September 2009 MODIS model (Table 3.3). Although we found 

wetlands to be a consistent predictor of late summer lake clarity only in eastern Maine in 

our Landsat-based study (McCullough et al. in press), it is likely that the 500 m 

resolution, inclusion of additional months, and the wider geographic extent of this study 

accounted for the lack of similar findings.  

The temporal resolution of MODIS data makes annual and intra-annual lake 

clarity estimation possible, whereas retrieving cloud-free Landsat imagery at these 

frequencies is less likely, particularly in areas with frequent cloud cover. Many cloud-free 

MODIS images of Maine were available during mid-late summer 2001-2010, whereas 

few cloud-free Landsat images were available during this period. Given that cloud-free 
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imagery may not be available for several weeks at a time, the greater temporal resolution 

of MODIS increases the probability that high-quality imagery would be available at some 

point each summer, which represents a considerable advantage over Landsat. Although 

we proposed that pre-conversion to surface reflectance was a similar advantage over 

Landsat, loss of spatial resolution may negate potential benefits, which are unproven at 

this time. MODIS Level 1B corrections were designed to improve analyses of land 

features and research is needed to evaluate potential effects on water quality assessment. 

Although Olmanson et al. (2011) found uncorrected MODIS imagery performed as well, 

if not better than corrected MODIS imagery in estimation of SDD, we hypothesize that 

the use of cloud-free imagery may mask potential effects of atmospheric correction. 

Comparative analyses of cloud-free and marginally usable imagery may clarify the 

effects of MODIS atmospheric corrections on water quality estimation; however, the 

temporal resolution of MODIS potentially eliminates the need for use of all but the best 

quality imagery with minimal atmospheric interference. 

3.5.2. Limitations of MODIS for lake clarity estimation 

MODIS visible red data (band 1) consistently provided stronger predictions of 

SDD than visible blue data (band 3). MODIS data at 250 m resolution are not available at 

the visible blue wavelength (459-479 nm); however, the smaller resolution would 

considerably increase the number of lakes that could be remotely monitored, though at 

the expense spectral sensitivity. As the blue band is a relatively weak predictor of lake 

clarity in late summer or in productive waters in Maine, 250 m imagery may be 

particularly useful under these conditions. Chen et al. (2007) used 250 m Level 1B 

imagery to map turbidity in Tampa Bay with strong accuracy (R²=0.73), conditions in 
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which we would expect little penetration of visible blue radiation. Olmanson et al. (2011) 

successfully estimated SDD of 1,257 lakes > 125 ha using 250 m MODIS imagery 

captured in August, however, further research is needed to evaluate the utility of MODIS 

250 m imagery during other months. Inclusion of additional lakes would increase 

calibration data availability. Model predictions potentially are affected by the selected 

lake calibration dataset, including sample size, and geographic and numeric distribution 

of SDD values. The numeric distribution of lake water clarity values may be reduced 

when fewer lakes are included in the model-building dataset, which subsequently affects 

model fitness (Nelson et al. 2003). 

Average lake depth and wetland area seasonally improve accuracy of lake clarity 

estimation models; however, these variables may not be readily available in other 

locations and may require site-based sampling, which potentially is difficult in 

inaccessible areas. Lake depth and wetland area likely are sufficiently stable year-to-year 

at the landscape scale such that reassessment is unnecessary. Knowledge of lake depth 

relativizes the proportion of the water column penetrable by light and is useful regardless 

of predictive capacity. We have shown that average lake depth and wetland area improve 

model fitness in some cases; however, SDD estimates with reduced accuracy are useful 

when these variables are not available (McCullough et al. in press). Average depth and 

wetland area were strong predictors of Maine lake clarity; however, other ancillary 

variables may be better predictors in other regions based on the landscape and season of 

interest.  

Utility of remote sensing data for lake water clarity monitoring is affected by 

cloud cover. Although daily MODIS imagery potentially provides multiple opportunities 
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for cloud-free imagery each year, cloud cover remains a major limitation of satellite 

remote sensing. Despite the temporal frequency of MODIS image capture, availability of 

cloud-free imagery on specific dates is unlikely, especially in frequently clouded areas, 

requiring that remote monitoring protocols be flexible with regard to image selection. 

3.5.3. Comparison of MODIS and Landsat models 

Although we found no significant differences between SDD estimates from 

Landsat and MODIS models across all dates and models, the generally better accuracy of 

Landsat models can be attributed to finer resolution and smaller scale (individual TM 

paths). Olmanson et al. (2011) found that Landsat imagery performed better in terms of 

R² than concurrent MODIS 250, 500 and 1,000 m imagery, and different band 

combinations provided best-fitting models across image products. These findings are 

consistent with ours. The difference in scale accounts for differences in significant 

predictor variables in 2009 and 2002 MODIS and Landsat models. Landsat models 

contained lakes located in individual TM paths, whereas MODIS models encompassed all 

of Maine. It was not practical to use common calibration datasets owing to the small 

number of MODIS-eligible lakes; differences in resolution affected calibration data 

availability. 

Landsat and MODIS imagery can be used to estimate SDD accurately despite 

differences in resolution and scale; however, Landsat and MODIS models have entirely 

different applications in remote water clarity monitoring. The 83 lakes in Maine that can 

be monitored simultaneously with 500 m MODIS imagery constitute < 10% of the 

approximately 1,000 lakes (≥ 8 ha) that potentially can be monitored with either Landsat 
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path 11 or 12 (McCullough et al. in press). In Wisconsin, 60% of lakes > 400 ha can be 

reliably monitored with MODIS 500 m imagery, (Chipman et al. 2009), whereas the 83 

MODIS-eligible Maine lakes represent 49% of lakes > 400 ha. Although Landsat data 

provide generally more accurate water clarity assessments, an important advantage of 

MODIS data is the ability to assess water clarity multiple times during spring and 

summer over a considerably larger geographic area. The 16 day temporal resolution of 

Landsat may require the use of marginal imagery when short time windows are of interest 

(e.g., late summer), whereas use of MODIS data substantially increases the probability of 

obtaining high-quality imagery. 

3.6. CONCLUSION 

MODIS 500 m imagery is a reliable tool in characterizing water clarity of large 

lakes from late spring through late summer and the frequency of MODIS image capture 

potentially enables assessment of lake clarity change during this period. MODIS-based 

lake monitoring is less dependable in May, however, owing to model calibration data 

availability and seasonally unstable lake dynamics that result in inconsistent relationships 

between spectral reflectance and water clarity. Average lake depth and watershed wetland 

area improved model accuracy for Maine lakes when knowledge of seasonal lake 

dynamics and recent weather are considered in model calibration. Only large lakes (83 in 

Maine) can be reliably assessed with MODIS 500 m data; considerably more lakes can be 

monitored with Landsat. The effects of MODIS atmospheric corrections on water clarity 

assessment are unknown; however, the temporal resolution of MODIS increases the 

probability of obtaining clear imagery with minimal atmospheric interference. Although 

the utility of MODIS data is biased toward large lakes, frequency of image capture is a 
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notable advantage of MODIS over Landsat and allows selection of only the best quality 

imagery. A comprehensive lake water clarity monitoring program combines MODIS and 

Landsat TM data with rigorous field sampling programs that capture the ground-truthed 

SDD data on which a satellite-based monitoring program depends. 
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