342 research outputs found

    Evaluation of coding and classification systems in the design of robotic grippers

    Get PDF
    This study has been conducted to take advantage of geometrical similarity of parts within a family in the design of a robotic gripper set for the quick-gripper-changer. The group technology concept was used to define the part families. Four different coding and classification methods are used to analyze and define the sets of grippers. These methods include two different coding methods and two different classification methods. The coding methods include production flow analysis (PFA) based on a process routing and the Opitz system based on a part geometry. The classification methods include rank order cluster analysis (ROCA) and cluster analysis with similarity coefficients (CASA). The following four methods have been used in this study to group parts into families. (1) Production flow analysis/Rank order cluster analysis. (2) Production flow analysis/Cluster analysis with similarity coefficient. (3) Opitz/Rank order cluster analysis. (4) Opitz/Cluster analysis with similarity coefficient;Softwares for the four coding and classification methods were developed in this research. By means of the software, part families were defined. A gripper was configured for each part family per method. The gripper features included in this study were the gripping mechanism and the jaw shape. The gripper types were two finger mechanical gripper, a magnetic gripper, and a vacuum gripper. Each part within part families was evaluated whether it could be grasped successfully by the gripper configured for the part family. Based on the number of parts which were grasped successfully, the robotic gripper set was defined for each method. The reasonable percentage of parts which could be grasped by the robot gripper was obtained for each coding and classification method;The Opitz/ROCA method showed the highest percentage of parts which were successfully grasped by the defined robotic gripper set. The set included a twin V shape notched mechanical gripper, a twin plane shape mechanical gripper, and a vacuum gripper. The 74.3 percentage of parts were grasped successfully by the defined gripper set

    Design and Development of Sensor Integrated Robotic Hand

    Get PDF
    Most of the automated systems using robots as agents do use few sensors according to the need. However, there are situations where the tasks carried out by the end-effector, or for that matter by the robot hand needs multiple sensors. The hand, to make the best use of these sensors, and behave autonomously, requires a set of appropriate types of sensors which could be integrated in proper manners. The present research work aims at developing a sensor integrated robot hand that can collect information related to the assigned tasks, assimilate there correctly and then do task action as appropriate. The process of development involves selection of sensors of right types and of right specification, locating then at proper places in the hand, checking their functionality individually and calibrating them for the envisaged process. Since the sensors need to be integrated so that they perform in the desired manner collectively, an integration platform is created using NI PXIe-1082. A set of algorithm is developed for achieving the integrated model. The entire process is first modelled and simulated off line for possible modification in order to ensure that all the sensors do contribute towards the autonomy of the hand for desired activity. This work also involves design of a two-fingered gripper. The design is made in such a way that it is capable of carrying out the desired tasks and can accommodate all the sensors within its fold. The developed sensor integrated hand has been put to work and its performance test has been carried out. This hand can be very useful for part assembly work in industries for any shape of part with a limit on the size of the part in mind. The broad aim is to design, model simulate and develop an advanced robotic hand. Sensors for pick up contacts pressure, force, torque, position, surface profile shape using suitable sensing elements in a robot hand are to be introduced. The hand is a complex structure with large number of degrees of freedom and has multiple sensing capabilities apart from the associated sensing assistance from other organs. The present work is envisaged to add multiple sensors to a two-fingered robotic hand having motion capabilities and constraints similar to the human hand. There has been a good amount of research and development in this field during the last two decades a lot remains to be explored and achieved. The objective of the proposed work is to design, simulate and develop a sensor integrated robotic hand. Its potential applications can be proposed for industrial environments and in healthcare field. The industrial applications include electronic assembly tasks, lighter inspection tasks, etc. Application in healthcare could be in the areas of rehabilitation and assistive techniques. The work also aims to establish the requirement of the robotic hand for the target application areas, to identify the suitable kinds and model of sensors that can be integrated on hand control system. Functioning of motors in the robotic hand and integration of appropriate sensors for the desired motion is explained for the control of the various elements of the hand. Additional sensors, capable of collecting external information and information about the object for manipulation is explored. Processes are designed using various software and hardware tools such as mathematical computation MATLAB, OpenCV library and LabVIEW 2013 DAQ system as applicable, validated theoretically and finally implemented to develop an intelligent robotic hand. The multiple smart sensors are installed on a standard six degree-of-freedom industrial robot KAWASAKI RS06L articulated manipulator, with the two-finger pneumatic SHUNK robotic hand or designed prototype and robot control programs are integrated in such a manner that allows easy application of grasping in an industrial pick-and-place operation where the characteristics of the object can vary or are unknown. The effectiveness of the actual recommended structure is usually proven simply by experiments using calibration involving sensors and manipulator. The dissertation concludes with a summary of the contribution and the scope of further work

    High-precision grasping and placing for mobile robots

    Get PDF
    This work presents a manipulation system for multiple labware in life science laboratories using the H20 mobile robots. The H20 robot is equipped with the Kinect V2 sensor to identify and estimate the position of the required labware on the workbench. The local features recognition based on SURF algorithm is used. The recognition process is performed for the labware to be grasped and for the workbench holder. Different grippers and labware containers are designed to manipulate different weights of labware and to realize a safe transportation

    Intelligent Haptic Perception for Physical Robot Interaction

    Get PDF
    Doctorado en Ingeniería mecatrónica. Fecha de entrega de la Tesis doctoral: 8 de enero de 2020. Fecha de lectura de Tesis doctoral: 30 de marzo 2020.The dream of having robots living among us is coming true thanks to the recent advances in Artificial Intelligence (AI). The gap that still exists between that dream and reality will be filled by scientific research, but manifold challenges are yet to be addressed. Handling the complexity and uncertainty of real-world scenarios is still the major challenge in robotics nowadays. In this respect, novel AI methods are giving the robots the capability to learn from experience and therefore to cope with real-life situations. Moreover, we live in a physical world in which physical interactions are both vital and natural. Thus, those robots that are being developed to live among humans must perform tasks that require physical interactions. Haptic perception, conceived as the idea of feeling and processing tactile and kinesthetic sensations, is essential for making this physical interaction possible. This research is inspired by the dream of having robots among us, and therefore, addresses the challenge of developing robots with haptic perception capabilities that can operate in real-world scenarios. This PhD thesis tackles the problems related to physical robot interaction by employing machine learning techniques. Three AI solutions are proposed for different physical robot interaction challenges: i) Grasping and manipulation of humans’ limbs; ii) Tactile object recognition; iii) Control of Variable-Stiffness-Link (VSL) manipulators. The ideas behind this research work have potential robotic applications such as search and rescue, healthcare or rehabilitation. This dissertation consists of a compendium of publications comprising as the main body a compilation of previously published scientific articles. The baseline of this research is composed of a total of five papers published in prestigious peer-reviewed scientific journals and international robotics conferences

    Robotic Automation of Turning Machines in Fenceless Production: A Planning Toolset for Economic-based Selection Optimization between Collaborative and Classical Industrial Robots

    Get PDF
    Ursprünglich wurden Industrieroboter hauptsächlich hinter Schutzzäunen betrieben, um den Sicherheitsanforderungen gerecht zu werden. Mit der Flexibilisierung der Produktion wurden diese scharfen Trennbereiche zunehmend aufgeweicht und externe Sicherheitstechnik, wie Abstandssensoren, genutzt, um Industrieroboter schutzzaunlos zu betreiben. Ausgehend vom Gedanken dieser Koexistenz bzw. Kooperation wurde die Sicherheitssensorik in den Roboter integriert, um eine wirkliche Kollaboration zu ermöglichen. Diese sogenannten kollaborierenden Roboter, oder Cobots, eröffnen neue Applikationsfelder und füllen somit die bestehenden Automatisierungslücken. Doch welche Automatisierungsvariante ist aus wirtschaftlichen Gesichtspunkten die geeignetste? Bisherige Forschung untersucht zum Großteil isoliert eine der beiden Technologien, ohne dabei einen Systemvergleich hinsichtlich technologischer Spezifika und Wirtschaftlichkeit anzustellen. Daher widmet sich diese Dissertation einer Methodik zum wirtschaftlichen Vergleich von kollaborierenden Robotern und Industrierobotern in schutzzaunlosen Maschinenbeladungssystemen. Besonderer Fokus liegt dabei auf dem Herausarbeiten der technischen Faktoren, die die Wirtschaftlichkeit maßgeblich beeinflussen, um ein Systemverständnis der wirtschaftlichen Struktur beider Robotertechnologievarianten zu erhalten. Zur Untersuchung werden die Inhalte eines solchen Planungsvorhabens beschrieben, kategorisiert, systematisiert und modularisiert. Auf wirtschaftlicher Seite wird ein geeignetes Optimierungsmodell vorgestellt, während auf technischer Seite vor allem die Machbarkeit hinsichtlich Greifbarkeit, Layoutplanung, Robotergeschwindigkeiten und Zykluszeitbestimmung untersucht wird. Mit deduktiven, simulativen, empirischen und statistischen Methoden wird das Systemverhalten für die einzelnen Planungsinhalte analysiert, um die Gesamtwirtschaftlichkeit mit einem Minimum an Investment,- Produktions,- und Zykluszeitinformationen a priori vorhersagen zu können. Es wird gezeigt, dass durch einen Reverse Engineering Ansatz die notwendigen Planungsdaten, im Sinne von Layoutkomposition, Robotergeschwindigkeiten und Taktzeiten, mithilfe von Frontloading zu Planungsbeginn zur Verfügung gestellt werden können. Dabei dient der Kapitalwert als wirtschaftliche Bewertungsgrundlage, dessen Abhängigkeit vom Mensch-Roboter-Interaktionsgrad in einem Vorteilhaftigkeitsdiagramm für die einzelnen Technologiealternativen dargestellt werden kann. Wirtschaftlich fundierte Entscheidungen können somit auf quantitiativer Basis getroffen werden.:1. Introduction 25 1.1 Research Domain 25 1.2 Research Niche 26 1.3 Research Structure 28 2. State of the Art and Research 31 2.1 Turning Machines and Machine Tending 31 2.1.1 Tooling Machine Market Trends and Machine Tending Systems 31 2.1.2 Workpiece System 34 2.1.3 Machine System 36 2.1.4 Logistics System 39 2.1.5 Handling System 41 2.2 Robotics 43 2.2.1 Robot Installation Development and Application Fields 43 2.2.2 Fenceless Industrial and Collaborative Robots 48 2.2.3 Robot Grippers 55 2.3 Planning and Evaluation Methods 56 2.3.1 Planning of General and Manual Workstations 56 2.3.2 Cell Planning for Fully Automated and Hybrid Robot Systems 59 2.3.3 Robot Safety Planning 61 2.3.4 Economic Evaluation Methods 70 2.4 Synthesis - State of the Art and Research 71 3. Solution Approach 77 3.1 Need for Research and General Solution Approach 77 3.2 Use Case Delineation and Planning Focus 80 3.3 Economic Module – Solution Approach 86 3.4 Gripper Feasibility Module – Solution Approach 89 3.5 Rough Layout Discretization Model – Solution Approach 94 3.6 Cycle Time Estimation Module – Solution Approach 97 3.7 Collaborative Speed Estimation Module – Solution Approach 103 3.7.1 General Approach 103 3.7.2 Case 1: Quasi-static Contact with Hand 107 3.7.3 Case 2: Transient Contact with Hand 109 3.7.4 Case 3: Transient Contact with Shoulder 111 3.8 Synthesis – Solution Approach 114 4. Module Development 117 4.1 Economic Module – Module Development 117 4.1.1 General Approach 117 4.1.2 Calculation Scheme for Manual Operation 117 4.1.3 Calculation Scheme for Collaborative Robots 118 4.1.4 Calculation Scheme for Industrial Robots 120 4.2 Gripper Feasibility Module – Module Development 121 4.3 Rough Layout Discretization Module – Module Development 122 4.3.1 General Approach 122 4.3.2 Two-Dimensional Layout Pattern 123 4.3.3 Three-Dimensional Layout Pattern 125 4.4 Cycle Time Estimation Module – Module Development 126 4.4.1 General Approach 126 4.4.2 Reachability Study 127 4.4.3 Simulation Results 128 4.5 Collaborative Speed Estimation Module – Module Development 135 4.5.1 General Approach 135 4.5.2 Case 1: Quasi-static Contact with Hand 135 4.5.3 Case 2: Transient Contact with Hand 143 4.5.4 Case 3: Transient Contact with Shoulder 145 4.6 Synthesis – Module Development 149 5. Practical Verification 155 5.1 Use Case Overview 155 5.2 Gripper Feasibility 155 5.3 Layout Discretization 156 5.4 Collaborative Speed Estimation 157 5.5 Cycle Time Estimation 158 5.6 Economic Evaluation 160 5.7 Synthesis – Practical Verification 161 6. Results and Conclusions 165 6.1 Scientific Findings and Results 165 6.2 Critical Appraisal and Outlook 173Initially, industrial robots were mainly operated behind safety fences to account for the safety requirements. With production flexibilization, these sharp separation areas have been increasingly softened by utilizing external safety devices, such as distance sensors, to operate industrial robots fenceless. Based on this idea of coexistence or cooperation, safety technology has been integrated into the robot to enable true collaboration. These collaborative robots, or cobots, open up new application fields and fill the existing automation gap. But which automation variant is most suitable from an economic perspective? Present research dealt primarily isolated with one technology without comparing these systems regarding technological and economic specifics. Therefore, this doctoral thesis pursues a methodology to economically compare collaborative and industrial robots in fenceless machine tending systems. A particular focus lies on distilling the technical factors that mainly influence the profitability to receive a system understanding of the economic structure of both robot technology variants. For examination, the contents of such a planning scheme are described, categorized, systematized, and modularized. A suitable optimization model is presented on the economic side, while the feasibility regarding gripping, layout planning, robot velocities, and cycle time determination is assessed on the technical side. With deductive, simulative, empirical, and statistical methods, the system behavior of the single planning entities is analyzed to predict the overall profitability a priori with a minimum of investment,- production,- and cycle time information. It is demonstrated that the necessary planning data, in terms of layout composition, robot velocities, and cycle times, can be frontloaded to the project’s beginning with a reverse engineering approach. The net present value serves as the target figure, whose dependency on the human-robot interaction grade can be illustrated in an advantageousness diagram for the individual technical alternatives. Consequently, sound economic decisions can be made on a quantitative basis.:1. Introduction 25 1.1 Research Domain 25 1.2 Research Niche 26 1.3 Research Structure 28 2. State of the Art and Research 31 2.1 Turning Machines and Machine Tending 31 2.1.1 Tooling Machine Market Trends and Machine Tending Systems 31 2.1.2 Workpiece System 34 2.1.3 Machine System 36 2.1.4 Logistics System 39 2.1.5 Handling System 41 2.2 Robotics 43 2.2.1 Robot Installation Development and Application Fields 43 2.2.2 Fenceless Industrial and Collaborative Robots 48 2.2.3 Robot Grippers 55 2.3 Planning and Evaluation Methods 56 2.3.1 Planning of General and Manual Workstations 56 2.3.2 Cell Planning for Fully Automated and Hybrid Robot Systems 59 2.3.3 Robot Safety Planning 61 2.3.4 Economic Evaluation Methods 70 2.4 Synthesis - State of the Art and Research 71 3. Solution Approach 77 3.1 Need for Research and General Solution Approach 77 3.2 Use Case Delineation and Planning Focus 80 3.3 Economic Module – Solution Approach 86 3.4 Gripper Feasibility Module – Solution Approach 89 3.5 Rough Layout Discretization Model – Solution Approach 94 3.6 Cycle Time Estimation Module – Solution Approach 97 3.7 Collaborative Speed Estimation Module – Solution Approach 103 3.7.1 General Approach 103 3.7.2 Case 1: Quasi-static Contact with Hand 107 3.7.3 Case 2: Transient Contact with Hand 109 3.7.4 Case 3: Transient Contact with Shoulder 111 3.8 Synthesis – Solution Approach 114 4. Module Development 117 4.1 Economic Module – Module Development 117 4.1.1 General Approach 117 4.1.2 Calculation Scheme for Manual Operation 117 4.1.3 Calculation Scheme for Collaborative Robots 118 4.1.4 Calculation Scheme for Industrial Robots 120 4.2 Gripper Feasibility Module – Module Development 121 4.3 Rough Layout Discretization Module – Module Development 122 4.3.1 General Approach 122 4.3.2 Two-Dimensional Layout Pattern 123 4.3.3 Three-Dimensional Layout Pattern 125 4.4 Cycle Time Estimation Module – Module Development 126 4.4.1 General Approach 126 4.4.2 Reachability Study 127 4.4.3 Simulation Results 128 4.5 Collaborative Speed Estimation Module – Module Development 135 4.5.1 General Approach 135 4.5.2 Case 1: Quasi-static Contact with Hand 135 4.5.3 Case 2: Transient Contact with Hand 143 4.5.4 Case 3: Transient Contact with Shoulder 145 4.6 Synthesis – Module Development 149 5. Practical Verification 155 5.1 Use Case Overview 155 5.2 Gripper Feasibility 155 5.3 Layout Discretization 156 5.4 Collaborative Speed Estimation 157 5.5 Cycle Time Estimation 158 5.6 Economic Evaluation 160 5.7 Synthesis – Practical Verification 161 6. Results and Conclusions 165 6.1 Scientific Findings and Results 165 6.2 Critical Appraisal and Outlook 17

    Design of a 3D-printed soft robotic hand with distributed tactile sensing for multi-grasp object identification

    Get PDF
    Tactile object identification is essential in environments where vision is occluded or when intrinsic object properties such as weight or stiffness need to be discriminated between. The robotic approach to this task has traditionally been to use rigid-bodied robots equipped with complex control schemes to explore different objects. However, whilst varying degrees of success have been demonstrated, these approaches are limited in their generalisability due to the complexity of the control schemes required to facilitate safe interactions with diverse objects. In this regard, Soft Robotics has garnered increased attention in the past decade due to the ability to exploit Morphological Computation through the agent's body to simplify the task by conforming naturally to the geometry of objects being explored. This exists as a paradigm shift in the design of robots since Soft Robotics seeks to take inspiration from biological solutions and embody adaptability in order to interact with the environment rather than relying on centralised computation. In this thesis, we formulate, simplify, and solve an object identification task using Soft Robotic principles. We design an anthropomorphic hand that has human-like range of motion and compliance in the actuation and sensing. The range of motion is validated through the Feix GRASP taxonomy and the Kapandji Thumb Opposition test. The hand is monolithically fabricated using multi-material 3D printing to enable the exploitation of different material properties within the same body and limit variability between samples. The hand's compliance facilitates adaptable grasping of a wide range of objects and features integrated distributed tactile sensing. We emulate the human approach of integrating information from multiple contacts and grasps of objects to discriminate between them. Two bespoke neural networks are designed to extract patterns from both the tactile data and the relationships between grasps to facilitate high classification accuracy

    A framework for flexible and reconfigurable vision inspection systems

    Get PDF
    Reconfiguration activities remain a significant challenge for automated Vision Inspection Systems (VIS), which are characterized by hardware rigidity and time-consuming software programming tasks. This work contributes to overcoming the current gap in VIS reconfigurability by proposing a novel framework based on the design of Flexible Vision Inspection Systems (FVIS), enabling a Reconfiguration Support System (RSS). FVIS is achieved using reprogrammable hardware components that allow for easy setup based on software commands. The RSS facilitates offline software programming by extracting parameters from real images, Computer-Aided Design (CAD) data, and rendered images using Automatic Feature Recognition (AFR). The RSS offers a user-friendly interface that guides non-expert users through the reconfiguration process for new part types, eliminating the need for low-level coding. The proposed framework has been practically validated during a 4-year collaboration with a global leading automotive half shaft manufacturer. A fully automated FVIS and the related RSS have been designed following the proposed framework and are currently implemented in 7 plants of GKN global automotive supplier, checking 60 defect types on thousands of parts per day, covering more than 200 individual part types and 12 part families

    SpiderFab: Process for On-Orbit Construction of Kilometer-Scale Apertures

    Get PDF
    The SpiderFab effort has investigated the value proposition and feasibility of radically changing the way we build and deploy spacecraft by enabling space systems to fabricate and integrate key components on-orbit. In this Phase II effort, we have focused on developing and demonstrating tools and processes to enable robotic systems to manufacture and assemble high performance structural elements that will serve as the support structures for components such as antennas and solar arrays. Through testing of these technologies in the laboratory environment,these efforts have established the technical feasibility of the key capabilities required for in-space manufacture of large apertures such as antennas, solar arrays, and optical systems,maturing prototype technical solutions for these capabilities to TRL-4. The SpiderFab effort has resulted in successful post-NIAC transition of the technology, first to SBIR-funded development of a technology for in-space manufacture (ISM) of truss structures, and then to a NASA/STMD Tipping Point Technologies funded effort to prepare a flight demonstration of ISM of a structure for a GEO communications satellite
    corecore