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ABSTRACT OF THE DISSERTATION

WATER QUALITY MODELLING USING MULTIVARIATE STATISTICAL

ANALYSIS AND REMOTE SENSING IN SOUTH FLORIDA

by

Mohammad Hajigholizadeh

Florida International University, 2016

Miami, Florida

Professor Assefa M. Melesse, Co-Major Professor

Professor Hector R. Fuentes, Co-Major Professor

The overall objective of this dissertation research is to understand the

spatiotemporal dynamics of water quality parameters in different water bodies of South

Florida. Two major approaches (multivariate statistical techniques and remote sensing)

were used in this study. Multivariate statistical techniques include cluster analysis (CA),

principal component analysis (PCA), factor analysis (FA), discriminant analysis (DA),

absolute principal component score-multiple linear regression (APCS-MLR) and PMF

receptor modeling techniques were used to assess the water quality and identify and

quantify the potential pollution sources affecting the water quality of three major rivers of

South Florida. For this purpose, a 15-year (2000–2014) data set of 12 water quality

variables, and about 35,000 observations were used. Agglomerative hierarchical CA

grouped 16 monitoring sites into three groups (low pollution, moderate pollution, and

high pollution) based on their similarity of water quality characteristics. DA, as an

important data reduction method, was used to assess the water pollution status and
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analysis of its spatiotemporal variation. PCA/FA identified potential pollution sources in

wet and dry seasons, respectively, and the effective mechanisms, rules, and causes were

explained. The APCS-MLR and PMF models apportioned their contributions to each

water quality variable.

Also, the bio-physical parameters associated with the water quality of the two

important water bodies of Lake Okeechobee and Florida Bay were investigated based on

remotely sensed data. The principal objective of this part of the study is to monitor and assess

the spatial and temporal changes of water quality using the application of integrated remote

sensing, GIS data, and statistical techniques. The optical bands in the region from blue to

near infrared and all the possible band ratios were used to explore the relation between the

reflectance of a waterbody and observed data. The developed MLR models appeared to be

promising for monitoring and predicting the spatiotemporal dynamics of optically active and

inactive water quality characteristics in Lake Okeechobee and Florida Bay. It is believed that

the results of this study could be very useful to local authorities for the control and

management of pollution and better protection of water quality in the most important

water bodies of South Florida.
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CHAPTER I
INTRODUCTION
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1. Introduction and research rationale

Surface water quality has become a serious concern for policy makers and

environmental managers in both urbanized and agricultural areas. Both natural factors

such as discharge, rainfall, soil erosion, and physiographical characteristics of basins, and

also anthropogenic factors like the urbanization, industrial and agricultural activities, etc.,

can affect the quality of surface waters [1,2]. Anthropogenic factors such as residential

and industrial wastewater are the major polluting sources in urban areas, whereas, natural

factors like rainfall, surface runoff and groundwater level are seasonal phenomenon

which are mainly affected by climate [3]. The seasonal variations in natural factors can

affect the concentration of different pollutants in rivers or other waterbodies that may

receive water from surface rainfall and runoff [4]. Therefore, to better investigate and

evaluate the water quality of watersheds, the study of temporal variations alongside

spatial variations of water quality seems to be inevitable.

In addition, the behavioral properties of waterbodies in most cases are controlled

by several hidden internal and external factors. Identification and interpretation of these

controlling factors is increasingly becoming an important part of water quality

management programs. Continuous monitoring programs are required in order to obtain

reliable data about these inherent characteristics of water quality and to understand the

spatiotemporal variations of water quality [5]. However, the generated databases are large

and complex and their analyses require robust analytical tools. Traditional methods to

determine different physical, chemical, and biological indicators of water quality include

field sampling and analysis of samples in the laboratory. Although this in-situ

measurement offers high accuracy, it is a labor intensive and time consuming process,
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and hence it is not feasible to provide a simultaneous water quality database on a regional

scale [6]. Moreover, conventional point sampling methods are not easily able to identify

spatial or temporal variations in water quality, which is vital for comprehensive

assessment and management of waterbodies. Therefore, these difficulties of successive

and integrated sampling become a significant obstacle to the monitoring and management

of water quality.

Different multivariate statistical techniques have been widely applied to evaluate

the spatiotemporal variations of water quality parameters and also to interpret large and

complex datasets [3,5,7–20]. In addition, with advances in space science and the

increasing use of computer applications and increased computing power over recent

decades, remote sensing techniques have become useful tools to achieve this goal.

Remote sensing techniques make it possible to monitor and identify large scale regions

and waterbodies that suffer from water quality problems in a more effective and efficient

manner. The collection of remotely-sensed data occurs in digital form and therefore can

be easily used for computer processing. Since the 1970s, remote sensing application to

monitor and evaluate the water quality status of various waterbodies has tremendously

increased [21–36].

2. Current water quality challenges in South Florida

Based on the Perry [37] investigations, the major water quality issues that exist  in

South Florida include eutrophication (particularly phosphorus), mercury, and

contaminants from both agricultural and the urbanized areas.



6

Ecosystem restoration of South Florida has been significantly affected by the

eutrophication in the Everglades and Lake Okeechobee. Long-term adverse effects on

water quality in the Lake Okeechobee were also observed due to the drainage and

development of the Everglades watershed. Different land uses, such as livestock farms,

dairies, and cattle lands that surround the lake have discharges with high nutrient

concentrations and, together with other loads, have degraded water quality. However,

state and federal agencies have established a number of restoration programs in order to

improve the degraded water quality in Lake Okeechobee, and to control and reduce

loading of phosphorus to the lake [37].

Different authorized purposes are considered in the management operations for

Lake Okeechobee, its waterways, and the Everglades Agricultural Area (EAA) through a

process of decision making. These include many projects, such as flood control,

navigation, water supply for urban areas, industry, and agricultural irrigation, the

Everglades National Park (ENP), control of regional salinity and groundwater, aquatic

life, and recreation purposes. Different constraints including structural, meteorological,

environmental, and hydrological conditions are among the important considerations that

can restrict the management operations. There are also major physicochemical, legal,

political, and social conflicts between authorized purposes in terms of flood control,

water supply, environment, navigation and recreation that should be precisely considered

in the process of the decision-making to better determine the details of water

management operations in Lake Okeechobee [38].

These constraints and conflicts complicate the water management operations and

can result in some issues that affect the environment, and specifically the quality of
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riverine and coastal waters. South Florida has several important waterbodies such as

estuaries that contain important aquatic life. Discharges of high volumes of nutrient rich

freshwater to these vulnerable environments may cause adverse effects on their water

quality. Generally, authorities attempt to reduce the impact of high volume lake releases

to the estuaries by monitoring the estuaries and make an effort to maintain a balance

between different purposes and minimizing negative impacts of high volume lake

releases on the estuaries. These include to reduce or make a delay in releases based on the

estuaries conditions and also upon the regulations for water quality of these waterbodies

mainly controlled by SFWMD, which acts on behalf of the state [38].

However, there are, for instance, a number of recently documented negative

effects on the St. Lucie and Caloosahatchee estuarine ecology due to high volume

releases from Lake Okeechobee. High volume releases generate changes in salinities that

cause long-term negative effects, and also create critically low benthic oxygen situations

at the transitional zone between the freshwater and the saltwater. Discharge of sediment

rich in nutrients can also cause critical algal bloom growths. As an instance, in June and

July 2016 toxic blue-green algae invasion was seen in Martin, St. Lucie, Lee and Palm

Beach county beaches and estuaries. It was found that the release of nutrient-rich

discharges that contain high levels of phosphorus and nitrogen from the lake into the St.

Lucie Estuary in order to prevent flooding was the main cause of algae outbreaks. High

water temperatures can also provide ideal conditions for massive, putrid algae blooms to

thrive in these vulnerable waterbodies of South Florida [39–41].

Continuous monitoring programs and study the seasonal behavior of these

waterbodies to understand the spatiotemporal variations in hydro-chemical and biological
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properties of water may help the decision-makers to better schedule the operational

programs for Lake Okeechobee. Data analysis using the more powerful methods like

multivariate statistical techniques can give such important information about both spatial

and temporal patterns and variability of water quality in the lake. For example, cluster

analysis can categorize the sampling sites into different classes based on their level of

pollution and also discriminant analysis can help to find the most discriminant variables

responsible for the seasonal and spatial variations of water quality parameters among the

Lake’s monitoring stations. Therefore, it makes the decision-makers and operational

management planners to have better strategies for different parts of the lake in different

seasons.

Florida Bay is the other important waterbody of South Florida that is a dynamic

and biologically productive system that provides unique habitats. Based on the volume of

freshwater flow coming from the Everglades, the salinity of Florida Bay varies in

different wet and dry seasons. Therefore, in this area, the flow of freshwater from the

Everglades determines conditions in Florida Bay. The regular inflow from the Everglades

also contains significant amounts of nutrients, which provide the required energy for

aquatic organisms, and the constant variation of inflow and sediments discharged into the

region make Florida Bay and its surrounding estuaries one of the most biologically

productive systems on earth [42].

South Florida has an extensive network of canals that drain water from various

agricultural production and urban areas and carry different concentrations of chemicals,

especially high concentrations of nutrients. These high concentrations in canals with very

low slope may lead to the growth of a number of undesired aquatic plants. Algae blooms
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degrade the quality of these canals in terms of their recreational and aesthetic functions.

In addition, dense growth of aquatic plants may contribute to increase the consumption of

oxygen in these canals that  can result in the death of a number of important aquatic

lifeforms, such as like fish, and hence, noxious odors, and health hazards [44].

Due to the oligotrophic nutrient regime of the Everglades, phosphorus is

considered as a high priority issue (DOI and USACE, 2005). Also, Lake Okeechobee,

which in its upstream areas is surrounded by different types of agricultural production,

load phosphorus and nitrogen originated from the upstream agricultural areas to the

Everglades even during dry season. Because of these interactions between these two

waterbodies, control of nutrient loading to Lake Okeechobee is an essential issue.

3. Objectives of study

The overall objective of this dissertation research is to understand the

spatiotemporal dynamics of water quality parameters in different water bodies of South

Florida. Two approaches (multivariate statistical techniques and remote sensing) were

used in this study. A large data matrix obtained during 15 years (2000–2014), monitoring

at 16 monitoring sites for 12 water quality parameters, and in two wet and dry seasons

(about 35,000 observations) was subjected to different multivariate statistical techniques,

including cluster analysis (CA), principal component analysis (PCA), factor analysis

(FA), source apportionment analysis (APCS-MLR and PMF receptor modeling

techniques), and discriminant analysis (DA) to extract information about:

(a) Classification of monitoring sites based on the level of pollution (CA).



10

(b) Identification of discriminant variables responsible for spatiotemporal variations

(DA)

(c) Finding the latent factors explaining the structure of the database (PCA).

(d) Exploring the possible sources of pollution (FA).

(e) Estimating the contribution of possible pollution sources (APCS-MLR and PMF).

Hierarchical agglomerative cluster analysis (CA) using Ward's method, as an

unsupervised pattern recognition technique, was applied to group the monitoring stations

(cases) into classes (clusters) based on their similarities within a class and dissimilarities

between different classes in three major rivers of South Florida (Kissimmee River,

Caloosahatchee River, and Miami Canal). The results of CA help to interpret the data and

indicate patterns. Discriminant analysis (DA), as supervised pattern recognition

technique, was employed to the dataset on water quality of three selected rivers of the

study area to construct the discriminant functions on two different modes of standard and

stepwise, and identify the most significant variables responsible for the spatial and

temporal variations in water quality, and to optimize the monitoring program of the study

area by decreasing the number of required parameters.

Also, PCA/FA is a technique that reduces the  dimensionality of a data set with a

large number of interrelated variables, in a manner that minimum original information is

lost [45]. PCA/FA is generally used for data structure determination, and to provide

qualitative information about potential pollution sources. However, PCA/FA alone

cannot determine quantitative contributions of the identified pollution sources to each

variable. Receptor-based models, such as APCS-MLR, can be used for this purpose. The



11

application of APCS-MLR model was primarily tested for the identification and

apportionment of pollution sources in atmospheric environment studies [46]. However,

recently its application in water environments has increased [5,8,46–52]. Given the above

considerations, the data matrix was subjected to PCA/FA, APCS–MLR, and PMF

techniques to (1) identify the latent factors explaining the structure of the database and

the influence of possible sources of pollution (natural and anthropogenic) on the water

quality parameters, (2) estimate the contribution of possible sources of pollution on the

concentration of selected parameters, and (3) comparison of PMF and APCS-MLR

models for source apportionment in water quality studies. It is believed that the results of

apportionment could be very useful to the local authorities for the control and

management of pollution and better protection of important riverine water quality.

Also, the bio-physical parameters associated with water quality of two important

waterbodies, Lake Okeechobee and Florida Bay, were investigated based on

atmospherically corrected remotely sensed data. The principal objective of this part of the

study was to monitor and assess the spatial and temporal changes of water quality using

the application of integrated remote sensing, GIS data, and statistical techniques. Spatial

and temporal changes of important water quality parameters including total suspended

solids (TSS), chlorophyll-a (chl-a), total phosphate, and total kjeldahl nitrogen (TKN) in

Lake Okeechobee, and turbidity, chlorophyll-a (chl-a), total phosphate, and total nitrogen

(TN) in Florida Bay, were investigated using integrated remote sensing, GIS data, and

statistical techniques. The simultaneous observed data of these parameters were obtained

from 26 and 20 monitoring stations in Lake Okeechobee and Florida Bay, respectively,

and were used for the development and validation of the models. The optical bands in the
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region from blue to near-infrared and all the possible band ratios were used to explore the

relation between the reflectance of the waterbody and observed data.

The content of this dissertation is organized as follows.

Chapter II presents a comprehensive review of remote sensing applications in

water quality parameter estimation. Various sensors and their capability are discussed.

Case studies demonstrating this application are summarized. This chapter was published

in Sensors.

Gholizadeh, Mohammad Haji, Assefa M. Melesse, and Lakshmi Reddi. "A

Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing

Techniques”. Sensors, 16(8), p.1298. doi:10.3390/s16081298.

Chapter III and IV discuss the spatial and temporal changes of water quality

parameters in Lake Okeechobee and Florida Bay using integrated remote sensing, GIS

data, and statistical techniques. The optical bands in the region from blue to near-infrared

and all the possible band ratios were used to explore the relation between the reflectance

of the waterbody and observed data. These chapters are in the final stage of submission

for publication in the Journal of Remote Sensing and Applied Earth Observation and

Geoinformation.

Gholizadeh, M.H., Melesse, A.M., Fuentes, H., Tang, W., Sukop, M.C., 2016.

Regional Lake Water Quality Assessment Using Remote Sensing: The case study of Lake

Okeechobee, Florida, USA. Commentary in preparation for Journal of Remote Sensing.

Gholizadeh, M.H., Melesse, A.M., Fuentes, H., Tang, W., Sukop, M.C., 2016.

Study on Spatiotemporal Variability of Water Quality parameters in Florida Bay Using
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Remote Sensing. Commentary in preparation for Applied Earth Observation and

Geoinformation.

Chapter V propounds the application of cluster analysis (CA) and discriminant

analysis (DA) to assess the water quality and evaluate the spatial and temporal variations

in surface water quality of three major rivers of South Florida: the Kissimmee River,

Caloosahatchee River, and Miami Canal. This chapter is written based on one published

paper in the journal of Hydroinformatics and one under final review process in the

CATENA journal.

Gholizadeh, Mohammad Haji, Assefa M. Melesse, and Lakshmi Reddi.

"Discriminant Analysis Application in Spatiotemporal Evaluation of Water Quality in

South Florida." Journal of Hydroinformatics, p.jh2016023.

Gholizadeh, M.H., and Melesse, A.M., 2016. Assortment of the Surface Water

Pollution Regions and Study on Spatiotemporal Variability of Pollution Using Cluster

and Discriminant Analyses. CATENA Journal (in review).

Chapter VI more precisely explains the water quality of three major rivers of

South Florida and applied the principal component analysis (PCA), factor analysis (FA),

and the absolute principal component score-multiple linear regression (APCS-MLR)

receptor modeling technique to identify and quantify the potential pollution sources

affecting the water quality of these waterbodies. This chapter was published in Science of

The Total Environment.

Gholizadeh, Mohammad Haji, Assefa M. Melesse, and Lakshmi Reddi. "Water

quality assessment and apportionment of pollution sources using APCS-MLR and PMF



14

receptor modeling techniques in three major rivers of South Florida." Science of The

Total Environment. 566 (2016): 1552-1567.
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CHAPTER II

A COMPREHENSIVE REVIEW ON WATER QUALITY PARAMETERS

ESTIMATION USING REMOTE SENSING TECHNIQUES
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Abstract

Remotely sensed data can reinforce the abilities of water resources researchers

and decision makers to monitor waterbodies more effectively. Remote sensing techniques

have been widely used to measure the qualitative parameters of waterbodies (i.e.,

suspended sediments, colored dissolved organic matter (CDOM), chlorophyll-a, and

pollutants). A large number of different sensors on board various satellites and other

platforms, such as airplanes, are currently used to measure the amount of radiation at

different wavelengths reflected from the water’s surface. In this review paper, various

properties (spectral, spatial and temporal, etc.) of the more commonly employed

spaceborne and airborne sensors are tabulated to be used as a sensor selection guide.

Furthermore, this paper investigates the commonly used approaches and sensors

employed in evaluating and quantifying the eleven water quality parameters. The

parameters include: chlorophyll-a (chl-a), colored dissolved organic matters (CDOM),

Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature

(WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO),

biochemical oxygen demand (BOD) and chemical oxygen demand (COD).

Keywords: remote sensing; spaceborne sensors; airborne sensors; water quality
indicators.
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1. Introduction

Over 40% of the world’s population lives in coastal regions and lake or river

shores [1], and this proportion is increasing. The coastal area of rivers and other

waterbodies are very sensitive environments that any changes in these fragile ecosystems

due to anthropogenic activities can endanger the habitats of fish and other aquatic

organisms. Similarly, the need for sustainable urban water supplies requires that the

quality of existing available water resources as well as their watersheds need to be under

continuous monitoring. Besides, the level of treatment required for human consumption,

agriculture, animal husbandry and industry necessitates an understanding of the quality of

source waters. In this way, at the beginning of the twentieth  century, the importance of

water quality has to be considered more than ever, and the  concentration of chemicals in

wastewater and industrial discharges in waterbodies needs to be taken under more precise

control [2,3].

Traditional methods include the determination of different physical, chemical, and

biological indicators of water quality field sampling and analysing them in the laboratory

Although this in-situ measurement offers high accuracy, it is a labour intensive and time

consuming process, and hence it is not feasible to provide a simultaneous water quality

database on a regional scale [4,5]. Moreover, conventional point sampling methods are

not easily able to identify the spatial or temporal variations in water quality which is vital

for comprehensive assessment and management of waterbodies. Therefore, these

difficulties of successive and integrated sampling become a significant obstacle to the

monitoring and management of water quality.
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With advances in space science and the increasing use of computer applications

and increased computing powers over recent decades, remote sensing techniques have

become useful tools to achieve this goal. Remote sensing techniques make it possible to

monitor and identify large scale regions and waterbodies that suffer from qualitative

problems in a more effective and efficient manner. The collection of remotely sensed data

occurs in digital form and therefore is easily readable in computer processing. Since the

1970’s, remote sensing application to monitor and evaluate the water quality status of

various waterbodies has tremendously increased [6-21].

Different space-borne and airborne sensors measure the amount of radiation at

various wavelengths that reflects from the water’s surface [17]. These reflections can be

used directly or indirectly to detect different water quality indicators, such as total

suspended solids (TSS), chlorophyll-a concentration, turbidity, salinity, total phosphorus

(TP), Secchi disk depth (SDD), Temperature, pH, Dissolved Organic Carbon (DOC), etc.

The spectral characteristics of water and contaminant that depends on the hydrological,

biological and chemical characteristics of water, etc. [19], are considered as essential

factors to monitor and assess the quality of water. The study thus introduces the widely

employed spaceborne and airborne sensors in water quality investigations and discusses

the utility of remotely sensed techniques in the qualitative assessment of waterbodies.

Various properties (spectral, spatial and temporal, etc.) of spaceborne and airborne

sensors are tabulated to be used as a sensor selection guide. Finally, based on the

literature survey, the study presents a compilation of the various sensors useful in the

study of some measurable water quality parameters, and investigates in more detail
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eleven water quality parameters based on the employed approaches to measuring their

concentrations.

2. An overview of water quality assessment and remote sensing

In-situ data collections are only able to represent point estimations of the quality

of water conditions in time and space, and obtaining spatial and temporal variations of

quality indices in large waterbodies is almost impossible [18]. Briefly listed below are the

most important limitations associated with conventional methods:

1. In-situ sampling and measurements of water quality parameters are labor intensive,

time consuming, and costly.

2. Investigation of the spatial and temporal variations and water quality trends in large

waterbodies is almost impossible.

3. Monitoring, forecasting, and management of entire waterbodies might be

inaccessible, for example due to the topographic situation.

4. Accuracy and precision of collected in-situ data can be questionable due to both

field-sampling error and laboratory error.

To overcome these limitations, the use of remote sensing in water quality

assessment can be a useful tool. Remote sensing has shown strong capabilities for the

monitoring and evaluation of water quality [30]. Many researchers have used the visible

the solar spectrum from blue to near infrared region in their studies to find significant

correlations between reflection from water surface and physical and biogeochemical

constituents, such as turbidity, chlorophyll concentration, and the organic matters and

suspended sediments in different waterbodies [9,10,18,22-30]. Although the capabilities

of remote sensing to assess water quality has been proved by many studies, the
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application of this technique alone without using the traditional samplings and field

observations is not sufficiently precise [29]. In other words, to obtain a better insight, an

integrated use of remote sensing, in-situ measurements and computer water quality

modelling may lead to an increased knowledge of the water quality of water systems.

Collaboration between different governmental, federal and private agencies and data

sharing is also helpful to increase the data required for regional studies. Kallio [31] has

mentioned five advantages of applying remote sensing in compliance with other water

quality monitoring programs as below:

1. Gives a synoptic view of the entire waterbody for more effective monitoring of the

spatial and temporal variation,

2. Makes it possible to have a synchronized view of the water quality in a group of

lakes over a vast region,

3. Provides a comprehensive historical record of water quality in an area and represents

trends over time,

4. Prioritizes sampling locations and field surveying times,

Optically active constituents of water that interact with light and change the

energy spectrum of reflected solar radiation from waterbodies can be measured using

remote sensing [18]. The components, already enumerated in the first section, constitute

the majority of important water quality parameters in surface waters. Other parameters

include acidity, chemicals, and pathogens, which do not change the spectral properties of

reflected light and have no directly-detectable signals, but which may be interpretable

and inferable from those detectable water quality parameters with which strong

correlations can be found [18,31].
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3. Spaceborne and airborne sensors for water quality studies

Observing sensors are divided into two main categories based on the platforms on

which they are situated. Airborne sensors are those that are mounted on a platform within

the Earth’s atmosphere (i.e. a boat, a balloon, a helicopter, or an aircraft), and spaceborne

sensors are carried by a spacecraft or satellite to locations outside of the Earth's

atmosphere. Understanding the properties of these sensors is necessary to choose an

appropriate sensor for the objectives of the study. Therefore, various remote sensing

satellites (Table 2.1) and airborne systems (Table 2.2) commonly used in water quality

assessments, along with their spectral properties including spatial resolution, spectral

bands, and revisit interval are presented. This tabulated information is helpful when

designing water quality assessment studies, and can be used for the selection of

appropriate sensors among many other available sensors in the market.

Other categories of sensors that have broad applications in oceanographic remote-

sensing are microwave radiometers (MWR) and synthetic aperture radar (SAR). Passive

microwave radiometers can measure wavelengths from sub-millimeter to centimeter. By

understanding the physical processes associated with energy emission at these

wavelengths, oceanographers can calculate two important water quality parameters, sea

surface temperature (SST) and sea surface salinity (SSS). Table 2.3 shows the

characteristics of the more commonly used microwave radiometers in oceanography and

water quality studies.

Synthetic aperture radar is used to create two or three-dimensional images of

objects [32-34], and can be mounted on either an aircraft or spacecraft. Although SARs

are widely used for water pollution detection like oil pollution, ocean topography, wind
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speed at the sea surface, and regional ice monitoring, they are not very often applied in

water quality studies and measuring water quality parameters.

4. Water quality investigations through remote sensing techniques

Water quality study determines the different physicochemical and biological

characteristics of waterbodies and investigates the possible pollution sources [20].

Degradation of the quality of water resources may result from waste discharges,

pesticides, heavy metals, nutrients, microorganisms, and sediments. Different water

quality standards have been developed to aid in checking the extent of water pollution,

and consequently to maintain these quality standards. The most commonly measured

qualitative parameters of water are detailed in Table 2.4.

The terminology for Case 1 and Case 2 water classifications were first represented

by Morel and Prieur [16] and Gordon and Morel [35]. The definition for Case 1 and case

2 waters was updated by Mobley et al. [36] as follows:

I. Case 1 waters are those waters whose optical properties are determined primarily by

phytoplankton and related colored dissolved organic matter (CDOM) and detritus

degradation products.

II. Case 2 waters are everything else, namely waters whose optical properties are

significantly influenced by other constituents such as mineral particles, CDOM, or

microbubbles, whose concentrations do not covary with the phytoplankton

concentration.
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Table 2.1. List of the commonly used spaceborne sensors in water quality assessments.

Category
Satellite -

sensor
Spectral bands

(nm)
Spatial

resolution (m)
Revisit

interval (Day)

High
resolution

Digital Globe
WorldView-1

Pan 0.5 1.7

Digital Globe
WorldView-2

8 (400-1040)-1 Pan ( 450-800) 1.85-0.46 1.1

NOAA
WorldView-3

8 (400-1040)-1 Pan( 450-800)- 8 SWIR (1195 -
2365)

1.24- 3.7- 0.31 1-4.5

Digital Globe
Quickbird

4 (430-918)-1 Pan (450-900) 2.62-0.65 2.5

GeoEye
Geoeye-1

4 (450-920)-1 Pan (450-800) 1.65-0.41 <3

GeoEye
IKONOS

4 (445-853)-1 Pan (526-929) 3.2-0.82 ~3

SPOT-5
HRG

3 (500-890)-1 Pan (480-710) –1 SWIR (1580-
1750)

2.5 and 5-10-20 2-3

CARTOSAT Pan (500-850) 2.5 5
ALOS

AVNIR-2
4 (420-890)- 1Pan (520-770) 2.5-10 2

Moderate
resolution

Landsat-8
OLI/TIRS

5 (430-880)- 1Pan (500-680)- 2SWIR (1570-
2290)- 1cirrus cloud detection (1360-1380)-
2TIRS (10600-12510)

30-15-100 16

Landsat-7
ETM+

6 (450-1750)-1 Pan (520-900) -1 (2090-2350)-1
(1040-1250)

30-15-60 16

Landsat-5
TM

5 (450-1750)-1 (2080-2350) -1 (1040-1250) 30-120 16

Landsat-5
MSS

4 (450-1750)-1Pan (1040-1250) 80 18

EO-1
Hyperion

242 (350 - 2570) 30 16

EO-1
ALI

9(433-2350)-1 Pan (480-690) 10-30 16

Terra
ASTER

3VNIR (520-860)-6SWIR(1600-2430)-
5TIR(8125-11650)

15-30-90 16

PROBA
CHRIS

19 in the VNIR range (400 - 1050) 18-36 7
HICO 128 (350 – 1080) 100 10

Regional-
global

resolution

Terra
MODIS

2 (620-876)-5 (459-2155) -29 (405-877and
thermal)

250-500-1000 1-2

Envisat-1
MERIS

15 (390-1040) 300-1200 daily

OrbView-2
SeaWiFS

8 (402-885) 1130 16

NIMBUS-7
CZCS

6 (433-12500) 825 6

ERS-1
ATSR-1

1 SWIR (1600), 1 MWIR (3700), 2 TIR (10850
– 12000), Nadir-viewing Microwave
Sounder with channels at 23.8 and 35.6 GHz

1000 (MW
sounder: 20
km)

3-6

ERS-2
ATSR-2

3 VIS – NIR (555- 865), 1 SWIR (1600), 1
MWIR (3700), 2 TIR (10850 – 12000)

1000 3-6

ENVISAT
AATSR

3 VIS – NIR (555- 865), 1 SWIR (1600), 1
MWIR (3700), TIR (10850 – 12000)

1000 3-6

Suomi NPP
VIIRS

5 I-bands (640-1145), 16 M-bands (412-
12013), DNB (500-900)

375-750 1-2 times a
day

NOAA-16
AVHRR

6 (650-1230) 1100-4000 9
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Table 2.2. Specification of the more commonly used airborne sensors in water quality assessments.

Types of
sensors

Full name Type
Scan

system
Number of bands Spectral range [μm]

Resolution
(m)

Imaging
swath

AVIRIS
Airborne Visible
Infrared Imaging

Spectrometer

Hyperspectral Whiskbroom 224 0.40-2.50 17
12 km and 614

pixels per
scanline

HYDICE
Hyperspectral Digital

Imagery Collection
Experiment

Hyperspectral Pushbroom 210 0.40-2.50 0.8 to 4
270 m  at

the lowest
altitude

HyMap in the U.S. known as
PROBE-1

Hyperspectral Whiskbroom 128 0.40-2.50 3 to 10 512  pixels

APEX Airborne Prism
Experiment

Hyperspectral Pushbroom Up to 300 VIS/NIR (114),
SWIR (199)

VIS/NIR (0.38-0.97), SWIR1
(0.97-2.50)

2 to 5 2.5-5 km

CASI-1500 Compact Airborne
Spectrographic Imager

Hyperspectral Pushbroom Up to 228 0.40-1.00 0.5 to 3 512  pixels
per scanline

EPS-H Environmental
Protection System Hyperspectral Whiskbroom VIS/NIR (76), SWIR1 (32),

SWIR2 (32), TIR (12)

VIS/NIR (0.43-1.05), SWIR1
(1.50-1.80), SWIR2 (2.00-2.50),

TIR (8-12.50)

Dependent
upon flight
(minimum

1m)

89 degrees

DAIS 7915 Digital Airborne
Imaging Spectrometer Hyperspectral Whiskbroom

VIS/NIR (32), SWIR1 (8),
SWIR2 (32), MIR (1), TIR

(12)

VIS/NIR (0.43-1.05), SWIR1
(1.50-1.80), SWIR2 (2.00-2.50),

MIR (3.00-5.00), TIR (8.70-
12.30)

3 to 20
depending on

altitude

512 pixels
per scanline

AISA Airborne Imaging
Spectrometer

Hyperspectral Pushbroom Up to 288 0.43-0.90 1 364 pixels
per scanline

MIVIS
Multispectral Infrared
and Visible Imaging

Spectrometer

Multispectral Whiskbroom 102 VIS/NIR (28), MIR
(64),TIR (10)

VIS (0.43-0.83), NIR (1.15-1.55),
MIR (2.0-2.5) TIR (8.2-12.7)

3 to 8
depending on

altitude

5.6 km at at
4000 meters

altitude
Daedalus Daedalus Multispectral

Scanner (MSS)
Multispectral Pushbroom 12    VIS/NIR (8), SWIR

(2), TIR (2)
0.42-14.00 25 714 pixels

per scanline
HySpex

ODIN-1024
HySpex hyperspectral

cameras
Hyperspectral Pushbroom VIS/NIR1 (128),

VIS/NIR2 (160),SWIR1
(160), SWIR2 (256)

0.40-2.50 0.5 m at
2000 m
altitude

500m
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Table 2.3. Characteristics of the more commonly used microwave radiometers in
oceanography and water quality studies.

satellite sensor Frequency (GHz)
Spatial resolution

(km)
Swath

width (km) Purpose

Nimbus-5 ESMR 19.4 25 for all Channels 3000 SST

Nimbus-7 SMMR 6.6, 10.7, 18.0, 21.0,
and 37.0

25 for all Channels 800 SST

SEASAT SMMR 6.6, 10.7, 18.0, 21.0,
and 37.1

22 at 37.1 GHz to
100 at 6.6 GHz

600 SST

Priroda-
MIR

IKAR-P 5.0, 13.3 75 for all Channels 750 SST

POEM-1 MIMR 6.8, 10.7, 18.7, 23.8,
36.5, and 90.0

4.83.1 at 90 GHz to
6040 at 6.8 GHz

1400 SST

EOS PM-1 MIMR 6.8, 10.7, 18.7, 23.8,
36.5, and 90.0

4.83.1 at 90 GHz to
6040 at 6.8 GHz

1400 SST

TRMM TMI 10.7, 19.4, 21.3, 37.0,
and 85.5

8  6 at 85.5 GHz to
72  43 at 10.7 GHz

760 SST

ADEOS-2 AMSR 6.9, 10.7, 18.7, 23.8,
36.5, 50.2, 53.8, 89.0

6  3 at 89 GHz to
70  40 at 6.9 GHz

1600 SST

AQUA AMSR-E 6.9, 10.7, 18.7, 23.8,
36.5, and 89.0

6  4 at 89.0 GHz to
75  43 at 6.9 GHz

1450 SST

GCOM-W1 AMSR-2 6.9, 7.3, 10.7, 18.7,
23.8, 36.5, and 89.0

5  3 at 89.0 GHz to
62  35 at 6.9 GHz

1450 SST

GPM GMI 10.7, 18.7, 23.8, 36.5,
89.0, 166.0, and 183.3

7.24.4 at 183.3
GHz to 3219 at

10.7 GHz
850 SST

Coriolis WindSat 6.8, 10.7, 18.7, 23.8,
and 37.0

13  8 at 6.8 GHz to
71  39 at 37.0 GHz

1000 SST

SAC-D Aquarius 1.413 100 for all Channels 390 SSS-SST

SMOS MIRAS 1.413 50 for all Channels 1000 SSS

Airborne ESTAR 1.413 100 for all Channels 600 SSS

Airborne PALS 1.413 0.350-1 16 SSS-SST

Airborne 2D-
STAR

1.413 0.800 for all
Channels

10 SSS

Airborne SLFMR 1.413 0.5-1
Twice the
altitude

SSS

Airborne STARRS

L-Band: 1.413,
C-Band: 5.2, 5.6, 5.9,

6.2, 6.6 and 7.1,
IR radiometer: 8-14
and 9.6-11.5 micron.

1 for all Channels 5.2 SSS-SST
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Table 2.4. The most commonly measured qualitative parameters of water by means
of remote sensing.

Water Quality Parameter Abbreviation Units Optical Activity References
chlorophyll-a CHL-a mg/L Active [10,37-39]

Secchi Disk Depth SDD m Active [40-43]
Temperature T °C Active [44-47]

Colored Dissolved Organic Matters CDOM mg/L Active [10,48-50]
Total Organic Carbon TOC mg/L Active [51-53]

Dissolved Organic Carbon DOC mg/L Inactive [54-56]
Total Suspended Matters TSM mg/L Active [57-60]

Turbidity TUR NTU Active [61-63]
Sea Surface Salinity SSS PSU Active [64-67]
Total Phosphorus TP mg/L Inactive [29,37,68-70]
Ortho-Phosphate PO4 mg/L Inactive [71]

Chemical Oxygen Demand (COD) COD mg/L Inactive [72-75]
Biochemical Oxygen Demand BOD mg/L Inactive [63,76-78]

Electrical Conductivity EC µs/cm Active [79-81]
Ammonia Nitrogen NH3-N mg/L Inactive [74,82,83]

Remote sensing techniques make it possible to have spatiotemporal view of

surface water quality and more effectively monitor the waterbodies, and quantify water

quality issues. Most of the studies have focused on optically active variables, such as

chlorophyll-a (chl-a), total suspended solids (TSS), and turbidity. There are several other

important water quality variables such as pH, total nitrogen (TN), ammonia nitrogen

(NH3-N), nitrate nitrogen (NO3−-N), and dissolved phosphorus (DP), which existing

literature omit. The main reason is due to their weak optical characteristics and low signal

noise ratio. However, these parameters are an important part of water quality indices and

are a challenging aspect of research in the field of water quality assessment using remote

sensing, which should stimulate and motivate scientists in further efforts. In continuing,

the study precisely surveys the more commonly employed approaches in estimating the

concentration of the eleven water quality parameters. These water quality indicators
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include chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk

depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total

phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen

demand (BOD) and chemical oxygen demand (COD).

4.1. Chlorophyll-a

Chl-a is used in oxygenic photosynthesis and is found in plants, algae and

cyanobacteria. Chl-a is the major indicator of trophic state because it acts as a link

between nutrient concentration, particularly phosphorus, and algal production. Chl-

a while mainly reflecting green, absorbs most energy from wavelengths of violet-blue

and orange-red light, whose reflectance causes chlorophyll to appear green. The addition

of chl-b besides chl-a extends the absorption of spectrum. Low light conditions increases

the photosynthetic yield as it tends to favor the production of chl-b to chl-a molecules

[84]. Figure 2.1 shows the absorption spectrum of both chl-a and chl-b pigments. Many

researchers have demonstrated that increasing chl-a concentration causes a decrease in

the spectral response at short wavelengths, particularly in the blue band [85-90]. A large

number of studies have focused on chl-a concentration measurement using remote

sensing, some of which are cited in this review paper.

Narrow bands of imagery are required for the measurement of chl-a concentration

and its spatiotemporal variations within a waterbody [91]. Several studies showed that the

discrimination of chlorophyll in waterbodies with high concentration of suspended

sediments is difficult using broad wavelength spectral data available on current satellites

(i.e., Landsat, SPOT) [85] due to the dominance of the spectral signal from the suspended

sediments [92,93].
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Figure 2.1. The Absorption Spectrum of chl-a and the Chl-b.

Since the late 1970’s, bio-optical algorithms have been developed by many

researchers for the determination of water quality parameters in oceans [94]. In case 1

waters, by employing an empirical model and interpreting the received radiance at

different wavelengths, the concentrations of chl-a can be adequately estimated with

satellite images [35]. In Case 1 waters spectral bands in the blue to green region are

appropriate to identify chl-a concentrations with acceptable precisions. However, in case

2 waters due to the complexity of the constituents in water, the detection of chl-a is a

sophisticated task and requires advanced approaches and techniques. Additionally, the

simple fact that Gelbstoff absorption often masks the blue-green region in Case 2 waters

implies chl-a algorithms developed for Case 1 waters are not applicable to Case 2 waters

[94].

Various visual spectral bands and their ratios are widely used to quantify chl-a.

Spectral band ratios can assist to reduce irradiance, atmospheric and air-water surface

influences and enhance the potential of target detection [85,95]. Strong absorption



33

between 450–475 nm (blue) and at 670 nm (red) was reported for chl-a, which the peak

reflectance reaches to around 550 nm (green) and also near 700 nm (NIR). Also, various

algorithms are developed using the reflectance peak near 700 nm and its ratio to the

reflectance at 670 nm to retrieve chl-a in turbid waters [23]. Gitelson [96] studied the

behavior of the reflectance peak near 700 nm and found it useful for chl-detection in

inland and coastal waters. Han [97] pointed out that the spectral regions at 630–645 nm,

660–670 nm, 680–687 nm and 700–735 nm are sensitive wavelength ranges to estimate

the concentration of chlorophyll. Dekker et al. [98] suggested to use more than one band

to estimate chl-a concentrations in order to better understanding the scattering and

absorption characteristics of chl-a. Hoogenboom et al. [99] used AVIRIS sensor and

utilized a band ratio located near 713 nm along and 667 nm for chlorophyll estimations in

inland waters. Thiemann and Kaufmann [100] used also a similar ratio (R674/R705 for

inland lakes and rivers. Table 2.5 shows some of the more commonly used techniques for

the measurement of chl-a concentration.



34

Table 2.5. Remotely measurements of chl-a using various spectral bands and their
ratios.

Band Combination Sensor Reference

Ratio between green (0.50-0.60 μm) and red
(0.60- 0.70 μm)

Landsat 5-TM [3,12,26,43,101-105]
Landsat 5- MSS [24]

Landsat 7- ETM+ [106]
SPOT [107]

IRS-LISS-III [72]

Ratio between near infrared (NIR) and red

Landsat 5-TM [108]
HICO [109-111]

PROBA-CHRIS [112]
MODIS [22,113,114]
MERIS [114-116]
AISA [114,117]

Landsat 5-TM [59]

Ratio between green and blue (B2/B1)

Landsat 7- ETM+ [118]
MERIS [119]

PROBA-CHRIS [120]
EO-1 Hyperion [121]

Ratio between blue (0.40-0.50 μm) and red
(0.60- 0.70 μm)

Landsat 5-TM [26]
Landsat 7- ETM+ [97]

Using a single band

Blue (0.40-0.50 μm) Landsat 5-TM [11,87,122,123]

Red (0.60- 0.70 μm)
PROBA-CHRIS [124]
Landsat 5-TM [85]

CASI [125]

Green (0.50-0.60
μm)

Landsat 5-TM [126]
Daedalus Airborne

Thematic Mapper (ATM)
[86]

Other significant literature that applied other approaches to the measurement of

chl-a are considered hereafter. Alparslan et al. [62] measured the concentration of chl-a

using all bands of Landsat-5 TM. Ekercin [127] used Band1 (445-530nm), Band2 (520-

610nm), Band3 (640-720nm), and Band4 (770-880nm) of IKONOS data to estimate chl-

a concentration in Istanbul, Turkey. Also, Nas et al. [68] used the visible near-infrared

(VNIR) and the shortwave infrared (SWIR) (first four bands 0.52-1.70µm) of

Terra/ASTER and developed a multiple regression model to measure chl-a
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concentrations using the spectral reflectance in the Beysehir Lake, Turkey. Shafique et

al. [29], using Compact Airborne Spectrographic Imager (CASI) studied the chl-a

concentration in the Great Miami River and 80 miles of the Ohio River. They concluded

that linear models using the ratio of wavelengths 705/675 nm can be used to measure chl-

a concentration. Bhatti et al. [41], using Airborne Imaging Spectroradiometer for

Applications (AISA) sensor in the Apalachicola Bay in Florida, USA, found that two

bands reflectance ratio R70 Other significant literature that applied other approaches to

the measurement of chl-a are considered in following. Alparslan et al. [62] measured the

concentration of chl-a using all bands of Landsat-5 TM. Ekercin [127] used Band1 (445-

530nm), Band2 (520-610nm), Band3 (640-720nm), and Band4 (770-880nm) of IKONOS

data to estimate chl-a concentration in Istanbul, Turkey. Also, Nas et al. [68] used the

visible near-infrared (VNIR) and the shortwave infrared (SWIR) (first four bands 0.52-

1.70µm) of Terra/ASTER and developed a multiple regression model to measure the

concentration of chl-a in the Beysehir Lake, Turkey. Shafique et al. [29], using Compact

Airborne Spectrographic Imager (CASI) studied the chl-a concentration in the Great

Miami River and 80 miles of the Ohio River. They concluded that linear models using the

ratio of wavelengths 705/675 nm can describe chl-a concentration. Bhatti et al. [41],

using Airborne Imaging Spectroradiometer for Applications (AISA) sensor in the

Apalachicola Bay in Florida, USA, found a significant correlation between the two bands

reflectance ratio R700/R670 and chl-a concentration. Also, the three band model

R750*(R670-1-R700-1) was found to be a predictor of chl-a concentration in case 2

waters. In addition, the logarithmic ratio of ALOS/AVNIR-2 (band3/band1) was related

with chl-a concentration in his study area. Lim and Choi [37] using Landsat-8/OLI
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showed that chl-a presented a good correlation with both OLI bands and band ratio, with

calculated R values for bands 2, 3, 4 and band ratio (band 5/band 3) as −0.66, −0.70,

−0.64, and −0.64, respectively, at a significance level of p<0.01. Zhang and Han [128]

found that OLI bands 1 to 4 and their combinations had good correlation with chl-a

concentration. Kim et al. [129] using Landsat-8/OLI employed Band2, Band5, and a ratio

of Band2/Band4 to measure chl-a concentration. Mannheim et al. [130] used the spectral

bands 8-12 of CHRIS and found the reflectance curve and the baseline from 672 to 742

nm to be more sensitive for the variations of chl-a concentration. Choe et al. [131] used

MODIS, SeaWiFS, MERIS, and RapidEye data for the estimation of chl-a concentration

in turbid waters using Two-band and Three-band.

Furthermore, Qi et al. [132] developed an approach based on Empirical

Orthogonal Function (EOF) analysis to estimate chl-a concentration in surface waters of

Taihu Lake, China. They used the EOF approach and MODIS to analyze the spectral

variance of normalized Rayleigh-corrected reflectance (Rrc) data at various wavelengths

of 469, 555, 645, and 859 nm, and also used field measurements to measure chl-a

concentrations. Feng et al. [133] using a normalized green-red difference index (NGRDI)

and MERIS data developed an empirical algorithm for the measurement of chl-a in

Poyang Lake, China.

Reviewing the literature showed that the majority of the algorithms that have been

developed to determine the chl-a are based on the wavelength near 675 nm and near 700

nm [94]. As mentioned, several satellite and airborne imageries can be used for chl-a

estimation. Nonetheless, it revealed that the Landsat TM seems to be more appropriate
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and widely used for chl-a assessment. Temporal coverage and spatial resolution of TM

and its easy accessibility can be the main reasons for the selection of this sensor.

4.2. Colored dissolved organic matters (CDOM)

Colored Dissolved Organic Matters, which are also called gelbstoff and gilvin,

consists of heterogeneous organic substances that their color varies from yellow to brown

based on their concentrations. CDOM exists in both fresh and saline waters. These

compounds can color the water in a range from brown to yellowish brown based on their

concentrations (yellowish brown in high concentrations) [134]. Therefore, they are

referred to as yellow matter or colored dissolved organic matter (CDOM), and usually

with chl-a and TSS dominate the water color [41].

CDOM absorbance spectrum accounts for the majority of the total absorption at

443 nm, which is usually used to measure chlorophyll concentrations, and can be several

times and overlaps the chlorophyll absorption [135]. The increase in the CDOM

concentration mainly affects the reflectance values in the blue and green region of the

spectrum (especially below ~500 nm) and its absorbance increases exponentially with

decreasing wavelength [113]. This effect makes the retrieval algorithms for chl-a and

phytoplankton production to be more complicated [136]. Nonetheless, it is reported by

Strömbeck and Pierson [137] that at high CDOM concentrations, absorbance of red light

spectrum can be significant.

Remote sensing of CDOM is important in studying aquatic ecology and carbon

dynamics [18,138]. Existence of CDOM in any water body affects the water color as seen

by many instruments, such as MODIS and SeaWiFS [139]. CDOM also affects the
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underwater light field and water’s inherent optical properties (IOP). This characteristic

determines the water reflectance received by remote sensors. Inversion of remote sensing

data can be an effective way for the estimation of CDOM concentrations and to

investigate its spatiotemporal variation in a large scale [140,141]. In ocean color studies,

the absorption properties of CDOM like its absorption coefficients at 440 nm, are usually

considered as CDOM concentration [142]. Some researchers have empirically inverted

the chl-a concentrations in the algorithms derived from sensors like CZCS, and based on

that CDOM can be measured with the assumption that it co-varies with chlorophyll

[16,35,143]. Hyperspectral measurements with newly developed remote sensing

reflectance models [145-146] have also been used to estimate CDOM as one of ocean

color components, such as EO-1 Hyperion with MIM (Matrix Inversion Method) [8].

Kutser et al. [145] also used band ratio of EO-1/ALI band 2 and band 3 to estimate

CDOM content in lakes of Southern Finland.

A combination of hyperspectral remote sensing data, new factors like the bottom

effects, and semi-analytical models have enhanced the accuracy of CDOM estimations

[50]. Traditionally, in most water quality monitoring programs, PCU color (Platinum-

Cobalt Units) is used to characterize the CDOM inversions and its absorption [50]. Semi-

analytical models have been developed and applied to SeaWiFS and, in which CDOM’s

absorption coefficients are directly and independently inverted from remote sensing

reflectance (Rrs) [50]. The radiative transfer equations and the simplification of radiance

and underwater light field are the major basis of semi-analytical models [141]. As

spectral signals of CDOM usually interfere with chlorophyll and suspended sediments,
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remote sensing of CDOM in rivers and coastal waters compared to oceanic waters is

challenging and subject to large errors [55,146].

In coastal waters high spectral resolution at 10 nm or better can improve the

estimation of IOP [8,148,149]. However, as mentioned, due to the spectral signal

interference from chlorophyll, suspended sediments as well as spatial and temporal

heterogeneity of riverine and coastal waters, the applicable bands for CDOM

measurement are not always at the same wavelengths [147]. Therefore, identification of

significant wavelengths out of hundreds of narrow bands of hyperspectral reflectance is a

challenging task [56]. As a solution, first, the dimensionality of hyperspectral data should

be reduced through techniques such as band selection, derivative analysis, spectral

indices, or hyperspectral transformation [121,150-152]. Calibration and validation of the

remotely-sensed CDOM is required using the field measurement data. Additionally,

CDOM is reported to be responsible for the dynamics of dissolved organic carbon (DOC)

in different waterbodies [147] and many observations have provided evidence that

CDOM is correlated to DOC [55,153-157]. Reviewing the literature revealed that most of

the studies are based on four sections: underwater CDOM measurements, in situ

hyperspectral measurements, water-surface reflected radiance by means of remote sensor

on a satellite or an airborne platform, and functional data analysis [50,147]. The literature

showed that CDOM could be quantified using visual spectral bands and their ratios,

which is as summarized in table 2.6.
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Table 2.6. Remotely measurements of CDOM using various spectral bands and their
ratios

Spectral bands Sensor Reference

Single blue band (0.40-0.50
μm)

Landsat 5-TM [43]
EO-1 Hyperion [121]
SeaWIFS+MODIS-Aqua [158]
MODIS [159,160]
SeaWIFS [49,161,162]
HICO [48]
CZCS [163]

Ratio between blue (0.40- 0.50
μm) and green (0.50-0.60 μm)

ALOS-AVNIR-2 [57]
MODIS [164]
SeaWiFS [165-168]

Ratio between green (0.50-0.60
μm) and red (0.60- 0.70 μm)

MODIS [113]
HICO [111]
EO-1 ALI [145,169,170]
EO-1 Hyperion [50]
SeaWiFS [171]
MERIS [172]

Furthermore, Taheri Shahraiyni et al. [173] by using reflectance values at 490,

510, 560, 620, and 885 nm of MERIS data and applying a fuzzy modeling technique,

Active Learning Method (ALM), mapped the spatial distribution of CDOM over the

southern parts of the Caspian Sea, Iran. A proxy algorithm was reported for remote

sensing of CDOM by an absorption coefficient of ocean water, which is a multi-band

quasi-analytical algorithm (QAA) developed by Lee et al. [140]. Further, alternative

algorithms such as computer-based discrete modelling methods are developed to estimate

the concentrations of CDOM [147]. However, Kishino et al. [174] expressed that results

can be questionable when a neural network model is implemented to measure the CDOM

concentration using ASTER data. Johannessen et al. [175] using SeaWiFS images found

out a relationship between ultraviolet (UV) attenuation coefficient (Kd) at 323 nm, 338

nm, and 380 nm and the Rrs(412)/Rrs(555) band ratio.
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Researchers use many sensors to assess CDOM, but SeaWIFS and MODIS,

because of their coarse spatial resolution, were widely applied in deep waters. Due to the

need for high accuracy for large-scale applications, SeaWiFS data are of little use in

shallow waters and hyperspectral imagery like EO-1/Hyperion, EO-1/ALI, and

ALOS/AVNIR-2 were preferable for these areas. In addition, a majority of researchers

have used a high-resolution spectroradiometer in their in situ hyperspectral measurements

to validate their quantified results. These data are useful in identifying concentrations of

components within the water column and can be collected above and below the water

surface [22]. They are also useful for calibration and validation of remotely sensed

estimations of water quality parameters.

4.3. Secchi disk depth

Secchi disk depth is considered as an important optical property of water, which is

strongly related to a number of water constituents [57]. The Secchi depth exhibits an

inverse correlation with the amount of total suspended solids (TSS) present in the

waterbodies. For example, it can be used to investigate the  nutrient concentrations and

solids loading situations [176]. The most commonly attempted method for the

measurement of water transparency is based on light attenuation principles [141]. The

best-known operational estimation of water transparency is the Secchi disk, created

by Pietro Angelo Secchi SJ in 1865, and is a circular disk used for clarity measurements

in oceans and lakes. The disc mounts on a line and lowers slowly down in the water until

the pattern on the disk is no longer visible. It is known as the Secchi disk depth

(SDD) and is also considered in the water quality studies as a measure of water turbidity.

Figure 2.2 shows two different types of Secchi disks.
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SDD is a reasonable indicator to evaluate the trophic conditions except in lakes

that are highly colored with low chl-a and non-algal turbidity (clay, calcium carbonate)

[43]. It is inversely correlated with the amount of TSS [57]. Therefore, remote sensing

can be an ideal tool for monitoring water transparency and estimating the SDD. Recently,

Lee et al. [177] introduced a model to estimate the SDD, which unlike the classical model

that strongly relies on the beam attenuation coefficient, relies only on the diffuse

attenuation coefficient at a wavelength corresponding to the maximum

transparency. Many researchers have applied remote sensing for this purpose and have

shown in their studies that remote sensing data is well correlated with SDD values [178-

181].

Figure 2.2. Two different types of Secchi disks [182].

SDD has a significant correlation with atmospherically corrected satellite radiance

[183-185]. Significant algorithms have been developed for SDD using various remote

sensing data, like TM [27,40,101,186,187], MSS [24,25,188-190], IKONOS [28,61,127]

and even video data [191]. Landsat-TM is one of the most frequently used sensors to

estimate SDD. Braga et al. [192] reported that during high tide conditions a significant
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relationship was found between TM data and SDD. Furthermore, TM1 and TM3 satellite

radiance were used to develop suitable models for the estimation of SDD [185].

However, there was an exception research conducted by Lopez-Garcia and Caselles

[123]. They used TM data and reported that SDD did not show significant correlation

with any TM bands. SDD can also be quantified from reflected radiance received by the

IRS satellite [183].

There are many established relationships in the literature between Secchi depth

and total phosphorus, chl-a, TSS, and CDOM.  The existing literature showed that SDD

can be quantified using visual spectral bands and various band ratios. Bhatti et al. [41]

used ALOS-AVNIR-2 data and found that the Secchi depth was well correlated with

reflectance ratio of R750/R560 (NIR/Green). Thiemann and Kaufmann [100] used

HyMap and CASI data for Secchi disk transparency and chlorophyll-a determination in

the Mecklenburg Lake District, Germany. They used the area between a base line and the

spectrum from 400 to 750 nm and found a good correlation with the in situ measured

Secchi disk transparency (SDT). Ekercin [127] using Band1 (445-530nm), Band2 (520-

610nm), and Band3 (640-720nm) of IKONOS data and developed an algorithm for SDD

measurements. Mancino et al. [26] developed an equation using TM1 and the TM3/TM2,

TM1/TM2, TM2/TM1 ratios, and Powell et al. [193] suggested a regression equation

related to in-situ Secchi disk transparency measurements by using the Blue, Green, and

Red bands of TM. In addition, Kloiber et al. (2002) using TM and MSS imagery analysis

suggested a Landsat-based procedure to evaluate the clarity of water. Literature also

showed that Secchi disk depth can be quantified using visual spectral bands and various

band ratios, which are summarized in table 2.7.
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Table 2.7. Remotely measurements of SDD using various spectral bands and their ratios

Band Combination Sensor Reference

Ratio between blue (0.40- 0.50 μm) and
green (0.50-0.60 μm)

Landsat 5-TM [27,187]
Landsat 5- MSS [189]
Landsat 7- ETM+ [106]
ASTER and ETM+ [194]

Ratio between blue (0.40-0.50 μm) and
red (0.60- 0.70 μm)

Landsat 5-TM [40,43,61,101,178,185,195-197]
Landsat 5- MSS [24]
PROBA-CHRIS [120]
IKONOS [28,61]

Ratio between green (0.50-0.60 μm) and
red (0.60- 0.70 μm)

Landsat 5-TM [30,191]
ALOS-AVNIR-2 [57]
SPOT [107,198]

Using a single
band

Blue (0.40-0.50 μm) Landsat 5-TM [70]
MODIS [42]

Red (0.60- 0.70 μm) Landsat 5-TM [12,30]
Green (0.50-0.60
μm)

Landsat 5- MSS [188]
MODIS [113]

SDD and chl-a concentrations have been successfully predicted from satellite

image data by developing the relationship between in-situ measurements of SDD and chl-

a, and the spectral response of the blue, green, red, and near-infrared bands. This

approach has been successfully implemented in Minnesota [199], Wisconsin [200], and

Michigan [201] to estimate water clarity for inland lakes, where in-situ data is limited.

4.4. Turbidity and total suspended sediments

Water turbidity is an optical property of water, which causes the scattering and

absorption the light more than its transmitting. Suspended sediments are responsible for

most of the scattering, whereas the absorption is controlled by chl-a and colored

dissolved or particulate matter [202]. The level of turbidity or murkiness is entirely

dependent on the amount of suspended particles. The more suspended particles, the more

difficult for light to travel through the water and therefore, the higher the water’s

turbidity. The complex nature of suspended substances in water changes the reflectance
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of the waterbody and therefore causes variation in color. To this end, interpretation of

remotely sensed data just based on the color of water is not adequate and accurate.

Turbidity and total suspended matters are considered as important variables in many

studies due to their linkage with incoming sunlight that in turn affects photosynthesis for

growth of algae and plankton. These parameters are also directly associated with Secchi

disk depth.

Remote sensing techniques are widely used to estimate and map the turbidity and

concentrations of suspended particles, and to provide their spatiotemporal variations.

Based on theory, applying a single band can provide a robust and TSM-sensitive

algorithm to estimate the turbidity and concentrations of suspended particles, in condition

that the band is chosen appropriately [204]. Curran et al. [205] and Novo et al. [206]

showed that single band algorithms may be adopted where TSM increases when the

reflectance values increase. However, the complex substances in water change the

reflectance of the water body and therefore cause variation in colors, and thus, different

spectral bands can be used for TSS retrievals [204,207,208]. The advantage of using

signal band or band ratios can be employed to obtain more accurate results in different

concentrations in waterbodies. In the Near-IR and Mid-IR regions, based on water depth

and wavelength the absorption of light increases and makes the water to look darker.

Several studies have found that the first four bands of Landsat are well correlated with

total suspended matters [43,195,209,210]. However, Ritchie et al. [211] by in situ studies

showed that the  range of spectrum between 700 and 800 nm is very useful for the

measurement of suspended particles in surface waters. The literature showed that
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turbidity and/or Suspended Sediments can be measured using visual spectral bands and

various band ratios, which are as summarized in table 2.8.

Table 2.8. Remotely measurements of Turbidity and Total Suspended Sediments using
various spectral bands and their ratios.

Band Combination Sensor Reference

Ratio between green (0.50-0.60
μm) and red (0.60- 0.70 μm)

Landsat 5-TM [30,210]
PROBA-CHRIS [120]
IRS-LISS-III [72]

Ratio between blue (0.40-0.50
μm) and red (0.60- 0.70 μm)

Landsat 5-TM [195]
AISA [22]

Ratio between near infrared
(NIR)  and red (0.60- 0.70 μm)

MODIS [60]
ALOS-AVNIR-2 [57]

Using a
single band

Near Infrared
(0.75-0.90 μm)

SPOT [212]
Landsat 7- ETM+ [58]
CASI [29]

Red
(0.60- 0.70 μm)

Landsat 7- ETM+ [213]
Landsat 5-TM [12,43,213]
HICO [111]
PROBA-CHRIS [213]

Green
(0.50-0.60 μm)

Landsat 5- MSS [189]
IRS-LISS-III [214]

Furthermore, Ekercin [127] used Band1 (445-530nm), Band2 (520-610nm),

Band3 (640-720nm), and Band4 (770-880nm) of IKONOS data and estimated the

concentration of TSS in Istanbul, Turkey. Alparslan et al. [62] obtained the amount of

turbidity from Band1, Band2, Band3, Band4, Band5 and Band7 of Landsat-5 TM

Satellite Image. He et al. [74] used a combination of Landsat TM bands 2, 3, 6 and 7 to

correlate with the in situ turbidity measurements. Also, Sudheer et al. [59] suggested that

a combination of TM1, TM2, TM3 and TM4 was very useful to retrieve suspended

sediments concentration. Bhatti et al. [41] by using NIR/Green band ratio of ALOS-

AVNIR-2 developed a relationship to calculate total suspended matters. Lim and Choi
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[37] found that suspended solids was correlated with bands 2, 3, 4 and 5 of Landsat-

8/OLI, and constructed 3 multiple regression models through single bands of OLI.

Reviewing the literature demonstrated that the Landsat/TM was used much more

than other sensors. For rivers and other case studies that need more spectral and spatial

resolution, ALOS/AVNIR-2, IKONOS on spaceborne sensors, and CASI and AISA

hyperspectral imagery on airborne sensors were used to determine turbidity and

suspended matters. The methodology to interpret images and to evaluate the turbidity was

also improved from simple linear regression to non-linear multiple regression, principle

components analysis (PCA) and neural networks.

4.5. Total phosphorus

Total phosphorus (TP) studies consist of the measurement of all inorganic,

organic and dissolved forms of phosphorus. Phosphates are essential nutrients required

for the plant growth and its increased quantity causes the plants and algae to grow

quickly. Total phosphorus can be directly related to chl-a concentration and indirectly

related to Secchi depth, turbidity, and TSS concentration [215]. Rivers that flow through

various land use activities can include different substances and chemicals like total

suspended sediments, nutrients, residential fallout, and others. When a river or a creek

passes through an agricultural area, for instance, the phosphorus load may show a higher

concentration compared to other parameters present in the surface water. Fertilizer-rich

agricultural runoffs and effluents from wastewater treatment plants are the main sources

of high phosphorus and nitrogen concentrations in surface waters that threaten many

worldwide ecosystems [216]. Total suspended matters usually act as a carrier for TP and

also closely related to Secchi disk transparency with an exponential equation [217].
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The measurement of total phosphorus concentrations in waterbodies is

challenging due to the spatial heterogeneity and the labor-intensive collection and testing

of required field samples. Remote sensing as a robust tool has already been used

successfully to monitor water quality parameters in various scales and areas, although it

presents a challenge in estimating phosphorus concentration. Remote sensing of total

phosphorus is based on the significance of its relationship with optically active

parameters, such as chl-a and suspended matters [70,217-221]. Total phosphorus is not

directly measurable by optical instruments, but has a general correlation with other water

quality parameters [220]. As mentioned above, TP is closely related to some other

parameters like phytoplankton [217,220], turbidity and total suspended matters (TSM),

and Secchi disk depth (SDD) [221], which is the basis for remote monitoring of TP

dynamics [222]. Multispectral Landsat TM data have been widely used to monitor and

map the TP spatial and temporal pattern in different regions [70,218,219]. Hyperspectral

airborne or spaceborne remote sensing due to its finer diagnostic spectral band(s)

provides more potential to detect TP in rivers and small lakes.

Many studies have shown that increasing the TP concentration in waterbodies

results in a general tendency of increase in chl-a concentration [223-226]. Schindler

[227] showed that 74% of the variability in chl-a and phosphorus concentrations among

lakes are directly correlated. His result shows that chl-a concentration may play a role as

a representative of phosphorus concentration in waterbodies. In another study conducted

by Heiskary and Wilson [228], the Secchi disk depth was decreased with increasing TP

concentration that proved that a proportion of phosphorus can be attached to suspended

particles resulted from soil erosion and transferred through river’s downslope. These
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studies suggested that both chl-a concentration and SDD are closely correlated with TP

concentration [217] and therefore can be used as the potential theoretical parameters for

the indirect prediction of TP concentration.

Table 2.9 shows a number of investigations to measure total phosphorus by

applying blue band (0.45-0.51 μm) and green band (0.50-0.60 μm), and integration of red

(0.60- 0.70 μm) and green (0.50-0.60 μm) ratio from different sensors. Empirical

estimations and regression models have been used to find a significant correlation

between phosphorus concentration and other optically active parameters, such as chl-a

and SDD. In addition, Bistani [229] using EO-1/Hyperion obtained a reflectance

determination coefficient of 0.49 from the 467 to 529 nm bands ratio values, from which

he derived a polynomial algorithm used to produce a total phosphorus distribution map.

Song et al. [230] studied the correlation between TP and TM1, TM2, TM3, and TM4

from the Landsat 5, and found that each band had a correlation with TP of 0.62, 0.59,

0.55, and 0.51, respectively. Later in another study, Song, Li, Li, Tedesco et al. [69] by

using the airborne imaging data (AISA), and applying red band (around 690 μm) and NIR

spectral region (around 710 μm) estimated the total phosphorus (TP) in three central

Indiana water supply reservoirs. Wu et al. [70] used a combination of TM1, TM3/TM2,

and TM1/TM3 data to correlate chl-a concentration and SDD measurements with TP

concentration. Also, Alparslan et al. [62] using Band1, Band2, Band3, Band4, Band5 and

Band7 of Landsat-5 TM Satellite Image obtained the amount of total phosphorus

concentration. Lim and Choi [37] used bands 2, 3, 4, and 5 of Landsat-8/OLI, and

constructed 3 multiple regression models by selecting both single bands and band ratios,

and obtained significant correlation coefficients.
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Table 2.9. Remotely measurements of total phosphorus (TP) using various sensors and
blue and green bands, and integration of red and green bands ratio.

Band Combination Sensor Reference

Blue (0.45-0.51 μm) and green
(0.50-0.60 μm) bands, and
integration of red (0.60- 0.70 μm)
and green (0.50-0.60 μm) bands

Landsat 5-TM [70]
MODIS [231]
PROBA-CHRIS [120]
CASI [29]
SPOT [107]

Results from studied articles indicate that there is a potential to estimate total

phosphorus concentration at different scales using airborne and satellite images. The

Landsat/TM was used much more than other sensors for TP assessment in the reviewed

literature. As phosphorus is an optically inactive constituent and does not have a

diagnostic signals in spectral range (400–900 nm), empirical models are mostly used to

measure the TP concentrations [69,70,232]. The literature review also showed that TP

has a similar spatial pattern to chl-a and SD concentration due to a high correlation of TP

with these parameters. Total phosphorus was also found to be highly correlated with

sediment loadings in waterbodies. However, there is a lag-time for phytoplankton to

consume TP and therefore, it complicates the relationship between TP and chl-a or total

suspended sediments [69].

Light reflection from the bottom in shallow waters cannot be very reliable,

because it may be a result of the above-water remotely sensed reflectance spectra.

Therefore, the TP concentration estimated in shallow water may be questionable and

needs to be validated using in situ data. Spatiotemporal distribution algorithms for TP

concentration produced from satellite-based observations should also be verified by in
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situ measurements. These empirical methods provide site-specific predictions of total

phosphorus with reasonable accuracy [233].

4.6. Water temperature

Water temperature is an important parameter for the physical and biochemical

processes occurring within water as well as in air-water interactions because temperature

regulates physical, chemical, and biological processes in water. Water temperature also

influences the solubility and availability of various chemical constituents in water. Most

importantly, this parameter affects dissolved oxygen concentrations in water; as oxygen

solubility decreases with increasing water temperature. It is also very important to

analyze the temporal variations due to seasonal changes. On the other hand, distribution,

transportation, and interaction of some contaminants, such as nutrients have a significant

relation with water column temperature.

Thermal infrared bands are able to measure the amount of infrared radiant heat

emitted from land surfaces and the radiant temperature of waterbodies that have

environmental and economic import. Due to the solar warming or for example after

rainfall the water column stratified and more attention should be paid to the estimation of

water temperature [234]. In such cases, no relation can be expected between sea surface

temperatures and the temperatures found in the water under the surface. Water

temperature in freely flowing rivers is unstable because the characteristics of these rivers

like the channel shape, and in-stream objects cause a turbulent flow regime [235].

Remote sensing of water temperature in rivers is more complex than in other

waterbodies because of their much smaller dimensions and difficulties of determination

at the resolution of TIR data [46]. Stream and river temperature is crucial especially when
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dealing with endangered fish populations, which are sensitive to increased water

temperature. Sparse sampling in both space and time restricts traditional assessment of

water temperature, which is typically measured using a network of in-stream gauges, and

records the temporal change at given locations. These gages, located in main streams and

rivers, are limited in terms of spatial distribution of river temperatures. The application of

remote sensing techniques can be an attractive alternative to measuring and monitoring

stream temperatures with determined accuracies and uncertainties [46]. Remotely sensed

TIR images could provide reliable measurements of the spatial distribution of the stream

and river temperature.

Currently, different TIR imaging sensors with a broad range of spectral bands are

available and suitable for the measurement of water temperature [236]. For the selection

of appropriate band or bands, careful consideration on the least amount of instrument

noise and atmospheric effects is necessary for accurate calculation of the water

temperature. However, an average of multiple bands can provide a better estimate of the

actual temperature reducing the noise of images related to atmospheric or sensors

differences [236].

Compared to airborne TIR imaging sensors, spaceborne TIR imaging sensors

cover greater aerial extents [236]. However, significant differences in their range of pixel

sizes, number of bands, revisit times, and sensor sensitivities exist. TIR satellite images

are very useful data because of their low cost, capability for regional studies, and their

revisit times. Airborne sensors with finer pixel size are necessary for smaller waterbodies

like rivers, but these images are limited to use over large areas because of the high

expense of calibrating and processing. In rivers and small waterbodies, airborne TIR
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sensors can be more useful to estimate the water temperature [236]. When using airborne

data acquisition, it is imperative to consider that these images do not provide a truly

synoptic assessment of water temperature at a particular time, if the images are collected

consecutively along the river course. In addition, in the case of frame based TIR imaging

sensors, the TIR accounting for radiometric distortion must be considered due to

variability in individual detector response and lens optics.

Many studies have shown the applicability of remote sensing to temperature

estimation for rivers and streams. For example, Torgersen et al. [237] used fine pixel-size

(0.2-0.4 m) airborne TIR images to evaluate the accuracy of radiant temperature

measurements, and found that the remotely sensed radiant temperature was within 0.5 °C

of in-situ measurements. They identified that reflected TIR radiation, vertical thermal

stratification in the stream, and thermal boundary-layer effects at the water surface should

receive greater attention in the thermal remote sensing of streams. They also concluded

that fine pixel-size measurements of stream temperature can be used to study the fine-

scale spatial variation of stream temperature.

Accurate remote sensing measurement of sea surface temperature (SST) is also

vital for weather and climate operational as well as atmosphere studies. Infrared

radiometers yield SST estimations to around 0.5 °C precision, though its use is limited in

shady zones due to the presence of clouds or fog. Therefore, standard remote sensing

practices should be applied to identify and mask these issues out of the used images

before one proceeds with the measurement of the water temperature by TIR radiation

[238]. Passive microwave techniques are used in cloudy areas with an accuracy limit of

about 1.5 - 2 °C by the relatively large variation of microwave emissivity with surface
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conditions, such as wind speed [239]. Addition of active microwave (radar) observations

can enhance the precision of passive microwave estimates of SST. Reviewing the

literature indicates the use of infrared thermal band for quantifying water temperature,

which is as summarized in table 2.10.

Table 2.10. Infrared thermal band applications to quantify the water temperature.

Sensor Reference

TIR band of Landsat sensors (TM, ETM+, and
OLI/TIRS)

TM: [44,195,240-242], ETM+: [44,46,194,238,243-246],
OLI/TIRS: [47,247,248].

TIR band of MODIS [22,42,46,249,250].
TIR band of ASTER [46,194,238,245,246,251].
TIR band of AVHRR [45,252-255].
TIR band of airborne MODIS/ASTER (MASTER) [46,238,246,251].
Sea Surface Temperature monitoring studies
using microwave radiometers (MWRs)

WindSat: [256,257], AATSR: [258-261], ATSR-1: [262-264],
ATSR-2: [258,265-267], AMSR-E: [268,269], TMI: [270-272].

4.7. Sea surface salinity (SSS)

Salinity and temperature are important factors to identify the density of seawater,

and in turn, density is a critical component driving the currents in the oceans, and

therefore, salinity is one of the key variables that should be considered for the

investigation of the circulation in oceans [273]. Ocean circulation in moderating the

climate and sea surface salinity (SSS) is critical, and also is considered as an important

factor for the determination of the global water balance, productivity forecast models, as

well as evaporation rates [273]. For example, the mixed layer will be more stable when

the salinity is relatively low, and the nutrient can be controlled and lead to reduce the

productivity of phytoplankton or at least cause a delay in the spring and autumn onset

phytoplankton blooms [274]. Seasonal variations of sea surface salinity represent
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limitations on the hydrologic balance and coupled models of ocean-atmosphere climate

[274,275]. Salinity also has important effects in the air-sea exchange of gases.

Precipitation makes the ocean water fresher and less dense, which overlays the

salty water below, and this thin layer of sea surface fresh water can spoof the shallow

satellite readings. The effect of this phenomenon in the tropical ocean, where heavy

rainfalls can create pools of local freshwater, is more sensible. It can increase the stability

of the upper layer of the water column and significantly reduce the rates of gas transfer

across the pycnocline. As the measurement of surface salinity by passive microwave

radiometers requires long wavelengths (20–30 cm), accurate estimation of SSS from

satellite altitudes would require an enormous antenna, which most satellites could not

accommodate [273]. New interferometric technology has made it possible to overcome

such problems with antenna size [276,277]. For instance, the Moisture and Ocean

Salinity satellite (SMOS) has been in use to measure SSS.

Aquarius is another salinity-related sensor that can be used to investigate the

salinity variability for climate studies purposes. In addition, airborne microwave

radiometers, such as the Scanning Low-Frequency Microwave Radiometer (SLFMR) and

the Salinity, Temperature, and Roughness Remote Scanner (STARRS) were found to be

widely used to investigate the variability of SSS in various waterbodies [273].

Indirect methods based on satellite-derived temperature profiles, brightness

temperature, and CDOM have been also used to determine the variability of sea surface

salinity. Different relationships have been established between salinity and major water

constituents that have direct color signal. For example, relationship between salinity,

temperature, and brightness temperature [65,274,278-285], and relationship between
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salinity and CDOM [55,165,286,287]. Detailed sea surface salinity measurements are

performed using the application of space-borne and airborne sensors over large coastal

and ocean areas. Some of these experiments are as listed in table 2.11, based on the used

sensor.

Other notable experiences are performed using European Remote Sensing satellite

(ERS) C-band scatterometer [288]; the first seven bands of MODIS [289];

TOPEX/Poseidon Microwave Radiometer [282,290], and Cooperative Airborne

Radiometer for Ocean and Land Studies (CAROLS) L-Band Radiometer [65].

Nonetheless, comparison of the various sensors’ characteristics shows that the airborne

ESTAR and SLFMR are more appropriate than other instruments to sea surface salinity

measurements. That notwithstanding, SMOS and Aquarius are the most widely used

sensors for the remote sensing of salinity.

4.8. Dissolved oxygen (DO), Biochemical oxygen demand (BOD) and chemical oxygen

demand (COD)

Dissolved oxygen (DO) is a crucial water quality parameter that influences the

living conditions of all aquatic organisms that require oxygen. The level of DO in

waterbodies can be affected by natural and anthropogenic activities in basins. The

amount of dissolved oxygen in waterbodies decreases by respiring and decaying

organisms, and increases by photosynthesizing plants, stream flow, and aeration. The

water temperature highly influences the amount of DO; in other words, less oxygen

dissolves in warm water than cold water.
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Table 2.11. Remote sensing of Sea Surface Salinity (SSS) based on the used sensor.

Sensor Reference
European Soil Moisture and Ocean
Salinity (SMOS)

[64,66,275,291-298].

Aquarius L-band radiometer
carried by the SAC-D

[67,299-301].

SLFMR [284,302-305].
STARRS [285,304,306].
Other MWRs experiences PALS: [307-309], AMSR-E: [310] 2D-STAR and ESTAR: [311-313]
predicted indirectly by making
relationship between salinity and
temperature

[65,274,278,279,281-285,314].

predicted indirectly by making
relationship between salinity and
CDOM

[55,165,286,287].

Biochemical Oxygen Demand (BOD) is a measure of the amount of consumed

oxygen by bacteria while decomposing organic matters under aerobic conditions [2]. By

exploiting dissolved oxygen, the bacteria decompose these organic materials resulting in

a reduction in the level of DO necessary for supporting aquatic life. The biochemical

oxygen demand is usually determines using a sealed sample of water incubated for five

days, and then measuring the loss of oxygen from the first and fifth day of the test [2].

Noteworthy is that the need to dilute the samples prior to incubation stem from the

likelihood of the bacteria depleting all the oxygen available in the bottle before the test is

complete.

Chemical oxygen demand (COD) is the quantity of organic matter measured with

chemical method that needs to be oxidized in water, and it is used to measure the organic

contamination in water. BOD values are always less than COD values, yet measuring the

latter take only a few hours while five days need to measure BOD values.
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High BOD levels exist in waterbodies accelerates the bacterial growth and thus

reduces the level of dissolved oxygen. However, due to atmospheric mixing and aquatic

photosynthesis the waterbody reaerates and the oxygen levels will slowly increase

towards the downstream. Routine methods to measure COD are based on points, and

have the time-consuming and laborious disadvantages in obtaining the distribution

patterns so that it is difficult to reflect the status of whole region synchronously.

Although point sampling can be more accurate method of measurement, however it is

time-consuming and costly. In addition, routine methods cannot provide the real-time

spatial patterns for the possible variations in the concentration of COD that is essential

for the regional assessment and monitoring of water quality [89].

A review of the available literature confirmed that no single identified and/or

recommended sensors can be used with high confidence to perform an appropriate model

to measure the reflectance of water resulting from DO, COD, and BOD. Several water

quality models were developed to investigate the relationship between the measured

values of DO, BOD, and COD in laboratory and remote sensing reflectance, by

establishing linear, exponential, and logarithmic regressions. Also, various bands ratios

have been studied to obtain the DO, BOD, and COD distribution maps in order to analyze

the spatial and temporal changes of these water quality parameters. However,

interpretation of the satellite or airborne images and making authentic relationships

between spectral characteristics of images and in situ measurements of DO, BOD, and

COD in the aquatic ecosystems are still poorly understood. The most notable studies to

estimate the amounts of DO, BOD, and COD are as cited in Table 2.12. Although the

results of studied articles indicated that the Landsat/TM was used much more than other
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sensors to estimate the amount of DO, BOD and COD, this research found relatively low

potential and accuracy of current remote sensing techniques for the measurements of DO,

BOD and COD values in waterbodies, unless there are enough and adequate ground

proofs. In situ measurements of surface water radiation and atmospheric corrections of

images are vitally important for both the calibration and validation of remotely sensed

data.

Table 2.12. Remote sensing of dissolved oxygen (DO), biochemical oxygen demand
(BOD), and chemical oxygen demand (COD) based on the used sensor.

Sensor Reference

Landsat 5-TM [62,74,75,78].

Landsat 5- MSS [76].
WorldView-2 [9].
IRS-LISS-III [72].
MODIS [168].
MERIS [168].
AVHRR [63].
SeaWIFS [233].
SPOT [77].

Despite the fact that remote sensing can be used to reflect many of water quality

parameters, such as Secchi disk depth, chlorophyll concentrations, CDOM, total

suspended sediments, and temperature, emphasis should be placed on the fact that this

technique cannot substitute the traditional methods. The reason behind this is that some

parameters of water quality, like DO, BOD and COD cannot be determined with a high

level of confidence by these techniques.

5. Limitations of remote sensing for the assessment of water quality parameters

Remote sensing has been widely used to study the spatiotemporal variations of

water quality variables in different waterbodies. However, there are a number of
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important constraints that require precise considerations prior to conducting this

technique. Developed models from remote sensing data require adequate calibration, and

validation using in situ measurements, and can be used only in the absence of clouds.

Moreover, the accuracy of extracted water quality parameters might be debatable for

some situations; for instance, Kutser [169] pointed out that the densest areas of

cyanobacteria blooms in the Baltic Sea are rarely detectable using the routine remote

sensing procedure and requires precise atmospheric correction and more considerations

on processing errors.

The spatial, temporal, and spectral resolution limitations of many current optical

sensors can confine the application of remotely sensed data to assess water quality.

Furthermore, certain key parameters that are not easy to measure directly by optical

sensors exist, examples of which include water discharge and vertical distribution of

water quality parameters in waterbodies. The cost of hyperspectral or airborne data, as

well as the required equipment for in situ hyperspectral measurement, is among the main

restrictions of using remote sensing methods for water quality assessment. There are also

some optical complexities for the measurement of water quality variables in different

inland and coastal waters that limits the application of remote sensing [41].

The segregation of spectral signatures for chl-a, CDOM, and inorganic suspended

matter is not well documented in the literature, which is challenging because of the

influence of these parameter on each other. In the clear sea waters, the maximum light

penetration depth expected is about 55m near 475nm [315], and the majority of the

incident energy on the water surface is absorbed, and/or transmitted. On the other hand,

when the concentrations of suspended sediment extend to 400 mg/liter, the penetration
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depth reduces to only 60cm. Therefore, a progressively thinner layer of surface water is

detectable [41].

Most of the studies have focused on optically active variables, such as chl-a,

CDOM, TSS, and turbidity. However, a number of important water quality variables such

as PH, total nitrogen (TN), ammonia nitrogen (NH3-N), nitrate nitrogen (NO3−-N), and

dissolved phosphorus (DP), etc. are not well investigated due to their weak optical

characteristics and low signal noise ratio. Despite the mentioned limitations, remote

sensing is still a useful tool for water quality monitoring.

6. Discussion

Several satellite images could be used for water quality assessments. Nonetheless,

Landsat TM (Thematic Mapper) images have been used extensively due to their

relatively low cost, temporal coverage and spatial resolution

[3,11,12,26,43,59,62,74,85,87,101,102,104,105,108]. TM data resided on Landsat-5, a

sensor that was operational from 1984 until November 2011, and is considered one of the

oldest sensors still used for water quality assessment today [40,62,70,210,213,316].

Results from earlier studies referenced in tables indicate that the resolution of Landsat

TM is suitable for water quality studies.

Information from the available literature revealed that the Landsat sensors, TM

(Thematic Mapper), MSS (Multi-Spectral Scanner), ETM (Enhanced Thematic Mapper),

and OLI (Operational Land Imager) have been used fairly successfully to measure most

of the important water quality parameters, such as chlorophyll-a, Secchi disk depth, Total

phosphorus, Total Suspended matters, Turbidity, Dissolved Oxygen, Biochemical

Oxygen Demand, and Chemical Oxygen Demand [10,24,40,43,62,76,129,193].
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Nonetheless, the use of Landsat data for measuring water quality characteristics has

significant limitations. The repeat cycle of 16 days of Landsat could be a major limitation

for areas like South Florida with frequent cloud cover and this makes the seasonal

monitoring of waterbodies more challenging. The water quality parameter characteristics

must be related to an “inherent optical property” (IOP) that can be measured by the

satellite sensor [43]. For instance, Kloiber et al. [24] using the Landsat TM and MSS

related Secchi disk transparency (SDT) to the radiance in several spectral bands. Some

other potential sources of error due to varying atmospheric conditions are mentioned for

Landsat. For example, Brezonik et al. [43] noted that the radiance at the TM sensor varies

based on the season, latitude, and time of day and needs to be calibrated for the intensity

of incoming solar radiation. Atmospheric haze interference, due to scattering the light,

can affect the accuracy of measurements, especially when the reflected radiance from the

waterbodies with high clarity, high algae, and CDOM decreases [43]. These restrictions

may apply to other sensors with similar characteristics to Landsat sensors.

Spaceborne and airborne remote sensing and their characteristics, advantages, and

disadvantages were discussed previously in this paper. Different considerations of a

project, such as required spatial and spectral resolution, geographic coverage area, and

project budget determine the preference of one sensor or another. Table 2.13 represents a

summarized comparison of the previously discussed issues related to spaceborne and

airborne sensors, where various parameters of these sensors are compared.
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7. Conclusion and recommendation

By increasing the anthropogenic activities and industrial development, water

quality has dramatically degraded. A combination of remote sensing, GIS, and traditional

in-situ sampling can lead to perform a better monitoring program for water quality

parameters in various waterbodies. From the available literature, one pertinent deduction

is that various space-borne and airborne sensors can measure water quality parameters

with reliable precision. Newly developed hyperspectral satellite imageries, which can

simultaneously record up to 200 spectral channels, such as the Hyperspectral Imager for

the Coastal Ocean (HICO), are much more powerful systems for detecting water quality

parameters. Also, hyperspectral airborne sensors have greater potential to detect the

optically active parameters of water due to their concurrent collection of narrower and

continuous bands that facilitates the measurement and monitoring of various parameters

of water quality. Therefore, monitoring and assessing water quality issues through

remotely sensed data can result in effective management of water resources.

However, remote sensing-derived water quality evaluations have not been

properly considered by the water quality managers. An effective dialogue between

scientists, policy makers, and federal and local environmental managers is required to

better realize the potential of remote sensing technologies in water quality investigations.

Results from an internal US Environmental Protection Agency qualitative survey

performed by Schaeffer et al. [317] were used to determine the reasons that satellite-

derived water quality products are not well considered in management decisions. They

pointed out that difficulties in clarifying the perceptions of environmental managers,
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which was identified 22 years ago by Specter and Gayle [318], is still a challenge for the

remote sensing scientists and researchers.

Table 2.13. Comparison between spaceborne and airborne sensors [3].

Parameter Spaceborne Airborne
Time of overpass Mostly fixed Flexible

Spatial resolution

Ground Sampling Distance (GSD) up to 0.5m
for panchromatic images. For multi-band
images, it ranges from a few meters (low
altitude sensors) up to a few kilometers for
high altitude sensors.

Ground Sampling
Distance (GSD) <5m

Spectral
resolution

Mostly panchromatic (one band) to
multispectral, recently developed sensors like
HyspIRI, CHRIS, and HICO are hyperspectral.

Panchromatic to
hyperspectral

Temporal
resolution
(Revisit time)

Days Minutes

Calibration
Precalibration before launch, then on-board
characterization (usually yearly)

Before launch +
possible on-board

Cost

Free (non-commercial), up to about $50 per sq
km (commercial). High spatial resolution
imagery can be very expensive (~ $2-10K per
scene)

Average costs of  $350
per square mile
(Chipman et al. 2009)

Stability High Low, due to turbulence

Swath width
High (up to 2500 km for low altitude sensors, a
full hemisphere for high altitude sensors)

Small (up to 10 km per
flight line)

Interpretation
approaches

Mostly empirical-and semi-empirical-based
approaches

Both empirical and
analytical approaches

Complexity of
image processing

Less complex compared to hyperspectral
sensors

Processing of
hyperspectral images is
more complex and
requires specific skills

Constraints

Limited to the coverage schedule of the
satellite, including weather/cloud constraints;
this can be challenging when trying to conduct
water quality monitoring at a certain time of
the year or dealing with project schedules.

Coverage schedule is
flexible.

Geographic
coverage areas

Local, regional, and global Local and regional
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As illustrated in this paper, both satellite and airborne remote sensing are useful in

assessing the quality of inland waters. Airborne sensors are more flexible tools than

spaceborne sensors because of their higher spatial and spectral resolution coupled with

their greater number of spectral bands that makes it possible to retrieve the water quality

parameters with more accuracy. Airborne sensors are more suitable to monitor smaller

waterbodies, such as rivers and their tributaries, ponds, and estuaries, while satellite

sensors are more suitable for the evaluation of larger waterbodies and regional studies. In

this paper, various properties (spectral, spatial and temporal, etc.) of spaceborne and

airborne sensors are tabulated to be used as a sensor selection guide in related studies.

Furthermore, based on the literature surveyed, this paper compiled a list of sensors that

have been used by researchers to measure various water quality parameters, and

compares various parameters of spaceborne and airborne sensors.

Due to the need for high accuracy in local-scale and riverine studies, some of the

above mentioned sensors, such as SeaWiFS data are of little use. For these cases, the high

resolution and/or hyperspectral remote sensing on spaceborne platforms such as EO-

1/Hyperion, ALOS AVNOR-2, IKONOS, HICO, and Landsat-8 and airborne platforms

CASI, AISA, AVIRIS, HyMap are recommended for use in water quality measurements.

In addition, the recent advances in computer sciences have had a profound

influence on the water quality monitoring, resulting in a broader development of the

remote sensing technology. Computers can store and analyze the large sets of data

generated by most of the Remote Sensing projects. Also, the use of decision support

systems (DSS) and Geographical Information Systems (GIS) provide efficient tools for

storing, manipulating and analyzing remote sensing data. GIS can enhance the
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contributions of water quality modelling for practical water quality forecasting, which is

essential for sustainable water resources management and development. Therefore, the

excellent practicality and interoperability of the RS and GIS techniques will lead the

future water quality models towards integration of RS and GIS techniques and the

increased use of these technologies in qualitative studies of water resources. Regardless

of numerous endeavors reported in the literature, remote sensing techniques utilized to

quantify water quality are yet to be adopted on a routine framework. Based on author’s

prior knowledge and experience, and the gained information from this literature review, a

schematic flowchart of the supposed framework for water quality monitoring and

assessment using remote sensing techniques is presented in figure 2.3. Despite the recent

development of analytical approaches, empirical and semi-empirical algorithms are still

in extensive use due to the complexity of analytical approaches in terms of their theory

and calculation difficulties. Improvement of the methodology to interpret images from

simple linear regression to multivariate statistical analysis approaches like principle

components analysis (PCA) and neural networks will help to make the procedures more

accurate and easier to manipulate.



67

Figure 2.3. A suggested remote sensing based framework to predict and assessment of
water quality variables.
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Abstract

In this study, the bio-physical parameters of Lake Okeechobee were investigated

based on atmospherically corrected data. The principal objective of this study is to

monitor and assess the spatial and temporal changes of four water quality parameters:

total suspended solids (TSS), chlorophyll-a (chl-a), total phosphate, and total kjeldahl

nitrogen (TKN) using the application of integrated remote sensing, GIS data, and

statistical techniques. For this purpose, two dates of Landsat Thematic Mapper (TM) data

in 2000 (February 29); 2007 (January 31), and one date of Landsat Operational Land

Imager (OLI) in 2015 (February 6) in the dry season, and three dates of TM data in 2000

(July 6); 2007 (August 11), and one date of OLI data in 2015 (September 15) in the wet

season of the subtropical climate of South Florida, were used to assess temporal and

spatial patterns and dimensions of studied parameters in Lake Okeechobee, Florida. The

simultaneous observed data of four studied parameters were obtained from 26 monitoring

stations and were used for the development and validation of the models. The optical

bands in the region from blue to near infrared and all the possible band ratios were used

to explore the relation between the reflectance of waterbody and observed data. The

predictive models to estimate chl-a and TSS concentrations were developed through the

use of stepwise multiple linear regression (MLR) and gave high coefficients of

determination in dry season (R2 = 0.84 for chl-a and R2 = 0.67 for TSS) and moderate

coefficients of determination in wet season (R2 = 0.48 for chl-a and R2 = 0.60 for TSS).

Values for total phosphate and TKN were strongly correlated with chl-a and TSS

concentration and some bands and their ratios. Total phosphate and TKN were estimated

using best-fit multiple linear regression models as a function of Landsat TM and OLI,
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and ground data and showed a high coefficient of determination in dry season (R2 = 0.85

for total phosphate and R2 = 0.88 for TKN) and in wet season (R2 = 0.80 for total

phosphate and R2 = 0.86 for TKN). The MLR models showed a good trustiness to

monitor and predict the spatiotemporal variations of the studied water quality parameters

in Lake Okeechobee.

Keywords: Water quality, Spatiotemporal modelling, Remote Sensing, Landsat,

chlorophyll, Total suspended solids, Nutrients, Lake Okeechobee.

1. Introduction

Remote sensing techniques make it possible to have spatial and temporal view of

surface water quality parameters (WQPs) and more effectively and efficiently monitor

the waterbodies, and quantify water quality issues. Most of the studies have focused on

optically active variables, such as chlorophyll-a (chl-a), total suspended solids (TSS), and

turbidity. There are several other important water quality variables such as pH, total

nitrogen (TN), ammonia nitrogen (NH3-N), nitrate nitrogen (NO3−-N), and dissolved

phosphorus (DP), which existing literatures omit. The main reason is due to their weak

optical characteristics and low signal noise ratio. However, these parameters are an

important part of water quality indices and are a challenging aspect of research in the

field of water quality assessment using remote sensing.

Chl-a is the major indicator of trophic state because it acts as a link between

nutrient concentration, particularly phosphorus, and algal production. Chl-a while mainly

reflecting green, absorbs most energy from wavelengths of violet-blue and orange-red

light, whose reflectance causes chlorophyll to appear green. Various visual spectral bands
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and their ratios are widely used to quantify chl-a. Spectral band ratios can reduce some

important characteristics of the remotely sensed signal, such as irradiance, atmospheric

and air-water surface influences [19,20]. Alparslan, et al. [21] measured the concentration

of chl-a using all bands of Landsat-5 TM. Lim and Choi [18] using Landsat-8/OLI

showed that chl-a presented a good correlation with both OLI bands and band ratio, with

calculated R values for bands 2, 3, 4 and band ratio (band 5/band 3) as −0.66, −0.70,

−0.64, and −0.64, respectively. Zhang and Han [22] found that OLI bands 1 to 4 and

their combinations had good correlation with chl-a concentration. Kim, et al. [23] using

Landsat-8/OLI employed Band2, Band5, and a ratio of Band2/Band4 to measure chl-a

concentration. Therefore, the Landsat visible bands are appropriate for detecting

chlorophyll-a concentration in lake water.

Suspended sediments are responsible for most of the scattering, whereas the

absorption is controlled by chl-a and colored dissolved or particulate matter [24]. The

more suspended particles, the more difficult for light to travel through the water and

therefore, the higher the water’s turbidity. Based on theory, applying a single band can

provide a robust and TSM-sensitive algorithm to estimate the turbidity and

concentrations of suspended particles, in condition that the band is chosen appropriately

[25] . Curran, et al. [26] and Novo, et al. [27] showed that single band algorithms can be

applied where TSM increases coincides with the reflectance values increase. However,

the complex substances in water change the reflectance of the water body and hence,

cause variation in colors, and thus, different spectral bands can be used for TSS retrievals

[25,28,29]. Therefore, the advantage of using signal band or band ratios can be employed

to obtain more accurate results in different concentrations in waterbodies. However,
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Ritchie, et al. [30] by in situ studies showed that the spectrum between 700 and 800 nm is

the most useful range for the measurement of suspended particles. In the Near-IR and

Mid-IR regions, based on water depth and wavelength the absorption of light increases

and makes the water to look darker.

Total phosphorus (TP) studies consist of the measurement of all inorganic,

organic and dissolved forms of phosphorus. Phosphorus (P) occurs mostly as Phosphates

(PO4). Inorganic phosphates are considered as phosphorus compounds that contain some

salts ions and/or metals, such as sodium, potassium, and calcium in various structures and

chains [31]. Phosphates are plant nutrients whose increased quantity helps plants and

algae to grow quickly. The measurement of total phosphorus and total phosphate

concentrations in waterbodies is challenging due to the spatial heterogeneity and the

labor-intensive collection and testing of required field samples. Total phosphorus is not

directly measurable by optical instruments, but has a general correlation with other water

quality parameters [32].

TKN is a measure of the amount of ammonia-N and organic nitrogen in the water

[33]. High nitrogen concentrations, especially in freshwaters, can cause the increased

amounts of algae and therefore, the concentrations of chl-a. However phosphorus should

be paid more attention in fresh waters compared to nitrogen as they can stimulate the

growth of algae [34]. Among the numerous sources of Ammonia-N found in the water

body, the nitrogen released by the decomposition of organic matter and fertilizer released

from agricultural applications are the major contributors [35]. Different types of

agricultural areas in South Florida generate non-point sources of pollution that have a

high percentage of ammonia from pesticides and fertilizers [36]. The main source of
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suspended solids is inorganic materials, although some other constituents in water such as

bacteria, organic particles from decomposing materials, and algae can also influence the

concentration of total suspended solids [37].

Lake Okeechobee is a dynamic and biologically productive water system that is

fed mainly by the Kissimmee River from its north, and during wet season, there is an

inverse flow from a system of pumping stations in its south part that pumps excess water

from the north part of the Everglades agricultural area into the Lake Okeechobee is

surrounded by different types of agricultural productions that load significant amounts of

phosphorus and nitrogen to the Everglades during dry season [38]. Recent studies has

shown that these high concentrations of nutrient and other chemical loadings that enter

the Lake Okeechobee from different land uses such as agricultural area, livestock farms,

and cattle lands have impaired the quality of lake’s water. This water eventually

discharges into the freshwater Everglades or its coastal estuaries and affects its water

quality and important aquatic lives [38]. Therefore, monitoring and control of nutrient

loading to Lake Okeechobee is an essential issue and hence, more attention should be

paid to this region. In this study, the spatial and temporal changes of four water quality

parameters including total suspended solids (TSS) and chlorophyll-a (chl-a), total

phosphate, and total kjeldahl nitrogen (TKN), were investigated by using the application

of integrated remote sensing, GIS data, and statistical techniques. The simultaneous

observed data of four studied parameters were obtained from 26 monitoring stations and

were used for the development and validation of the models. The optical bands in the

region from blue to near infrared and all the possible band ratios were used to explore the

relation between the reflectance of waterbody and observed data.
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2. Materials and methods
2.1. Study area

South Florida is one of the unique parts of the United States with a subtropical

climate. It contains two important vast waterbodies of Lake Okeechobee and the

Everglades, which the first one is the Florida’s largest freshwater lake and the second one

is the largest subtropical wilderness in the United States. In this study, Lake Okeechobee,

which is the largest and the most important lake in South Florida, is selected to be

investigated for its bio-physical parameters associated with water quality using remote

sensing. The major land uses in its watersheds include agricultural area, wetlands, cattle

ranch and dairy farming, and urban areas [39]. Figure 3.1 shows the location of the study

area and the selected water quality monitoring sites. The average annual temperature

ranges from 19.2 °C to 28.7 °C and the annual rainfall in the entire area of South Florida

is generally about 55 inches (1,400 mm). Considering the subtropical climate of South

Florida, the average rainfall is still considerable in the dry season. In addition, during

El Niño phenomenon, greater amounts of rainfall in dry season are observed in South

Florida.

2.2.Limnological data

The monitoring stations, downloaded from the South Florida Water Management

District's (SFWMD) geographic information systems data catalog, were overlaid with the

Lake Okeechobee map in ArcGIS to design a network of sampling stations that include

sufficient historical data to construct a robust statistical database of studied parameters,

considering a suitable spatial distribution on the Lake.
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Figure 3.1. The location of the study area and the water quality monitoring sites.

The limnological data on chl-a, TSS, total phosphate, and TKN used in this study

were obtained from the DBHYDRO (environmental database of SFWMD), United States

Geological Survey (USGS), the Environmental Protection Agency (EPA), and the

National Water Quality Monitoring Council (NWQMC) from 26 selected monitoring

stations. Then, a database was developed for the observed data of four studied parameters

simultaneous or in the closest day of the month as the satellite image are obtained in wet

(May 15th through October 15th) and dry seasons (October 16th through May 14th), and

was used for the development and validation of the models. The SPSS 16.0 software

package was employed for data treatment. The descriptive statistics of the four

limnological parameters are shown in Table 3.1.

US
A

Florida

Lake Okeechobee
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Due to differences in units of the studied water quality parameters in the dataset,

pre-treatment of data is required. in order to the homogenization [40]. Outliers are one of

the statistical issues that affect most of the parametric calculations, such as means,

standard deviations, and correlations and every statistical analysis is significantly

sensitive to them. Also, outliers can really mess up any statistical procedure that their

assumptions are based on these statistics. However, the outlier affects both results and

assumptions and therefore it is not acceptable to simply drop the outlier if it is not due to

incorrectly entered or measured the observations. The nature of the outliers should be

clearly considered before excluding an observation from the analysis. Transformation of

data to for example, log transformations, was considered to make a better decision

dealing with and declaring the outliers. In this study, data pre-treatment methods, such as

the elimination of non-informative variables, the treatment of missing data values, and

the detection and treatment of outliers were performed before the statistical analyses.

2.3.Satellite data

The remotely sensed data were acquired from the Landsat Thematic Mapper (TM)

and Landsat OLI sensors onboard Landsat 5 and 8, respectively, in 2000, 2007, and 2015.

Pre-processing of the Landsat data including the radiometric calibration and atmospheric

correction is essential for quantitative studies [41,42], especially for lake waters that the

reflected light is small [43].The radiance of small lakes in average is usually less than

10%, and even in many cases values less than 1%, of total radiance are also reported [44].

For this purpose, in order to remove the effects of high local variability, the digital

number values should be first converted to unitless planetary reflectance before the

process of atmospheric correction. As two types of imagery were used in this study, two
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different methods were used for the radiometric calibration and Atmospheric correction

of TM and OLI data. ERDAS IMAGINE 2014 and ESRI ArcGIS 10.0 platforms were

used for image processing.

Table 3.1. Descriptive statistics of chl-a, TSS, total phosphate, and TKN in the Lake

Okeechobee

Indices Chl-a
(mg/m3)

TSS
(mg/L)

total phosphate
(mg/L)

TKN
(mg/L)

D
ry

 S
ea

so
n

2000, February 29

Minimum 3.30 8.0 0.107 1.03
Maximum 67.7 53.0 0.192 1.96
Average 17.8 29.5 0.156 1.31
St. Dev. 14.8 13.0 0.021 0.21

2007, January 31

Minimum 1.0 8.0 0.085 0.88
Maximum 27.5 162.0 0.299 2.04
Average 12.9 41.2 0.158 1.22
St. Dev. 7.1 36.0 0.050 0.30

2015, February 6

Minimum 1.86 5.0 0.0821 0.821
Maximum 43.2 92.0 0.203 1.85
Average 14.08 31.04 0.143 1.09
St. Dev. 11.50 21.54 0.033 0.22

W
et

 S
ea

so
n

2000, July 6

Minimum 6.20 3.0 0.036 0.95
Maximum 106.5 70.0 0.238 2.89
Average 27.7 20.6 0.101 1.38
St. Dev. 23.4 15.3 0.044 0.48

2007, August 11

Minimum 3.50 4.0 0.016 0.87
Maximum 76.5 22.0 0.280 2.61
Average 16.1 11.3 0.092 1.35
St. Dev. 16.0 7.0 0.064 0.37

2015, September 15

Minimum 4.8 3.0 0.023 0.77
Maximum 76.0 39.0 0.295 2.93
Average 18.4 13.7 0.084 1.57
St. Dev. 18.87 9.3 0.070 0.75

Preprocessing of Landsat-5/TM data

The digital number (DN) values of each band were converted to radiance values

to remove the voltage bias and gains from the satellite sensor as follows:

L =
( − )( − ) ∗ ( − ) +  (3.1)

Where, L is the spectral radiance at the sensor's aperture in watts/(meter

squaredsterµm), Lminλ is the spectral radiance that is scaled to QCALmin in
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watts/(meter squaredsterµm), Lmaxλ is the spectral radiance that is scaled to QCALmax

in watts/(meter squaredsterµm), QCALmin is the minimum quantized calibrated pixel

value (corresponding to Lminλ) in DN, QCALmax is and the maximum quantized

calibrated pixel value (corresponding to Lmaxλ) in DN.

As the process of atmospheric correction, the radiance values are converted to at-

satellite reflectance values that consider the variation of sun angle in different latitude,

time of day, season, and the distance between the earth and sun. The simplified model of

the effects of the atmosphere is [45]:

p =
  

 
(3.2)

Where, ρp is the unitless planetary reflectance, L is the spectral radiance at the

sensor’s aperture, d is the Earth–Sun distance in astronomical units, ESUN is the mean

solar exo-atmospheric irradiance, and θs is the solar zenith angle in degrees.

Preprocessing of Landsat-8/OLI data

COST-DOS was used as the radiometric correction method for mitigating

atmospheric effects recorded by Landsat-8/OLI data. It accounts for absorption,

scattering, and refraction of atmospheric particles such as particulate matter and water

vapor [46]. The improved cosine of the solar zenith angle (COST) method presented by

Chavez [47] was used to convert the DN values of each band of Landsat-8/OLI to

reflectance values as follows:

P =
 (   )

 ( 
 ) (3.3)
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Where, P is the dimensionless spectral reflectance value of surface water, π is a

constant (3.14159265), Lλsensor is the spectral radiance value, and Lλhaze is the path

radiance or upwelling atmospheric spectral radiance. d is the distance between the earth

and the sun in astronomical units, and θs is the solar zenith angle (°). ESUNλ is the solar

spectral irradiance at to the top of atmosphere (TOA). The spectral radiance value

(Lλsensor) at the satellite sensor’s aperture (Wm−2sr−1μm−1) is calculated as follows:

Lλsensor = (Mλ  Qcal) + Aλ (3.4)

Where, Mλ is the band-specific multiplicative rescaling factor, Aλ is the band-

specific additive rescaling factor, and Qcal is the minimum quantized and calibrated

standard product pixel value. Both Mλ and Aλ are provided in the Landsat 8 metadata file

(MTL file).

Lλhaze = Lλmin − Lλ,1% (3.5)

Where, Lλhaze is the path radiance or upwelling atmospheric spectral radiance

scattered in the direction of the sensor entrance pupil and within the sensor’s field of

view, Lλmin is the minimum spectral radiance, and Lλ,1% is the spectral radiance value of

the darkest object on each band of the Landsat 8 and can be calculated as follows:

Lλ,1% =
.    ( )

 
(3.6)

The theoretical radiance of a dark object is then computed, under the assumption

that dark objects have 1% or smaller reflectance [47,48].
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2.4. Statistical methods

In this study, Pearson’s correlation analysis was utilized to determine the linear

relationship and calculate the correlation between two variables in order to characterize

the relationship between various TM and OLI bands and each of the 4 water quality

parameters (chl-a, TSS, total phosphate and TKN) for the 26 selected stations. The

Pearson’s correlation basic equation is defined as follows:

R =
( )( )( ) ( ) (3.7)

Where, Xband is the corrected reflectance value, Xband is the mean of the corrected

reflectance value, YWQP is the in-situ WQPs data, and YWQP is the mean of the in situ

WQP data. Then, a linear multiple regression analysis was conducted for all WQPs. The

general formula for multiple regressions is as follows:

WQP = a + (b  Xk,1) + (c  Xk,2) + (d  Xk,3) + (e  Xk,4) (3.8)

Where, WQP is the dependent variable and represents measured (or known) water

quality parameters (chl-a, TSS, total phosphate and TKN) at study site k and X is the

independent reflectance variable acquired from the Landsat-5/TM or Landsat-8/OLI

images at study site k. The numbers represent the band number and a, b, c, d, and e are

the model coefficients using both the measured water quality parameter value at a

particular station and the known pixel reflectance values there, according to the least

squares algorithm.
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3. Results and discussion

In this study, statistical techniques were also applied to find the most significant

relationships between water quality parameters and reflectance values of visible band of

TM and OLI data and their combinations [2,18,49–52]. First, Pearson’s correlation was

carried out between Landsat bands, and chlorophyll and TSS concentrations to find the

most significant relationships. Previous studies [50,52–56] indicated significant

correlations between chlorophyll concentration and water transparency and the visible

bands. As regards to chlorophyll, the prominent scattering-absorption features of chl-a

include strong absorption between 450–475 nm (blue) and at 670 nm (red), and

reflectance reaches to peak at 550 nm (green) and near 700 nm (NIR). The applicability

of reflectance peak near 700 nm and its ratio to the reflectance at 670 nm to retrieve chl-a

in turbid waters was tested by Gitelson [57] . Several studies have also found that the first

four bands of Landsat are well correlated with total suspended matters [55,58–60] and the

analyses carried out with Pearson’s correlation (Table 3.2) are in agreement with their

results. By increasing the amounts of dissolved inorganic materials, the peak of visible

reflectance relocates from green band to red band [61]. In this study, the stepwise

multiple linear regression analysis was applied on all the visible bands and their

combinations to select significant variables. Visible band and their ratios constructed the

independent variables and p values greater than 0.1 were considered as a limit for factor

removal.
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Table 3.2. Pearson’s R correlation between limnological data and Landsat bands and
ratios (**): significant correlation for p<0.05.

Bands
Dry Season Wet Season

Chlorophyll-a
(mg/m3)

TSS
(mg/L)

Chlorophyll-a
(mg/m3)

TSS
(mg/L)

Blue -0.70** -0.29 -0.45** -0.55**

Green -0.60** -0.27 -0.31** -0.35**

Red -0.80** -0.07 -0.42** -0.41**

Near Infrared (NIR) -0.63** 0.20 -0.24 -0.32**

Blue/Green 0.26 -0.27 -0.23 -0.15
Blue/Red 0.78** -0.36** 0.20 0.05
Blue/Near Infrared (NIR) 0.60 -0.47** -0.30** -0.36**

Green/Blue -0.25 0.25 0.14 0.06
Green/Red 0.82** -0.22 0.76** 0.64**

Green/Near Infrared (NIR) 0.54 -0.46** -0.12 0.49**

Red/Blue -0.76** 0.32 -0.28 -0.29
Red/Green -0.81** 0.22 -0.76** -0.68**

Red/Near Infrared (NIR) -0.06 -0.49** -0.43** -0.62**

Near Infrared (NIR)/Blue -0.56 0.43** -0.01 -0.06
Near Infrared (NIR)/Green -0.51 0.46** -0.01 -0.01
Near Infrared (NIR)/Red 0.08 0.50** 0.29 0.08

As for chl-a, in dry season the selected band by the statistical analysis were Blue,

Blue/Red, Green/Red, Red/Blue, and Red/Green ratios, and in wet season were Red,

Green/Red, Red/Green, and Red/NIR  ratios . Therefore, the functional model is:

Dry season: Chl-a = a+(bBlue)+(c )+(d )+(e )+(f ) (3.9)

Wet season: Chl-a = a+(bRed)+ (c )+(d )+(e ) (3.10)

The variability of TSS concentration was also investigated using the same

procedure, incorporating visible bands and their ratios as independent variables in the

stepwise multiple linear regression analysis. The following functional model was selected

from the stepwise variable selection procedure for dry and wet season:

Dry season: TSS = a + (b ) + (c ) + (d ) + (e ) + (f )

+ (g ) (3.11)
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Wet season: TSS = a+(bBlue)+(cRed)+(d )+(e )+(f ) (3.12)

The statistical values given in Table 3.3 were obtained, as a result of the

regression analysis computation. The R2 values, which show the correlation between the

measured values and the estimated values from the satellite image, prove that the first

four bands and their ratios of Landsat satellite image are well capable of being used in the

measurement of chl-a and TSS concentrations. The model coefficients are given in Table

3.4 to compute chl-a and TSS at anywhere on the lake surface, based on the pixel

reflectance values. Maps given in Figure 3.2 were made using directly the satellite data of

the Lake Okeechobee’s entire surface, based on the equalities in Table 3.4.

Table 3.3. Statistical values obtained from regression analyses for chl-a and TSS

Regression analysis statistics
Dry Season Wet Season

Chl-a TSS Chl-a TSS
R Square 0.84 0.67 0.48 0.60
Standard error 8.84 6.07 20.88 12.77
p-value 0.000 0.000 0.005 0.002
Durbin-Watson 1.797 2.249 2.103 1.650
Observations 48 48 38 38

Table 3.4. Extracted equations based on regression analysis between limnological
parameters and Landsat bands

Season
Water quality
parameters

Formulae derived

Dry Season

Chlorophyll-a (mg/m3) = 525.5 - 1167(Blue) + 881.1(Blue/Red) -
1784.7(Green/Red) + 5331.5(Red/Blue) -
3096.2(Red/Green)

TSS (mg/L)
= -1037.79 - 74.63(Blue/NIR) - 8.86(Green/NIR)
+ 517.91(Red/NIR) - 799.23(NIR/Blue) +

127.76(NIR/Green) + 1100.92(NIR/Red)

Wet Season

Chlorophyll-a (mg/m3) = 3095.6 + 297.75(Red) - 1067.77(Green/Red) -
2144.45(Red/Green) - 35.04(Red/NIR)

TSS (mg/L) = 2855.76 - 182.90(Blue) + 361.89(Red) -
1018.25(Green/Red) - 1919.21(Red/Green) -

26.15(Red/NIR)
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Figure 3.2. Spatial and temporal patterns of chl-a and TSS concentrations in Lake
Okeechobee
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Chlorophyll-a

The results of correlation analysis between landsat bands and chl-a concentration

varied from −0.81 (Red/Green band ratio) to 0.82 (Green/Red band ratio) in dry season,

and from −0.76 (Red/Green band ratio) to 0.76 (Green/Red band ratio) in wet season

(Table 3.2). Also, significant relationships (R2= 0.82 and 0.76 in dry and wet seasons,

respectively) were observed with the Green/Red band ratio at a significance level of

p<0.05 (Table 3.2). Extracted equations based on regression analysis between chl-a and

Landsat bands showed correlation coefficients of 0.84 and 0.48 for dry and wet seasons,

respectively. Due to the existance of missing values in the monitoring sites dataset, 48

data points in dry season and 38 data points in wet season were used in the statistical

analysis. Table 3.4 presents the multiple regression models constructed through equations

3.9 and 3.10. Among the different combinations of bands and band ratios, this research

selected a multiple regression model and revealed the best significant relationships in

order to compare the estimated chl-a through the Landsat TM and OLI data with in situ

measurement data. The Durbin-Watson values should be greater than 1.5 and less than

2.5 to indicate that multiple linear regression data is free of first order linear auto-

correlation. For chl-a, the Durbin-Watson values were 1.797 and 2.103 in dry and wet

seasons, respectively, which lay in the accepted range.

Total suspended solids

As shown in Table 3.2, the correlation between the Landsat bands and TSS from

−0.49 (Red/NIR band ratio) to 0.50 (NIR/Red band ratio) in dry season, and from −0.68

(Red/Green band ratio) to 0.64 (Green/Red band ratio) in wet season. The correlation
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results with single bands ratios, not band ratios, indicated the strongest correlation (R2=

−0.55) at a significance level of p<0.05 with the blue band in wet season. Particularly in

dry season, the NIR band was closely related to TSS as seen by the high numerical value

of Blue/NIR, Green/NIR, Red/NIR, NIR/Blue, NIR/Green, and NIR/ Red (Table 3.2). To

construct multiple regression models, the bands and band ratios that indicated a good

correlation with TSS were selected. In dry season, the six above mentioned band ratios

showed significant relationships (R2=0.67), and in wet season, five band combinations

containing blue band, red band, green/red, red/green, and red/NIR revealed significant

relationships (R2=0.60) with TSS. The Durbin-Watson values were 2.249 and 1.650 in

dry and wet seasons, respectively, which lay in the accepted range. The normal

probability-probability (P-P) plots were generated based on the standardized residuals. If

the residuals are Normally Distributed the values should fall on the diagonal line of

identity. Straight lines in Figure 3.3 indicated the normal distribution for the studied

variables in both dry and wet seasons.
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Figure 3.3. The normal probability-probability (P-P) plots of regression standardized
residuals for chl-a and TSS in dry and wet seasons.

Nutrients (total phosphate and TKN)

Phosphorus and phosphate are closely related to some other parameters like

phytoplankton [32,62], turbidity and total suspended matters (TSM), and Secchi disk

transparency (SDT) [63], which is the basis for remote monitoring of TP dynamics [64].

Carlson [62] found that TP is also closely related to secchi disk with an exponential

equation. Remote estimation of total phosphorus (TP) and total phosphate has been

investigated based on its high correlation with optically active constituents [2,62,65].

Although there is a possibility that TP may be indirectly correlated to remote sensing
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measurements, few studies have been conducted to estimate TP concentration using

remotely sensed imagery and can be quantified using visual spectral bands.

Multispectral Landsat TM data have been widely used to monitor and map the TP

spatiotemporal pattern in different regions [65–67]. Empirical statistical regression

models were used to study the relationship between the concentration of phosphorus with

other water quality indicators, such as secchi depth and chl-a concentration [65]. Song, et

al. [48] studied the correlation between TP and TM1, TM2, TM3, and TM4 from the

Landsat 5, and found that each band had a correlation with TP of 0.62, 0.59, 0.55, and

0.51, respectively. Wu, et al. [65] used a combination of TM1, TM3/TM2, and TM1/TM3

data to correlate chl-a concentration and SD measurements with TP concentration. Also,

Alparslan et al. [2] used the first four bands of Landsat 7-ETM satellite data to map total

phosphate in Ömerli Dam, Turkey. Later, Alparslan, et al. [21] using Band1, Band2,

Band3, Band4, Band5 and Band7 of Landsat-5 TM Satellite Image obtained the amount

of total phosphorus concentration. Lim and Choi [18] used bands 2, 3, 4, and 5 of

Landsat-8/OLI, and constructed 3 multiple regression models by selecting both single

bands and band ratios, and obtained significant correlation coefficients.

Also, there is still little literature with regard to estimate nitrogen concentration in

waterbodies from remote sensing. Hood, et al. [68] studied two unique optical

characteristics of chlorophyll-a (chl-a), absorption and fluorescence, are strongly related

with the nitrogen concentration. Also, Hanson, et al. [69] proved the points regarding that

the fluorescence of chl-a would be influenced by nitrogen and phosphorous

concentrations. Additionally, Edwards, et al. [70] showed that suspended sediment

concentration (SSC), chl-a and colored dissolved organic matters (CDOM) are important
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substance sources of nutrients elements. Gong, et al. [71] measured different

concentrations of nitrogen and phosphorus using the reflectance spectra in the laboratory

and found their special features by hyperspectral remote sensing technique. Their result

showed the reflectance peaks at 404 and 477 nm, and phosphorus at 350 nm, for nitrogen

and phosphorous, respectively, and developed a quantitative retrieval model for these two

parameters. Karakaya and Evrendilek [72] applied Landsat 7 Enhanced Thematic Mapper

Plus (ETM+) data to measure the concentration of nitrite nitrogen (NO2-N) and nitrate

nitrogen (NO3-N) using best-fit multiple linear regression (MLR) models as a function of

Landsat 7 ETM+ and ground data in Mersin Bay, Turkey. Based on the Pearson’s

correlation between limnological data and Landsat bands and ratios, and also the

relationship between these nutrients, and TSS and chl-a (Table 3.5), different models for

total phosphate and TKN were developed in two wet and dry seasons.

Table 3.5. Pearson’s R correlation between observed water quality parameters and
Landsat bands and ratios (**): significant correlation for p<0.05.

Bands
Dry season Wet season Dry season Wet season

Total Phosphate
(mg/L)

TKN
(mg/L)

Blue 0.34** 0.59** -0.36** 0.01
Green 0.35** 0.55** -0.12 0.03
Red 0.50** 0.59** -0.31** 0.00
Near Infrared (NIR) 0.31** 0.61** 0.03 0.08
Blue/Green -0.21 -0.17 0.19 -0.05
Blue/Red -0.52** -0.40** 0.19 0.05
Blue/Near Infrared (NIR) -0.28 -0.54** 0.07 -0.29**
Green/Blue 0.21 0.20 -0.19 0.07
Green/Red -0.53** -0.58** 0.03 0.29**
Green/Near Infrared (NIR) -0.21 -0.62** -0.10 -0.32**
Red/Blue 0.52** 0.47** -0.17 -0.08
Red/Green 0.52** 0.60** -0.04 -0.29**
Red/Near Infrared (NIR) 0.19 -0.52** -0.15 -0.49**
Near Infrared (NIR)/Blue 0.27 0.62** -0.06 0.21
Near Infrared (NIR)/Green 0.21 0.66** 0.07 0.25
Near Infrared (NIR)/Red -0.20 0.59** 0.14 0.42**
Chlorophyll-a (mg/m3) -0.02 0.47** 0.51** 0.91**
TSS (mg/L) 0.90** 0.57** 0.79** 0.73**
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The selected bands by the statistical analysis for the estimation of total phosphate

in dry season were correlated with TSS, NIR, and Green/Red ratio, and TSS, Blue/Red,

NIR/Green, and NIR/Red in wet season. Therefore, the functional model is:

Dry season: Total Phosphate = a + (bTSS) + (c ) + (dNIR) (3.13)

Wet season: Total Phosphate = a + (bTSS) + (c ) + (d ) + (e ) (3.14)

The variability of TKN concentration was also investigated using the same

procedure, incorporating visible bands and their ratios as independent variables in the

regression analysis, and the following functional model was selected for dry and wet

season:

Dry season: TKN = a + (bChl-a) + (cTSS) + (dBlue) + (eRed) (3.15)

Wet season: TKN = a+(bChl-a)+(cTSS)+(d )+(e )+(f )+(g ) (3.16)

The statistical values given in Table 3.6 were obtained, as a result of the

regression analysis computation. The R2 values, which show the correlation between the

measured values and the estimated values from the satellite image, prove that the first

four bands and their ratios of Landsat satellite image plus the concentrations of chl-a and

TSS are well capable of being used in the measurement of total phosphate and TKN. The

model coefficients are given in Table 3.7 to compute total phosphate and TKN at

anywhere on the lake surface, based on both the pixel reflectance values and chl-a and

TSS concentrations. Maps given in Figure 3.4 were made using directly the satellite data

of the Lake Okeechobee’s entire surface, based on the equalities in Table 3.7.
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Table 3.6. Statistical values obtained as a result of regression analyses for total phosphate
and TKN
Regression analysis
statistics

Dry Season Wet Season
Total Phosphate TKN Total Phosphate TKN

R Square 0.85 0.88 0.80 0.86

Standard error 0.015 0.097 0.025 0.166

p-value 0.000 0.000 0.000 0.000

Durbin-Watson 1.974 2.027 2.488 1.627

Observations 50 50 38 48

Table 3.7. Extracted equations based on regression analysis between Total Phosphate and
TKN, and Landsat bands and other water quality parameters
Season Water quality parameters Formulae derived

Dry
Season

Total Phosphate (mg/L) = 0.468 + 0.001(TSS) - 0.202(Green/Red) - 2.56(NIR)

TKN (mg/L) = 0.641+ 0.009 (Chl-a) + 0.008(TSS) + 3.91(Blue) -
4.35(Red)

Wet
Season

Total Phosphate (mg/L) = -0.232 + 0.002(TSS) + 0.154(Blue/Red) +
1.66(NIR/Green) - 1.23(NIR/Red)

TKN (mg/L) = 2.21 + 0.017(Chl-a) + 0.001(TSS) - 0.057(Blue/NIR)
+ 0.345(Green/NIR) - 1.09(Red/NIR) - 0.249(NIR/Red)
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Figure 3.4. Spatial and temporal patterns of total phosphate and TKN in Lake
Okeechobee
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Total phosphate

The correlation of Landsat bands with total phosphate concentration ranged from

−0.53 (Green/Red band ratio) to 0.90 (TSS) in dry season, and from −0.62 (Green/NIR

band ratio) to 0.66 (NIR/Green band ratio) in wet season. In particular, total phosphate

concentration displayed a significant relationship (R= 0.90 and 0.66 in dry and wet

seasons, respectively) with TSS and NIR/Green band ratio at a significance level of

p<0.05 (Table 3.5). Multiple linear regression models constructed for total phosphate

estimation through band combination by selecting both correlataed water quality

parameters from ground data and imagery showing high correlation coefficients of 0.85

and 0.80 in dry and wet seasons, respectively. A total of 50 data points in dry season

seasons and 38 data points in wet season were used due to missing values in the in situ

measurements. Table 3.8 presents the MLR models constructed through equations 3.13

and 3.14. Among the different combinations of bands and band ratios, this research

selected a multiple regression model and revealed the best significant relationships in

order to compare the estimated total phosphate through the Landsat TM and OLI data

with in situ measurement data. The Durbin-Watson values were 1.947 and 2.488 in dry

and wet seasons, respectively, which lay in the accepted range.

TKN

The correlation between the landsat bands and TKN from −0.36 (Blue band) to

0.79 (TSS) in dry season, and from -0.49 (Red/NIR band ratio) to 0.91 (chl-a) in wet

season. In particular, TKN concentration displayed a significant relationship (R= 0.79

and 0.91 in dry and wet seasons, respectively) with TSS and chl-a at a significance level
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of p<0.05 (Table 3.5). In dry season, the blue and red bands showed the highest

correlation, and in wet season Red/NIR and NIR/Red band ratios were closely related to

TKN (Table 3.5). To construct multiple regression models, the highly correlated chl-a

and TSS, and the bands and band ratios that indicated a good correlation with TKN were

selected. In dry season, chl-a and TSS, and Blue and Red bands showed significant

relationships (R=0.94), and in wet season, chl-a and TSS, and four band combinations

containing Blue/NIR, Green/NIR, Red/NIR, and NIR/Red band ratios revealed significant

relationships (R=0.60) with TKN. The Durbin-Watson values were 2.027 and 1.627 in

dry and wet seasons, respectively, which lay in the accepted range. The normal

probability-probability (P-P) plots for the studied variables in both dry and wet seasons

indicated the normal distribution for the total phosphate and TKN in both dry and wet

seasons (Figure 3.5).

After identifiying the regression functions for the four studied water quality

parameters, and considering their spatial distribution that were mapped for the whole lake

surface in two seasons (Figures 3.2 and 3.3), different spatial and temporal variations

were observe. The generated maps were reclassified taking into account the ranges in

order to define the trophic conditions of Lake Okeechobee in two seasons and in three

years of 2000, 2007, and 2015, which is summarized in Table 3.8.
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Figure 3.5. The normal probability-probability (P-P) plots of regression standardized
residuals for total phosphate and TKN in dry and wet seasons.
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Table 3.8. The area based condition of water quality parameters in Lake Okeechobee in dry and wet seasons, and in three years of

2000, 2007, and 2015 (Km2)

Dry Season Wet Season

0-50 50-100 100-150 150-200 >200 0-20 20-40 40-60 60-80 80-100 >100

Chl-a
(mg/M3)

2000 51.6 287.3 722.9 175.2 93.1 514.7 842.9 50.5 7 0.1 0

2007 96.2 334.1 451 317.9 170.2 616.7 687.8 63.8 37.9 3.6 5.4

2015 117.4 226.6 767.3 247.9 8 913.5 346.2 80.6 66.1 8.8 0

0-40 40-80 80-120 120-160 >160 0-15 15-30 30-45 45-60 60-75 >75

TSS
(mg/L)

2000 31.9 17.9 543.9 735.8 85.4 605.4 772.2 31.5 6 0.1 0

2007 46.9 74.2 389.9 845.2 58.5 555.8 739.8 67.1 42.4 3.5 6.3

2015 149.8 154.2 222.2 253.3 637 932.7 359.2 75.8 45.4 2.4 0

Dry Season Wet Season

0-0.07 0.07-0.15 0.15-0.20 0.20-0.25 0.25-0.30 >0.30 0-0.07 0.07-0.15 0.15-0.20 0.20-0.25 0.25-0.30 >0.30

Total
Phosphate

(mg/L)

2000 5.9 431.3 968 6.8 0.6 2.4 211.5 1166 22.3 5.9 3.5 6

2007 57.4 530.5 627.4 178.1 18.5 3.1 209.8 997.4 45.9 23.3 20.7 117.8

2015 71.7 15.8 885.3 442.5 0.01 0 104.5 1243.9 9.6 6.1 5.9 45.2

0-1.0 1-1.5 1.5-2.0 2.0-2.7 2.7-3.5 >3.5 0-1.0 1-1.5 1.5-2.0 2.0-2.7 2.7-3.5 >3.5

TKN
(mg/L)

2000 6.7 1335.5 58.4 10.2 2.2 2.1 280.1 794.2 313.4 23.8 3.6 0

2007 264.7 963.4 138.1 11.2 0.3 0 300.8 683.1 338.6 86.6 1.2 4.7

2015 0.1 0.2 110.7 697.7 510.6 4.8 709.4 432.1 152.2 103 18.6 0
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4. Conclusion

The water supplies for domestic and industrial use, irrigated agriculture, and

livestock and mining activities require continuous monitoring to make sure that the

required standards and criteria are met. However, due to anthropogenic activities and

industrial development, water quality has dramatically degraded. A combination of

remote sensing, GIS, and traditional in-situ sampling can lead to perform a better

monitoring program for water quality parameters in various waterbodies.

In this study, bio-physical parameters associated with water quality in Lake

Okeechobee were investigated based on atmospherically corrected data. The principal

objective of this study was to monitor and assess the spatial and temporal changes of four

water quality parameters including total suspended solids (TSS), chlorophyll-a (chl-a),

total phosphate, and total kjeldahl nitrogen (TKN), by using the application of integrated

remote sensing, GIS data, and statistical techniques. For this purpose, two dates of

Landsat Thematic Mapper (TM) data in 2000 (February 29); 2007 (January 31), and one

date of Landsat Operational Land Imager (OLI) in 2015 (February 6) in the dry season,

and three dates of TM data in 2000 (July 6); 2007 (August 11), and one date of OLI data

in 2015 (September 15) in the wet season of the subtropical climate of South Florida,

were used to assess temporal and spatial patterns and dimensions of studied parameters in

Lake Okeechobee, Florida. The simultaneous observed data of four studied parameters

were obtained from 26 monitoring stations and were used for the development and

validation of the models. The optical bands in the region from blue to near infrared and

all the possible band ratios were used to explore the relation between the reflectance of

waterbody and observed data.
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The predictive models to estimate chl-a and TSS concentrations were developed

through the use of stepwise multiple linear regression (MLR) and gave high coefficients

of determination in dry season (R2 = 0.84 for chl-a and R2 = 0.67 for TSS) and moderate

coefficients of determination in wet season (R2 = 0.48 for chl-a and R2 = 0.60 for TSS).

Values for total phosphate and TKN were strongly correlated with chl-a and TSS

concentration and some bands and their ratios, therefore, total phosphate and TKN were

estimated using best-fit multiple linear regression models as a function of Landsat TM

and OLI, and ground data and showed a high coefficient of determination in dry season

(R2 = 0.85 for total phosphate and R2 = 0.88 for TKN) and in wet season (R2 = 0.80 for

total phosphate and R2 = 0.86 for TKN). The multiple linear regression (MLR) models

showed a good trustiness to monitor and predict the spatiotemporal variations of the

studied water quality parameters in Lake Okeechobee.

This study showed that Landsat TM and OLI data and water quality parameters at

various locations of Lake Okeechobee can be related through a regression analysis and

constitute a model that can be used to measure water quality parameters over the entire

lake surface. The four studied parameters mapped by identifying the best set of band

combinations and also their interreltionship to describe the linkage between the spectral

response to limnological data. The same method can be applied to the trophic conditions

for landsat images in different years.
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Abstract

In this study, the bio-physical parameters associated with water quality of Florida

Bay were investigated based on atmospherically corrected data. The principal objective

of this study was to monitor and assess the spatial and temporal changes of four water

quality parameters: turbidity, chlorophyll-a (chl-a), total phosphate, and total nitrogen

(TN), using the application of integrated remote sensing, GIS data, and statistical

techniques. For this purpose, three dates of Landsat Thematic Mapper (TM) data in 2000

(February 13), 2007 (January 31), and one date of Landsat Operational Land

Imager (OLI) in 2015 (January 5) in the dry season, and three dates of TM data in 2000

(August 7), 2007 (September 28), and one date of OLI data in 2015 (September 2)  in the

wet season of the subtropical climate of South Florida, were used to assess temporal and

spatial patterns and dimensions of studied parameters in Florida Bay, USA. The

simultaneous observed data of four studied parameters were obtained from 20 monitoring

stations and were used for the development and validation of the models. The optical

bands in the region from blue to near infrared and all the possible band ratios were used

to explore the relation between the reflectance of waterbody and observed data. The

predictive models to estimate chl-a and turbidity concentrations were developed through

the use of stepwise multiple linear regression (MLR) and gave high coefficients of

determination in dry season (R2 = 0.86 for chl-a and R2 = 0.84 for turbidity) and

moderate coefficients of determination in wet season (R2 = 0.66 for chl-a and R2 = 0.63

for turbidity). Values for total phosphate and TN were correlated with chl-a and turbidity

concentration and some bands and their ratios. Total phosphate and TN were estimated

using best-fit multiple linear regression models as a function of Landsat TM and OLI,
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and ground data and showed a high coefficient of determination in dry season (R2 = 0.74

for total phosphate and R2 = 0.82 for TN) and in wet season (R2 = 0.69 for total

phosphate and R2 = 0.82 for TN). The MLR models showed a good trustiness to monitor

and predict the spatiotemporal variations of the studied water quality parameters in

Florida Bay.

Keywords: Water quality, Spatiotemporal modelling, Remote Sensing, Landsat,

chlorophyll, Turbidity, Nutrients, Florida Bay.

1. Introduction

Florida Bay is the other important waterbody of South Florida that is a dynamic

and biologically productive system, which provides unique habitats. Based on the volume

of freshwater flow coming from the Everglades, the salinity of the Florida Bay is varies

in different wet and dry seasons. Therefore, in this area, the flow of freshwater from the

Everglades determines the conditions in Florida Bay. The regular inflow from the

everglades also contain significant amounts of nutrients, which provide the required

energy for aquatic organisms, and the constant variation of inflow and sediments

discharged into the region make the Florida Bay and its surrounded estuaries one of the

most biologically productive systems on earth [18].

The majority of the water quality studies using the application of remote sensing

have focused on optically active variables, such as chlorophyll-a (chl-a), total suspended

solids (TSS), and turbidity, while other important water quality variables such as total

phosphorous (TP) and total nitrogen (TN) which existing literatures omit due to their

weak optical characteristics and low signal noise ratio. In chapter III, the applicability of
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remotely-sensed data to measure the concentrations of chl-a, TP, total phosphate, and TN

were discussed. Turbidity and total suspended matters are considered as important

variables in many studies due to their linkage with incoming sunlight that in turn affects

photosynthesis for growth of algae and plankton. Water turbidity is an optical property of

water, which causes the scattering and absorption the light more than its transmitting. As

water turbidity is mainly a result of the presence of suspended matter, it is used to

measure the concentration of fluvial suspended sediment and is commonly regarded as

the opposite of clarity. The complex nature of suspended substances in water changes the

reflectance of the waterbody and therefore causes variation in color. To this end,

interpretation of remotely sensed data just based on the color of water is not adequate and

accurate. In this study, the spatial and temporal changes of four water quality parameters

including turbidity, chlorophyll-a (chl-a), total phosphate, and total nitrogen (TN), were

investigated by using the application of integrated remote sensing, GIS data, and

statistical techniques. The simultaneous observed data of four studied parameters were

obtained from 20 monitoring stations and were used for the development and validation

of the models. The optical bands in the region from blue to near infrared and all the

possible band ratios were used to explore the relation between the reflectance of

waterbody and observed data.

2. Materials and methods

2.1. Study area

South Florida is one of the unique parts of the United States with a subtropical

climate. It contains two important vast waterbodies of Lake Okeechobee and the

Everglades, which the first one is the Florida’s largest freshwater lake and the second one
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is the largest subtropical wilderness in the United States. In this study, Lake Okeechobee,

which is the largest and the most important lake in South Florida, is selected to be

investigated for its bio-physical parameters associated with water quality using remote

sensing. Florida Bay is located at the southern part of Florida and on the southeast is

bordered by the Florida Keys and is open to the Gulf of Mexico along its western margin.

Runoff from the Everglades enters this area and a number of its northern creeks, which in

its way flows through different saw-grass areas, sloughs and wetlands. Figure 4.1 shows

the location of the study area and the selected water quality monitoring sites. The average

annual temperature ranges from 19.2 °C to 28.7 °C and the annual rainfall in the entire

area of South Florida is generally about 55 inches (1,400 mm). Considering the

subtropical climate of South Florida, the average rainfall is still considerable in the dry

season. In addition, during El Niño phenomenon, greater amounts of rainfall in dry

season are observed in South Florida.

Figure 4.1. The location of the study area and the water quality monitoring sites.

USA

FloridaFlorida Bay
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2.2. Limnological data

The monitoring stations, downloaded from the South Florida Water Management

District's (SFWMD) geographic information systems data catalog, were overlaid with the

Florida bay map in ArcGIS to design a network of sampling stations that include

sufficient historical data to construct a robust statistical database of studied parameters,

considering a suitable spatial distribution on the Lake. The limnological data on chl-a,

turbidity, total phosphate, and TN used in this study were obtained from the DBHYDRO

(environmental database of SFWMD), United States Geological Survey (USGS), the

Environmental Protection Agency (EPA), and the National Water Quality Monitoring

Council (NWQMC) from 20 selected monitoring stations. Then, a database was

developed for the observed data of four studied parameters simultaneous or in the closest

day of the month as the satellite image are obtained in wet (May 15th through October

15th) and dry seasons (October 16th through May 14th), and was used for the development

and validation of the models. The SPSS 16.0 software package was employed for data

treatment. The descriptive statistics of the four studied parameters are shown in Table

4.1.

Due to differences in units of the studied water quality parameters in the dataset,

pre-treatment of data is required. in order to the homogenization [36]. In this study, data

pre-treatment methods, such as the elimination of non-informative variables, the

treatment of missing data values, and the detection and treatment of outliers were

performed before the statistical analyses.
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Table 4.1. Descriptive statistics of chl-a, turbidity, total phosphate, and TN in the Florida

Bay

Indices Chl-a
(mg/m3)

Turbidity
(NTU)

total phosphate
(mg/L)

TN
(mg/L)

D
ry

 S
ea

so
n

2000, February 13

Minimum 0.80 0.70 0.001 0.186
Maximum 8.30 17.70 0.022 0.928
Average 2.24 5.04 0.008 0.522
St. Dev. 2.09 4.91 0.006 0.263

2007, January 31

Minimum 0.11 0.330 0.005 0.145
Maximum 5.97 14.69 0.042 0.866
Average 1.54 4.91 0.013 0.446
St. Dev. 1.61 3.47 0.008 0.191

2015, January 5

Minimum 0.47 0.40 0.002 0.262
Maximum 4.20 11.4 0.024 1.110
Average 1.69 2.84 0.007 0.617
St. Dev. 1.45 2.57 0.005 0.235

W
et

 S
ea

so
n

2000, August 7

Minimum 1.30 7.40 0.019 0.204
Maximum 0.59 2.49 0.012 1.551
Average 0.36 1.63 0.004 0.940
St. Dev. 1.3 7.4 0.019 0.435

2007, September 28

Minimum 0.30 0.80 0.005 0.249
Maximum 5.90 8.60 0.023 1.142
Average 2.18 3.37 0.012 0.567
St. Dev. 1.78 1.93 0.005 0.253

2015, September 2

Minimum 0.90 2.50 0.005 0.299
Maximum 3.40 6.90 0.021 1.920
Average 1.26 4.16 0.014 1.354
St. Dev. 1.34 1.80 0.004 0.644

2.3.Satellite data

The remotely sensed data were acquired from the Landsat Thematic Mapper (TM)

and Landsat OLI sensors onboard Landsat 5 and 8, respectively, in 2000, 2007, and 2015.

Pre-processing of the Landsat data including the radiometric calibration and atmospheric

correction is essential for quantitative studies [37,38], especially for lake waters that the

reflected light is small [39]. The radiance of small lakes in average is usually less than

10%, and even in many cases values less than 1% of total radiance are also reported [40].

For this purpose, in order to remove the effects of high local variability, the digital
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number values should be first converted to unitless planetary reflectance before the

process of atmospheric correction. As two types of imagery were used in this study, two

different methods were used for the radiometric calibration and Atmospheric correction

of TM and OLI data. ERDAS IMAGINE 2014 and ESRI ArcGIS 10.0 platforms were

used for image processing.

Preprocessing of Landsat-5/TM data

The digital number (DN) values of each band were converted to radiance values

to remove the voltage bias and gains from the satellite sensor as follows:

L =
( − )( − ) ∗ ( − ) +  (4.1)

Where, L is the spectral radiance at the sensor's aperture in watts/(meter

squaredsterµm), Lminλ is the spectral radiance that is scaled to QCALmin in

watts/(meter squaredsterµm), Lmaxλ is the spectral radiance that is scaled to QCALmax

in watts/(meter squaredsterµm), QCALmin is the minimum quantized calibrated pixel

value (corresponding to Lminλ) in DN, QCALmax is and the maximum quantized

calibrated pixel value (corresponding to Lmaxλ) in DN.

As the process of atmospheric correction, the radiance values are converted to at-

satellite reflectance values that consider the variation of sun angle in different latitude,

time of day, season, and the distance between the earth and sun. The simplified model of

the effects of the atmosphere is [41]:

p =
  

 
(4.2)
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Where, ρp is the unitless planetary reflectance, L is the spectral radiance at the

sensor’s aperture, d is the Earth–Sun distance in astronomical units, ESUN is the mean

solar exo-atmospheric irradiance, and θs is the solar zenith angle in degrees.

Preprocessing of Landsat-8/OLI data

COST-DOS was used as the radiometric correction method for mitigating

atmospheric effects recorded by Landsat-8/OLI data. It accounts for absorption,

scattering, and refraction of atmospheric particles such as particulate matter and water

vapor [42]. The improved cosine of the solar zenith angle (COST) method presented by

Chavez [43] was used to convert the DN values of each band of Landsat-8/OLI to

reflectance values as follows:

P =
 (   )

 ( 
 ) (4.3)

Where, P is the dimensionless spectral reflectance value of surface water, π is a

constant (3.14159265), Lλsensor is the spectral radiance value, and Lλhaze is the path

radiance or upwelling atmospheric spectral radiance. d is the distance between the earth

and the sun in astronomical units, and θs is the solar zenith angle (°). ESUNλ is the solar

spectral irradiance at to the top of atmosphere (TOA). The spectral radiance value

(Lλsensor) at the satellite sensor’s aperture (Wm−2sr−1μm−1) is calculated as follows:

Lλsensor = (Mλ  Qcal) + Aλ (4.4)

Where, Mλ is the band-specific multiplicative rescaling factor, Aλ is the band-

specific additive rescaling factor, and Qcal is the minimum quantized and calibrated
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standard product pixel value. Both Mλ and Aλ are provided in the Landsat 8 metadata file

(MTL file).

Lλhaze = Lλmin − Lλ,1% (4.5)

Where, Lλhaze is the path radiance or upwelling atmospheric spectral radiance

scattered in the direction of the sensor entrance pupil and within the sensor’s field of

view, Lλmin is the minimum spectral radiance, and Lλ,1% is the spectral radiance value of

the darkest object on each band of the Landsat 8 and can be calculated as follows:

Lλ,1% =
.    ( )

 
(4.6)

The theoretical radiance of a dark object is then computed, under the assumption

that dark objects have 1% or smaller reflectance [43,44].

2.4. Statistical methods

In this study, Pearson’s correlation analysis was utilized to determine the linear

relationship and calculate the correlation between two variables in order to characterize

the relationship between various TM and OLI bands and each of the 4 water quality

parameters (chl-a, TSS, total phosphate and TKN) for the 26 selected stations. The

Pearson’s correlation basic equation is defined as follows:

R =
( )( )( ) ( ) (4.7)

Where, Xband is the corrected reflectance value, Xband is the mean of the corrected

reflectance value, YWQP is the in situ WQPs data, and YWQP is the mean of the in situ WQP
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data. Then, a linear multiple regression analysis was conducted for all WQPs. The

general formula for multiple regressions is as follows:

WQP = a + (b  Xk,1) + (c  Xk,2) + (d  Xk,3) + (e  Xk,4) (4.8)

Where, WQP is the dependent variable and represents measured (or known) water

quality parameters (chl-a, TSS, total phosphate and TKN) at study site k and X is the

independent reflectance variable acquired from the Landsat-5/TM or Landsat-8/OLI

images at study site k. The numbers represent the band number and a, b, c, d, and e are

the model coefficients using both the measured water quality parameter value at a

particular station and the known pixel reflectance values there, according to the least

squares algorithm.

3. Results and discussion

In this study, statistical techniques were also applied to find the most significant

relationships between water quality parameters and reflectance values of visible band of

TM and OLI data and their combinations [3,19,45–48]. Pearson’s correlation was carried

out between Landsat bands, and chlorophyll and turbidity concentrations to find the most

significant relationships. Previous studies [28,46,48–51] found a very significant

correlation between chlorophyll concentration and water transparency and the

relationships among the visible bands. As regards to chlorophyll, the prominent

scattering-absorption features of chl-a include strong absorption between 450–475 nm

(blue) and at 670 nm (red), and reflectance reaches to peak at 550 nm (green) and near

700 nm (NIR). The applicability of reflectance peak near 700 nm and its ratio to the

reflectance at 670 nm to retrieve chl-a in turbid waters was tested by Gitelson [52]. By
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increasing the amounts of dissolved inorganic materials, the peak of visible reflectance

relocates from green band to red band [53]. Alparslan, et al. [54] obtained the amount of

turbidity from Band1, Band2, Band3, Band4, Band5 and Band7 of Landsat-5 TM

Satellite Image. He, et al. [55] used a combination of Landsat TM bands 2, 3, 6 and 7 to

correlate with the in situ turbidity measurements. In this study, the stepwise multiple

linear regression analysis was applied on all the visible bands and their combinations to

select significant variables. Visible band and their ratios constructed the independent

variables and p values greater than 0.1 were considered as a limit for factor removal.

Table 4.2. Pearson’s R correlation between limnological data and Landsat bands and
ratios (**): significant correlation for p<0.05.

Bands
Dry Season Wet Season

Chlorophyll-a
(mg/m3)

Turbidity
(NTU)

Chlorophyll-a
(mg/m3)

Turbidity
(NTU)

Blue -0.38** 0.74** -0.34** -0.05
Green -0.28 0.80** -0.57** 0.01
Red -0.23 0.73** -0.09 -0.01
Near Infrared (NIR) 0.19 0.52** 0.13 -0.20
Blue/Green -0.19 -0.53** 0.65** -0.29**

Blue/Red -0.34** -0.02 -0.02 -0.11
Blue/Near Infrared (NIR) -0.52** 0.52** -0.35** 0.25**

Green/Blue 0.26 0.53** -0.59** 0.31**

Green/Red -0.27 0.53** -0.27 0.05
Green/Near Infrared (NIR) -0.41** 0.63** -0.61** 0.31**

Red/Blue 0.39** 0.05 0.01 0.12
Red/Green 0.25 -0.48** 0.22 -0.05
Red/Near Infrared (NIR) -0.41** 0.51** -0.64** 0.46**

Near Infrared (NIR)/Blue 0.60** -0.35 0.20 -0.29**

Near Infrared (NIR)/Green 0.38** -0.57** 0.27 -0.35**

Near Infrared (NIR)/Red 0.35** -0.51** 0.33** -0.42**

As for chl-a, in dry season the selected band by the statistical analysis were

Blue/Red, Blue/NIR, Green/Red, Red/Blue, and NIR/Blue ratios, and in wet season were

Red, Green/Red, Red/Green, and Red/NIR  ratios. Therefore, the functional model is:
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Dry season: Chl-a = a+(b )+(c )+(d )+(e )+(f ) (4.9)

Wet season: Chl-a = a+(b Green)+(c )+(d )+(e )+(f ) (4.10)

The variability of TSS concentration was also investigated using the same

procedure, incorporating visible bands and their ratios as independent variables in the

stepwise multiple linear regression analysis. The following functional model was selected

from the stepwise variable selection procedure for dry and wet season:

Dry season: Turbidity = a + (b Blue) + (cRed) + (d ) + (e ) (4.11)

Wet season: Turbidity = a + (b ) + (c ) + (d ) + (e ) (4.12)

The statistical values given in Table 4.3 were obtained, as a result of the

regression analysis computation. The R2 values, which show the correlation between the

measured values and the estimated values from the satellite image, prove that the first

four bands and their ratios of Landsat satellite image are well capable of being used in the

measurement of chl-a and turbidity concentrations. The model coefficients are given in

Table 4.4 to compute chl-a and turbidity at anywhere on the lake surface, based on the

pixel reflectance values. Maps given in Figure 4.2 were made using directly the satellite

data of the Florida Bay’s entire surface, based on the equalities in Table 4.4.

Table 4.3. Statistical values obtained from regression analyses for chl-a and turbidity

Regression analysis statistics
Dry Season Wet Season

Chl-a turbidity Chl-a turbidity
R Square 0.86 0.84 0.66 0.63
Standard error 1.186 1.499 1.174 1.496
p-value 0.000 0.000 0.002 0.001
Durbin-Watson 1.667 1.937 1.712 2.052
Observations 40 58 38 40
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Table 4.4. Extracted equations based on regression analysis between limnological

parameters and Landsat bands

Season Water quality parameters Formulae derived

Dry
Season

Chlorophyll-a (mg/m3) = -18.73 + 5.54(Blue/Red) - 0.82(Blue/NIR) +
0.80(Green/Red) + 30.95(Red/Blue) -
17.64(NIR/Blue)

Turbidity (NTU) = -0.24 - 53.34(Blue) + 66.1(Red) +
1.48(Green/NIR) +0.08(Red/Green)

Wet
Season

Chlorophyll-a (mg/m3) = -83.56 - 11.11(Green) + 38.63(Blue/Green) +
47.13(Green/Blue)
-0.18(Green/NIR) + 0.52(Red/NIR)

Turbidity (NTU) = -5.54 + 6.67(Green/Blue) - 1.2(Green/NIR) +
3.21(Red/NIR) - 1.51(NIR/Blue)

Chlorophyll-a

The results of correlation analysis between landsat bands and chl-a concentration

varied from −0.52 (Blue/NIR band ratio) to 0.60 (NIR/Blue band ratio) in dry season, and

from −0.64 (Red/NIR band ratio) to 0.65 (Blue/Green band ratio) in wet season (Table

4.2). Extracted equations based on regression analysis between chl-a and Landsat bands

showed correlation coefficients of 0.86 and 0.66 in dry and wet seasons, respectively.

Due to the existance of missing values in the monitoring sites dataset, 40 data points in

dry season and 58 data points in wet season were used in the statistical analysis.Table 4.4

presents the multiple regression models constructed through equations 4.9 and 4.10.

Among the different combinations of bands and band ratios, this research selected a

multiple regression model and revealed the best significant relationships in order to

compare the estimated chl-a through the Landsat TM and OLI data with in situ

measurement data. The Durbin-Watson values should be greater than 1.5 and less than

2.5 to indicate that multiple linear regression data is free of first order linear auto-
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correlation. For chl-a, the Durbin-Watson values were 1.667 and 1.712 in dry and wet

seasons, respectively, which lay in the accepted range.

Figure 4.2. Spatial and temporal patterns of chl-a and turbidity concentrations in Florida
Bay

Turbidity

The correlation between the Landsat bands and TSS ranged from −0.57

(NIR/Green band ratio) to 0.80 (Green band) in dry season, and from −0.42 (NIR/Red
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band ratio) to 0.46 (Red/NIR band ratio) in wet season (Table 4.2). The strongest

correlations (R2= 0.74 with blue, 0.80 with green, and 0.73 with red band) at a

significance level of p<0.05 were found from the correlation with single bands.

Particularly in wet season, the NIR band was closely related to turbidity as seen by the

high numerical value of Blue/NIR, Green/NIR, Red/NIR, NIR/Blue, NIR/Green, and

NIR/ Red (Table 4.2). To construct multiple regression models, the bands and band ratios

that indicated a good correlation with turbidity were selected. In dry season, four band

and band ratios of blue, red, green/NIR, and red/green showed significant relationships

(R2=0.84), and in wet season, four band combinations containing green/blue, green/NIR,

red/NIR, and NIR/blue revealed significant relationships (R2=0.63) with turbidity. The

Durbin-Watson values were 1.937 and 2.052 in dry and wet seasons, respectively, which

lay in the accepted range.

The normal probability-probability (P-P) plots were generated based on the

standardized residuals. If the residuals are Normally Distributed the values should fall on

the diagonal line of identity. Straight lines in Figure 4.3 indicated the normal distribution

for the studied variables in both dry and wet seasons.
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Figure 4.3. The normal probability-probability (P-P) plots of regression standardized
residuals for chl-a and turbidity in dry and wet seasons.

Nutrients (total phosphate and total nitrogen)

Phosphorus and phosphate are closely related to some other parameters like

phytoplankton [31,56], turbidity and total suspended matters (TSM), and Secchi disk

transparency (SDT) [57], which is the basis for remote monitoring of TP dynamics [58].

TP is closely related to Chl-a concentration, and total suspended matter usually acts as a

carrier for TP loading, thus, TP is also closely related to secchi disk with an exponential

equation [56]. Remote estimation of total phosphorus (TP) and total phosphate has been

investigated based on their high correlation with optically active constituents [3,56,59].
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Although there is a possibility that TP may be indirectly correlated to remote sensing

measurements, few studies have been conducted to estimate TP concentration using

remotely sensed imagery and can be quantified using visual spectral bands.

Multispectral Landsat TM data have been widely used to monitor and map the TP

spatiotemporal pattern in different regions [59–61]. Empirical statistical regression

models were used to study the relationship between the concentration of phosphorus with

other water quality indicators, such as secchi depth and chl-a concentration [59]. Song, et

al. [44] studied the correlation between TP and TM1, TM2, TM3, and TM4 from the

Landsat 5, and found that each band had a correlation with TP of 0.62, 0.59, 0.55, and

0.51, respectively. Wu, et al. [59] used a combination of TM1, TM3/TM2, and TM1/TM3

data to correlate chl-a concentration and SD measurements with TP concentration. Also,

Alparslan et al. [3] used the first four bands of Landsat 7-ETM satellite data to map total

phosphate in Ömerli Dam, Turkey. Later, Alparslan, et al. [54] using Band1, Band2,

Band3, Band4, Band5 and Band7 of Landsat-5 TM Satellite Image obtained the amount

of total phosphorus concentration. Lim and Choi [19] used bands 2, 3, 4, and 5 of

Landsat-8/OLI, and constructed 3 multiple regression models by selecting both single

bands and band ratios, and obtained significant correlation coefficients.

Also, there is still little literature with regard to estimate nitrogen concentration in

waterbodies from remote sensing. Hood, et al. [62] studied two unique optical

characteristics of chlorophyll-a (chl-a), absorption and fluorescence, are strongly related

with the nitrogen concentration. Also, Hanson, et al. [63] proved the points regarding that

the fluorescence of chl-a would be influenced by nitrogen and phosphorous

concentrations. Additionally, Edwards, et al. [64] showed that suspended sediment
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concentration (SSC), chl-a and colored dissolved organic matters (CDOM) are important

substance sources of nutrients elements. Gong, et al. [65] measured different

concentrations of nitrogen and phosphorus using the reflectance spectra in the laboratory

and found their special features by hyperspectral remote sensing technique. Their result

showed the reflectance peaks at 404 and 477 nm, and phosphorus at 350 nm, for nitrogen

and phosphorous, respectively, and developed a quantitative retrieval model for these two

parameters. Karakaya and Evrendilek [66] applied Landsat 7 Enhanced Thematic Mapper

Plus (ETM+) data to measure the concentration of nitrite nitrogen (NO2-N) and nitrate

nitrogen (NO3-N) using best-fit multiple linear regression (MLR) models as a function of

Landsat 7 ETM+ and ground data in Mersin Bay, Turkey. Based on the pearson

correlation between limnological data and Landsat bands and ratios, and also the

relationship between these nutrients, and turbidity and chl-a (Table 4.5), different models

for total phosphate and TN were developed in two wet and dry seasons.

Table 4.5. Pearson’s R correlation between observed water quality parameters and
Landsat bands and ratios (**): significant correlation for p<0.05.

Bands
Dry season Wet season Dry season Wet season

Total Phosphate (mg/L) Total Nitrogen (mg/L)
Blue 0.34** 0.59** -0.36** 0.01
Green 0.35** 0.55** -0.12 0.03
Red 0.50** 0.59** -0.31** 0.00
Near Infrared (NIR) 0.31** 0.61** 0.03 0.08
Blue/Green -0.21 -0.17 0.19 -0.05
Blue/Red -0.52** -0.40** 0.19 0.05
Blue/Near Infrared (NIR) -0.28 -0.54** 0.07 -0.29**
Green/Blue 0.21 0.20 -0.19 0.07
Green/Red -0.53** -0.58** 0.03 0.29**
Green/Near Infrared (NIR) -0.21 -0.62** -0.10 -0.32**
Red/Blue 0.52** 0.47** -0.17 -0.08
Red/Green 0.52** 0.60** -0.04 -0.29**
Red/Near Infrared (NIR) 0.19 -0.52** -0.15 -0.49**
Near Infrared (NIR)/Blue 0.27 0.62** -0.06 0.21
Near Infrared (NIR)/Green 0.21 0.66** 0.07 0.25
Near Infrared (NIR)/Red -0.20 0.59** 0.14 0.42**
Chlorophyll-a (mg/m3) -0.02 0.47** 0.51** 0.91**
Turbidity (NTU) 0.90** 0.57** 0.79** 0.73**
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The selected bands by the statistical analysis for the estimation of total phosphate

in dry season were correlated with chl-a, Blue/Red, Red/Blue, and NIR/Blue ratios, and

chl-a, Blue/Green, Green/Blue, Green/Red, and Green/NIR ratios in wet season.

Therefore, the functional model is:

Dry season: Total Phosphate = a + (bChl-a) + (c ) + (d ) + (e ) (4.13)

Wet season: Total Phosphate = a + (bChl-a) + (c ) + (d ) + (e )

+ (f ) (4.14)

The variability of TN concentration was also investigated using the same

procedure, incorporating visible bands and their ratios as independent variables in the

regression analysis, and the following functional model was selected for dry and wet

season:

Dry season: TN = a + (b Total Phosphate) + (c Turbidity) + (d ) +(e ) +

(d ) +(e ) (4.15)

Wet season: TN = a + (b Total Phosphate) + (c Chl-a) + (dRed) + (e NIR) +

(f ) (4.16)

The statistical values given in Table 4.6 were obtained, as a result of the

regression analysis computation. The R2 values, which show the correlation between the

measured values and the estimated values from the satellite image, prove that the first

four bands and their ratios of Landsat satellite image plus the values of chl-a and

turbidity are well capable of being used in the measurement of total phosphate and TN.

The model coefficients are given in Table 4.7 to compute total phosphate and TN at
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anywhere on the bay surface, based on both the pixel reflectance values and chl-a and

turbidity concentrations. Maps given in Figure 4.4 were made using directly the satellite

data of the Florida Bay’s entire surface, based on the equalities in Table 4.7.

Table 4.6. Statistical values obtained as a result of regression analyses for total phosphate

and TN

Regression analysis statistics
Dry Season Wet Season

Total Phosphate TN Total Phosphate TN

R Square 0.74 0.82 0.69 0.82

Standard error 0.004 0.101 0.003 0.128

p-value 0.000 0.001 0.001 0.000

Durbin-Watson 1.691 1.585 1.912 1.945

Observations 40 36 37 32

Table 4.7. Extracted equations based on regression analysis between Total Phosphate and
TN, and Landsat bands and other water quality parameters

Season Water quality parameters Formulae derived

Dry Season

Total Phosphate (mg/L) = -0.101 + 0.002  (Chl-a) + 0.022  (Blue/Red) + 0.105 
(Red/Blue) + 0.051  (NIR/Blue)

TN (mg/L) = -4.51 - 5.18  (Total Phosphate) - 0.01  (Turbidity) +
0.68  (Blue/Green) + 0.64  (Blue/Red) + 1.67 
(Green/Blue) + 3.02  (Red/Blue)

Wet Season

Total Phosphate (mg/L) = 0.163 + 0.002  (Chl-a) - 0.068  (Blue/Green) - 0.086 
(Green/Blue) + 0.002  (Green/Red) - 0.001 (Green/NIR)

TN (mg/L) = 1.35 + 25.6  (Total Phosphate) + 0.05  (Chl-a) - 12.93
 (Red) + 25.93  (NIR) - 2.64  (NIR/Red)

Total phosphate

The correlation of Landsat bands with total phosphate concentration ranged from

−0.53 (Blue/Red band ratio) to 0.87 (chl-a) in dry season, and from −0.40 (Green/NIR

band ratio) to 0.57 (chl-a) in wet season. In particular, total phosphate concentration

displayed a significant relationship (R= 0.90 and 0.57 in dry and wet seasons,
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respectively) with chl-a at a significance level of p<0.05 (Table 4.5). Multiple linear

regression models constructed for total phosphate estimation through band combination

by selecting both correlataed water quality parameters from ground data and imagery

showing high correlation coefficients of 0.86 and 0.69 in dry and wet seasons,

respectively. Due to the existance of missing values in the monitoring sites dataset, 40

data points in dry season and 37 data points in wet season were used in the statistical

analysis. Table 4.8 presents the MLR models constructed through equations 4.13 and

4.14. Among the different combinations of bands and band ratios, this research selected a

multiple regression model and revealed the best significant relationships in order to

compare the estimated total phosphate through the Landsat TM and OLI data with in situ

measurement data. The Durbin-Watson values were 1.691 and 1.912 in dry and wet

seasons, respectively, which lay in the accepted range.

Total nitrogen (TN)

The correlation between the landsat bands and TN from −0.70 (Blue/Red band

ratio) to 0.74 (Green/Blue and Red/Blue band ratios) in dry season, and from -0.32

(Red/NIR band ratio) to 0.75 (chl-a) in wet season. In dry season, the blue and red bands

showed the highest correlation, and in wet season NIR and its combinations were closely

related to TN (Table 4.5). To construct multiple regression models, the highly correlated

chl-a and TSS, and the bands and band ratios that indicated a good correlation with TN

were selected. In dry season, chl-a and turbidity, and blue/green, blue/red, green/blue,

and red/blue showed significant relationships (R=0.82), and in wet season, chl-a and total

phosphorous, and three band combinations containing red, NIR, NIR/Red band

combinations revealed significant relationships (R=0.82) with TN. The Durbin-Watson
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values were 1.585 and 1.945 in dry and wet seasons, respectively, which lay in the

accepted range. The normal probability-probability (P-P) plots for the studied variables in

both dry and wet seasons  indicated the normal distribution for the total phosphate and

TN in both dry and wet seasons (Figure 4.5).

Figure 4.4. Spatial and temporal patterns of total phosphate and TN in Florida Bay
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Figure 4.5. The normal probability-probability (P-P) plots of regression standardized
residuals for total phosphate and TN in dry and wet seasons.

After identifiying the regression functions for the four studied water quality

parameters, and considering their spatial distribution that were mapped for the whole

Florida Bay surface in two seasons (Figures 4.2 and 4.3), different spatial and temporal

variations were observe. The generated maps were reclassified taking into account

different ranges in order to define the trophic conditions of Florida bay in two seasons

and in three years of 2000, 2007, and 2015, which is summarized in Table 4.8.
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Table 4.8. The area based condition of water quality parameters in Florida Bay in dry and wet seasons, and in three years of

2000, 2007, and 2015 (Km2)

Dry Season Wet Season
0-0.5 0.5-1.5 1.5-3.0 3.0-4.5 4.5-6.0 >6.0 0-0.5 0.5-1.5 1.5-3.0 3.0-4.5 4.5-6.0 >6.0

Chl-a
(mg/M3)

2000 73.4 1251.6 677.9 196.0 95.6 54.9 440.4 1743.7 157.1 6.3 0.9 0.9

2007 181.4 1054.2 897.3 143.5 54.3 18.6 14.8 655.4 1094.8 347.4 185.8 51.1

2015 51.8 961.1 909.1 282.0 89.2 56.1 438.8 1525.4 380.5 3.8 0.5 0.2

0-2 2-5 5-10 10-15 >15 0-1 1-2.5 2.5-4 4-6 >6

Turbidity
(NTU)

2000 73.3 1494.7 779.5 1.8 0.0 47.5 1643.5 617.1 41.3 0.0

2007 352.7 1591.1 405.1 0.4 0.0 95.9 837.5 895.9 404.1 115.9

2015 529.6 1448.3 370.3 1.1 0.0 155.8 1420.2 651.7 112.6 9.0

0-0.005
0.005-
0.01

0.01-0.02 0.02-0.03 0.03-0.05 >0.05
0-

0.003
0.003-
0.007

0.007-
0.010

0.010-
0.013

0.013-
0.015

>0.015

Total
Phosphate

(mg/L)

2000 242.1 1313.8 518.0 150.5 107.2 17.7 0.0 11.1 111.6 1850.2 375.8 0.6

2007 155.7 923.0 869.3 240.0 139.7 21.6 1.4 16.6 402.8 1130.6 726.5 71.4

2015 80.0 693.2 1157.2 248.0 139.6 31.2 0.0 0.6 134.6 1688.6 524.4 1.0

0-0.5 0.5-0.8 0.8-1.2 1.2-1.5 >1.5 0-0.5 0.5-0.8 0.8-1.2 1.2-1.5 >1.5

TN
(mg/L)

2000 1628.2 630.8 87.6 2.3 0.4 3.6 68.1 1289.2 846.8 92.8

2007 1445.3 840.1 60.5 2.2 1.2 277.7 1982.3 71.6 2.0 15.7

2015 1341.1 938.7 68.5 1.0 0.0 70.8 702.5 1483.9 87.0 5.2
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4. Conclusion

The water supplies for domestic and industrial use, irrigated agriculture, and

livestock and mining activities require continuous monitoring to make sure that the

required standards and criteria are met. However, due to anthropogenic activities and

industrial development, water quality has dramatically degraded. A combination of

remote sensing, GIS, and traditional in-situ sampling can lead to perform a better

monitoring program for water quality parameters in various waterbodies.

In this study, bio-physical parameters associated with water quality in Florida Bay

were investigated based on atmospherically corrected data. The principal objective of this

study was to monitor and assess the spatial and temporal changes of four water quality

parameters including turbidity, chlorophyll-a (chl-a), total phosphate, and total nitrogen

(TN), by using the application of integrated remote sensing, GIS data, and statistical

techniques. For this purpose, three dates of Landsat Thematic Mapper (TM) data in 2000

(February 13), 2007(January 31), and one date of Landsat Operational Land

Imager (OLI) in 2015 (January 5) in the dry season, and three dates of TM data in 2000

(August 7), 2007 (September 28), and one date of OLI data in 2015 (September 2)  in the

wet season of the subtropical climate of South Florida, were used to assess temporal and

spatial patterns and dimensions of studied parameters in Florida Bay, USA. The

simultaneous observed data of four studied parameters were obtained from 20 monitoring

stations and were used for the development and validation of the models. The optical

bands in the region from blue to near infrared and all the possible band ratios were used

to explore the relation between the reflectance of waterbody and observed data. The

results of Pearson’s correlation between limnological data and Landsat bands and ratios,
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and also the relationship between these nutrients, and TSS, turbidity, and chl-a in Lake

Okeechobee and Florida bay showed better correlations of totall phosphate and total

nitrogen with limnological data and imagery in Lake Okeechobee and Florida bay,

respectively. This can also indicate that these two waterbodies are under the influence of

which nutrient.

The predictive models to estimate chl-a and turbidity concentrations were

developed through the use of stepwise multiple linear regression (MLR) and gave high

coefficients of determination in dry season (R2 = 0.86 for chl-a and R2 = 0.84 for

turbidity) and moderate coefficients of determination in wet season (R2 = 0.66 for chl-a

and R2 = 0.63 for turbidity). Values for total phosphate and TN were correlated with chl-

a and turbidity concentration and some bands and their ratios. Total phosphate and TN

were estimated using best-fit multiple linear regression models as a function of Landsat

TM and OLI, and ground data and showed a high coefficient of determination in dry

season (R2 = 0.74 for total phosphate and R2 = 0.82 for TN) and in wet season (R2 = 0.69

for total phosphate and R2 = 0.82 for TN). The MLR models showed a good trustiness to

monitor and predict the spatiotemporal variations of the studied water quality parameters

in Florida Bay.

This study showed that Landsat TM and OLI data and water quality parameters at

various locations of Florida Bay can be related through a regression analysis and

constitute a model that can be used to measure water quality parameters over the entire

lake surface. The four studied parameters mapped by identifying the best set of band

combinations and also their interreltionship to describe the linkage between the spectral
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response to limnological data. The same method can be applied to the trophic conditions

for landsat images in different years.
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CHAPTER V

ASSORTMENT OF THE SURFACE WATER POLLUTION REGIONS AND

STUDY ON SPATIOTEMPORAL VARIABILITY OF POLLUTION USING

CLUSTER AND DISCRIMINANT ANALYSES
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Abstract

In this study, cluster analysis (CA) and discriminant analysis (DA) were used to

assess the water quality and evaluate the spatial and temporal variations in surface water

quality of South Florida. For this purpose, 15 years (2000–2014) data set of 12 water

quality variables covering 16 monitoring stations, and about 35,000 observations were

used. Agglomerative hierarchical CA grouped 16 monitoring sites into three groups (low

pollution, moderate pollution, and high pollution) based on their similarity of water

quality characteristics. Discriminant analysis (DA), as an important data reduction

method, and cluster analysis (CA) were used to assess the water pollution status and

analysis of its spatiotemporal variation. It was found by the stepwise DA that five

variables (chl-a, DO, TKN, TP and water temperature) are the most important

discriminating water quality parameters responsible for temporal variations. In spatial

DA, the stepwise mode identified seven variables (chl-a, DO, TKN, TP, magnesium,

chloride, and sodium) and six variables (DO, TKN, TP, turbidity, magnesium, and

chloride) as the most important discriminating variables responsible for spatial variations

in wet and dry season, respectively. Different patterns associated with spatial variations

were identified depending on the variables and considered season, however the overall

trend of environment pollution problems was found from the LP region to HP region. It is

believed that the results of apportionment could be very useful to the local authorities for

the control and management of pollution and better protection of important riverine water

quality.

Keywords: Water quality; River water; Cluster Analysis; Discriminant Analysis; South

Florida.
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1. Introduction

To have reliable information about the inherent properties of water quality and

also to understand the spatiotemporal variations in hydro-chemical and biological

properties of water, continuous and regular monitoring programs are required [5].

Multivariate statistical techniques, such as cluster analysis (CA) and discriminant

analysis (DA) are widely used for the evaluation of both temporal and spatial variations

and the interpretation of large and complex water quality data sets [3,5–14]. Hierarchical

agglomerative cluster analysis (CA) using Ward's method, as an unsupervised pattern

recognition technique, was applied to group the monitoring stations (cases) into classes

(clusters) based on their similarities within a class and dissimilarities between different

classes in three major rivers of South Florida (Kissimmee River, Caloosahatchee River,

and Miami Canal). The results of CA help to interpret the data and indicate patterns.

Discriminant analysis (DA), as supervised pattern recognition technique, was employed

to the data set on water quality of three selected rivers of the study area to construct the

discriminant functions on two different modes of standard and stepwise to bring out the

most significant variables that result in water quality spatial and temporal variation, and

to optimize the monitoring program by decreasing the number of parameters monitored.

Given the above considerations, a large data matrix obtained during fifteen years

(2000–2014) monitoring period at sixteen different sites for twelve water quality

parameters, and in two wet and dry seasons (about 35,000 observations) were subjected

to cluster analysis (CA) and discriminant analysis (DA) to (1) identify the similarities or

dissimilarities between sampling sites, (2) confirm the clusters determined by means of

CA based on the accuracy rate of discriminant functions, and (3) identify the most
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significant water quality variables responsible for spatial and temporal variations in river

water quality. It is believed that the results of the spatial and temporal variations can be

used to select the polluted areas and set the priority areas for the river water quality

management in the study area.

2. Methodology

2.1. Study area

South Florida has an extensive network of canals that drain water from various

agricultural productions orand  urban land areas and carry different concentrations of

chemicals, especially high concentrations of nutrients. These are biologically productive

waterbodies contain various important aquatic lives include plants, animals, and

microorganisms [15]. In this study, three major rivers in South Florida, the Miami Canal,

Kissimmee River and Caloosahatchee River, are investigated for their water quality by

applying different multivariate analysis techniques. The average annual temperature

ranges from 19.2 °C to 28.7 °C and the annual rainfall in the entire area of South Florida

is generally about 55 inches (1400 mm). The major land uses in their watersheds include

agricultural area, wetlands, cattle ranching and dairy farming, and urban areas. Figure 5.1

shows the location of study area and selected water quality monitoring sites on three

major rivers of South Florida.
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Figure 5.1. The location of study area and water quality monitoring sites.

2.2. Dataset preparation

The hydrography network of the study area, generated using the 1:24000 national

hydrography dataset (NHD) obtained from the South Florida water management district's

(SFWMD) geographic information systems (GIS) data catalog, was used to delineate the

flow line of three selected rivers. The most recent (2008-09) land cover/land use (LCLU)

map provided by the SFWMD was used in this study. This data then was clipped to fit

our study area. The area of each type of land use within each watershed was calculated

using an ESRI ArcGIS 10.0 platform. The monitoring stations, downloaded from the

same source, were overlaid with rivers’ map in ArcGIS to design a network of sampling

stations that include sufficient historical data to construct a robust statistical database of

studied parameters, considering a suitable spatial distribution on the river. Then, the
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DBHYDRO (environmental database of SFWMD) was used to obtain continuous time

series data for 12 selected water quality parameters from 2000 to 2014. This database

then was divided into two dry and wet seasons (wet season from May 15th thru October

15th, and the dry season from October 16th thru May 14th). The basic statistics of water

quality parameters in three major rivers of South Florida, based on 34,560 observations

(15 years  12 months  16 sampling sites × 12 parameters), are summarized in Table

5.1.

2.3. Multivariate statistical methods

Multivariate statistical methods are widely used for the classification, modeling

and interpretation of large datasets, and also for the reduction of the dimensionality of the

complex dataset with minimum loss of the original information [16]. Cluster analysis is

an unsupervised pattern recognition technique that groups the objects (cases) into classes

(clusters) based on their similarities within a class and dissimilarities between different

classes. The results of CA help to interpret the data and indicate patterns. One of the most

commonly used measurements to find the similarity of cases is the Euclidean distance

[17] in which the square root of the sum of the squares of the differences between

corresponding values is computed to extract the distance from site i to site j by:

Di,j = ∑ [(Zi,k – Zj,k)
2]0.5 (5.1)

Where, p is the number of variables, Zi,k and Zj,k are standardized value for

variable k at site i and j, respectively. However, the squared Euclidean distance is used

more often than the simple Euclidean distance. It uses the same equation as the Euclidean

distance without taking the square root in order to place progressively greater weight on

objects that are further apart and cause a faster clustering in compare with the regular
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Euclidean distance. Hence, we used the squared Euclidean distances as a measure of

similarity. Between several clustering algorithms, the most commonly used manner is

Ward’s method. Willet [18] proved that the hierarchical agglomerative clustering using

the Ward's method is an extremely powerful method for the grouping of cases.

The measured variables in this study were in different scales and units, so the data

was treated after data scaling by z-transformation in SPSS 16.0 software. The

dendrogram resulting by ward’s method was used to get an insight about the possible

number of clusters, in the way that they merge. Dendrograms provide important

information and a visual summary of the clustering that shows the proximity of the

groups [9]. In addition, to differentiate and allocate a proper name to the identified

clusters by CA, water quality criteria for the Florida State's waters (Approved by EPA

and published on 08/01/2013), released and updated by the Florida Department of

Environmental Protection (FDEP) was considered and the average concentration of each

variable was compared to this document. FDEP’s water quality standards include

numeric criteria for springs, lakes, streams, and estuaries. In this study, 12 water quality

parameters considered for investigation including: chl-a, dissolved oxygen (DO), total

kjeldahl nitrogen (TKN), total phosphorus (TP), total phosphate, ammonia-N, water

temperature (WT), total suspended solids (TSS), turbidity, magnesium, chloride, and

sodium.

Discriminant analysis (DA), also called supervised pattern recognition technique,

is a multivariate statistical analysis method that uses linear combinations of several

variables to construct statistical classification of samples into categorical-dependent

values. In DA, membership of objects and spatial or temporal groups are usually pre-
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known. Also, the results of CA can help in spatial DA. This technique generally uses two

different modes, i.e., standard and stepwise, to construct the discriminant functions

presenting important information about for each group [3,12,19], and Discriminant

analysis was used in this study to describe the relationships among two groups of

temporal and three pre-specified groups of spatial (clusters resulted from CA). The

canonical discriminant functions of the discriminating variables were used to discriminate

among groups. The canonical discriminant functions are defined as weighted linear

combinations of the original variables, where variables are separately weighted based on

their ability to discriminate among different pre-specified groups. The first canonical

discriminant function defines the specific linear combination of variables that maximizes

the ratio of among group to within group variance in any single dimension. It constructs a

discriminant function for each group, as follows:

( ) = + × (5.2)

Where, i is the number of groups (G), ki is a constant inherent to each group, n is

the number of parameters, and wij is the weight coefficient, assigned by DA to a given

parameters (Pij). The weight coefficient maximizes the distance between the means of the

dependent variable. The classification table, which is also known as confusion,

assignment or prediction matrix, is commonly used to evaluate the performance of

analysis. In this table the rows present the observed categories of the dependents and the

columns show the predicted categories for each dependent.

All cases should lie on the diagonal if the predictions are perfectly performed. The

percentage of correct classifications will be identified by the percentage of cases on the
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diagonal. Box and whisker plots can also help to evaluate and interpret different patterns

associated to the spatiotemporal variations in water quality. In this study, DA was applied

on the raw data matrix using both standard and stepwise modes in order to the

construction of discriminant functions to differentiate and classify the water quality.

Temporal Da was performed after dividing the whole data set into two groups of

temporal (wet season from May 15th through October 15th, and dry season from October

16th thru May 14th). Furthermore, spatial DA was performed for each season data matrix,

based on three groups of LP, MP, and HP as the grouping variables. The monitoring sites

(spatial) and the wet and dry seasons (temporal) were considered as the grouping

(dependent) variables, whereas all the observed water quality parameters constituted the

independent variables. The SPSS 16.0 software package was employed for data

treatment.
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Table 5.1. Summary basic statistics of water quality parameters between 2000 and 2014

River/Canal
Name

Site
Number Statistics

Chl-a
(g/L)

DO
(mg/L)

TKN
(mg/L)

TP
(mg/L)

Total
Phosphate

(mg/L)

Ammonia-N
(mg/L)

WT
(DegC)

TSS
(mg/L)

Turbidity
(NTU)

Magnesium
(mg/L)

Chloride
(mg/L)

Sodium
(mg/L)

Kissimmee
River

S65

Min 4.0 0.93 0.05 0.007 0.002 0.005 7.5 3.0 1.1 2.2 11.6 7.2

Mean 23.7 6.93 1.13 0.070 0.056 0.016 24.1 7.8 5.2 3.7 21.5 11.9

Max 63.0 12.10 2.04 0.515 0.515 0.133 33.1 71.5 26.7 5.4 34.0 18.1

SD 10.8 1.71 0.24 0.045 0.046 0.015 5.1 5.7 2.5 0.8 4.6 2.5

S65A

Min 1.2 0.58 0.05 0.016 0.004 0.005 12.0 1.0 1.0 1.7 3.9 5.0

Mean 20.2 6.05 1.16 0.063 0.056 0.030 24.6 6.2 4.2 3.5 20.4 11.6

Max 88.0 12.30 3.43 0.366 0.328 0.288 34.7 43.0 37.9 5.7 40.3 17.4

SD 11.4 2.14 0.25 0.033 0.033 0.040 5.0 4.2 2.7 0.9 5.0 2.7

KREA
95

Min 1.9 0.20 0.05 0.032 0.002 0.005 12.1 3.0 1.6 2.2 6.3 6.8

Mean 15.1 5.02 1.20 0.080 0.075 0.060 24.3 11.2 7.9 4.5 22.9 12.6

Max 65.0 10.20 3.07 0.242 0.273 0.359 32.2 59.0 37.9 15.0 71.9 30.2

SD 10.9 2.66 0.31 0.038 0.043 0.059 4.8 8.4 6.0 2.4 9.5 4.6

S65D

Min 1.0 0.08 0.05 0.022 0.002 0.005 12.0 1.0 0.9 2.2 10.1 6.5

Mean 11.3 5.27 1.13 0.077 0.073 0.044 24.4 4.7 3.5 3.7 20.8 11.8

Max 223.6 10.40 3.03 0.398 0.721 0.489 33.5 45.0 19.9 5.9 34.7 17.2

SD 15.1 2.39 0.28 0.044 0.045 0.054 4.6 3.7 2.0 0.8 4.1 2.2

S154C

Min 1.1 0.14 0.05 0.060 0.002 0.005 11.3 1.0 0.6 14.0 63.5 95.9

Mean 8.7 3.85 1.54 0.370 0.344 0.147 23.9 8.1 5.8 75.8 1125.4 417.7

Max 69.3 11.70 4.29 2.290 2.290 1.279 33.5 181.0 135.0 186.4 2421.1 1017.0

SD 7.5 2.55 0.75 0.296 0.292 0.227 4.9 12.6 11.2 49.5 525.6 270.6
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Table 5.1. (Continued) Summary basic statistics of water quality parameters between 2000 and 2014

River/Canal
Name

Site
Number Statistics

Chl-a
(g/L)

DO
(mg/L)

TKN
(mg/L)

TP
(mg/L)

Total
Phosphate

(mg/L)

Ammonia-N
(mg/L)

WT
(DegC)

TSS
(mg/L)

Turbidity
(NTU)

Magnesium
(mg/L)

Chloride
(mg/L)

Sodium
(mg/L)

Caloosahatchee
River

S77

Min 1.0 0.26 0.88 0.006 0.002 0.005 9.7 1.6 1.2 2.6 5.1 7.0

Mean 19.0 5.70 1.50 0.100 0.087 0.068 25.5 13.3 10.0 11.0 52.9 32.1

Max 181.0 13.10 6.39 0.838 0.838 0.304 36.3 158.0 71.4 19.1 108.2 59.0

SD 27.6 2.42 0.47 0.076 0.074 0.058 4.7 14.6 11.2 3.0 16.8 9.4

S78

Min 1.0 0.63 0.88 0.010 0.043 0.005 14.3 1.0 1.1 6.1 27.0 15.5

Mean 5.5 5.99 1.30 0.100 0.108 0.060 25.6 6.1 4.8 10.1 52.5 29.6

Max 31.0 12.50 2.72 0.561 0.840 0.304 32.9 36.0 24.9 18.2 133.3 73.4

SD 6.6 2.16 0.22 0.056 0.056 0.058 4.3 5.0 4.3 2.4 15.6 8.8

CR-32.0

Min 0.7 1.53 0.95 0.053 0.047 0.005 15.7 2.0 0.8 6.4 34.0 20.0

Mean 10.8 5.29 1.41 0.140 0.113 0.052 25.7 5.9 4.0 10.9 57.2 33.1

Max 49.0 9.45 2.00 0.490 0.757 0.596 31.4 20.0 13.7 17.4 120.0 57.6

SD 11.2 2.04 0.26 0.080 0.053 0.058 4.0 4.0 3.4 2.7 17.4 8.4

S79

Min 0.5 0.91 0.81 0.028 0.050 0.005 15.0 1.4 0.1 5.6 3.3 1.1

Mean 12.9 6.65 1.18 0.113 0.118 0.045 25.8 5.0 2.0 11.8 76.8 42.9

Max 370.0 12.20 4.67 0.311 0.673 0.887 33.1 14.0 17.7 38.4 451.0 248.6

SD 21.9 2.05 0.29 0.047 0.051 0.058 4.1 2.3 2.3 4.8 61.4 34.2

CES03

Min 1.0 0.04 0.30 0.037 0.010 0.031 14.7 1.0 0.6 4.8 4.0 11.7

Mean 12.7 5.45 1.07 0.185 0.132 0.049 26.4 9.0 3.7 110.4 554.8 199.2

Max 133.0 13.38 2.35 0.810 0.680 0.063 34.4 66.5 17.1 793.0 12500.0 1350.0

SD 15.0 2.27 0.28 0.136 0.073 0.012 3.8 9.9 3.1 149.3 1484.3 284.2
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Table 5.1. (Continued) Summary basic statistics of water quality parameters between 2000 and 2014

River/Canal
Name

Site
Number Statistics

Chl-a
(g/L)

DO
(mg/L)

TKN
(mg/L)

TP
(mg/L)

Total
Phosphate

(mg/L)

Ammonia-N
(mg/L)

WT
(DegC)

TSS
(mg/L)

Turbidity
(NTU)

Magnesium
(mg/L)

Chloride
(mg/L)

Sodium
(mg/L)

Miami
Canal

S354

Min 1.0 0.26 0.88 0.006 0.002 0.005 9.7 1.6 1.2 2.6 5.1 7.0

Mean 19.0 5.70 1.50 0.100 0.087 0.068 25.5 13.3 10.0 11.0 52.9 32.1

Max 181.0 13.10 6.39 0.838 0.838 0.304 36.3 158.0 71.4 19.1 108.2 59.0

SD 27.6 2.42 0.47 0.076 0.074 0.058 4.7 14.6 11.2 3.0 16.8 9.4

S8

Min 1.0 0.63 0.88 0.010 0.043 0.005 14.3 1.0 1.1 6.1 27.0 15.5

Mean 5.5 5.99 1.30 0.100 0.108 0.060 25.6 6.1 4.8 10.1 52.5 29.6

Max 31.0 12.50 2.72 0.561 0.840 0.304 32.9 36.0 24.9 18.2 133.3 73.4

SD 6.6 2.16 0.22 0.056 0.056 0.058 4.3 5.0 4.3 2.4 15.6 8.8

C123SR84

Min 0.7 1.53 0.95 0.053 0.047 0.005 15.7 2.0 0.8 6.4 34.0 20.0

Mean 10.8 5.29 1.41 0.140 0.113 0.052 25.7 5.9 4.0 10.9 57.2 33.1

Max 49.0 9.45 2.00 0.490 0.757 0.596 31.4 20.0 13.7 17.4 120.0 57.6

SD 11.2 2.04 0.26 0.080 0.053 0.058 4.0 4.0 3.4 2.7 17.4 8.4

S151

Min 0.5 0.91 0.81 0.028 0.050 0.005 15.0 1.4 0.1 5.6 3.3 1.1

Mean 12.9 6.65 1.18 0.113 0.118 0.045 25.8 5.0 2.0 11.8 76.8 42.9

Max 370.0 12.20 4.67 0.311 0.673 0.887 33.1 14.0 17.7 38.4 451.0 248.6

SD 21.9 2.05 0.29 0.047 0.051 0.058 4.1 2.3 2.3 4.8 61.4 34.2

S31

Min 1.0 0.04 0.30 0.037 0.010 0.031 14.7 1.0 0.6 4.8 4.0 11.7

Mean 12.7 5.45 1.07 0.185 0.132 0.049 26.4 9.0 3.7 110.4 554.8 199.2

Max 133.0 13.38 2.35 0.810 0.680 0.063 34.4 66.5 17.1 793.0 12500.0 1350.0

SD 15.0 2.27 0.28 0.136 0.073 0.012 3.8 9.9 3.1 149.3 1484.3 284.2

MR01

Min 0.6 0.61 0.15 0.150 0.002 0.020 12.14 0.8 0.1 7.0 38.0 26.0

Mean 17.6 5.14 1.08 1.082 0.069 0.100 25.99 19.9 2.2 10.6 59.1 39.6

Max 68.0 10.71 2.40 2.400 0.160 0.230 33.14 102.0 14.0 20.4 140.0 81.0

SD 16.3 1.40 0.55 0.548 0.049 0.038 3.55 27.3 2.4 2.2 12.2 7.3
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3. Results and discussion

3.1. Spatiotemporal similarities and grouping the sampling sites by cluster analysis

Two dendrograms was rendered after cluster analysis using SPSS 16.0 (Figure

5.2), where all the sixteen monitoring sites were grouped into three statistically

significant clusters of low pollution (LP), moderate pollution (MP), and high pollution

(HP), reflecting the water quality characteristics of considered sites. The linkage distance

(Dlink/Dmax) was used to evaluate the spatial variability of water quality in the entire area,

which is a quotient between the linkages distance divided by the maximal linkage

distance for a case. The quotient also should be then multiplied by 100 in order to

standardize the linkage distance that is usually shown on the y-axis [5,7,12].

Three groups of sites for each season were generated in a convincing way through the

clustering procedure, in which river water quality decreases from top to bottom. These

groups or clusters include monitoring sites that have similar characteristics in terms of

features and natural background affecting by similar sources of type or strength. Each site

has been located in a certain cluster considering the whole 12 studied parameters, and

based on the squared Euclidian distance between each site. Figure 5.3 demonstrates the

spatial distribution of these three groups in the study area in the wet and dry seasons

based on their similarity and the level of impairment. As is shown in maps (Figure 5.3),

generally the relatively less polluted sites were located in the middle parts of rivers in

both wet and dry seasons, whereas moderate polluted and highly polluted sites were

mainly located at the beginning and the end sections of studied rivers. It can be concluded

that Lake Kissimmee and Lake Okeechobee as the upstream parts of these rivers,

discharge relatively polluted waters into these rivers. Besides, most of the rivers in the
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moderate and high pollution regions are affected by urban areas with more industrial and

domestic wastewater. Furthermore, according to the location of Environmental Resource

Permits (ERP), issued under the jurisdiction of South Florida Water Management District

(SFWMD), it was observed that the moderate and high pollution regions of studied rivers

are located in areas with high-density permits.

Figure 5.2. Dendrogram showing three clusters of monitoring sites in dry season (a) and
wet season (b) using the Ward’s linkage distance (Dlink/Dmax).

Agricultural area with different types of production as the major land use in the

studied watersheds plus numerous head of beef and dairy cattle and livestock farms,

every year discharge significant amounts of agricultural and animal wastes containing

high levels of nitrogen, phosphorus, and pesticides, into the drainage networks and finally

into the main stem of rivers.
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Figure 5.3. Spatial distribution of three groups of sites based on their similarity and the
level of impairment in the study area in the dry (a) and wet (b) seasons.

Therefore, the spatial variation of water quality was detected to be under the

influence of both point and non-point sources of pollution resulted from anthropogenic

activities. Nevertheless, these three river systems with very low slope, and a great volume

of flows in their mainstream, have high capacities to mitigate pollution loads and showed

self-cleansing characteristics for some parameters. The comparison of average

concentrations of water quality parameters in two studied seasons showed significant

differences in average amounts of chl-a, dissolved oxygen (DO), total kjeldahl nitrogen

(TKN), total phosphorus (TP), total phosphate, ammonia-N, and water temperature (WT).

The results of CA revealed that the average concentrations of nutrients in Caloosahatchee

River were worse than other two studied rivers. In order to assess and analyze the

temporal trends of nutrients in the selected waterbodies of South Florida that the
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agricultural activities were found to be the main source for these chemicals, three

monitoring sites in the middle parts of these river, which were surrounded by different

types of agriculture, were selected to investigate. The historical and continues sampling

observations for total phosphate, which is the measurement of all inorganic, organic and

dissolved forms of phosphorus, and TKN from 2000 to 2015 were obtained from

DBHYDRO, and their temporal changes were graphed (Figure 5.4).

According to the observed data and the historical trend of nutrients and especially

total phosphate in three selected rivers, it was found higher concentrations at the

Caloosahatchee River and the Kissimmee River than Miami Canal sites. The percentage

of agricultural and urbanized areas in the Miami Canal watershed was measured from the

land use/land cover map in GIS and was seen to be even more than the other two rivers.

Therefore, this could be related to the effectiveness of eco-restoration projects

implemented in its watershed and adjacent linked watersheds to reduce the concentration

of TP (the water conservation area-3, WCA-3) in order to decrease the amounts of

nutrients, especially, total phosphorous. In addition, two S154 and CES03 sites showed

very greater amounts of studied parameters in both wet and dry seasons compared to

other sites. One of the possible reasons may be the effluent discharges of industrial and

domestic wastewater, generally kept at a relatively steady level throughout the entire

year.
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Figure 5.4. Temporal trends of nutrients in the selected waterbodies of South Florida.

3.2. Spatiotemporal variations in river water quality using discriminant analysis

3.2.1. Temporal variations in water quality

Discriminant analysis (DA) was used to evaluate the temporal variation in water

quality. Both standard and stepwise modes were applied on the raw data after dividing

the whole data set into two seasonal groups (wet and dry seasons). The standard mode

constructs discriminating functions containing all predictive variables, whereas in the

stepwise mode, one variable that minimized the overall Wilk’s Lambda statistic was

entered or removed at each step. Season was the dependent variable and all considered

water quality parameters constructed the independent variables.
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The measured values of Wilk’s lambda and chi-square statistic of each

discriminant function (DFs) obtained from both standard mode and stepwise mode shown

in Table 5.2 varied from 0.222 to 0.244 and from 277.3 to 267.5, respectively. Wilks'

lambda shows the discriminatory ability of the function for the separation of cases into

groups. The associated chi-square statistic is used to test the hypothesis that the means of

the functions listed are equal between the considered groups. The small significance

values (p-level < 0.01) indicated that the temporal DA was effective. The first function in

standard DA explained almost all (R = 88.2%) of the total variance in dependent

variables. The stepwise DA had similar results, which indicated that 87% of the total

group differences in the data set were explained by its first DF. Therefore, the first DF

alone was significant adequate to explain the difference of water quality between two wet

and dry seasons.

Five variables (chl-a, DO, TKN, TP and water temperature) were selected using

stepwise DA identified as the most important variables that explain the temporal variation

of water quality in wet and dry seasons. The first function in the stepwise DA was

perfectly correlated with temperature (coefficient = 1.000), and then mostly correlated

with DO (coefficient = 0.613). Classification functions (CFs) and the classification

matrices (CMs) for the temporal discriminant analysis of water quality variations in wet

and dry seasons are shown in Tables 5.3 and 5.4. All 12 variables were included in the

standard mode and correctly classified 95.3% of the original grouped cases, while in the

stepwise mode, 93.2% of the cases were correctly assigned using only five discriminating

variables. Therefore, the temporal DA results of the stepwise mode suggested that chl-a,

DO, TKN, pH and water temperature were the most significant parameters for
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discriminating differences between the wet season and dry season, and could be used to

explain most of the expected temporal variations in water quality.

Table 5.2. Wilk’s lambda and chi-square test for the temporal discriminant analysis of
water quality variations across two wet and dry seasons.

Mode
Discriminant

Function
(DF)

Canonical
Correlation

(R)
Eigenvalue

Wilk’s
lambda

Chi-
square

p-level
(Sig.)

Standard Mode 1 0.882 3.513 0.222 277.271 0.000

Stepwise Mode 1 0.870 3.102 0.244 267.490 0.000

Table 5.3. Classification functions coefficients (CFs) for the temporal discriminant
analysis of water quality variations in wet and dry seasons.

Parameter
Standard mode Stepwise Mode

Dry coef.a Wet coef.a Dry coef.a Wet coef.a

Chl-a -0.586 -0.532 -0.116 0.046
Dissolve Oxygen 9.121 8.514 3.338 1.985
Total Kjeldahl Nitrogen 27.702 25.936 24.694 27.791
Total Phosphorus 41.686 78.262 5.835 11.915
Total Phosphate -126.870 -168.289
Ammonia-N 43.744 45.375
Water Temperature 7.452 9.299 5.541 7.319
Total Suspended Solids -0.107 -0.180
Turbidity 0.307 0.568
Magnesium -0.082 -0.141
Chloride 0.017 0.020
Sodium 0.039 0.048
(Constant) -123.968 -165.618 -60.360 -104.781
a Fisher's linear discriminant functions coefficients for wet and dry seasons correspond to
wij as defined in Eq. (5.2).

Table 5.4. Classification matrix (CMs) for the temporal discriminant analysis of water
quality variations in wet and dry seasons.

Monitoring
season % correct

Season assigned by DA
Dry season Wet season

Standard mode
Dry season 89.6 88 8
Wet season 97.9 1 95

Total 95.3 89 103

Stepwise Mode
Dry season 87.5 84 12
Wet season 99.0 1 95

Total 93.2 85 107
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Box and whisker plots of discriminating parameters were constructed (stepwise

mode) to evaluate different patterns associated with temporal variations in river water

quality (Figure 5.5). The first pattern showed clear seasonal differences for chl-a, DO,

and water temperature in which chl-a and water temperature showed a clear inverse

relationship with DO. This could be explained that as water temperature increases in the

river, biological activity of aquatic organism strengthens and therefore consumption of

DO increases. In addition, more oxygen also dissolves in cooler water. The second

pattern showed higher average concentrations of TKN and TP in wet season that could be

due to erosion of soil containing nutrients while raining.
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Figure 5.5. Temporal variations in water quality of three major rivers of South Florida:
Chl-a, Dissolved Oxygen, total kjeldahl nitrogen (TKN), total phosphorus (TP), and
water temperature.
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3.2.2. Spatial variations in water quality

DA was also used to study the spatial variation in water quality using the pre-

identified groups from cluster analysis (CA) in both wet and dry seasons. Accordingly,

two data matrices were constructed for the investigation of spatial variations in water

quality of LP, MP, and HP sites in wet and dry seasons. The main objectives spatial DA

were (1) to test and confirm the significance of clusters determined by means of CA

based on the accuracy rate of discriminant functions, and (2) to determine the most

significant variables associated with differences among the spatial groups. The groups

(LP, MP, and HP) were the dependent variables and the studied water quality parameters

were considered as the independent variables. In this study, both standard and stepwise

modes of DA applied on two data matrices in wet and dry season and the best mode was

selected for the interpretation of results.

 Spatial variations in water quality of LP, MP, and HP sites in wet season

As shown in Table 5.5, the Wilk’s lambda and the chi-square values varied from

0.023 to 0.435 and from 74.864 to 330.242 for each discriminant function. The obtained

p-value (all less than 0.01) indicated credibility and effectiveness of spatial DA. Seven

variables (chl-a, DO, TKN, TP, magnesium, chloride, and sodium) were selected using

stepwise DA as the most important variables that explain the spatial variation of water

quality in different pollution regions. Two resulted DFs successfully explained 96.7%

and 75.1% of the differences between different pollution regions, respectively. The first

DF separated HP region from LP and MP sites and was significantly correlated

(coefficients > 0.3) with total phosphate, TP, sodium, and chloride. The second DF

established some separation between LP and MP regions, and was significantly correlated
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with total phosphate, TP, DO, chl-a, and TKN (Figure 5.6). Spatial distribution patterns

of clusters in Figure 5.6 confirm the accuracy of cluster analysis results.

Table 5.5. Wilk’s lambda and chi-square test for the spatial discriminant analysis of
water quality variations across three groups of sites in wet season.

Mode
Discriminant

Function
(DF)

Canonical
Correlation

(R)
Eigenvalue

Wilk’s
lambda

Chi-
square

p-level
(Sig.)

Standard
Mode

1 0.970 16.187 0.023 330.242 0.000
2 0.778 1.535 0.395 81.380 0.000

Stepwise
Mode

1 0.967 14.467 0.028 321.347 0.000
2 0.751 1.298 0.435 74.864 0.000

Table 5.6. Classification functions coefficients (CFs) for the spatial discriminant analysis
of water quality variations across three clusters in wet season.

Parameter
Standard mode Stepwise Mode
LP

coef.a
MP coef.a HP coef.a LP

coef.a
MP coef.a HP coef.a

Chl-a -1.180 -1.020 -1.124 -0.378 -0.197 -0.347
Dissolve Oxygen 8.498 9.821 6.868 2.771 3.658 1.534
Total Kjeldahl Nitrogen 35.748 28.947 34.922 48.352 40.281 48.152
Total Phosphorus 12.114 -1.008 293.107 -9.028 9.836 194.976
Total Phosphate -150.172 -112.273 -224.341
Ammonia-N 40.179 49.687 85.854
Water Temperature 17.927 18.078 15.806
Total Suspended Solids -0.430 -0.423 -1.109
Turbidity 1.593 1.512 3.609
Magnesium 0.093 0.102 -1.591 -0.018 -0.03 -1.498
Chloride 0.006 0.004 0.138 0.019 0.016 0.128
Sodium -0.049 -0.047 0.371 -0.056 -0.039 0.344
(Constant) -286.689 -292.775 -383.299 -37.888 -35.676 -173.134

a Fisher's linear discriminant functions coefficients for three groups of sites correspond to wij as
defined in Eq. (5.2).

Table 5.7. Classification matrix (CMs) for the spatial discriminant analysis in wet season.
Monitoring

Clusters
%

correct
Regions assigned by DA

LP MP HP
Standard mode

LP 93.3 35 7 0
MP 91.7 3 44 1
HP 100.0 0 0 6

Total 88.5 38 51 7

Stepwise Mode
LP 83.3 35 7 0
MP 85.4 6 41 1
HP 100.0 0 0 6

Total 85.4 41 48 7

Tables 5.6 and 5.7 demonstrate the values of CFs and CMs for both standard and

stepwise modes. All the 12 water quality variables were included in the standard mode
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and the constructed CFs showed an accuracy of 88.5% for the assignment of cases to

different groups. Also, DA presented 85.4% correct assignment using the stepwise mode

and by only selecting seven discriminating variables.

Figure 5.6. Scatter plot for the spatial discriminant analysis of water quality variations
across three clusters in wet season (stepwise mode).

Box and whisker plots of identified discriminating water quality parameters from

stepwise spatial DA were used to study the patterns of water quality variations between

three identified clusters of sampling sites in wet season (Figure 5.7). The points show the

outliers and represent the values that are not in the inner fence ranges. The asterisks are

extreme outliers that represent the values of cases that are three times larger than the

height of the boxes.
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Three patterns recognized from spatial DA in wet season based on identified

groups of sites in CA. The first pattern showed clear spatial differences for chl-a and DO,

which a strong relationship (0.50) between them was observed from the resultant

correlation matrix table of spatial DA in wet season. The higher average concentrations

of these two variables, which are a measure of life's vitality and the activity level of the

plants and animals living in rivers, were found in MP region that indicates the dynamism

and strength of aquatic lives in this region. Besides, the HP region had lower average

concentrations of chl-a and DO, which indicated that there was much more serious

organic pollution. The second pattern was related to average concentration for TKN that

showed higher average concentrations in HP, LP, and MP regions, respectively.

Observing the highest level of TKN in HP region was expected due to being located in

the area that is under the influence of point source pollution discharges (site S154C).

However, LP region is located in the middle parts of river that are attributed to the use of

nitrogenous fertilizers in agricultural areas and showed higher average values compared

to MP regions located at the beginning and the end parts of studied rivers. The third

pattern showed the expected trend of environment pollution problems from the LP region

to HP region for total phosphorous (TP), magnesium, chloride, and sodium. The spatial

differences of these variables in wet season suggested that water quality problems in the

HP region were worse than in the LP and MP regions and hence more attention should be

paid to this region.
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Figure 5.7. Spatial variations in water quality of three clusters of sites in wet season:
Chl-a; DO, TKN, TP, magnesium, chloride, and sodium.
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 Spatial variations in water quality of LP, MP, and HP sites in dry season

Spatial variations of water quality in LP, MP, and HP sites were also performed in

dry season. As shown in Table 5.8, the values of Wilk’s lambda and the chi-square values

varied from 0.007 to 0.135 and from 181.131 to 438.145 for each discriminant function.

The obtained p-value (all less than 0.01) indicated credibility and effectiveness of spatial

DA in dry season. Six variables (DO, TKN, TP, turbidity, magnesium, and chloride) were

selected using stepwise DA as the most important variables that explain the spatial

variation of water quality in dry season and in different pollution regions. Two resulted

DFs successfully explained 96.8% and 93% of the differences between different pollution

regions, respectively. Likewise wet season, the first DF separated HP sites from LP and

MP sites (Figure 5.8), and was significantly correlated (coefficients > 0.3) with total

phosphate, TP, sodium, chloride, and magnesium. The second DF established some

separation between LP and MP sites, and was significantly correlated with TP and DO.

Spatial distribution patterns of clusters in Figure 5.8 confirm the accuracy of cluster

analysis results. Tables 5.9 and 5.10 demonstrate the values of CFs and CMs for both

standard and stepwise modes for the dry season discriminant analysis. All the 12 water

quality variables were included in the standard mode and the constructed CFs showed an

accuracy of 99% for the assignment of cases to different groups. Also, DA presented

100% correct assignment using the stepwise mode and by only selecting six

discriminating variables.
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Table 5.8. Wilk’s lambda and chi-square test for the spatial discriminant analysis of
water quality variations across three groups of sites in dry season.

Mode
Discriminant

Function
(DF)

Canonical
Correlation

(R)
Eigenvalue

Wilk’s
lambda

Chi-
square

p-level
(Sig.)

Standard Mode 1 0.972 17.208 0.007 438.145 0.000

2 0.937 7.211 0.122 184.233 0.000

Stepwise Mode 1 0.968 14.869 0.009 431.305 0.000

2 0.930 6.400 0.135 181.131 0.000

Figure 5.8. Scatter plot for the spatial discriminant analysis of water quality variations
across three clusters in dry season (stepwise mode).
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Table 5.9. Classification functions coefficients (CFs) for the spatial discriminant analysis
of water quality variations across three clusters in dry season.

Parameter
Standard mode Stepwise Mode

LP coef.a MP coef.a HP coef.a LP coef.a MP coef.a HP coef.a

Chl-a -0.480 -0.371 -0.405
Dissolve Oxygen 12.566 16.127 12.579 4.256 7.034 4.673
Total Kjeldahl Nitrogen 80.086 33.217 31.081 102.327 59.963 56.968
Total Phosphorus -152.124 70.166 -350.641 -299.948 -68.309 -192.963
Total Phosphate -281.361 -260.732 143.078
Ammonia-N 78.060 93.864 83.885
Water Temperature 6.297 6.773 5.608
Total Suspended Solids 0.046 0.142 0.151
Turbidity -0.970 0.086 -0.518 -2.213 -1.152 -1.329
Magnesium -0.135 -0.239 0.563 0.163 0.062 0.624
Chloride 0.066 0.028 0.106 0.03 -0.003 0.088
Sodium 0.015 0.027 0.003
(Constant) -158.628 -143.293 -175.014 -83.327 -55.383 -104.087
a Fisher's linear discriminant functions coefficients for three groups of sites correspond to wij as defined in
Eq. (5.2).

Table 5.10. Classification matrix (CMs) for the spatial discriminant analysis in dry
season.

Monitoring
Clusters

%
correct

Regions assigned by DA
LP MP HP

Standard mode
LP 100.0 24 0 0
MP 98.3 1 59 0
HP 100.0 0 0 12

Total 99.0 2 59 12

Stepwise Mode
LP 100.0 24 0 0
MP 100.0 0 60 0
HP 100.0 0 0 12

Total 100.0 24 60 12

Box and whisker plots of identified discriminating water quality parameters from

stepwise spatial DA were used to study the patterns of water quality variations between

three identified clusters of sampling sites in dry season (Figure 5.9). Three patterns

recognized from spatial DA in dry season based on identified groups of sites in CA. The

first pattern showed clear spatial differences for DO and turbidity, which a strong

relationship (0.42) between them was observed from the resultant correlation matrix table
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of spatial DA in dry season. The higher average concentrations of these two variables,

which are a measure of life's vitality and the water clarity, respectively, were found in

MP region. It was also observed that these two variables make strong relationships with

chl-a, which indicates the dynamism and strength of aquatic lives in this region. Besides,

lower average concentrations of DO in the HP region indicated that there was much more

serious organic pollution like the wet season.

The second pattern was related to average concentration of TKN that showed

higher average concentrations in LP, MP, and HP regions, respectively, that indicates the

significant role of land use for this parameter. As shown in Figure 5.3, the LP and MP

regions are located at the upstream parts of rivers that are attributed to the agricultural

areas with the significant use of nitrogenous fertilizers. It can come to the conclusion that

the main source of TKN in water quality of studied rivers is the discharge of nitrogenous

fertilizers coming from agricultural areas. The third pattern showed the expected trend of

environment pollution problems from the LP region to HP region for total phosphorous

(TP), magnesium, and chloride. Generally, in dry season the water quality of rivers in the

HP sites (sites S154C and CES03), which are located in the areas that are under the

influence of point source pollution discharges, were worse than other regions and hence

more attention should be paid to this region.
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Figure 5.9. Spatial variations in water quality of three clusters of sites in dry season: DO,
TKN, TP, turbidity, magnesium, and chloride.
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4. Conclusion

In this study, spatiotemporal variations in surface water quality of three major

rivers of South Florida were evaluated using multivariate statistical techniques including

cluster analysis (CA) and discriminant analysis (DA) using 15 years (2000–2014)

datasets of 12 water quality variables covering 16 sampling stations, and about 35,000

observations were used. Agglomerative hierarchical CA grouped 16 monitoring sites into

three groups (low pollution, moderate pollution, and high pollution) based on their

similarity of water quality characteristics. The results of CA can be used to reduce the

need for numerous sampling stations and frequency, and to optimize water quality

monitoring program design with lower costs. In other words, in the future studies, the

number of monitoring sites can be reduced by selecting only one site from each of the

three groups.

Discriminant analysis (DA), as an important data reduction method, and cluster

analysis (CA) were used to assess the water pollution status and analysis of its

spatiotemporal variation. In temporal DA, 12 months of raw data divided into two

seasonal groups (wet and dry season) as the dependent variable, while all observed water

quality parameters were independent variables. In spatial DA, sixteen monitoring sites

classified by CA to three groups of relatively low pollution (LP), moderate pollution

(HP), and  high pollution (HP) regions were the grouping (dependent) variables, whereas

all the observed parameters constituted the independent variables. It was found by the

stepwise DA that five variables (chl-a, DO, TKN, TP and water temperature) are the

most important discriminating water quality parameters responsible for temporal

variations. In spatial DA, the stepwise mode identified seven variables (chl-a, DO, TKN,
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TP, magnesium, chloride, and sodium) and six variables (DO, TKN, TP, turbidity,

magnesium, and chloride) as the most important discriminating variables responsible for

spatial variations in wet and dry season, respectively. Different patterns associated with

spatial variations were identified depending on the variables and considered season,

however the overall trend of environment pollution problems was found from the LP

region to HP region. Nonetheless, two highly polluted sites of S154C and CES03 in

Kissimmee River and Caloosahatchee River require more attention and considerations.

The spatial DA using the identified groups of sites by CA confirmed the accuracy of

cluster analysis results.

This study showed the feasibility and reliability of the combined use of these

multivariate statistical techniques in river water quality research. It is desirable that both

state and local agencies pay more attention and consideration in order to the improvement

and protection of vulnerable river quality. Additional studies will be required to assess

the variation of other important water quality parameters that were not analyzed in this

study. The results also can be useful for water resources managers and decision makers in

federal or local water quality protection organizations. The results of the spatial and

temporal variations can be used to select the polluted areas and set the priority areas for

the river water quality management in the study area.
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CHAPTER VI

WATER QUALITY ASSESSMENT AND APPORTIONMENT OF POLLUTION

SOURCES USING APCS-MLR AND PMF RECEPTOR MODELLING TECHNIQUES

IN THREE MAJOR RIVERS OF SOUTH FLORIDA
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Abstract

In this study, principal component analysis (PCA), factor analysis (FA), the

absolute principal component score-multiple linear regression (APCS-MLR) and the

positive matrix factorization (PMF) receptor modeling techniques were used to assess the

water quality and identify and quantify the potential pollution sources affecting the water

quality of three major rivers of South Florida. For this purpose, 15 years (2000–2014)

dataset of 12 water quality variables covering 16 monitoring stations, and approximately

35,000 observations were used. The PCA/FA method identified five and four potential

pollution sources in wet and dry seasons, respectively, and the effective mechanisms,

rules and causes were explained. The APCS-MLR apportioned their contributions to each

water quality variable. Results showed that the point source pollution discharges from

anthropogenic factors due to the discharge of agriculture waste and domestic and

industrial wastewater were the major sources of river water contamination. Also, the

studied variables were categorized into three groups of nutrients (total kjeldahl nitrogen,

total phosphorus, total phosphate, and ammonia-N), water murkiness conducive

parameters (total suspended solids, turbidity, and chlorophyll-a), and salt ions

(magnesium, chloride, and sodium), and average contributions of different potential

pollution sources to these categories were considered separately. The data matrix was

also subjected to PMF receptor model using the EPA PMF-5.0 program and the two-way

model described were performed for the PMF analyses. Comparison of the obtained

results of PMF and APCS-MLR models showed that there were some significant

differences in estimated contribution for each potential pollution source, especially in the

wet season. Eventually, it was concluded that the APCS-MLR receptor modeling

approach appear to be more physically plausible for the current study. It is believed that
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the results of apportionment could be very useful to the local authorities for the control

and management of pollution and better protection of important riverine water quality.

Keywords: Water quality; Source apportionments; Pollutants; APCS–MLR; PMF; South

Florida.

1. Introduction

Multivariate statistical techniques, such as principal component analysis (PCA)

and factor analysis (FA), are widely used for the evaluation of spatiotemporal variations

of water quality parameters, and also for the interpretation of large and complex datasets

[3,5–19]. PCA/FA is a dimension-reduction technique that is generally used for data

structure determination and provides further information from the hidden factors.

PCA/FA can also provide qualitative information about potential pollution sources.

However, PCA/FA alone cannot determine quantitative contributions of the identified

pollution sources to each variable. Receptor-based models, such as APCS-MLR, can be

used to apportion the contributions of the pre-identified potential pollution sources by

PCA/FA. The application of this technique was primarily tested for the identification and

apportionment of pollution source in atmospheric environments. In recent years, the

application of APCS-MLR has been widely used to study the contribution of different

pollution sources to water quality [5,7,20–27].

Given the above considerations, the main purpose of this study is to obtain a

deeper understanding of temporal variations and sources of water pollution in three major

rivers of South Florida. A large data matrix obtained during a fifteen year (2000–2014)

monitoring period at sixteen different sites for twelve water quality parameters, and in
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two wet and dry seasons (about 35,000 observations) were subjected to PCA/FA, APCS–

MLR and PMF techniques to (1) identify the latent factors explaining the structure of the

database, and the influence of possible sources of pollution (natural and anthropogenic)

on the water quality parameters, (2) estimate the contribution of possible sources of

pollution on the concentration of selected parameters, and (3) comparison of PMF and

APCS-MLR models for the Source apportionment in water quality studies. It is believed

that the results of apportionment could be very useful to the local authorities for the

control and management of pollution and better protection of important riverine water

quality.

2. Study area and methodology

2.1. Study area

South Florida has an extensive network of canals that drain water from various

agricultural productions and urban areas and carry different concentrations of chemicals,

especially high concentrations of nutrients. These are biologically productive waterbodies

contain various important aquatic lives include plants, animals, and microorganisms [28].

In this study, three major rivers in South Florida, the Miami Canal, Kissimmee River and

Caloosahatchee River, are investigated for their water quality by applying different

multivariate analysis techniques. The average annual temperature ranges from 19.2 °C to

28.7 °C and the annual rainfall in the entire area of South Florida is generally about 55

inches (1,400 mm). Considering the subtropical climate of South Florida, the average

rainfall is still considerable in the dry season. In addition, during El Niño phenomenon,

greater amounts of rainfall in dry season are observed in South Florida. The monthly flow

discharge in the studied rivers was checked and it was found that there was not any
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significant variation between the rivers discharge in the wet and dry seasons. The major

land uses in their watersheds include agricultural area, wetlands, cattle ranch and dairy

farming, and urban areas. Figure 6.1 shows the location of the study area and the selected

water quality monitoring sites on three major rivers of South Florida.

Figure 6.1. The location of the study area and the water quality monitoring sites.

2.2. Dataset preparation

The hydrography network of the study area, generated using the 1:24,000 national

hydrography dataset (NHD) obtained from the South Florida water management district's

(SFWMD) geographic information systems data catalog, was used to delineate the flow

line of three selected rivers. The most recent (2008-09) land cover/land use map,

provided by the SFWMD, was used in this study. This data was then clipped to fit our

study area. The area of each type of land use within each watershed was calculated using

an ESRI ArcGIS 10.0 platform. The monitoring stations, downloaded from the same
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source, were overlaid with rivers’ map in ArcGIS to design a network of sampling

stations that include sufficient historical data to construct a robust statistical database of

studied parameters, considering a suitable spatial distribution on the river. Then, the

DBHYDRO (environmental database of SFWMD) was used to obtain continuous time

series data for 12 selected water quality parameters from 2000 to 2014. This database was

then divided into dry and wet seasons (the wet season lasts from May 15th thru October

15th, and the dry season lasts from October 16th thru May 14th). The selected water quality

parameters for investigation in this study include chlorophyll-a (chl-a), dissolved oxygen

(DO), total kjeldahl  nitrogen (TKN), total phosphorus (TP), total phosphate, ammonia-N,

water temperature (WT), total suspended solids (TSS), turbidity, magnesium, chloride,

and sodium. The basic statistics of water quality parameters in three major rivers of South

Florida, based on 34,560 observations (15 years  12 months  16 sampling sites × 12

parameters), are summarized in Table 6.1.

Successful applications of PCA to environmental datasets depend on the data pre-

treatment method employed and it is necessary to ensure the suitability of data. Due to

differences in units of the studied water quality parameters in the dataset, pre-treatment of

data is required. Although studies done by Moreda-Piñeiro et al. [29] and Reid and

Spencer [30] have provided appropriate approach to the pre-treatment steps of data, there

are  other environmental studies [31,32], that provide limited information about data pre-

treatment steps used in their environmental applications using PCA. In this study, data

pre-treatment methods, such as the elimination of non-informative variables, the

treatment of missing data values, and the detection and treatment of outliers were

performed before the PCA/FA analyses.
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2.3. Method

2.3.1. Principal component analysis and factor analysis

Principal component analysis is a mathematical tool that uses orthogonal

transformation to convert a set of observations that are correlated that are called principal

components (PCs) [33]. FA, which is closely related to PCA, is used to describe

variability among observed variables that are correlated in order to reduce the number of

unobserved variables that are known as factors [34]. PCA reduces the dimensionality of

interrelated variables datasets with minimum loss of original information [35,36]. The

principal component (PC) can be expressed as:

Zij = i1X1j + i2X2j + i3X3j + … + imXmj (6.1)

Where, Z is the component score,  is the component loading, X is the measured

value of variable, i is the component number, j is the sample number, and m is the total

number of variables. In PCA, the PCs with eigenvalue greater than unity are generally

considered and contain most of the variability of the original data set.
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Table 6.1. Summary of basic statistics of water quality parameters between 2000 and 2014

River/Canal
Name

Site
Number

Statistics
Chl-a
(g/L)

DO
(mg/L)

TKN
(mg/L)

TP
(mg/L)

Total
Phosphate

(mg/L)

Ammonia-N
(mg/L)

WT
(DegC)

TSS
(mg/L)

Turbidity
(NTU)

Magnesium
(mg/L)

Chloride
(mg/L)

Sodium
(mg/L)

Kissimmee
River

S65

Min 4.0 0.93 0.05 0.007 0.002 0.005 7.5 3.0 1.1 2.2 11.6 7.2

Mean 23.7 6.93 1.13 0.070 0.056 0.016 24.1 7.8 5.2 3.7 21.5 11.9

Max 63.0 12.10 2.04 0.515 0.515 0.133 33.1 71.5 26.7 5.4 34.0 18.1

SD 10.8 1.71 0.24 0.045 0.046 0.015 5.1 5.7 2.5 0.8 4.6 2.5

S65A

Min 1.2 0.58 0.05 0.016 0.004 0.005 12.0 1.0 1.0 1.7 3.9 5.0

Mean 20.2 6.05 1.16 0.063 0.056 0.030 24.6 6.2 4.2 3.5 20.4 11.6

Max 88.0 12.30 3.43 0.366 0.328 0.288 34.7 43.0 37.9 5.7 40.3 17.4

SD 11.4 2.14 0.25 0.033 0.033 0.040 5.0 4.2 2.7 0.9 5.0 2.7

KREA
95

Min 1.9 0.20 0.05 0.032 0.002 0.005 12.1 3.0 1.6 2.2 6.3 6.8

Mean 15.1 5.02 1.20 0.080 0.075 0.060 24.3 11.2 7.9 4.5 22.9 12.6

Max 65.0 10.20 3.07 0.242 0.273 0.359 32.2 59.0 37.9 15.0 71.9 30.2

SD 10.9 2.66 0.31 0.038 0.043 0.059 4.8 8.4 6.0 2.4 9.5 4.6

S65D

Min 1.0 0.08 0.05 0.022 0.002 0.005 12.0 1.0 0.9 2.2 10.1 6.5

Mean 11.3 5.27 1.13 0.077 0.073 0.044 24.4 4.7 3.5 3.7 20.8 11.8

Max 223.6 10.40 3.03 0.398 0.721 0.489 33.5 45.0 19.9 5.9 34.7 17.2

SD 15.1 2.39 0.28 0.044 0.045 0.054 4.6 3.7 2.0 0.8 4.1 2.2

S154C

Min 1.1 0.14 0.05 0.060 0.002 0.005 11.3 1.0 0.6 14.0 63.5 95.9

Mean 8.7 3.85 1.54 0.370 0.344 0.147 23.9 8.1 5.8 75.8 1125.4 417.7

Max 69.3 11.70 4.29 2.290 2.290 1.279 33.5 181.0 135.0 186.4 2421.1 1017.0

SD 7.5 2.55 0.75 0.296 0.292 0.227 4.9 12.6 11.2 49.5 525.6 270.6
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Table 6.1. (Continued) Summary of basic statistics of water quality parameters between 2000 and 2014

River/Canal
Name

Site
Number

Statistics
Chl-a
(g/L)

DO
(mg/L)

TKN
(mg/L)

TP
(mg/L)

Total
Phosphate

(mg/L)

Ammonia-N
(mg/L)

WT
(DegC)

TSS
(mg/L)

Turbidity
(NTU)

Magnesium
(mg/L)

Chloride
(mg/L)

Sodium
(mg/L)

Caloosahatchee
River

S77

Min 1.0 0.26 0.88 0.006 0.002 0.005 9.7 1.6 1.2 2.6 5.1 7.0

Mean 19.0 5.70 1.50 0.100 0.087 0.068 25.5 13.3 10.0 11.0 52.9 32.1

Max 181.0 13.10 6.39 0.838 0.838 0.304 36.3 158.0 71.4 19.1 108.2 59.0

SD 27.6 2.42 0.47 0.076 0.074 0.058 4.7 14.6 11.2 3.0 16.8 9.4

S78

Min 1.0 0.63 0.88 0.010 0.043 0.005 14.3 1.0 1.1 6.1 27.0 15.5

Mean 5.5 5.99 1.30 0.100 0.108 0.060 25.6 6.1 4.8 10.1 52.5 29.6

Max 31.0 12.50 2.72 0.561 0.840 0.304 32.9 36.0 24.9 18.2 133.3 73.4

SD 6.6 2.16 0.22 0.056 0.056 0.058 4.3 5.0 4.3 2.4 15.6 8.8

CR-32.0

Min 0.7 1.53 0.95 0.053 0.047 0.005 15.7 2.0 0.8 6.4 34.0 20.0

Mean 10.8 5.29 1.41 0.140 0.113 0.052 25.7 5.9 4.0 10.9 57.2 33.1

Max 49.0 9.45 2.00 0.490 0.757 0.596 31.4 20.0 13.7 17.4 120.0 57.6

SD 11.2 2.04 0.26 0.080 0.053 0.058 4.0 4.0 3.4 2.7 17.4 8.4

S79

Min 0.5 0.91 0.81 0.028 0.050 0.005 15.0 1.4 0.1 5.6 3.3 1.1

Mean 12.9 6.65 1.18 0.113 0.118 0.045 25.8 5.0 2.0 11.8 76.8 42.9

Max 370.0 12.20 4.67 0.311 0.673 0.887 33.1 14.0 17.7 38.4 451.0 248.6

SD 21.9 2.05 0.29 0.047 0.051 0.058 4.1 2.3 2.3 4.8 61.4 34.2

CES03

Min 1.0 0.04 0.30 0.037 0.010 0.031 14.7 1.0 0.6 4.8 4.0 11.7

Mean 12.7 5.45 1.07 0.185 0.132 0.049 26.4 9.0 3.7 110.4 554.8 199.2

Max 133.0 13.38 2.35 0.810 0.680 0.063 34.4 66.5 17.1 793.0 12500.0 1350.0

SD 15.0 2.27 0.28 0.136 0.073 0.012 3.8 9.9 3.1 149.3 1484.3 284.2
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Table 6.1. (Continued) Summary of basic statistics of water quality parameters between 2000 and 2014

River/Canal
Name

Site
Number Statistics

Chl-a
(g/L)

DO
(mg/L)

TKN
(mg/L)

TP
(mg/L)

Total
Phosphate

(mg/L)

Ammonia-N
(mg/L)

WT
(DegC)

TSS
(mg/L)

Turbidity
(NTU)

Magnesium
(mg/L)

Chloride
(mg/L)

Sodium
(mg/L)

Miami
Canal

S354

Min 1.0 0.26 0.88 0.006 0.002 0.005 9.7 1.6 1.2 2.6 5.1 7.0

Mean 19.0 5.70 1.50 0.100 0.087 0.068 25.5 13.3 10.0 11.0 52.9 32.1

Max 181.0 13.10 6.39 0.838 0.838 0.304 36.3 158.0 71.4 19.1 108.2 59.0

SD 27.6 2.42 0.47 0.076 0.074 0.058 4.7 14.6 11.2 3.0 16.8 9.4

S8

Min 1.0 0.63 0.88 0.010 0.043 0.005 14.3 1.0 1.1 6.1 27.0 15.5

Mean 5.5 5.99 1.30 0.100 0.108 0.060 25.6 6.1 4.8 10.1 52.5 29.6

Max 31.0 12.50 2.72 0.561 0.840 0.304 32.9 36.0 24.9 18.2 133.3 73.4

SD 6.6 2.16 0.22 0.056 0.056 0.058 4.3 5.0 4.3 2.4 15.6 8.8

C123SR84

Min 0.7 1.53 0.95 0.053 0.047 0.005 15.7 2.0 0.8 6.4 34.0 20.0

Mean 10.8 5.29 1.41 0.140 0.113 0.052 25.7 5.9 4.0 10.9 57.2 33.1

Max 49.0 9.45 2.00 0.490 0.757 0.596 31.4 20.0 13.7 17.4 120.0 57.6

SD 11.2 2.04 0.26 0.080 0.053 0.058 4.0 4.0 3.4 2.7 17.4 8.4

S151

Min 0.5 0.91 0.81 0.028 0.050 0.005 15.0 1.4 0.1 5.6 3.3 1.1

Mean 12.9 6.65 1.18 0.113 0.118 0.045 25.8 5.0 2.0 11.8 76.8 42.9

Max 370.0 12.20 4.67 0.311 0.673 0.887 33.1 14.0 17.7 38.4 451.0 248.6

SD 21.9 2.05 0.29 0.047 0.051 0.058 4.1 2.3 2.3 4.8 61.4 34.2

S31

Min 1.0 0.04 0.30 0.037 0.010 0.031 14.7 1.0 0.6 4.8 4.0 11.7

Mean 12.7 5.45 1.07 0.185 0.132 0.049 26.4 9.0 3.7 110.4 554.8 199.2

Max 133.0 13.38 2.35 0.810 0.680 0.063 34.4 66.5 17.1 793.0 12500.0 1350.0

SD 15.0 2.27 0.28 0.136 0.073 0.012 3.8 9.9 3.1 149.3 1484.3 284.2

MR01

Min 0.6 0.61 0.15 0.150 0.002 0.020 12.14 0.8 0.1 7.0 38.0 26.0

Mean 17.6 5.14 1.08 1.082 0.069 0.100 25.99 19.9 2.2 10.6 59.1 39.6

Max 68.0 10.71 2.40 2.400 0.160 0.230 33.14 102.0 14.0 20.4 140.0 81.0

SD 16.3 1.40 0.55 0.548 0.049 0.038 3.55 27.3 2.4 2.2 12.2 7.3
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Since the factor original loadings may not be readily interpretable and are usually

rotated until a “simple structure” is achieved, that means each variable has very high

factor loadings (as high as 1) on one of the PCs and very low factor loadings (as low as 0)

on the other PCs. This process is known as FA, which follows PCA, and constructed new

variables are also called varifactors (VFs). In this study, PCA/FA was performed on the

normalized variables in the wet and dry seasons. The varimax rotation method is widely

used in the literature because it maximizes the sum of the squared loadings for each

component, and thus, was also used in this study [7,24,37–39]. The FA can be expressed

as:

Zij = 11i + 22i + 33i + … + mmi + ei (6.2)

Where, Z is the component score,  is the component loading,  is the factor

score, e is the residual term accounting for errors or other source of variation, i is the

sample number, and m is the total number of variables. Kaiser-Meyer-Olkin (KMO) and

Bartlett’s Test were used to test if k samples were from populations with equal variances.

They were applied on the dataset to test the null hypothesis, H0 that all k population

variances were equal against the alternative that at least two were different. The KMO

statistic varies between 0 and 1. Kaiser (1974) recommends accepting values greater than

0.5 is acceptable. Furthermore, Hutcheson and Sofroniou [41] stated that values between

0.5 and 0.7 are moderate, values between 0.7 and 0.8 are good, values between 0.8 and

0.9 are great, and values above 0.9 are superb. The Kaiser Rule and Scree Plots were used

as the sole cut-off criterion for estimating the number of factors. The Kaiser rule drops all

components with eigenvalues under 1.0.
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2.3.2. Source apportionment using APCS-MLR receptor modeling technique

A combination of the multiple linear regression model (MLR) and the absolute

principal component scores (APCS) are the basis of the receptor modeling approach for

the apportionment of different sources. In this model all possible pollution sources

contribute linearly to the concentration of the studied water quality variable at the

receptor site [42]. The APCS is generally used for the estimation of the contribution of

possible pollution sources to each water quality parameter [43]. As mentioned, the

resultant factor scores from PCA/FA cannot be used directly for the quantitative

estimation of source contributions and apportionment, because it is performed on z-

transformed normalized variables. These normalized factor scores then should be

rescaled and converted to un-normalized APCS values required for the apportionment

process. A detailed description of the receptor model and the procedure of calculations is

given by Thurston and Spengler [44]. The source contributions to pollutant’s

concentration (Cj) can be calculated by using a multiple linear regression as:

Cj = ( 0) + × (6.3)

Where, ( 0) is constant term of multiple regressions for pollutant j (average

contribution of the jth pollutant from sources not determined by PCA/FA), is

coefficient of multiple regression of the source k for pollutant j, is scaled value of

the rotated factor k for the considered sample. The combined term ×
represents the contribution of source k to Cj. Moreover, the mean of the product× on all samples represents the average contribution of the sources (N).

Quantitative contributions from each each identified source and for each individual water
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quality parameters can be compared with their original measured values to examine the

accuracy of calculations. The values for Cj, ( ) , and have the dimensions of the

original concentration measurements [5].

In APCS-MLR, the source contribution estimates can be negative [45]. Factor

loadings from the results of PCA/FA vary from -1 to 1, which those loadings close to -1

or 1 are the strongest loadings, and loadings close to zero are weak loadings that effect on

the variable. The sign and direction of the loading is taken into account to interpret the

relationship of a variable to the factor. Negative signs imply an inverse relationship to the

factor and vary inversely to other variables that have positive loadings. Similar meanings

apply to interpret the contributions of identified potential pollution sources by APCS-

MLR. However, the existence of these negative contributions, despite being right, might

lead to confusion in the interpretation and analysis of the source apportionment results.

As an example, in a study performed by Guo et al. [46] negative contributions are

obtained for some pollution sources, which has resulted in observed contribution values

more than 100 percent for other pollution sources of a variable. In addition, it was

observed from literature that in a large number of the studies negative contributions were

ignored. This matter may affect the accuracy and precision of source apportionment

calculations.

To overcome this issue, a new approach is presented in this study to change the

negative percentages to positive quantities, while correctly taking their contributions into

account. Consider a hypothetical case with two high contribution loadings of 0.85 and

-0.85, which have equal contribution values but in inverse directions, and with a

summation equal to zero. An instant error will happen in this case by getting a division



213

by zero when calculating the percentage of each factor (i.e. 0.85100/0). The difference

between the two numbers can be used as the basis to find the solution. For example, the

difference of 0.85 and -0.85 is 1.7. Therefore, the positive loading (0.85) contributes to

50% (0.85100/1.7). Therefore, the absolute function of negative loading (-0.85) can be

used to obtain the same contribution percentage equal to 50% ([abs (-0.85)100]/1.7).

The difference method also can be used when more than two numbers are considered in

the calculations [47]. Therefore, the percentage contributions of n potential pollution

sources (S) using the absolute function of all loadings (positive and negative) can be

computed as:

(abs (S1)  100) / (abs (S2) + abs (S3) + abs (S4) + … + abs (Sn))

(abs (S2)  100) / (abs (S1) + abs (S3) + abs (S4) + … + abs (Sn))

(abs (S3)  100) / (abs (S1) + abs (S2) + abs (S4) + … + abs (Sn)) (6.4)

.

.

.

(abs (Sn)  100) / (abs (S1) + abs (S2) + abs (S3) + … + abs (Sn-1))

The feasibility of APCS-MLR model in water quality studies compared to its

applications in air quality is still a new concept [42]. Researches that utilized its potential

in hydrological examinations showed its significant effectiveness in water quality

evaluations. Assessment of the contributions of possible pollution sources to the

quantities of aquatic pollutants is an essential requirement for the strategic

management of precious freshwater resources. Therefore, it is highly recommended that

even small contributions of factors be accounted.
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2.3.3. Source apportionment using PMF model

The Positive Matrix Factorization (PMF) model, which is considered as a

multivariate factor analysis, breaks down a dataset into two matrices of factor

contributions and factor profiles, and explicitly addresses the problem of non-optimal

scaling [48]. PMF is also one of the models that developed by the US EPA for source

apportionment [49–54]. A detailed description of the PMF model is given by Paatero and

Tapper [55]. The main idea of these receptor models is to measure the species

concentrations and source profiles, as shown in equation 6.5:= ∑ + (6.5)

Where, p is the number of factors, f is the species profile for each pollution

source, g is the amount of mass contributed by each factor to each individual sample, and

eij is the residual for each sample/species. The most critical decision required for the

interpretation of the PMF results is choosing the best modeled number of factors for a

dataset [56]. There are several qualitative metrics for making the determination of the

number of factors. In this study, the number of factors, p, in the real dataset was defined

based on the results of PCA/FA in order to make the comparison between PMF and

APCS-MLR more reasonable. Possible pollution sources of each factor were determined

by using relationship among variables and their percentage of contribution in the same

group. The advantage of PMF is its capability to weight each data point, individually. In

this study, the uncertainty for each variable estimated by the DBHYDRO (environmental

database of SFWMD) was used as the input uncertainty data file. In general, the non-

negativity restriction alone is not adequate to produce a unique solution. An infinite
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number of plausible solutions may be generated and cannot be simply disqualified using

mathematical algorithms. Rotating a given solution and evaluating how the rotated results

fill the solution space is one approach to reduce the number of solutions.

Additional information, such as known source contributions and/or source

compositions, can also be used to reduce the number of solutions and to determine

whether one solution is more physically realistic than other solutions. Mathematically,

the process of rotation include the transformation of a pair of factor matrices (G and F) to

another pair of matrices (G* and F*) with the same Q-value [57]. It is well known that

source apportionment results for environmental data were always unpredictable and

difficult to judge. Thus, it is essential to perform source apportionment with more than

one model, as the validity of a conclusion can be increased after the results from different

models are compared. In this study, U.S. EPA PMF-5.0 model was used to compare the

results of PMF with the results of APCS-MLR and to enhance the validity of the source

apportionment results.

3. Results and discussion

3.1. Data structure determination using PCA and FA

Before performing PCA and FA, the Kolmogorov–Smirnov (K–S) statistics were

used to test the goodness-of-fit of the data to log-normal distribution. According to the

K–S test, all the variables are log-normally distributed with 95% or higher confidence.

Also, to examine the suitability of the data for PCA/FA, KMO and Bartlett’s sphericity,

tests were applied on the dataset prepared for wet and dry seasons. KMO values for the

wet season and dry season were 0.631 and 0.709, respectively. Similarly, Bartlett’s test of

sphericity values were 1,009 and 704 (p<0.05), respectively, indicating that there may be
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a statistically significant interrelationship between variables and the appropriateness of

the PCA/FA analysis was valid. To reduce the overlap of original variables over each PC,

varimax rotation method was conducted.

The normalized data matrices were used for the PCA/FA analysis. Table 6.2 and

6.3 represent the determined initial PCs, their eigenvalues and cumulative % of variance

contributed in each PC for wet and dry seasons, respectively. Based on the Kaiser Rule,

the first five and four principal components are obtained with eigenvalue > 1 for wet and

dry seasons, summing 85 % and 74% of the total variance in the water quality dataset,

respectively. Equal numbers of VFs were obtained for two seasons through FA

performed on the PCs. Corresponding VFs loadings for 12 selected variables are

presented in Table 6.4. According to Liu et al. (2003) and Huang et al. (2010), factor

loadings > 0.75, [0.50-0.75], and [0.30-0.50] were considered to be strong, moderate, and

weak loadings, respectively.

Table 6.2. Total variance explained in wet season.

Component
Initial Eigenvalues

Extraction Sums of Squared
Loadings

Rotation Sums of Squared
Loadings

Total % of
Variance

Cumulative
%

Total
% of

Variance
Cumulative

%
Total

% of
Variance

Cumulative
%

1 4.569 38.071 38.071 4.569 38.071 38.071 3.906 32.550 32.550
2 2.205 18.378 56.449 2.205 18.378 56.449 2.042 17.019 49.569
3 1.225 10.212 66.660 1.225 10.212 66.660 1.688 14.066 63.634
4 1.169 9.743 76.404 1.169 9.743 76.404 1.326 11.052 74.687
5 1.006 8.379 84.783 1.006 8.379 84.783 1.212 10.096 84.783
6 0.577 4.806 89.589
7 0.535 4.459 94.048
8 0.347 2.893 96.941
9 0.225 1.874 98.814
10 0.085 0.707 99.521
11 0.048 0.397 99.918
12 0.010 0.082 100.000
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Table 6.3. Total variance explained in dry season.

Component
Initial Eigenvalues

Extraction Sums of Squared
Loadings

Rotation Sums of Squared
Loadings

Total
% of

Variance
Cumulative

%
Total

% of
Variance

Cumulative
%

Total
% of

Variance
Cumulative

%
1 4.347 36.221 36.221 4.347 36.221 36.221 4.19

6
34.965 34.965

2 2.207 18.392 54.613 2.207 18.392 54.613 2.03
6

16.968 51.933
3 1.341 11.179 65.791 1.341 11.179 65.791 1.54

8
12.902 64.835

4 1.016 8.466 74.257 1.016 8.466 74.257 1.13
1

9.422 74.257
5 0.919 7.655 81.912
6 0.684 5.704 87.616
7 0.468 3.900 91.515
8 0.424 3.532 95.047
9 0.242 2.016 97.063
10 0.188 1.565 98.628
11 0.119 0.988 99.616
12 0.046 0.384 100.000

Table 6.4. Factor loadings of 12 selected variables on varimax rotated factors of
different seasons in three major rivers of South Florida.

Parameters Wet Season Dry Season

VF1 VF2 VF3 VF4 VF5 VF1 VF2 VF3 VF4
Chl-a -0.076 0.708 0.088 0.050 0.495 -0.095 0.769 -0.030 -0.151
Dissolved Oxygen 0.063 0.862 -0.220 -0.049 -0.024 -0.283 0.575 -0.618 -0.141
Total Kjeldahl

Nitrogen

0.292 -0.123 0.806 -0.046 0.074 -0.085 -0.088 0.180 0.926
Total Phosphorus 0.759 0.005 0.496 0.093 0.101 0.866 0.156 0.001 -0.071
Total Phosphate 0.750 0.010 0.509 0.111 0.124 0.882 0.250 0.035 0.081
Ammonia-N 0.234 -0.439 -0.151 0.749 0.140 0.302 -0.080 0.609 -0.025
Water Temperature -0.051 0.042 0.043 0.005 0.936 -0.158 0.018 0.670 0.191
Total Suspended

Solids

0.037 0.416 0.190 0.796 -0.085 0.120 0.611 0.458 -0.198
Turbidity 0.090 0.633 0.590 0.293 -0.114 0.093 0.753 -0.267 0.331
Magnesium 0.929 0.072 -0.091 0.011 -0.060 0.817 -0.154 0.123 -0.182
Chloride 0.946 0.030 0.100 0.064 -0.083 0.952 -0.151 0.107 0.011
Sodium 0.920 -0.097 0.230 0.118 -0.096 0.926 -0.159 0.071 -0.005

3.1.1. Identification of potential pollution sources in wet season

In the wet season, the first varifactor (VF1), accounting for 32.6% of the total

variance, had strong and positive loadings on TP, total phosphate, magnesium, chloride,

and sodium. Component loadings for each variable in five selected components after

varimax rotation are graphically shown in Figure 6.2. High concentrations of TP, total

phosphate in surface waters could come from various sources, including domestic and
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industrial wastewater, fertilizer applications, and animal waste [60]. Sources of salt ions

(magnesium, chloride, and sodium) to water resources vary from natural sources (oceans,

atmospheric deposition, weathering of common rocks, minerals and soils, and salt

deposits and brines) to anthropogenic sources (landfills, wastewater and water treatment,

agriculture, and application of deicing salts) [61].

It was observed from the dataset that the average concentrations of these five

components are significantly higher in downstream sites, specifically in the Kissimmee

River and Caloosahatchee River (sites S154C and CES03), which could be occurred due

to both above mentioned natural and anthropogenic sources. At site S154C, the very high

concentrations of magnesium, chloride, and sodium could be associated with urban areas

with more industrial effluent and domestic wastewater, and in case of site CES03,

intrusion of salt water into the river from the Gulf of Mexico could be considered as a

natural source for the high concentrations of salt ions. Commonly when fresh water meets

seawater and salt water and fresh water mixed together, as in estuaries, brackish water

condition occurs. In these area, the interaction of surface waters and groundwater as an

important factor in the water quality characteristics and protection of aquifers in South

Florida as the main source and supplier for the public water should be precisely

considered. The interactions between surface water and groundwater in the studied rivers

and canals can enhance and facilitate the spread of nutrients, and pollutants into the

aquifer [62]. Seasonal changes in water quality should be considered prior to injection

programs. Different issues, such as precipitation of minerals, clogging problems may

result from suspended solids, ion-exchange, and etc. could be some of the important
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consequences of the interactions between brackish native waters, aquifer material, and

injected fresh water.

In general, the average concentrations of the water quality parameters in the

Miami Canal are worse than the other two rivers. The Kissimmee River demonstrated

even lower average values. Nonetheless, the outliers in the database were related to the

average concentration of the represented variables in two highly polluted sites of S154C

and CES03 in the Kissimmee River and the Caloosahatchee River, respectively. Previous

analysis by Gholizadeh et al. (2016) indicated that these two highly polluted sites are

extremely affected by urbanized areas, and also high-density environmental resource

permits (ERP) with more industrial effluent and domestic wastewater. However, TP

showed that a different pattern and average concentrations of this variable were much

higher in the Caloosahatchee River and the Kissimmee River, respectively, in comparison

to the Miami Canal. Besides the two mentioned highly polluted sites, TP was found

higher at the Caloosahatchee River and the Kissimmee River than Miami Canal sites. The

percentage of agricultural and urbanized areas in the Miami Canal watershed was

measured from the landuse/landcover map in GIS and was seen to be even more than the

other two rivers. Therefore, this could be related to the effectiveness of eco-restoration

projects implemented in its watershed and adjacent linked watersheds (the water

conservation area-3, WCA-3) in order to decrease the amounts of nutrients. Therefore,

VF1 was identified as “point source pollution discharges”.

The second varifactor (VF2), accounting for 17.02% of the total variance, had

strong and positive loadings on DO, moderate positive loading on turbidity and chl-a, a

weak positive loading (0.42) on TSS, and a weak negative loading (-0.44) on ammonia-
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N. It was seen from the correlation matrix for the wet season dataset that chl-a had strong

correlations with DO and turbidity in the wet season. Aquatic components, such as plants

and algae that contain chl-a during the chemical process of oxygenic photosynthesis, use

carbon dioxide, water and sunlight to produce oxygen [64]. High concentrations of

nutrients in surface waters may cause to observe have high chlorophyll conditions, which

can come from many sources, such as fertilizers, atmospheric deposition, erosion, and

sewage treatment plant discharges. Among all the water quality parameters, DO is the

best index for indicating environmental quality because all aquatic life depends on DO to

metabolize food for producing energy to maintain life and growth [65]. Hence, the DO

level in a water body is of great importance to all aerobic aquatic life; higher levels of

DO will maintain the biological diversity. The seasonal and spatial variations of DO, chl-

a, and WT were observed in the dataset, in which chl-a and water temperature showed a

clear inverse relationship with DO. By increasing the water temperature the activities of

aquatic life increase and more oxygen will be consumed, and causes a decrease in

concentration of DO. It is also known that the oxygen can better dissolve as the

temperature of water decreases. Turbidity is the most visible indicator of water quality

and an optical feature of water clarity. Soil erosion, runoff, stirred bottom sediments, and

algal blooms can contribute to the concentration of suspended particles in water [66].

Therefore, high loadings of VF2 on the mentioned parameters and analysis of their

possible sources can interpret this factor as “physicochemical and biological non-point

sources of pollution”.

The third varifactor (VF3), accounting for 14.07% of the total variance, had

strong and positive loadings on TKN, and moderate positive loading on TP, total
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phosphate, and turbidity. TKN is a measure of the amount of ammonia-N and organic

nitrogen in the water [67]. High nitrogen can increase the amount of algae and chl-a

concentrations in the waterbody, however compared to phosphorus, nitrogen is generally

of less concern in fresh water [68]. This “Non-point sources of nutrients” factor

represents influences from nonpoint sources, such as fertilizers applied to agricultural

fields, deposition of nitrogen from the atmosphere, suburban lawns, and erosion of soil

containing nutrients [69].

The fourth varifactor (VF4), accounting for 11.05% of the total variance, had

strong positive loadings on ammonia-N and TSS. Ammonia-N is a toxic chemical that is

usually found in landfill leachate [70] and in waste products, such as wastewater, liquid

manure and other liquid organic waste products [71]. Among the numerous sources of

ammonia-N found in the water body, the nitrogen released by the decomposition of

organic matter and fertilizer released from agricultural applications are the major

contributors [72]. Different types of agricultural areas in South Florida generate non-

point sources of pollution that have a high percentage of ammonia from pesticides and

fertilizers. The main source of suspended solids is inorganic materials, although some

other constituents in water such as bacteria, organic particles from decomposing

materials, and algae can also influence the concentration of total suspended solids [73].

Organic particles also can contribute to TSS from decomposing materials. During the

decay and decomposition process of algae, plants and animals, small organic particles

break away and enter the water column as suspended solids [66]. In addition, clear spatial

differences for chl-a and DO, as a measure of life's vitality and the activity level of the

aquatic lives, was observed in the studied rivers. The higher average values of these two
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variables were found in the Kissimmee River and the Caloosahatchee River, which

indicates the dynamism and strength of aquatic lives in this river. Besides, the Miami

Canal had lower average concentrations of chl-a and DO, which indicated that organic

pollution may play a significant role in the Miami canal, especially in urbanized areas

which are under the influence of more domestic and industrial wastewater. The analysis

of the major potential source of these pollutants in the studied rivers could be related to

the decomposition of organic matters that mainly originate from discharges from

nonpoint sources, so that this factor may be termed as “organic pollutants” [74].

Finally, the fifth varifactor (VF5) accounting for 10.1% of the total variance in the

data sets, was highly correlated with only water temperature. WT significantly influences

aquatic life because it can survive only in a narrow temperature range and is very

sensitive to  WT variations [75]. Therefore, the magnitude of a stream’s temperature

directly affects its ecology, the survival of aquatic life, and even the concentration of

stream DO, so stream temperature can be an important parameter for indexing water

quality. The stream temperature in this study is only dependent on season. Therefore, the

fifth factor can be regarded as a “seasonal” factor. Regarding the contribution of each

factor in the total variance, as the “point source pollution discharges” factor (VF1) has

the largest proportion of the total variance (32.6%) in the wet season, it and be concluded

that anthropogenic pollution, mainly due to the agricultural waste, domestic and

industrial wastewater disposal, is the major source of river water contamination in the

three major rivers of South Florida.
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Figure 6.2. Component loadings for twelve variables after varimax rotation in wet

season.

3.1.2. Identification of potential pollution sources in dry season

The first varifactor (VF1), accounting for 35% of the total variance, had strong

and positive loadings on TP, total phosphate, magnesium, chloride, and sodium. This was

analogous to the first factor in the wet season and similar sources of pollution can be

accounted for as the first factor in dry season. The identified pattern of variables in the

dry season from the database showed that the average concentrations of magnesium and

chloride in the Miami Canal are worse than the other two rivers, and the Kissimmee

River demonstrated lower average values. Nonetheless, the observed outliers were again

related to the average concentration of the represented variables in two highly polluted

sites of S154C and CES03 in the Kissimmee River and the Caloosahatchee River,
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respectively. The highest amounts of these components were observed in sites S154C and

CES03 that are the most downstream sites of the Kissimmee River and Caloosahatchee

River, respectively. These sites are extremely affected by urbanized areas with more

industrial effluent and domestic wastewater. Therefore, VF1 in the dry season was also

interpreted as “point source pollution discharges”. Component loadings for each variable

in four selected components after varimax rotation are graphically shown in Figure 6.3.

The second varifactor (VF2), that accounted for 17% of the total variance, had

strong positive loadings on chl-a and turbidity, and moderate positive loading on TSS and

DO. The importance and possible sources of these components were discussed

previously. Due to the strong relationship between chl-a, DO, turbidity, and TSS, and the

precise study of the possible source of these parameters, it was revealed that both

physicochemical and biological factors could be the main responsible sources for the high

loadings of these parameters on VF2. These sources include fertilizers, soil erosion, and

sewage treatment plant discharges runoff, stirred bottom sediments, and algal blooms.

Therefore, VF2 is still representing “the physicochemical and biological non-point

sources of pollution” in the dry season.

The third varifactor (VF3), accounting for 12.9% of the total variance, had

moderate and positive loadings on ammonia-N and WT, moderate negative loading on

DO, and a weak positive loading on TSS. It was found from the correlation matrix for the

dry season dataset that DO was negatively correlated with ammonia-N and WT, which

indicates that large amounts of DO in the dry season was consumed by large amounts of

organic matters from urban and agriculture wastewater, and leads to an anaerobic

fermentation process causing high levels of ammonia. With respect to the decreasing
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trend of DO and the increasing trend of ammonia-N from upstream to downstream, these

correlations indicate that the wastewater from domestic and industrial area located in the

downstream parts of the rivers and their organic load are disposed to the rivers.

Therefore, VF3 was representing a group of “organic” source pollution indicator

parameters.

Finally, the fourth varifactor (VF4), which accounted for 9.4% of the total

variance, had strong positive loadings only on TKN, and hence, the fourth factor in the

dry season is called the “Non-point sources of nutrients” factor. Results showed the first

factor (VF1) with the largest proportion of the total variance (35%) in the dry season,

representing the point (municipal and industrial effluents) and nonpoint sources

(agricultural runoff), is the main contributor of river water contamination in three major

rivers of South Florida.

Figure 6.3. Component loadings for twelve variables after varimax rotation in dry season.
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3.2. Source apportionment using APCS-MLR and PMF models

After identifying possible pollution sources using the PCA/FA analysis, the

contributions of each possible pollution source to different water quality variables were

then apportioned using APCS-MLR. Twelve water quality parameters of three major

rivers in South Florida were selected, and PCA/APCS model analyzed the sources of

pollution in wet and dry seasons during the observation period (2000-2014). According to

the results by Thurston and Spengler [44], when n ≥ m + 50 (n represents the number of

samples and m represents the number of pollutants for analysis), a reliable PCA/FA result

can be obtained. The number of data samples in the present study met this requirement.

During the factor extraction process, the principle of eigenvalue >1 was adopted

(Kaiser’s criteria) to identify five and four primary factors in the wet and dry season,

respectively, that significantly affect the variation of selected water quality parameters in

the study area.

Results of source apportionment in two different seasons are presented in Tables

6.5 and 6.6. As shown in these tables, the R2 values of the concentrations of the 12

studied parameters obtained with the calculations using the receptor modeling and actual

observations were both greater than 0.5 (in most cases more than 0.8), indicating that

there was a good consistency between the modeled and observed values, and that the

source apportionment results were reliable [7]. Further, the ratio of the mean observed

and estimated values of almost all the water quality variables (Tables 6.5 and 6.6) suggest

goodness of the receptor modeling approach to the source apportionment of river water.

Moreover, the contributions of unidentified sources as estimated values of ( 0) in Eq.

(6.7) were considered.
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In wet season, most variables were primarily influenced by point sources

pollution from industrial effluent and domestic wastewater (S1: Point source pollution

discharges), representing the nutrients (TKN, 22.4%; TP, 75.2%; total phosphate, 69.5%;

and ammonia-N, 10.9%) and the salt ions (magnesium, 95.2%; chloride, 95.4%; and

sodium, 87.8%), respectively. Contributions of physicochemical and biological non-point

sources pollution (S2) for different water quality parameters were between 0.4% (WT) to

66.6% (DO). These sources accounted for 17.7%-49.7% of the water clarity parameters

(TSS and turbidity, respectively) and 47.9% of the biological component (chl-a) in

riverine water quality of the study area.

Contributions of non-point sources of nutrients (S3) for different variables were

responsible accounting between 0.2% (WT) to 23.1% (TKN). The results of APCS-MLR

also indicated that 15.3% of turbidity is related to non-point sources of nutrient. It was

found that the contributions of organic pollutants (S4) to river water quality in the wet

season accounted for between 0.1% (WT) to 67% (TSS). It was also observed that the

highest percentage of ammonia-N (49.6%) is related to organic pollutants. Furthermore,

as Table 6.5 shows, 21.2% of turbidity is due to organic pollutants. Considering the high

percentage of contribution of these sources to TSS (67%), it can be concluded that S4

accompanied by S2 are the main sources of water murkiness and color in three selected

rivers. The seasonal factor (S5) was responsible for 98.3% of WT and for 38.8% of chl-a,

respectively. This factor also accounted for 4.3-6.3% of the nutrients concentrations and

7.3% of turbidity. Apart from these, unidentified miscellaneous sources contributed to the

river water pollution for most of the water quality variables and represented between

0.3% (WT) to 40.9% (TKN) in the wet season. It was also observed from the results of



228

the receptor model that 23.2% of DO, 13.3% of ammonia-N, and 10.4% of total

phosphate resulted from unidentified sources. This shows the necessity of field work to

further identify the sources of the pollution. Average contributions indicated that point

source pollution discharges (S1), physicochemical and biological non-point sources of

pollution (S2), non-point sources of nutrients (S3), organic pollutants (S4), seasonal (S5),

and unidentified sources for different variables concentrations in the wet season were

39.3%, 17.5%, 6.0%, 13.3%, 14.7%, and 9.3%, respectively (Figure 6.4-a)

In the dry season, most variables were primarily influenced by point sources of

pollution from industrial effluent and domestic wastewater (S1), representing between

1.9% (DO) and 86.9% (TP). Point source pollution discharges accounted for 3.6% to

86.9% of the nutrients (TKN, 3.6%; TP, 86.9%; total phosphate, 63.7%; and ammonia-N,

22.2%) and 58.1-84.8% of the salt ions (magnesium, 58.1%; chloride, 84.8%; and

sodium, 81%). Contributions of physicochemical and biological non-point sources of

pollution (S2) for different water quality parameters were between 1.4% (WT) and 93.2%

(chl-a). They were the main sources of the water clarity parameters (TSS, 85.3% and

turbidity, 71.1%), and the biological component (chl-a, 93.2).

Physicochemical and biological non-point sources of pollution (S2) also

accounted for 8.9% of TP, 16.4% of total phosphate, and 32.3% of DO in the riverine

water quality of the study area. Contributions of organic pollutants (S3) for different

variables were between 0.0% (TP) and 43.2% (WT). The results of APCS-MLR

measurements indicated that the highest percentage of ammonia-N (40.6%) and WT is

related to organic pollutants. Generally, the WT, the movement or flow of the water

body, and the amount of organic matter in the water can affect the amount of DO in the
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water. It was found that the contributions of non-point sources of nutrients (S4) to river

water quality in the dry season accounted for between 0.1% (sodium) and 71.9% (TKN),

which indicated that the highest percentage of TKN, as an indicator of total nitrogen,

resulted from these sources. Furthermore, 9.4% of turbidity and 6.3% of magnesium were

represented by non-point sources of nutrients. However, the miscellaneous unidentified

sources in the dry season also contributed to the river water pollution for most of the

water quality variables were between 1.5% (TSS) and 41.3% (DO). It was observed from

the results of the receptor model that high percentages of WT (35.8%) and magnesium

(22.2%), and a significant percentage of nutrients (ammonia-N, 28.3%; total phosphate,

16.6%; and TKN, 12.9%) also resulted from unidentified sources that shows the necessity

of field work to further identify the sources of the pollution. Average contributions of

point source pollution discharges (S1), physicochemical and biological non-point sources

of pollution (S2), organic pollutants (S3), non-point sources of nutrients (S4), and

unidentified sources for different variables concentrations in the dry season were 36.0%,

29.0%, 10.2%, 9.2%, and 15.5%, respectively (Figure 6.4-b).

Figure 6.4. Average contributions of different pollution sources to water quality of three
major rivers of South Florida in wet season (a) and dry season (b) using APCS-MLR
model.
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In addition, the studied variables can be categorized into three groups of nutrients

(TKN, TP, total phosphate, and ammonia-N), water murkiness conducive parameters

(TSS, turbidity, and chl-a), and salt ions (magnesium, chloride, and sodium). Average

contributions of different potential pollution sources to nutrients, water murkiness, and

salt ions calculated based on their percentage in Tables 6.5 and 6.6, are presented as a pie

chart in Figure 6.5 for wet and dry seasons. As shown in Figure 6.5, in the wet season,

point source pollution discharges (S1) with 45% contribution and unidentified sources

(UIS) with 18% contribution, and in the dry season, point source pollution discharges

(S1) with 44% contribution and non-point sources of nutrients (S4), were the major

sources of nutrients in river water quality. Turbidity, TSS, and chl-a were considered as

parameters that affect the water clarity. Accordingly, in the wet season, physicochemical

and biological non-point sources of pollution (S2) with 38% contribution and organic

pollutants (S4) with 30% contribution, and in the dry season, physicochemical and

biological non-point sources of pollution (S2) with 83% contribution, were the major

sources of water murkiness in river water quality. Point source pollution discharges (S1),

in both wet and dry seasons with 93% and 75% contributions, respectively, were the

major source of magnesium, chloride, and sodium in the three selected rivers of South

Florida.
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Table 6.5. Mean source contributions to different variables concentrations in wet season.

Variable
Source contribution (%) *

Observed mean
concentration

Estimated mean
concentration

Ratio
(Estimated/
Observed)

R2

S1 S2 S3 S4 S5
Unidentified

sources
Chl-a (g/L) 3.9 47.9 1.6 2.4 38.8 5.3 17.10  17.10  1.07 0.76
Dissolved Oxygen (mg/L) 2.9 66.6 3.9 2.2 1.1 23.2 4.47  4.42  1.02 0.80
Total Kjeldahl Nitrogen (mg/L) 22.

4
6.2 23.1 2.7 4.5 40.9 1.41  1.41  1.01 0.76

Total Phosphorus  (mg/L) 75.
2

0.0 8.6 4.1 4.3 7.9 0.11  0.11  1.42 0.84
Total Phosphate (mg/L) 69.

5
0.3 9.3 4.9 5.6 10.4 0.11  0.11  1.36 0.85

Ammonia-N (mg/L) 10.
9

17.6 2.4 49.6 6.3 13.3 0.10  0.10  1.09 0.85
Water Temperature (Deg C) 0.7 0.4 0.2 0.1 98.3 0.3 28.44  28.44  1.00 0.88
Total Suspended Solids (mg/L) 1.5 17.7 3.0 67.0 3.7 7.0 7.96  7.96  1.06 0.85
Turbidity (NTU) 5.6 49.7 15.3 21.2 7.3 0.8 4.56  4.56  1.03 0.86
Magnesium (mg/L) 95.

2
1.2 0.7 0.2 1.3 1.4 18.91  18.91  1.18 0.88

Chloride (mg/L) 95.
4

0.5 0.7 1.3 1.7 0.4 141.46  141.46  1.01 0.92
Sodium (mg/L) 87.

8
2.4 2.6 3.6 3.0 0.6 67.75  67.75  1.12 0.93

Mean 39.
3

17.5 6.0 13.3 14.7 9.3 1.11 0.85

Notes: *: S1 = Point source pollution discharges, S2 = Physicochemical and biological non-point sources of pollution, S3 = Non-point
sources of nutrients, S4 = Organic pollutants, and S5 = Seasonal.

Table 6.6. Mean source contributions to different variables concentrations in dry season.

Variable
Source contribution (%) * Observed mean

concentration
Estimated mean

concentration

Ratio
(Estimated/
Observed)

R2

S1 S2 S3 S4 Unidentified
sources

Chl-a (g/L) 1.9 93.2 0.4 2.7 1.8 11.35  11.35  1.18 0.62
Dissolved Oxygen (mg/L) 8.4 32.3 14.6 3.3 41.3 6.23  6.23  1.01 0.81
Total Kjeldahl  Nitrogen (mg/L) 3.6 5.7 5.9 71.9 12.9 1.25  1.25  1.00 0.91
Total Phosphorus  (mg/L) 86.9 8.9 0.0 2.4 1.8 0.081  0.084  1.14 0.86
Total Phosphate (mg/L) 63.7 16.4 0.8 2.4 16.6 0.078  0.078  1.14 0.85
Ammonia-N (mg/L) 22.2 8.1 40.6 0.8 28.3 0.071  0.070  1.18 0.47
Water Temperature (Deg C) 9.6 1.4 43.2 9.9 35.8 21.54  21.54  1.01 0.51
Total Suspended Solids (mg/L) 9.5 85.3 3.1 0.6 1.5 6.80  6.80  1.07 0.71
Turbidity (NTU) 2.8 71.1 6.3 9.4 10.5 4.40  4.40  1.04 0.76
Magnesium (mg/L) 58.1 9.7 3.6 6.3 22.2 25.52  25.52  1.15 0.74
Chloride (mg/L) 84.8 7.6 2.4 0.3 4.8 163.20  163.20  0.98 0.94
Sodium (mg/L) 81.0 8.7 1.7 0.1 8.5 67.75  67.75  1.05 0.89
Mean 36.0 29.0 10.2 9.2 15.5 1.08 0.76

Notes: *: S1 = Point source pollution discharges, S2 = Physicochemical and biological non-point sources of pollution, S3 = Organic
pollutants, and S4 = Non-point sources of nutrients.
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Figure 6.5. Average contributions of different pollution sources to nutrients, water
murkiness, and salt ions in wet season (a) and dry season (b) using APCS-MLR model.

The data matrix was also subjected to PMF receptor model using the EPA PMF-

5.0 program and the two-way model described by Paatero and Tapper [55] was

performed for the PMF analyses. The uncertainty of each data point are weighted in PMF

model and only positive contributions are considered, which is an important advantage of

this model [55,76]. The uncertainty estimated by the DBHYDRO for each variable was

used for the apportionment procedure using PMF.

Based on the relationship among variables and their percentage of contribution in

the same group, each six factors in the wet season and each five factors in the dry season

were determined. Pollution sources consisted of factor taking into consideration of TP,

total phosphate, magnesium, chloride, and sodium were signature of point source

pollution discharges. The factor consisting of DO, chl-a, TSS, and turbidity, which are

considered as the water murkiness index, were used as signature of physicochemical and

biological non-point sources of pollution group. Non-point sources of nutrients factor

(a)

(b)
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were dominated by TKN, TP, total phosphate, and turbidity. Organic pollutants were

dominated by Ammonia-N and TSS. The factor that was the main contributor to the WT

was considered as the signature of seasonal factor. In connection with the results of

PCA/FA, the sixth factor that had no explainable contribution to different variables was

assigned to the unidentified sources (UIS) in order to make the comparison of the results

more reasonable. Figure 6.6 shows the “Factor Figureprints” of twelve studied variables

resulted from EPA PMF model in the wet and dry seasons, which demonstrate a

schematic percentage of potential pollution contributions.

Figure 6.6. Factor Figureprints of twelve studied variables resulted from EPA P MF
model in the wet (a) and dry (b) seasons.

Figure 6.7 shows the average contributions of different pollution sources to water

quality of three major rivers of South Florida in wet and dry seasons obtained from the
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EPA PMF model. Average contributions indicated that point source pollution discharges,

physicochemical and biological non-point sources of pollution, non-point sources of

nutrients, organic pollutants, seasonal, and unidentified sources for different variables

concentrations in the wet season were 17%, 22%, 16%, 13%, 11%, and 20%,

respectively. Also, average contributions of point source pollution discharges,

physicochemical and biological non-point sources of pollution, organic pollutants, non-

point sources of nutrients, and unidentified sources for different variables concentrations

in the dry season were 19%, 40%, 21%, 8%, and 12%, respectively.

Figure 6.7. Average contributions of different pollution sources to water quality of three
major rivers of South Florida in wet season (a) and dry season (b) using EPA PMF
model.

Comparison of the obtained results from PMF and APCS-MLR models is graphed

in Figure 6.8. This showed that there were some significant differences in estimated

contribution for each potential pollution source, especially in the wet season. The more

tremendous difference between the apportioned contributions using two models was

observed for the point source pollution discharges.
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Figure 6.8. Source contribution variations based on the results of PMF and APCS-MLR
models

To facilitate the comparison, predicted vs. observed scatter plots from the results

of two PMF and APCS-MLR analyses were used for some chemical species (Figure 6.9).

Analysis of the results and the R-squared values of the predicted/observed plots for most

of the water quality variables showed better goodness-of-fit with the APCS-MLR

receptor modeling approach to the pollution source apportionment in the studied river

waters. Furthermore, in some variables, as an instance for WT, the results of APCS-MLR

model showed a distinct correlation between this variable with the identified seasonal

factor, whereas in PMF model there was not found a distinguished contribution to a

certain factor.
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Figure 6.9. Scatter plots of the predicted and observed ratios for TKN, total phosphate,
TP, ammonia-N, TSS, and turbidity in the wet season using the EPA PMF (a) and APCS-
MLR (b) models.
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Compared to PMF, the procedure involved in APCS-MLR analyses are relatively

simple. To the extent of our knowledge, relatively few descriptions of the application of

the PMF approach (than of APCS-MLR) to particle number concentration data have

appeared in the literature. In particular, although PMF method has been widely used in air

pollution studies, there is no many prior report of the application of PMF to the

apportionment of pollution sources in the fields of water resources. Therefore, the results

of APCS-MLR are more physically acceptable for the current study.

4. Conclusion

In this study, multivariate statistical analysis techniques, including PCA and FA,

along with the APCS-MLR and PMF receptor modeling techniques, were used to assess

the water quality and apportion the contributions of different potential pollution sources

to each water quality variable in three major rivers of South Florida. For this purpose, a

15 year (2000–2014) dataset of 12 water quality variables covering 16 monitoring

stations, and approximately 35,000 observations were used.

PCA and FA methods were applied to identify five and four potential pollution

sources in wet and dry seasons, respectively. APCS-MLR was used to apportion their

contributions to each water quality variable. Results showed that in the wet season, point

source pollution discharges (S1) with 45% contribution and unidentified sources (UIS)

with 18% contribution, and in the dry season, point source pollution discharges (S1) with

44% contribution and non-point sources of nutrients (S4) with 19% contribution, were

the major sources of nutrients in river water quality. Accordingly, in the wet season,

physicochemical and biological non-point sources of pollution (S2) with 38%

contribution and organic pollutants (S4) with 30% contribution, and in the dry season
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only physicochemical and biological non-point sources of pollution (S2) with 83%

contribution were the major sources of water murkiness in river water quality. Point

source pollution discharges (S1) in both wet and dry seasons with 93% and 75%

contributions, respectively, was the major source of magnesium, chloride, and sodium in

three selected rivers of South Florida. In addition, two S154 and CES03 sites showed

very greater amounts of some parameters, such as chl-a, DO, TKN, TP, total phosphate,

and ammonia-N in both wet and dry seasons compared to other sites. One of the possible

reasons may be the effluent discharges of industrial and domestic wastewater, generally

kept at a relatively steady level throughout the entire year. It can be concluded that the

point source pollution discharges from anthropogenic factors due to the discharge of

agriculture waste and domestic and industrial wastewater, were the major sources of river

water contamination in three major rivers of South Florida.

The data matrix was also subjected to PMF receptor model using the EPA PMF-

5.0 program and the two-way model described were performed for the PMF analyses.

Comparison of the obtained results of PMF and APCS-MLR models showed that there

were some significant differences in estimated contribution for each potential pollution

source, especially in the wet season. The more tremendous difference between the

apportioned contributions using two models was observed for the point source pollution

discharges. Analysis of the results and the R-squared values of the predicted/observed

plots for the most of the water quality variables showed better goodness of fit with the

APCS-MLR to the pollution source apportionment in the studied river waters.

Eventually, it was concluded that the results of APCS-MLR are more physically

acceptable for the current study.
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This study showed the feasibility and reliability of the combined use of these

multivariate statistical techniques in river water quality research. It is desirable that both

state and local agencies pay more attention and consideration in order to improve and

protect the vulnerable river quality. Additional studies will be required to assess precisely

the unidentified sources of pollution and variation of further water quality parameters that

were not analyzed in this study.
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CONCLUSION AND RECOMMENDATIONS
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This study follows a multi-model/multi-approach/multi-scale procedure to

understand water quality in South Florida. Multivariate statistical techniques including

cluster analysis (CA), principal component analysis (PCA), factor analysis (FA),

discriminant analysis (DA), were successfully applied to evaluate spatial and temporal

variations in surface water quality of three major rivers of South Florida using 15 years

(2000–2014) datasets of 12 water quality variables covering 16 sampling stations, and

about 35,000 observations were used. In addition, the absolute principal component

score-multiple linear regression (APCS-MLR) and PMF receptor modeling techniques

were used to identify the contributions of different potential pollution sources to each

water quality variable.

Agglomerative hierarchical CA grouped 16 monitoring sites into three groups

(low pollution, moderate pollution, and high pollution) based on their similarity of water

quality characteristics. PCA and FA methods were applied to reveal five potential

pollution sources including: (1) point source pollution discharges, (2) physicochemical

and biological non-point sources of pollution, (3) non-point sources of nutrients, (4)

organic pollutants, and (5) seasonal factor in wet season and four potential pollution

sources including: (1) point source pollution discharges, (2) physicochemical and

biological non-point sources of pollution, (3) organic pollutants, and (4) non-point

sources of nutrients, and then absolute principal component score-multiple linear

regression (APCS-MLR) was used to identify their contributions to each water quality

variable. In addition, the contributions of miscellaneous unidentified sources were

considered as one of the latent factors in water quality in both wet and dry seasons that

showed the necessity of field work to further identify the sources of the pollution. The



248

data matrix was also subjected to PMF receptor model using the EPA PMF-5.0 program

and the two-way model described were performed for the PMF analyses. Comparison of

the obtained results from PMF and APCS-MLR models showed that there were some

significant differences in estimated contribution for each potential pollution source,

especially in the wet season. Eventually, it was concluded that the results of APCS-MLR

are more physically acceptable for the current study. It came to the conclusion that the

point source pollution discharges from anthropogenic factors due to the agriculture waste,

domestic and industrial wastewater disposal was the major source of river water

contamination in three major rivers of South Florida.

Discriminant analysis (DA), as an important data reduction method, and cluster

analysis (CA) were used to assess the water pollution status and analysis of its

spatiotemporal variation. In temporal DA, 12 months of raw data divided into two

seasonal groups (wet and dry season) as the dependent variable, while all observed water

quality parameters were independent variables. In spatial DA, sixteen monitoring sites

classified by CA to three groups of relatively low pollution (LP), moderate pollution

(HP), and  high pollution (HP) regions were the grouping (dependent) variables, whereas

all the observed parameters constituted the independent variables. It was found by the

stepwise DA that five variables (chl-a, DO, TKN, TP and water temperature) are the most

important discriminating water quality parameters responsible for temporal variations.

In spatial DA, the stepwise mode identified seven variables (chl-a, DO, TKN, TP,

magnesium, chloride, and sodium) and six variables (DO, TKN, TP, turbidity,

magnesium, and chloride) as the most important discriminating variables responsible for

spatial variations in wet and dry season, respectively. Different patterns associated with
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spatial variations were identified depending on the variables and considered season,

however the overall trend of environment pollution problems was found from the LP

region to HP region. Nonetheless, two highly polluted sites of S154C and CES03 in

Kissimmee River and Caloosahatchee River require more attention and considerations.

The spatial DA using the identified groups of sites by CA confirmed the accuracy of

cluster analysis results. This study showed the feasibility and reliability of the combined

use of these multivariate statistical techniques in river water quality research.

In addition, the bio-physical parameters associated with water quality of two

important waterbodies of Lake Okeechobee and Florida Bay investigated based on

atmospherically corrected remotely sensed data. The principal objective of this study is to

monitor and assess the spatial and temporal changes of water quality using the

application of integrated remote sensing, GIS data, and statistical techniques. In the Lake

Okeechobee the spatial and temporal changes of four water quality parameters including

total suspended solids (TSS), chlorophyll-a (chl-a), total phosphate, and total kjeldahl

nitrogen (TKN), by using the application of integrated remote sensing, GIS data, and

statistical techniques. For this purpose, three dates of Landsat Thematic Mapper (TM)

data in 2000 (February 29); 2007 (January 31), and one date of Landsat Operational Land

Imager (OLI) in 2015 (February 6) in the dry season, and three dates of TM data in 2000

(July 6); 2007 (August 11), and one date of OLI data in 2015 (September 15) in the wet

season of the subtropical climate of South Florida, were used to assess temporal and

spatial patterns and dimensions of studied parameters in Lake Okeechobee, Florida. The

simultaneous observed data of four studied parameters were obtained from 26 monitoring

stations and were used for the development and validation of the models. The optical
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bands in the region from blue to near infrared and all the possible band ratios were used

to explore the relation between the reflectance of waterbody and observed data.

The predictive models to estimate chl-a and TSS concentrations were developed

through the use of stepwise multiple linear regression (MLR) and gave high coefficients

of determination in dry season (R2 = 0.84 for chl-a and R2 = 0.67 for TSS) and moderate

coefficients of determination in wet season (R2 = 0.48 for chl-a and R2 = 0.60 for TSS).

Values for total phosphate and TKN were strongly correlated with chl-a and TSS

concentration and some bands and their ratios, therefore, total phosphate and TKN were

estimated using best-fit multiple linear regression models as a function of Landsat TM

and OLI, and ground data and showed a high coefficient of determination in dry season

(R2 = 0.85 for total phosphate and R2 = 0.88 for TKN) and in wet season (R2 = 0.80 for

total phosphate and R2 = 0.86 for TKN).

In the Florida Bay, the spatiotemporal changes of four water quality parameters

including turbidity, chlorophyll-a (chl-a), total phosphate, and total nitrogen (TN), by

using the application of integrated remote sensing, GIS data, and statistical techniques.

For this purpose, three dates of Landsat Thematic Mapper (TM) data in 2000 (February

13), 2007(January 31), and one date of Landsat Operational Land Imager (OLI) in 2015

(January 5) in the dry season, and three dates of TM data in 2000 (August 7), 2007

(September 28), and one date of OLI data in 2015 (September 2)  in the wet season of the

subtropical climate of South Florida, were used to assess temporal and spatial patterns

and dimensions of studied parameters in Florida Bay, USA. The simultaneous observed

data of four studied parameters were obtained from 20 monitoring stations and were used

for the development and validation of the models. The optical bands in the region from
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blue to near infrared and all the possible band ratios were used to explore the relation

between the reflectance of waterbody and observed data.

The predictive models to estimate chl-a and turbidity concentrations were

developed through the use of stepwise multiple linear regression (MLR) and gave high

coefficients of determination in dry season (R2 = 0.86 for chl-a and R2 = 0.84 for

turbidity) and moderate coefficients of determination in wet season (R2 = 0.66 for chl-a

and R2 = 0.63 for turbidity). Values for total phosphate and TN were correlated with chl-

a and turbidity concentration and some bands and their ratios. Total phosphate and TN

were estimated using best-fit multiple linear regression models as a function of Landsat

TM and OLI, and ground data and showed a high coefficient of determination in dry

season (R2 = 0.74 for total phosphate and R2 = 0.82 for TN) and in wet season (R2 =

0.69 for total phosphate and R2 = 0.82 for TN). The MLR models showed a good

trustiness to monitor and predict the spatiotemporal variations of optically active and

inactive water quality characteristics in Lake Okeechobee and Florida Bay.

This study showed that Landsat TM and OLI data and water quality parameters at

various locations of Lake Okeechobee and Florida Bay can be related through a

regression analysis and constitute a model that can be used to measure water quality

parameters over the entire surface. The studied parameters were mapped by identifying

the best set of band combinations and their interreltionship can then be used to describe

the linkage between the spectral response to limnological data. The same method can also

be applied to the trophic conditions for landsat images in different years.

The results of CA can be used to reduce the need for numerous sampling stations

and frequency, and to optimize water quality monitoring program design and minimize
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the costs. The resulting recommendation is that, in future studies, the number of

monitoring sites can be reduced by selecting only one site from each of the three groups.

It is herein recommended for consideration that the results of apportionment can be a

very useful method and tool for responsible agencies and authorities to control the

pollution sources, and to protect the river water quality.

Additional studies are recommended to assess unidentified sources of pollution

and variation of water quality parameters that were not analyzed in this study. The

results, herein presented, are recommended as an approach to estimate spatial and

temporal variations that should support the identification of polluted areas and control

strategies. This study used an empirical approach to evaluate the spatio-temporal

variations of water quality parameters in Lake Okeechobee and Florida Bay. It is also

recommended to further this study that other approaches, like semi-empirical, analytical,

and semi-analytical types, be assessed to compare with the results described here. The

application of other imageries to determine and quantify the water quality in other water

bodies of South Florida is also recommended as a way to enrich the understanding of

water quality behavior, improving monitoring and data collection techniques, among

others. It is also highly recommended to provide systematic mapping of pollution sources

in order to enhance the effectiveness of water pollution control.
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