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Abstract: The Internet of Things (IoT) has significant potential in upgrading legacy production
machinery with monitoring capabilities to unlock new capabilities and bring economic benefits.
However, the introduction of IoT at the shop floor layer exposes it to additional security risks with
potentially significant adverse operational impact. This article addresses such fundamental new
risks at their root by introducing a novel endpoint security-by-design approach. The approach is
implemented on a widely applicable production-machinery-monitoring application by introducing
real-time adaptation features for IoT device security through subsystem isolation and a dedicated
lightweight authentication protocol. This paper establishes a novel viewpoint for the understanding
of IoT endpoint security risks and relevant mitigation strategies and opens a new space of risk-averse
designs that enable IoT benefits, while shielding operational integrity in industrial environments.

Keywords: industrial IoT; security; legacy production machinery; real-time condition monitoring

1. Introduction

Industry 4.0 has a profound transformative effect on manufacturing environments, bringing in
Internet of Things (IoT) connectivity to enable interaction that goes beyond basic machine-to-machine
(M2M) communication. Such connectivity scales up the requirements of production data management
and leads towards data-driven service innovation in manufacturing, wherein data analytics play
a key role [1]. However, the potential arising from such enhanced connectivity is not sufficiently
addressed in legacy production machinery, which is often poorly connected [2]. The connectivity
capabilities of computer numerical controlled (CNC) machine tools remained constrained within
the standardised CNC programming data exchanges, and further limited by a lack of versatile open
application programming interfaces (APIs), making it difficult to monitor and control their functions
within the whole production process [3]. CNC machine tools may already support a number of
diagnostic services, which can be supplemented by additional sensors for direct or indirect monitoring.
Such upgrades can be fitted within a networked factory environment through, making the machinery
part of the Internet of Things (IoT) environment. IoT offers flexible means for connecting, as well as
augmenting even modern machinery through advanced real-time data acquisition and monitoring
services [4]. However, added connectivity brings in additional security and integrity risks for industrial
environments. While security management has received extensive attention in the information security
field, the functionality in production environments is delivered by the employed operational technology
at the physical edge, and as such, its endpoint security deserves further attention. The potential
operational impact that any security breaches may have on the integrity of industrial systems can be
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profound and need to be taken into account within the context of the targeted application domain at
design stage.

An abstract view of the nature of threats relevant to legacy production machinery is illustrated
in Figure 1, showing physical threats at the lower layer, human interaction ones are at the top,
and various types of technical threats in between. Physical threats involve actual physical tampering
and may have direct tangible impact, for example causing physical damage on machinery, production,
and infrastructure, or harm nearby personnel. Advanced technical threats refer to technology enabled
access to different network layers and may involve data and software tampering. Human interaction
threats are relevant to human interaction with technical systems.
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While connected and smart environments are gradually implemented in healthcare, industrial,
military, and transportation applications, security and privacy issues are increasingly highlighted as the
major sources of risks. Industrial systems, in particular, strongly depend on preserving their physical
and functional integrity, in additional to typical trust, identity, access control, and data protection
through mechanisms, and require due consideration at the design stage of any networking upgrade
to offer protection against multiple potential threats [5–7]. For example, permitting the cloning of
tags or signal replaying [8,9] may allow attackers to gain access to critical data, services, and facilities.
Information can be indirectly extracted from network, hardware, and software components, as some
IoT systems may be susceptible to reverse engineering [10]. Defence techniques to prevent such attacks
include cryptography [11], secure authentication protocols [12], improved resistance to cloning [13],
and automatic malware detection [14]. However, such countermeasures are not included by design in
typical industrial IoT endpoint devices, often either due to their resource-constraint nature, or through
lack of appropriate designs, allowing such devices to be exposed to threats targeting real-time machine
data access, tampering [15] with production machinery, modifying machining software or machine
code, cloning devices, as well as initiating denial of service (DoS) or reverse engineering processes.
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Various security approaches have been proposed to address or mitigate potential threats [16].
Established methodologies, such as STRIDE [17], first documented internally at Microsoft, involve
threat identification and modelling as key activities, while others, such as PASTA [18] take a
comprehensive application-oriented and risk-based perspective. While these methodologies have
been successfully applied in practice, they do not offer higher-level guidelines and do not sufficiently
address risks introduced at the endpoint-level of the IoT stack, considering the real-time application
context and integration with industrial control systems (ICSs), such as supervisory control and data
acquisition (SCADA), distributed control systems (DCS), and programmable logic controllers (PLC).
Non-internetworked industrial control and monitoring systems were not vulnerable to cyber-attacks
and there was limited or no clear direct physical integration between them and higher-tier enterprise
systems [19]. In contrast, in modern cyber physical systems (CPS) and cyber physical production systems
(CPPS) [20], supervisory control systems increasingly employ IoT connectivity to enable ubiquitous
real-time monitoring [21], thereby also increasing the risk of cyber-attacks [22,23]. The mitigation of
such risks needs to be introduced at the design or runtime stages [24,25]. Unsecured system operation
may result in a real loss of service or loss of industrial environment control [26], often facilitated by
obsolete versions of operating systems. The integration of IoT with ICS supports the aggregation of
factory data to feed into SCADA and enterprise systems, giving rise also to new security challenges.
The difference with previous generation SCADA systems is highlighted in Reference [27] where the
need to handle endpoint security at the IoT device level is emphasised, which can be considered from
a systems viewpoint, such as via SySML modelling of CPS agents [28]. The increasing incorporation
of IoT in CPPS has motivated the development of assessment and identification techniques for CPS
vulnerabilities, such as in the two-phased approach of Reference [29]. Specifically, phase one involves
representing various processes via an intersection mapping of cyber, physical, cyber-physical, and
human entities; and phase two introduces a decision tree-based structure for intuitive risk-based
vulnerability analysis (e.g., low, medium, and high risk) [30], in a way that bears similarity to STRIDE
and part of the PASTA methodology, but without the risk mitigation phase, demonstrating the approach
on an automotive manufacturer case. IoT-enabled (or to this effect hybrid) SCADA systems employing
wireless sensors network (WSN) may be vulnerable to external attacks. The impact of such threats to
SCADA components needs to be analysed to prioritise risks [31].

In contrast with conventional information technology (IT), ICS are operational technology
(OT) [32], acting to afford reliable real-time operations with required execution and safety properties
at real production time. Security incidents have raised safety concerns in CPPS. Manufacturing
enterprises have been the target of different cyber-attacks, aiming to acquire and gain access to
sensitive information [33,34], or have fallen victims to ransomware operations targeting to block the
computer access [35,36]. “Stuxnet” [37] was a notable worm attack which hit industrial PLC and
SCADA vulnerabilities of nuclear plants, by being capable of periodically changing the frequencies of
variable frequency drives, affecting centrifuge normal condition operation [38], even if the centrifuges
themselves were equipped with cyber and physical security systems. In order to detect unexpected
changes, enterprises often use quality control (QC) systems to alert for abnormal quality variations,
However, these need to be both robust and strong in covering a range of relevant variations, and to
be effective in this context they require threat analysis to better understand relationships between
QC, manufacturing, and cyber-physical systems at design stage [39]. It is therefore, important to
contextualise security approaches to the nature of CPS and ICS [40] and provide an analysis of security
threat types and vulnerabilities, with an outline of security methods for attack prevention, detection,
and recovery [41]. For example, in physical attacks, physical accessibility to the target device is by itself
the prime vulnerability; data tampering with IoT networking, software attacks exploiting vulnerabilities
inside IoT applications; and encryption attacks, involving breaking the system encryption are among
the possible threats [42,43]. No security approach in CPPS environments would be sufficient without
securing also the human interaction not only with computing and communication devices, but also
with physical production assets, to mitigate functional integrity risks.
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Focusing on IoT endpoints, device security can be supported by authentication mechanisms.
For instance, identity-based authentication based on software defined networking (SDN) can target the
distributed nature of wireless sensing in IoT, while consuming reduced resources, compared to public
key cryptography (PKC) approaches [44]. Alternative authentication protocols diversify their approach
between resource-rich and resource-constrained nodes. An example is the two-stage PAuthKey
protocol, with a registration stage for obtaining cryptography credentials and an authentication step
for establishing the communication [45]. Only resources-rich nodes communicate with the registration
authority and the communication with constrained-resource nodes is then authenticated via implicit
certificates. In practice, end-to-end security is applicable to the application layer, while lower layers
rely on media access control (MAC)-tier security [46]. Overall, such an approach delegates security
to edge nodes, enhancing resources efficiency. A hardware authentication method is presented in
Reference [47], wherein each device is equipped with a unique fingerprint, consisting of multiple
features, such as location, transmitter state, or physical object state. Alternatively, the authentication
scheme is linked to distributed denial of service (DDoS) attack prevention via an algorithm that collects
information from nodes to detect an attacker so as to prevent the working node from serving the
malicious attacks [48]. In Reference [49], a dual authentication based on certificates and using datagram
transport layer security (DTLS) between constrained IoT devices is proposed. An alternative approach
uses a lightweight key agreement protocol to ensure anonymity, data secrecy, and trust between
wireless sensor network (WSN) nodes in the IoT network [50]. In another network-centric approach,
privacy invasion targeting networking patterns can be mitigated through synthetic packet-injection to
hide real network traffic [51].

Considering that the intended functionality of CPPS is determined at the design stage, the same
should be the case for IoT security in production environments, taking into account the potential sources
of attacks and system vulnerabilities [52]. Therefore, understanding the nature and functionality of
industrial systems is a prerequisite to designing their IoT security. With this in mind, after analysing
and synthesising requirements for industrial systems, the Industrial Internet Consortium (IIC) has put
forward the Industrial Systems Security Framework (IISF) [53]. The key differentiating factor between
IISF and other IT or nonindustrial IoT security approaches lies in the joint handling of IT and OT.
Security is viewed upon from the perspective of the potential impact on the delivered functionality of
industrial systems, i.e., overall industrial systems’ trustworthiness. This is translated into a risk-based
framework, directly linking security threats to risks arising from their impact on industrial systems
trustworthiness. Recognising the ecosystem nature of IoT installations, IISF considers the whole system
lifecycle and the permeation of trust across the system life-cycle phases and the system actors involved
in them. IISF highlights the architecture view of IoT by considering security at the different layers of
the IoT implementation stack, starting from the shop floor IoT end points. The shop floor end points
include sensors, actuators, as well as connected production machines, which now become exposed to
cyber-attacks, and therefore, lessons learned from IoT security need to be applied to develop strategies
for networked production environments security. The IISF highlights the importance of the principle
of isolation when securing IoT endpoints. This refers to process isolation within the operating system,
container isolation implementing hardware or software-enforced boundaries, and virtual isolation
protecting individual virtual instances of a trusted execution environment. However, endpoint security
is still not sufficiently covered when upgrading legacy production equipment with IoT capabilities.
This fundamental baseline of IoT endpoint security in industrial environment is, therefore, the target
of the security thinking approach introduced in this paper, which includes:

• A novel risk-averse IoT endpoint security design thinking approach for industrial environments.
• An innovative IoT device security implementation of the design thinking approach, motivated by

the isolation principle and applied at the interfaces between the key components of an IoT endpoint
device and supported by a new lightweight authentication protocol with real-time features.

• Application of the above on a typical industrial case, that of production machinery monitoring.
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The paper is organised as follows: Section 2 introduces the new endpoint security design thinking
approach, comprising five stages. Section 3 analyses vulnerabilities when introducing IoT-enabled
monitoring in manufacturing environments and introduces a relevant threats taxonomy, corresponding
to the first two stages of the approach. Section 4 deals with stage 3 and employs an attack tree-modelling
methodology to analyse security when introducing IoT in such environments, and presents steps
taken to address them through adopting the subsystem isolation principle for an IoT data acquisition
unit (DAQ). Section 5 implements stage 4 and applies the proposed approach on a legacy production
machinery monitoring application. A representative implementation example case of the design
solution, tested against a set of typical selected key attack types, is presented in Section 6, which
corresponds to the final stage. Section 7 offers a discussion regarding limitations and further work,
while Section 8 presents the conclusion.

2. Design Thinking for IoT Security in Industrial Environments

Production machinery real-time monitoring is a major application target when introducing IoT in
industrial environments and IoT endpoint devices are a fundamental component for any IoT security
approach designed for such monitoring. Consistent with relevant recommendations and standards [54]
and taking into account the nature of the manufacturing domain, the present research proposes a
design thinking approach that clearly takes into account the application context and the context-specific
potential impact of security compromises, a process more aligned with PASTA rather than STRIDE.
The introduced systematic design thinking approach for IoT device security includes five key stages
(Figure 2). Feedback from each phase may reveal a need to reconsider analysis, modelling, design, and
implementation choices of all earlier phases.
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(a) Baseline and context: This stage involves analysis of current practices in production environments.
An understanding of the application context and system component interfaces, which may be
exposed to security threats, is necessary to apply proposed concepts to a specific application target.

(b) Threat analysis: Having identified the high-level system interfaces which pose security
risks, this stage involves an analysis of key security issues and vulnerabilities related to the
implementation of IoT inside a production environment. Each vulnerability exploited by a threat
can create an adverse impact on system integrity. A taxonomy of threats is produced, classifying
them under the broader categories of physical, human interaction, and advanced technical ones.
For each threat, possible mitigation mechanisms are proposed, and impact risk assessment is
performed. Risk is quantified in three categories (High, Medium, and Low), consistent with
recommendations [55].

(c) Application and threat modelling: The third phase provides the application context needed for
an effective approach. It produces a more detailed model of the targeted system, along with its
interfaces and functionality. Modelling tools include data flow diagrams (DFD) [56] to understand
the permeation of data trust between components, and systematic threat modelling via attack
trees [57], which need to be checked for coverage of security threats.

(d) Threat mitigation: The fourth phase deals with design and implementation of security threats-
mitigation mechanisms. In the present work, an instance of the overall process is created and
applied to the real-time monitoring application relevant to production environments.

(e) Testing and validation: This includes testing and validation of the mitigation mechanisms against
selected threats. Testing may include simulation and functional testing, while validation may
be performed in a test or a controlled operational environment. Results from functional and
penetration testing can be fed back to improve the mitigation effectiveness. The functional aim of
the test in the selected application case is to deliver uninterrupted real-time monitoring.

Figure 3 shows a simplified flowchart for the proposed systematic approach applied to a real-time
monitoring application relevant to production environments. For illustration purposes, this lists three
types of attacks, namely network, system communication, and DAQ. These will be considered in more
detail in the context of analysing the selected application case in Sections 3 and 4, dealing with stages a,
b, and c of the approach. To demonstrate the application of the new approach, the implementation
and testing of mitigation mechanisms against denial of service (DoS) [58] and clone attacks [59] are
presented in Sections 5 and 6, corresponding with stages d and e. This involved the development of an
innovative IoT endpoint device security implementation, introducing a new lightweight authentication
protocol, consistent with the isolation principle and integrated in a prototype IoT DAQ device.
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3. Monitoring Systems Security in Industrial Environments

3.1. Baseline and Context

The proposed design thinking approach is applied on a widely employed application in industrial
environments, namely real-time condition monitoring (CM). CM refers to data acquisition and
processing to infer the state of a machine over time [60]. It enables the identification of recommended
maintenance actions based on the actual condition of monitored assets, rather than at predetermined
intervals, thus allowing a condition-based maintenance (CBM) strategy to be implemented [61].
The determination of an appropriate CM approach consistent with a CBM strategy involves cost–benefits
analysis, equipment audits, reliability and criticality audits, monitoring methods selection, data
acquisition and analysis, determination of appropriate maintenance actions, and review processes [62].
A typical real-time condition monitoring system for legacy production machinery comprises sensors,
a DAQ unit or microprocessor, computing resources, and adequate software [63], which may also be
compactly available as a data-logging device. Signals acquired via the DAQ are processed by dedicated
software, enabling the machine health to be determined. More advanced condition monitoring may
also involve prognostics, and maintenance action determination. In wireless sensing, measurements
can be acquired through a DAQ equipped with connectivity. Remote monitoring systems (RMS) [63]
may already employ network communication between monitored machinery and back-end systems,
or may involve retrofitting monitored assets with a communication device. RMS are applicable to
both production processes and products. Connected products are amongst the prime developments
which contributed to the concept of closed-loop product lifecycle management (PLM). IoT technologies
not only enable product connectivity but also create data flows that upgrade the value proposition
of product usage in operating environments [64,65]. Including IoT connectivity in such products
creates additional vulnerabilities and this applies to IoT-enabled production machinery too. Therefore,
the integration of IoT on legacy production machinery requires a rethinking of their security design [52].

Figure 4 offers an abstract view of a machinery real-time monitoring system highlighting potential
entry points for security attacks, assuming three standard communication types, namely wired
or wireless device peer-to-peer (P2P), fieldbus, and Ethernet, as part of stage one of the approach.
The networking enables data flows through sensors, PLCs, DCSs, programmable automation controllers
(PAC), and human-machine interfaces (HMI), which in turn can drive recommendations for maintenance
actions, and their planning and execution. This mapping can be looked upon from the viewpoint of the
ISA-95 reference architecture, as adapted and mapped in five layers by the European Union Agency
for Network and Information Security (ENISA) for the scope of smart manufacturing security [23].
Specifically, the field level of Figure 4 corresponds to Level 1, the control level to Level 2, the operator
level to Level 3, and the upper-level refers to the application context, which in this case refers to
interfaces exposed to devices accessing maintenance management and planning software and services,
corresponding to Level 4. Unless the permeation of trust in such an architecture is duly considered,
IoT-enabled industrial monitoring systems create increased security risks. Therefore, the additional
focus is on the interfaces exposed to attacks, as per the first stage of the design approach of this paper.
The next section provides an overview of threats analysis by threat type, applicable to industrial
environments, relevant to stage 2 of the approach, while stage 3 in Section 4 studies in detail data
interfaces and corresponding attack models for typical key security breaches in the studied problem,
namely network, system communication, and DAQ access.
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3.2. Threat Analysis

Threat analysis is the main activity in stage 2 of the process. The ISO27000 family of standards offers
a broadly adopted framework for information security, including recommendations for information
security management systems (ISMS, ISO/IEC 27001 [53]), where threat identification, as part of
security risk assessment (ISO27005) [66], is central to devising a security approach. Vulnerabilities
can be exploited by attack events to trigger security breaches, which, depending on the resulting
sequence of events, may cause adverse impacts. Such impacts need to be translated into security risk
mapping and quantification [67]. However, such recommendations are not specific enough to cover
monitoring architectures for legacy production machinery. Approaches relevant to cloud security risk
management [68] and lessons from other domains, such as finance, wherein cyber-attacks were already
the prime sources of money loss, highlight the need to perform a domain-specific threat analysis to
prevent adverse impacts [69]. Threat analysis is incomplete if it does not deal with application domain
considerations. ENISA has produced a threat taxonomy for Industry 4.0 [23], which classifies threats
into (a) nefarious activity or abuse; (b) eavesdropping, interception, or hacking; (c) physical attack;
(d) unintentional or accidental; (e) failures or malfunctions; (f) outages; (g) legal; and (h) disaster. In this
study, legacy production machinery and their monitoring systems define the application domain scope.
Considering the focus on operational technology, physical types of threat are of prime concern [70].
Furthermore, considering the roles of personnel in production operations, a second key category
would need to concentrate on human interactions. Finally, as advanced technology is involved in such
manufacturing environments, compared to legacy production ones, technical threats is a natural third
broad category. Therefore, the paper proposes that an appropriate high-level threat taxonomy should
analyse human interaction (HIT), advanced technical (ATT), and physical threats (PT). Automatic
operations are excluded from human–machine interactions and all operations that require human
intervention (semiautomatic and manual) are included within human interactions. The software and
network entry points are hard to enumerate and are subject to change. Entry points for hardware
attacks are fewer and moderately well determined but attack targets can be diverse, targeting for
example, information leakage [71], tampering [72], denial of service (DoS) [73], or cloning [59]. For each
threat type, threat analysis needs to identify and describe activities which may allow the relevant
vulnerability to be exploited (Table 1).
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Table 1. An example of threat analysis. HIT: Human interaction; ATT: Advanced technical; PT:
Physical threats.

Activity Description Impact Examples Countermeasure
Mechanisms

Threat Types

HIT ATT PT

1. Negligence
Errors and vulnerabilities
linked to the launch of a new
network within a production
environment.

Network delays or errors lead
to poor control or loss of
control over certain
production processes

Operations procedures to be
followed by personnel
installing or using the network

x

2. Social Engineering
Uses the human behaviour to
gain security access without
the victim realising the
manipulation.

Could cause system integrity
loss (e.g., data loss or
tampering, system process
malfunctions, poor product
quality, health and safety
issues).

Training about the social
engineering threat, company
policy, and procedures.

x

3. Denial of service (DoS)
Channel is flooded with data,
exhausting bandwidth.

Breakdown of network
control, causing loss of
production monitoring and
control capabilities

Network traffic analysis and
detection systems x

The potential harm that a threat may cause when exploiting vulnerabilities is assessed by rating the
impact in categories such as those recommended in the National Institute of Standards and Technology
(NIST) standard [55] (Table 2). Risk impact is linked to the functionality and integrity of the installation,
and so risk analysis needs to consider its specific context. Risk levels can be adapted for a finer risk
granularity if needed to serve specific application needs. The likelihood of the identified risks is then
assessed (Table 3) and the final risk impact is quantified as the product of risk impact and likelihood
(Table 4). IoT-enabled production assets create enhanced production data flows and therefore, DFD is
a fitting model to study security vulnerabilities of key system entities. DFDs employ symbols for key
processes and entities:

3 External entities (EE), considered as end-point of a system;
3 Processes (P), such as system or unit functionality;
3 Data flows (DF), i.e., ways to transfer data;
3 Data storage (DS), such as database or files for recorded information.

Table 2. Impact rating.

High (H) The Threat Is Unacceptable and Immediate Measures Are Needed to Reduce It to
Preserve Data or System Integrity.

Medium (M) The threat may be acceptable over the short term but countermeasures to reduce the
risk should be implemented.

Low (L) The risks are acceptable. Measures to reduce risk can be taken in conjunction with
other actions, for example, during upgrades.

Table 3. Risk likelihood (chance rating).

High (H) A Highly Motivated and Sufficiently Capable Threat-Source; Protection
Countermeasures Are Ineffective.

Moderate (M) The source of the threat is motivated and capable, but some countermeasures in the
short term could hinder the success of attacks.

Low (L) Limited motivation and capability of threat-source; the countermeasures are sufficient
to prevent the hazard.
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Table 4. Score rating (SR) = Impact rating × Chance rating.

Impact→→

Chance→→

Low (L) Moderate (M) High (H)
High (H) L × H = M M × H = H H × H = H

Moderate (M) L ×M = L M ×M = M H ×M = H
Low (L) L × L = L M × L = L H × L = M

Finally, Table 5 offers a threat classification scheme along with risk impact quantification and
applicable DFD modelling entities. Risks with high chance and impact are likely to occur, will have
a significant impact, and should be given priority for mitigation. Risk quantification in the tables
is indicative and actual risks in a specific implementation are likely to differ. An expert view of
risk quantification in such industrial settings is available by ENISA [23]. This type of analysis is a
necessary step to establish a sound baseline for designing a security approach to reduce risks for remote
monitoring when upgrading legacy equipment with IoT devices. Having concluded with the stage
2 of the proposed approach, stage 3 aims to produce more detailed threat analysis for the targeted
application domain, as described in the next section.

Table 5. Threats classification for IoT-enabled production environments.

Activity
Threat Types External

Entity (EE)
Data Flow

(DF)
Data

Store (DS)
Process

(P)
Impact
Rating

Chance
Rating

Score
RatingHIT ATT PT

Negligence X X M M M
Social Engineering X X X H L M

Tampering X X X X H L M
Physical Intrusions X X X X X H L M

User Misuse X X X H L M
Unauthorised remote accesses X X H L M

External hardware X X H L M
Physical destruction X X X H L M
Command injection X X X M L L

Denial of Service (DoS) X X X X H M H
Signal replaying X X X X M L L

Cloning X X X X H M H
Remote switch off X X X H L M

Signal blocking or jamming X X X H L M
Reverse engineering X X X X X H L M

Side-channel X X X X X H L M
Wireless zapping X X X M L L

Software compromise X X X X X H L M
Electromagnetic interference X X M L L

Cable cuts X X X H L M
Power fluctuation X X M M M

Voltage spikes X X H L M
Installation errors X X M L L

Takeover of an authorised
session X X X X X H L M

4. Application and Threat Modelling

4.1. Application Model and Data Interfaces

In the first part of stage 3 of the proposed approach, the application model considers key
components of a machinery monitoring architecture and their data interfaces (links), to enable studying
IoT security requirements in more detail. Following a representation similar to Reference [74],
a simplified mapping of data exchanges is shown in Figure 5.
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Figure 5. Abstract application model of the connected legacy production machinery. SCU: System
control unit.

The local architecture includes the workplace with a legacy production machine and the
IoT-enabled DAQ. The DAQ comprises three modules. The sensors module is physically attached
to the machine. Collected real-time data are processed in the control unit module and can be passed
to external or visual user interfaces. Transmitted data are sent to cloud-based systems, to the system
control unit (SCU), or a mixture of both via the communication module. The remote architecture stores,
manages, analyses, and visualises data on a dashboard to aid future actions. Such functionality is
offered through the cloud to end-user devices, which can reside inside the local architecture. The data
flows across the links are:

• Link 1: The environment includes the legacy production machinery, the DAQ modules, with access
to configuration and management web services.

• Link 2: Data acquired from the sensor module are sent to the control module.
• Link 3: The control module manages the authentication process and passes data to the

communication module.
• Link 4: The DAQ provides a user-interface to manage and visualise the data acquisition in

real-time, residing within the monitored facility.
• Link 5: The DAQ and the SCU exchange data between the sensors and the local architecture.
• Link 6: Interfaces offer data visualisation and support or trigger appropriate actions.
• Link 7: The SCU employs cloud access to offer machine data management to users.
• Link 8: The DAQ communicates with cloud services via the internet.
• Link 9: User devices are communicating with the cloud or server through the internet, exchanging

information relevant monitoring information.
• Link 10: Data management and visualisation services are made available to the user.



Sensors 2019, 19, 2355 13 of 34

The mapped links are likely attack-entry points for the manufacturing environment. Link 1 is an
entry point for physical threats, which can compromise the integrity of hardware devices, sensors,
systems, and data. An attack can occur through connection to web-based interface, which is an entry
point for software threats (e.g., viruses and trojans), as well as DoS and remote access control attack.
Data interfaces require physical access to components, which can be exposed to cloning, side-channel,
and reverse engineering attacks, but may also malfunction due to electromagnetic interference, voltage
spike, and power fluctuation. Links 2 and 3 are entry points for physical intrusion and tampering,
as well as cloning, side-channel, and reverse engineering. Links 4 and 5 are entry points for command
injection, software attacks, DoS, and cloning, as well as unauthorised remote access. Links 6, 7, 8, and
9 are entry points for attacks causing a network breakdown or system process malfunctions through
ATTs, such as DoS, command injections, reverse and social engineering attacks. Link 10 requires access
credentials and is an entry point for error and omission, unauthorised remote access, social engineering,
command injection, DoS, and software attacks. HITs are relevant to all interfaces and components and
may cause data loss, process malfunctions, and network breakdown. Having available an abstract
application and data exchange model helps towards application-specific threat modelling. DFDs
between subsystems create an understanding of the permeation of trust between boundaries. Figure 6
shows a simplified DFD for IoT-enabled monitoring. Dotted line rectangles denote trust boundaries of
subsystems; solid line rectangles represent external subsystems; arrows indicate data flows; interfaces
with external entities and storage are marked with a solid coloured rectangle (not part of DFD). Data
flows and trust boundaries constitute intermediate attach goals, and their modelling is the subject of
the next section.
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4.2. Threat Goals Modelling

The second part of stage 3 of the proposed approach deals with detailed threat modelling. In order
to devise mitigation mechanisms, it is of interest to further understand specific goals that an attacker
may set in pursuing attack targets. Focusing on the two high-risk priority attack threats (Table 5),
namely DoS and cloning, it is of interest to study potential attack intentions and consequences.
The main goals are: Gaining network or access, communication access to the supervisory and control
architecture [75], and modifying the DAQ [76]. The potential impacts of these goals are analysed in
Table 6, consistent with the reliability-oriented approach FMEA (failure mode and effects analysis).
Specifically, impacts could affect different functions, which in the case of a production machine could
be stated as [62]: P: Primary, affecting functions required to fulfil the machinery intended output
(e.g., production of an item); S: Secondary, supporting the primary function (e.g., managing coolant in
a machine tool); C: Control and protective, affecting the ability to control a process (e.g., adjusting feed
rate in machining) or protecting workers, equipment, or the environment (e.g., stopping machining
after tool breakage); I: Information, affecting ability to provide monitoring information for a function
(e.g., failure to provide or display temperature reading); and U: Interface, affecting the interaction
interface between two items. This makes the understanding of the potential consequences of an attack
more tangible and aids the design and development of impact mitigation. The attack goals are next
modelled, for example, via attack tree modelling, which is a common structured approach to illustrate
in a logical way the main goals of an attacker. The top tree node is a key attack target. Lower level
goals and individual malicious activities, which may contribute to reaching that goal, are located
below the main node. Steps between the lower nodes and the top node depict intermediate states or
attacker subgoals. This modelling is now applied for the machinery monitoring application, defining
attack trees for the identified threats (e.g., Tables 1 and 5) and specifically for each of the attack goals of
Table 6.

Table 6. Attack goals and impacts. P: Primary; S: Secondary; I: Information; U: Interface.

Attack Goal Impact Description Function Code

Network access

Inability to communicate with the DAQ I, U
Inability to communicate with the Cloud U
Inability to communicate with the SCU C, U

Inability to communicate with User Devices I, U
Inability to upgrade firmware I

System communication access
Inability to use the HMI I, U, P

Inability to use the DAQ modules I, C
Inability to use the legacy production machinery P, S

DAQ access
Inability to collect correct sensor data C, I

Inability to protect sensor data C, I
Inability to send data correctly C, I, U

4.2.1. Network Access

Gaining access to the network wherein the monitoring system operates, an attacker can use
malicious or fraudulent actions to gain access to data devices or server systems connected with the
network. Figure 7 shows the attack tree that models the network access threat goals. Typically,
enterprises may have a private and public network. Subject to access rights, these are exposed to
personnel, customers, partners, or suppliers. Within the intranet there may be parts of the architecture
which can be modified by access to the hardware for upgrading firmware, updating software,
and replacing components, whereas other entities do not require physical access to the architecture
and are only modified remotely. Upon gaining physical access to the hardware, the attacker can
further access the network through devices, cables or ports, radio interference, or wireless and wired
networking means. Without physical access, network access can be achieved via social engineering [77].
While encryption and a media access control (MAC) filter can be applied as security measures, spoofing
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attacks [78] can still be used to gain access to the network. An attacker can bypass strong encryption
methods (such as Pretty Good Privacy (PGP) or Advanced Encryption Standard (AES)), by obtaining
the encryption password mostly through social engineering, installing some malware for reading
the password, or by breaking into specific network devices via a side-channel method. If the system
devices are equipped with a weak encryption method, it may be easily broken with cryptography
attacks. On the extranet side, the system can be equipped with password authentication. An attacker
can use the dictionary method to guess the password, then bypass the firewall and gain access to the
local network.

4.2.2. System Communication Access

Remote access applications allow ubiquitous supervision and control through networked devices,
whilst HMIs allow enable control via a front machine panel. An attack may seek to gain access to the
communication system to compromise supervisory systems and modify machine or process parameters.
An attack tree analysis for this threat goal is shown in Figure 8. If there is no authentication requirement,
an attack can easily succeed in gaining access. When authentication is enforced, an attack may guess
the access key by the dictionary method [79], or bypass the password using a backdoor secret method,
such as chipset, cryptosystem, and an algorithmic structured query language (SQL) code injection [80].
When encryption is employed, the attack can obtain the key through a social engineering method
or malware injection. Systems without encryption are susceptible to man-in-the-middle (MITM)
method, where the attacker can spoof the system identity, waiting for a user to login and then save the
credentials for future access. If physical access to the HMI is gained, the attacker can use an infected
USB dongle to compromise the control system or employ reverse engineering to gain communication
or achieve this without physical access via social engineering.

4.2.3. Data Acquisition (DAQ) Access

Figure 9 displays the attack tree to acquire access to the DAQ. The side-channel method is one of
the simplest physical access methods, allowing DAQ access to make modifications, such as install new
firmware or patch, or replace hardware components. Using the network, the attacker can use SQL
injection [81] to gain access to user devices or gain authentication to infect the DAQ with malware,
and through the replay attack to spoof data. An attack can target DAQ access after remotely logging
in with credentials to launch a DoS attack and flood available bandwidth. Accessing the sensors,
the attacker can compromise hardware or software components to affect normal DAQ operation. When
sensor authentication is not employed, an attack can gain DAQ access using log files to spoof data.
From the extranet, an attack can gain DAQ access via the MITM method, SQL injection, or spoofing
sensor information, replay attack method, or flood its connection via DoS. Alternatively, an attacker
can remotely gain authentication to the cloud service and control the DAQ from there.

Attack tree modelling is a structured methodology for analysing security to drive the design
and implementation of appropriate mitigation mechanisms. The next section takes into account such
analysis to develop and test IoT endpoint device security for legacy production machinery monitoring.
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5. Threat Mitigation for IoT-Enabled Production Machinery

After the steps of Section 4 for threat analysis and application-specific modelling, stage 4 of the
proposed approach introduces mitigation mechanisms for priority risks. Retrofitting monitoring solutions
on machinery typically involves devices that integrate acquisition, processing, and transmission of data.
Such units are compact but may have security shortcomings. In some cases, they employ a single
communication protocol for real-time data transmission, which can be restrictive in the sense that if a
single communication protocol is compromised, the whole process integrity might be so too. However,
increasingly, IoT devices offer multiconnectivity options, which add more flexibility but still the choice
of protocol is preset and fixed in most cases. A typical IoT device includes I/O ports for sensing and
actuation (1st Module), CPU and memory (2nd Module), communications (3rd Module), and powering
options [82]. Each of them in order may be considered to extend the functionality of the previous one,
but in integrated IoT devices, their trust boundary encompasses them all together (Figure 10). Such a
device can be compromised if any of the three modules is compromised, for example, through cloning.
IoT endpoint security can benefit from the IISF principle of component or subsystem isolation and this
is adopted here. In contrast to monolithic devices, the proposed design choice is for a modular security
approach, by decomposing the overall trust boundary to create a separate trust boundary for each
component and implementing security mechanisms in the communication between them.
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The Authentication Protocol

The authentication protocol for the modular IoT DAQ is illustrated in Figures 11 and 12. Specifically,
the flowchart in Figure 11 shows the process flow, while the DFD in Figure 12 depicts the data flow.
The protocol comprises four steps: Log identity authentication, encrypted communication, secure
connection, and authentication, and will be referred to as LCCA. All LCCA phases employ AES
cryptography. The phases are serially executed and failure to execute one as specified, results in
issuing a security alert. The LCCA protocol includes a set of keycodes, passwords, baud rates, and
frequency values as part of its mechanism to progress through the four phases and can be applied
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for the communication between the control module and the two other modules. The LCCA flow is
described next for the communication between the sensor and the control unit module (Figure 11).

Phase 0: Start

• The system initialises the set of keycodes, passwords, baud rate, and frequency relationships to be
used, and then enters a sleep mode (START), waiting for the first connection.

Phase 1: Log identity authentication

• This phase handles the log identity between the modules. Specifically, if the control unit module
recognises the sensor module log identity, the protocol proceeds, otherwise the process freezes. In our
example log identities (and to the same purpose baud rate, frequency values, and passwords) are
prestored in a dictionary embedded in each module, but algorithmic approaches to dynamically create
them could be employed instead.

Phase 2: Encrypted communication

• This step sets an agreed value for the data transfer rate (baud rate) between the control unit and
sensor modules. In this way, the two modules engage in a handshake process. The LCCA algorithm
sets the initial rate (baud rate 1) and at real-time every fixed time period (in this example, 3 ms)
the algorithm changes the control unit rate with a new rate value (baud rate 2), according to (based
on frequency x in Figure 11) a formula known in advance between the modules. Upon agreement,
data exchange progresses, and all data transfers are encrypted. Any mismatch between the two,
which may arise as a result of a security breach, will pause communication and set the system to sleep
mode, issuing an alert. Once encrypted communication is established, the process advances to the next
stage, otherwise, the connection is closed and returns to phase 1.

Phase 3: Secured connection

• This phase covers the connection between the control unit and the sensor module. Once encrypted
communication is established, the control module will expect to receive a frequency value from the
sensor module to set a new connection rate at predetermined intervals (set here every 3 milliseconds).
If the frequency value is recognised by the control unit module, the protocol continues to the next phase,
otherwise will pause communication and set the system to sleep mode, issuing an alert. The modules
establish connection, and the control module sends the new frequency in a continuous loop employing
the baud rate agreed in phase 2.

Phase 4: Authentication

• In this phase, the sensor module alphanumeric password is checked by the control unit. An admissible
alphanumeric password is a combination of a minimum of eight characters, including lowercase and
uppercase, numbers, and symbols. Additional measures prevent using the same password twice;
dictionary words, or sequences; usernames or information that might become publicly associated
with the user. If the control unit module does not recognise the password, authentication ends
unsuccessfully, and the process moves back to step 3.

The DFD of Figure 12 is a detailed version of Figure 6 to illustrate the data flow through the trust
boundaries when the IoT device is equipped with the added security provisions. Instead of the single
trust boundary around the IoT device, there are now three trust boundaries, one for each module,
and an overall boundary is highlighted for the whole machine equipped with the IoT device. Next,
an implementation instance of the LCCA mitigation mechanism and its testing are presented.
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Figure 12. Data flow diagram of the connected legacy production machinery. 

Figure 11. Log identity authentication, encrypted communication, secure connection, and authentication
(LCCA) protocol.
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6. Pilot Implementation and Testing

This section describes the final stage of our security design approach and presents an implementation
instance focusing on mitigation mechanisms for DoS and clone attacks, which are considered typical threats,



Sensors 2019, 19, 2355 22 of 34

are relevant to production environments, and were marked with a high impact score in the earlier
analysis. The hypothesis of the experiments is that of a DoS or clone attack succeeding. This could be
achieved through a number of intermediate goals, as shown in the relevant attack tree in Section 5. Once
successful, the attacks aim to deprive the IoT device of vital resources and to compromise monitoring
data. The mitigation mechanisms follow the principle of modularity and the LCCA protocol described
in the previous section. The objective of the testing is to assess the ability of the implemented approach
to avert these two types of attacks. An industrial DMG NTX 1000 CNC Mill Turn Centre (twin-spindle
turning centre with five-axes milling capability) was employed for the experiments. The remainder of
this section describes the physical instantiation of the IoT DAQ unit and the mitigation mechanisms
testing DoS and cloning attacks.

6.1. DoS Attack

This section describes the implementation of the mitigation mechanism for the DoS attack. The test
was run during the warm-up phase of the machine tool operation. The functional objective was to
introduce the IoT DAQ for real-time monitoring of signals, such as acceleration and temperature from
the machine spindle, then send the encrypted sensor data to a server (ownCloud) integrated into a
raspberry pi 2 model band gain authentication to access and visualise data. The IoT modules are
emulated through Arduino Uno units. The attack goal was to generate a DoS situation to jam the IoT
device, affecting its battery life and communications, or gain access to monitored machine parameters,
such as the spindle temperature and acceleration. The attack tree in Figure 9, shows attack paths that
can lead to achieving the target. The modular IoT DAQ is shown in Figure 13. The control unit module
is equipped with a 32 GB SD card to store data and its CPU runs the authentication protocol. The sensor
module comprises a bottom layer that includes the sensors, the CPU and memory of the control module
and the battery to supply the entire IoT unit during data acquisition and protocol execution; and a top
layer that includes a relay board to manage data acquisition and apply the mitigation mechanism.
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acquisition and transmission processes are interrupted, sending an alert message to the user device. 

Figure 13. Prototype of modular IoT DAQ.

The control unit module is equipped with code to calculate CPU and RAM usage. If the control
unit does not identify correct credentials, i.e., valid keycode between the modules, the data acquisition
and transmission processes are interrupted, sending an alert message to the user device. A snapshot of
the user device screen during monitoring real-time data is shown in Figure 13c, where current data are
shared with end-user devices and are visualised. The web-server, cloud, or end-user device are attack
points, exposing the monitoring device to a DoS attack aiming to take down its operational capacity.
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A DoS attack emulation scenario was set up (Figure 14) and includes:

1. The machine tool equipped with the sensor module on the spindle;
2. A hub for a monitoring service provider equipped with an API to make available, through the

local network, the machine tool state and performance;
3. End-user devices used to monitor the machine tool anywhere and anytime;
4. The cloud service for processing, analysing, and planning maintenance interventions.
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Figure 14. An external DoS attack.

All communications apply AES 256 encryption. The test aimed to simulate a denial of service
(DoS) [73] via the network. The attacker gained network access through any of the earlier mentioned
methods and is ready to generate connection requests to the communication module using its source
address rather than the attack target. In this way, the communication module will respond affirmatively
to the connection request not by the attacker but to the target of the attack. The result is a vicious
circle that will quickly exhaust the targeted resources and flood the network with traffic (Figure 15).
The attack generates an infinite request for access after spoofing the IP of the system through a fake
source address and bypassing the firewall. At the same time, the targeted systems attempt to access the
data when the sensor module seeks to exchange condition monitoring data with the control module.
The large number of responses from the control module causes bandwidth exhaustion and hence a
crash. An Arduino Uno was used for generating a connection request to the communication module,
so as to affect the targeted device. The control unit module is connected to the sensor module via
COM3 port and the communication module through the COM10 port. The attacker, after gaining the
network authentication, could take down the capacity of the control module generating an autonomous
function, able to generate infinite access requests, delay services, and reduce the battery life.
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Figure 15. A DoS attack process.

As a result of this attack, the control unit will output the estimated ratio of CPU usage as shown
in Figure 16 for the control unit module:

CPU utilisation (%) =
CPU Idlecountintime f rame × 100

Maximum number o f CPU Idlecountintime f rame

The CPU utilisation procedure includes two phases:

• Phase 1: The real-time operating clock (RTOC) is used to estimate CPU/core utilization. The scheduler
system tick is used for this purpose, as it is based on timer interrupt, which is considered as a
relatively accurately measure of elapsed time.

• Phase 2: Counting maximum idle count; an estimation is obtained through observing idle counts
during a measurement period. If no task is performed (besides the timer interrupt) this represents
the maximum number of idle counts and corresponds to 0% utilisation. Estimation accuracy
errors tend to become insignificant when the CPU utilization measurement period is sufficiently
large. After calculation of maximum idle counts, no code or task can be added to the idle task.

The CPU utilisation is contrasted against the expected average value for this device, which in
this case was known to be 71% without any attacks. The initialisation stage when starting the CPU
generates a level of 22% usage and this is due to a delay of the function printer at the screen. Reaching
100% is a strong indication that the CPU is under attack. In our case, the DoS attack materialises by
running our application via a host computer on the intranet. The control unit and transmitter module
exchange information using the LCCA protocol (Figure 11) to detect significant deviations from the
expected standard operation. If the DoS attack occurs on the current available channel for exchanging
data (for example, on the Wi-Fi module circled red in Figure 14), the control module recognises the
attack and shuts off the current communication path. The scope of this test was to perform an end
to end functional testing without fully emulating any kind of DoS attack or their formal mitigation
mechanisms. The aim was to illustrate how the isolation principle is applied through the LCCA
protocol to reduce relevant security risks. The simple detection technique can nonetheless be replaced
by a more sophisticated mechanism, while following a similar isolation principle in the communication
between modules.
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6.2. Cloning Attack

In the second test, the attacker gains access to the communication module by the social engineering
method or via bypassing the firewall. The mitigation mechanism is to use the control unit module
to read the authentication key and detect abnormal states. When some of the hardware or software
parameters (e.g., voltage, current, system memory, CPU usage, connection buses, or IDs) change in
unexpected ways, the control unit module closes the current connection with the malicious hardware
or software components and initiates an alternative way for exchanging data with the target. In the
scenario of Figure 16, the attacker gains physical access to the sensor module and is able to clone it
using fake modules equipped with reprogrammed the firmware. Figure 17 shows the authentication
process between two modules of the modular IoT DAQ. For each connection between the modules,
the control unit module generates a new unique authentication key (Step 1). The key is stored within
the sensor module in a buffer of characters under a private class that does not allow modifications by
other users (Step 2). The last phase (Step 3) checks the sensor unique key and compares it to the one in
the control unit module buffer. If the sensor unique key matches the key inside the control buffer unit,
the sensor module gets access to phase 2 of the authentication protocol (Figure 11). Upon guessing the
authentication key, the attacker gains access to the target device and initiates the DoS attack. Figure 18
shows the DoS attack when an infected USB dongle is employed for upgrading an infected kernel
inside of the machine [83]. Such an attack may employ multiple attacking nodes, which together form
a botnet. A botnet is a network controlled by a master bot and is made up of devices infected by
specialised malware, known as bots or zombies [84]. In a cloning attack of a wireless sensor network
architecture, once a sensor node is compromised, the adversaries can easily capture other sensor
nodes and deploy several clones that have legitimate access to the network (legitimate IDs, passwords,
and other security credentials) [85]. The cloning attack affects the mobile communication protocol
as well. Subscriber identity module (SIM) cloning by physical access is a simple process and the
attacker must have a software program, a SIM reader, and a SIM chip writer [86]. Such examples
highlight the risk of cloning attacks, which can be addressed by cryptography or physically unclonable
functions (PUFs) [87]. In the IoT DAQ the control unit module is the master that controls all operations
and requires protection. The cloning attack involves tampering with the sensor and communication
modules, aiming to compromise the architecture integrity and modify the behaviour of the modules.
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Figure 18. Authentication method vs. the distributed denial of service (DDoS) attack with infected
USB dongle.

Figure 18 illustrates also the mitigation approach effect for the cloning attack in case the attacker
guesses the key. The control module analyses data from the sensor and communication modules
to detect deviation between the original and the clone sensor behaviour. When the clone sensor is
identified, the control module disables all communication with the clone sensor. Figure 19 shows two
different cases of sensor communication. In the first case, the control module is connected with the
original sensor (green module); reading parameters, such as ID, password, CPU usage, static RAM
(SRAM) byte sketch size; and hardware parameters through the INA219 sensor (power supply and
current). At the second case (bottom), the clone sensor (amber module) shows the same hardware
and software of the original sensor but the malicious code for compromising the monitoring system is
also included. To detect signs of a cloning attack, the control module monitors changes in CPU usage,
power supply and current, comparing them against typical values. In addition, the control unit reads
the sketch byte size to understand the credibility of the sensor module. The sketch byte size is stored
into the microcontroller SRAM and show the unique value of the sketch. If the adversary seeks to
modify the code to add the malicious part and leave the rest of the sensor module the same as the
original, the control module can recognise it as a clone module and will not share any information
with it because of the deviation of sketch byte size and level of usage of SRAM. Physical parameters
can help to single out unexpected changes to hardware parameters. The authentication ID control
mechanism brings the probability of successful cloning threat events to a lower level, reducing the
impact score rating.
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7. Discussion and Related Future Work

The large amount of interconnected things for advance manufacturing brings new cyber risks.
Production environments are strongly characterised by jointly involving OT and IT and the potential
impact of any security breaches on the integrity of industrial systems can be very tangible and highly
critical. Cyber security must therefore be a vital part of the design, operations, and strategy processes,
and should be considered from the very beginning of any new connected Industry 4.0 driven initiative.

The reported work introduced a systematic design thinking approach to attack the new risks
arising with the Industry 4.0 connectivity. The new approach draws parallels with previous and ongoing
activities (e.g., PASTA, IISF, ENISA) but is positioned towards the concrete context of retrofitting
legacy production machinery with IoT-enabled monitoring capabilities all the way from the study of
requirements, and through threat and application modelling, all the way to threat mitigation design,
implementation, and testing with prime focus on IoT endpoint security. As an exemplar of dealing
with this challenge, this paper introduced a new security hardware IoT device for remote monitoring
application in a production environment, which is managed through a flexible but strong lightweight
authentication protocol and mechanisms for isolation between the key subsystems of an IoT endpoint
device. This was tested through a real-world case study where security flaws were deliberately
introduced, a qualitative risk assessment was applied, and relevant risks were mitigated.

Overall, the main paper contribution is in the overall design thinking approach, while several
additional contributions which were included, such as the new authentication protocol implementing in
effect the isolation principle at the IoT endpoint subsystem level. However, the principle of subsystem
isolation goes well beyond physical or subsystem interfaces isolation. IoT deployments now make
extensive use of containerisation technologies and IoT devices can themselves be put under this context
through container engines and container APIs [88], which can link endpoint devices to an extended
system of IoT-enabled application services [89]. Significant ongoing research currently targets the
extension of IoT resources orchestration to jointly include both edge nodes and the cloud [90]. Based
on the above, the research presented in this paper opens up several threads for further work:
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• Comprehensive mitigation mechanisms for the range of identified threats. While the reported
work presented an implementation example of the design thinking approach, which included
specific instances of mitigation mechanisms relevant to preventing DoS and clone attack threats,
any alternative and more comprehensive mechanism can be employed instead but would still
need to be included within the context of an overall design approach for IoT security.

• Eventually, any introduced mitigation mechanism needs to be scrutinised for effective protection
against attacks. The reported work intention was to present the multistage design thinking
approach, with mitigation being a concrete step within this. Any final deployment of adopted
solutions needs to be preceded by extensive and systematic testing against attacks. Such a testing
will need to consider simulation or indeed emulation of attacks, as well as mechanisms for their
systematic generation [90].

• The reported work includes risk assessment and mitigation as part of the five-stage systematic
approach. However, risk quantification was only indicative and of qualitative nature. Further
work is needed in the direction of systematic risk quantification, including approaches for data-
and evidence-driven risk quantification [91]. While this is highly important for IoT endpoint
devices, overall IoT network security is only as good as its weakest link and a weak node may
have scalable negative impacts to the whole IoT network. Further work needs to put into such a
context any risk-based approach to security and duly take into account complexity considerations.

• The isolation principle in IoT is effectively applied through virtualisation and containerisation
technologies, as expressed, for example, by the IISF. While such technologies were more applicable
to cloud services, they are increasingly expanded and implemented at the edge node level.
IoT endpoint device security can strongly benefit via joint physical and virtual isolation, and
future research need to align relevant research with such IoT architecture patterns [89,90].

• Organisations seeking to adopt security-by-design approaches would benefit from methodologies
and tools that assist in appropriate prioritisation of any upgrades related to security. It is futile to
implement the most sophisticated approach for part one aspect of security, when others are left
too weak. Maturity assessment methods and tools are helpful to this end. Future work would
need to look how to best place a design thinking approach, such as the one presented in this paper,
within the context of overall organisational security maturity management [92].

8. Conclusions

This paper introduced a novel endpoint security design approach to address security issues when
upgrading production machinery with IoT connectivity to deliver real-time condition monitoring for
legacy production machinery. The approach considers best practice and guidelines to formulate a
new domain-specific approach, contributing to bridging the gap between introducing IoT connectivity
at the shop floor and shielding system and operational integrity. The main concepts of the new
approach are the application-aware viewpoint, as opposed to generic security measures, the adoption
of the principle of subsystem isolation, and the development of a new multistage but lightweight
authentication protocols, which are all contributing to increasing the required complexity of any
attack approach to achieve compromising the IoT device and associated monitoring and production
processes. The concrete implementation of this approach was demonstrated through two industrial
legacy machinery attack scenarios based on different attack entry points, for DoS and cloning attacks.
The approach enables the mapping and prioritisation of threats and risks in a domain-specific
application-oriented way, which, in turn, allows the identification of priorities for intervening with
mitigation approach and lowers integrity risks.

While the new approach and its implementation focuses on the key design aspects, rather than on
any single sophisticated detection mechanism, it is worth noticing that the employed mechanisms can
be upgraded to introduce stronger detection, and therefore, response capabilities. Future research needs
to target such capabilities but will need to develop a systematic approach for testing. The risk-based
part of the methodology needs to evolve further from qualitative to quantitative, and be linked to the
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results of the testing phase to improve security performance. Production environments are considerably
different from others due to the dominant presence of OT, which may imply significant operational
impacts. It is for this reason, that dedicated testbeds and domain-specific security metrics need to be
developed and employed in a systematic testing and evaluation process, while for the detection and
response mechanism, other sophisticated algorithmic and other approaches could be used as part of
the overall methodology for IoT device endpoint security protection. Overall, this paper included a
discussion with leads to further research (Section 7), pointing out the need for further research in the
direction of (a) comprehensive mitigation mechanisms; (b) systematic test generation and validation of
solutions; (c) automated and data-driven risk assessment; (d) impact of endpoint vulnerabilities on
overall IoT network security; (e) virtual isolation, IoT edge node containerisation and virtual–physical
nodes orchestration; (f) systematic maturity assessment and management for IoT security.
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