1,462 research outputs found

    Upgrading legacy equipment to industry 4.0 through a cyber-physical interface

    Get PDF
    With the recent developments of Industry 4.0 technologies, maintenance can be improved significantly by making it “smart”, proactive and even self-aware. This paper introduces a new cutting-edge interfacing technology that enables smart active remote maintenance right on the machine in real-time while allowing integration of smart automated decision making and Industrial Internet of Things to upgrade existing legacy equipment through latest Industry 4.0 technology. This interfacing technology enables remote sensing and actuation access to legacy equipment for smart maintenance by entirely non-intrusive means, i.e. the original equipment does not have to be modified. The design was implemented in a real-world manufacturing environment

    Standardization in cyber-physical systems: the ARUM case

    Get PDF
    Cyber-physical systems concept supports the realization of the Industrie 4.0 vision towards the computerization of traditional industries, aiming to achieve intelligent and reconfigurable factories. Standardization assumes a critical role in the industrial adoption of cyber-physical systems, namely in the integration of legacy systems as well as the smooth migration from existing running systems to the new ones. This paper analyses some existing standards in related fields and presents identified limitations and efforts for a wider acceptance of such systems by industry. A special attention is devoted to the efforts to develop a standard-compliant service-oriented multi-agent system solution within the ARUM project.info:eu-repo/semantics/publishedVersio

    A Design Approach to IoT Endpoint Security for Production Machinery Monitoring

    Get PDF
    The Internet of Things (IoT) has significant potential in upgrading legacy production machinery with monitoring capabilities to unlock new capabilities and bring economic benefits. However, the introduction of IoT at the shop floor layer exposes it to additional security risks with potentially significant adverse operational impact. This article addresses such fundamental new risks at their root by introducing a novel endpoint security-by-design approach. The approach is implemented on a widely applicable production-machinery-monitoring application by introducing real-time adaptation features for IoT device security through subsystem isolation and a dedicated lightweight authentication protocol. This paper establishes a novel viewpoint for the understanding of IoT endpoint security risks and relevant mitigation strategies and opens a new space of risk-averse designs that enable IoT benefits, while shielding operational integrity in industrial environments

    Retrofitting of legacy machines in the context of Industrial Internet of Things (IIoT)

    Get PDF
    In the context of Industry 4.0 (I 4.0), one of the most important aspects is data, followed by the capital required to deploy advanced technologies. However, most Small and Medium Enterprises (SMEs) are neither data ready nor have the capital to upgrade their existing machinery. In SMEs, most of the legacy machines do not have data gathering capabilities. In this scenario, the concept of retrofitting the existing machinery with sensors and building an Industrial Internet of Things (IIoT) is more beneficial than upgrading the equipment to newer machinery. The current research paper proposes a simple architecture on retrofitting a legacy machine with external sensors for data collection and feeding the cloud-based databases for analysis/monitoring purposes. The design and functional aspects of the architecture are then tested in a laboratory environment on a drilling machine with no embedded sensors. Data related to the speed of the drill head and the bore depth are collected using newly retrofitted sensors to validate the proposed architecture

    A Review on Challenges and Opportunities for Implementing Industry 4.0 in India

    Get PDF
    The globalization and the competitiveness are enforcing organizations to readdress and innovate their production processes. The world is entering a new era of industrial emanating technology in automation and data exchange through the use of Internet of Things called fourth technological revolution or Industry 4.0. It represents the amalgamation of tools already used in the past such as big data; cloud, robot, 3D printing, simulation, etc. are now connected into an internet to transmit digital data. For the implementation of this new paradigm, there are many opportunities and also many challenges. This paper highlights brief introduction on challenges and opportunities for implementation of Industry 4.0 in India

    Industry 4.0: a systematic review of legacy manufacturing system digital retrofitting

    Get PDF
    Industry 4.0 technologies and digitalised processes are essential for implementing smart manufacturing within vertically and horizontally integrated production environments. These technologies offer new ways to generate revenue from data-driven services and enable predictive maintenance based on real-time data analytics. They also provide autonomous manufacturing scheduling and resource allocation facilitated by cloud computing technologies and the industrial Internet of Things (IoT). Although the fourth industrial revolution has been underway for more than a decade, the manufacturing sector is still grappling with the process of upgrading manufacturing systems and processes to Industry 4.0-conforming technologies and standards. Small and medium enterprises (SMEs) in particular, cannot always afford to replace their legacy systems with state-of-the-art machines but must look for financially viable alternatives. One such alternative is retrofitting, whereby old manufacturing systems are upgraded with sensors and IoT components to integrate them into a digital workflows across an enterprise. Unfortunately, to date, the scope and systematic process of legacy system retrofitting, and integration are not well understood and currently represent a large gap in the literature. In this article, the authors present an in-depth systematic review of case studies and available literature on legacy system retrofitting. A total of 32 papers met the selection criteria and were particularly relevant to the topic. Three digital retrofitting approaches are identified and compared. The results include insights common technologies used in retrofitting, hardware and software components typically required, and suitable communication protocols for establishing interoperability across the enterprise. These form an initial basis for a theoretical decision-making framework and associated retrofitting guide tool to be developed

    A systematic design approach to IOT security for legacy production machinery

    Get PDF
    The Internet of Things (IoT) is an emerging topic of rapidly growing technical importance for the industry. The aim is to connect objects with unique identifiers and combine them with internet connectivity for data transfer. This advanced connectivity has significant potential in the workshop-level upgrade of existing legacy equipment to unlock new features and economic benefits especially for monitoring and control applications However, the introduction of the Industrial Internet of Things (IIoT) brings new additional security and integrity risks for the industrial environment in the form of network, communication, software and hardware security risks. This thesis addresses such fundamental new risks at their root by introducing a novel approach for IoT-enabled monitoring of legacy production machinery, which consist of five stages, incorporating security by design features. The first two phases of this novel approach aim to analyse current monitoring practices and security and vulnerability issues related to the application domain. The proposed approach applies three more stages which make the domain-relevant analysis to become application specific. These include a detailed model of the application context on legacy production machinery monitoring, together with its interfaces and functionality, implementing threat mitigations combined with a new modular IoT DAQ unit mechanism, validated by functional tests against Denial of Service (DoS) and clone attacks. Thus, to be effective, the design approach is further developed with application-specific functionality. This research demonstrates an instance of this innovative riskaverse design thinking through introducing an IoT device design which is applicable to a wide set of industrial scenarios. A practical showcase example of a specific implementation of the generic IoT design is given through a concrete industrial application that upgrades existing legacy machine tool equipment. The reported work establishes a novel viewpoint for the understanding of IoT security risks and their consequent mitigation, opening a new space of riskaverse designs that can bring significant confidence in data, safety, and security of IoT-enabled industry.Manufacturin

    Phenolic profiling, biological activities and in silico studies of Acacia tortilis (Forssk.) Hayne ssp. raddiana extracts

    Get PDF
    The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES to CIMO (UIDB/00690/2020). L. Barros and R. C. Calhelha thank the national funding by the FCT, P.I., through the institutional scientific employment program-contract for their contracts. M. Carocho also thanks the project ValorNatural for his research contract. The authors are also grateful to the FEDER-Interreg España- Portugal programme for financial support through the project 0377_Iberphenol_6_E.info:eu-repo/semantics/publishedVersio
    corecore