20 research outputs found

    Untwisting two-way transducers in elementary time

    Get PDF
    Functional transductions realized by two-way transducers (equivalently, by streaming transducers and by MSO transductions) are the natural and standard notion of ``regular'' mappings from words to words. It was shown recently (LICS'13) that it is decidable if such a transduction can be implemented by some one-way transducer, but the given algorithm has non-elementary complexity. We provide an algorithm of different flavor solving the above question, that has double exponential space complexity. We further apply our technique to decide whether the transduction realized by a two-way transducer can be implemented by a sweeping transducer, with either known or unknown number of passes

    Streamability of nested word transductions

    Full text link
    We consider the problem of evaluating in streaming (i.e., in a single left-to-right pass) a nested word transduction with a limited amount of memory. A transduction T is said to be height bounded memory (HBM) if it can be evaluated with a memory that depends only on the size of T and on the height of the input word. We show that it is decidable in coNPTime for a nested word transduction defined by a visibly pushdown transducer (VPT), if it is HBM. In this case, the required amount of memory may depend exponentially on the height of the word. We exhibit a sufficient, decidable condition for a VPT to be evaluated with a memory that depends quadratically on the height of the word. This condition defines a class of transductions that strictly contains all determinizable VPTs

    The many facets of string transducers

    Get PDF
    Regular word transductions extend the robust notion of regular languages from a qualitative to a quantitative reasoning. They were already considered in early papers of formal language theory, but turned out to be much more challenging. The last decade brought considerable research around various transducer models, aiming to achieve similar robustness as for automata and languages. In this paper we survey some older and more recent results on string transducers. We present classical connections between automata, logic and algebra extended to transducers, some genuine definability questions, and review approaches to the equivalence problem

    A Regular and Complete Notion of Delay for Streaming String Transducers

    Get PDF
    The notion of delay between finite transducers is a core element of numerous fundamental results of transducer theory. The goal of this work is to provide a similar notion for more complex abstract machines: we introduce a new notion of delay tailored to measure the similarity between streaming string transducers (SST). We show that our notion is regular: we design a finite automaton that can check whether the delay between any two SSTs executions is smaller than some given bound. As a consequence, our notion enjoys good decidability properties: in particular, while equivalence between non-deterministic SSTs is undecidable, we show that equivalence up to fixed delay is decidable. Moreover, we show that our notion has good completeness properties: we prove that two SSTs are equivalent if and only if they are equivalent up to some (computable) bounded delay. Together with the regularity of our delay notion, it provides an alternative proof that SSTs equivalence is decidable. Finally, the definition of our delay notion is machine-independent, as it only depends on the origin semantics of SSTs. As a corollary, the completeness result also holds for equivalent machine models such as deterministic two-way transducers, or MSO transducers

    One-way definability of two-way word transducers

    Get PDF
    Functional transductions realized by two-way transducers (or, equally, by streaming transducers or MSO transductions) are the natural and standard notion of `regular' mappings from words to words. It was shown in 2013 that it is decidable if such a transduction can be implemented by some one-way transducer, but the given algorithm has non-elementary complexity. We provide an algorithm of different flavor solving the above question, that has doubly exponential space complexity. In the special case of sweeping transducers the complexity is one exponential less. We also show how to construct an equivalent one-way transducer, whenever it exists, in doubly or triply exponential time, again depending on whether the input transducer is sweeping or two-way. In the sweeping case our construction is shown to be optimal

    Mechanical Properties of Low Dimensional Materials

    Get PDF
    Recent advances in low dimensional materials (LDMs) have paved the way for unprecedented technological advancements. The drive to reduce the dimensions of electronics has compelled researchers to devise newer techniques to not only synthesize novel materials, but also tailor their properties. Although micro and nanomaterials have shown phenomenal electronic properties, their mechanical robustness and a thorough understanding of their structure-property relationship are critical for their use in practical applications. However, the challenges in probing these mechanical properties dramatically increase as their dimensions shrink, rendering the commonly used techniques inadequate. This Dissertation focuses on developing techniques for accurate determination of elastic modulus of LDMs and their mechanical responses under tensile and shear stresses. Fibers with micron-sized diameters continuously undergo tensile and shear deformations through many phases of their processing and applications. Significant attention has been given to their tensile response and their structure-tensile properties relations are well understood, but the same cannot be said about their shear responses or the structure-shear properties. This is partly due to the lack of appropriate instruments that are capable of performing direct shear measurements. In an attempt to fill this void, this Dissertation describes the design of an inexpensive tabletop instrument, referred to as the twister, which can measure the shear modulus (G) and other longitudinal shear properties of micron-sized individual fibers. An automated system applies a pre-determined twist to the fiber sample and measures the resulting torque using a sensitive optical detector. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers. Two industrially important fibers, IM7 carbon fiber and Kevlar® 119, were found to have G = 17 and 2.4 GPa, respectively. In addition to measuring the shear properties directly on a single strand of fiber, the technique was automated to allow hysteresis, creep and fatigue studies. Zinc oxide (ZnO) semiconducting nanostructures are well known for their piezoelectric properties and are being integrated into several nanoelectro-mechanical (NEMS) devices. In spite of numerous studies on the mechanical response of ZnO nanostructures, there is not a consensus in its measured bending modulus (E). In this Dissertation, by employing an all-electrical Harmonic Detection of Resonance (HDR) technique on ZnO nanowhisker (NW) resonators, the underlying origin for electrically-induced mechanical oscillations in a ZnO NW was elucidated. Based on visual detection and electrical measurement of mechanical resonances under a scanning electron microscope (SEM), it was shown that the use of an electron beam as a resonance detection tool alters the intrinsic electrical character of the ZnO NW, and makes it difficult to identify the source of the charge necessary for the electrostatic actuation. A systematic study of the amplitude of electrically actuated as-grown and gold-coated ZnO NWs in the presence (absence) of an electron beam using an SEM (dark-field optical microscope) suggests that the oscillations seen in our ZnO NWs are due to intrinsic static charges. In experiments involving mechanical resonances of micro and nanostructured resonators, HDR is a tool for detecting transverse resonances and E of the cantilever material. To add to this HDR capability, a novel method of measuring the G using HDR is presented. We used a helically coiled carbon nanowire (HCNW) in singly-clamped cantilever configuration, and analyzed the complex (transverse and longitudinal) resonance behavior of the nonlinear geometry. Accordingly, a synergistic protocol was developed which (i) integrated analytical, numerical (i.e., finite element using COMSOL ®) and experimental (HDR) methods to obtain an empirically validated closed form expression for the G and resonance frequency of a singly-clamped HCNW, and (ii) provided an alternative for solving 12th order differential equations. A visual detection of resonances (using in situ SEM) combined with HDR revealed intriguing non-planar resonance modes at much lower driving forces relative to those needed for linear carbon nanotube cantilevers. Interestingly, despite the presence of mechanical and geometrical nonlinearities in the HCNW resonance behavior, the ratio of the first two transverse modes f2/f1 was found to be similar to the ratio predicted by the Euler-Bernoulli theorem for linear cantilevers

    In-vitro modelling of the left heart

    Get PDF

    Applied Measurement Systems

    Get PDF
    Measurement is a multidisciplinary experimental science. Measurement systems synergistically blend science, engineering and statistical methods to provide fundamental data for research, design and development, control of processes and operations, and facilitate safe and economic performance of systems. In recent years, measuring techniques have expanded rapidly and gained maturity, through extensive research activities and hardware advancements. With individual chapters authored by eminent professionals in their respective topics, Applied Measurement Systems attempts to provide a comprehensive presentation and in-depth guidance on some of the key applied and advanced topics in measurements for scientists, engineers and educators

    On regular copying languages

    Get PDF
    This paper proposes a formal model of regular languages enriched with unbounded copying. We augment finite-state machinery with the ability to recognize copied strings by adding an unbounded memory buffer with a restricted form of first-in-first-out storage. The newly introduced computational device, finite-state buffered machines (FS-BMs), characterizes the class of regular languages and languages de-rived from them through a primitive copying operation. We name this language class regular copying languages (RCLs). We prove a pumping lemma and examine the closure properties of this language class. As suggested by previous literature (Gazdar and Pullum 1985, p.278), regular copying languages should approach the correct characteriza-tion of natural language word sets

    Multidimensional embedded MEMS motion detectors for wearable mechanocardiography and 4D medical imaging

    Get PDF
    Background: Cardiovascular diseases are the number one cause of death. Of these deaths, almost 80% are due to coronary artery disease (CAD) and cerebrovascular disease. Multidimensional microelectromechanical systems (MEMS) sensors allow measuring the mechanical movement of the heart muscle offering an entirely new and innovative solution to evaluate cardiac rhythm and function. Recent advances in miniaturized motion sensors present an exciting opportunity to study novel device-driven and functional motion detection systems in the areas of both cardiac monitoring and biomedical imaging, for example, in computed tomography (CT) and positron emission tomography (PET). Methods: This Ph.D. work describes a new cardiac motion detection paradigm and measurement technology based on multimodal measuring tools — by tracking the heart’s kinetic activity using micro-sized MEMS sensors — and novel computational approaches — by deploying signal processing and machine learning techniques—for detecting cardiac pathological disorders. In particular, this study focuses on the capability of joint gyrocardiography (GCG) and seismocardiography (SCG) techniques that constitute the mechanocardiography (MCG) concept representing the mechanical characteristics of the cardiac precordial surface vibrations. Results: Experimental analyses showed that integrating multisource sensory data resulted in precise estimation of heart rate with an accuracy of 99% (healthy, n=29), detection of heart arrhythmia (n=435) with an accuracy of 95-97%, ischemic disease indication with approximately 75% accuracy (n=22), as well as significantly improved quality of four-dimensional (4D) cardiac PET images by eliminating motion related inaccuracies using MEMS dual gating approach. Tissue Doppler imaging (TDI) analysis of GCG (healthy, n=9) showed promising results for measuring the cardiac timing intervals and myocardial deformation changes. Conclusion: The findings of this study demonstrate clinical potential of MEMS motion sensors in cardiology that may facilitate in time diagnosis of cardiac abnormalities. Multidimensional MCG can effectively contribute to detecting atrial fibrillation (AFib), myocardial infarction (MI), and CAD. Additionally, MEMS motion sensing improves the reliability and quality of cardiac PET imaging.Moniulotteisten sulautettujen MEMS-liiketunnistimien käyttö sydänkardiografiassa sekä lääketieteellisessä 4D-kuvantamisessa Tausta: Sydän- ja verisuonitaudit ovat yleisin kuolinsyy. Näistä kuolemantapauksista lähes 80% johtuu sepelvaltimotaudista (CAD) ja aivoverenkierron häiriöistä. Moniulotteiset mikroelektromekaaniset järjestelmät (MEMS) mahdollistavat sydänlihaksen mekaanisen liikkeen mittaamisen, mikä puolestaan tarjoaa täysin uudenlaisen ja innovatiivisen ratkaisun sydämen rytmin ja toiminnan arvioimiseksi. Viimeaikaiset teknologiset edistysaskeleet mahdollistavat uusien pienikokoisten liiketunnistusjärjestelmien käyttämisen sydämen toiminnan tutkimuksessa sekä lääketieteellisen kuvantamisen, kuten esimerkiksi tietokonetomografian (CT) ja positroniemissiotomografian (PET), tarkkuuden parantamisessa. Menetelmät: Tämä väitöskirjatyö esittelee uuden sydämen kineettisen toiminnan mittaustekniikan, joka pohjautuu MEMS-anturien käyttöön. Uudet laskennalliset lähestymistavat, jotka perustuvat signaalinkäsittelyyn ja koneoppimiseen, mahdollistavat sydämen patologisten häiriöiden havaitsemisen MEMS-antureista saatavista signaaleista. Tässä tutkimuksessa keskitytään erityisesti mekanokardiografiaan (MCG), joihin kuuluvat gyrokardiografia (GCG) ja seismokardiografia (SCG). Näiden tekniikoiden avulla voidaan mitata kardiorespiratorisen järjestelmän mekaanisia ominaisuuksia. Tulokset: Kokeelliset analyysit osoittivat, että integroimalla usean sensorin dataa voidaan mitata syketiheyttä 99% (terveillä n=29) tarkkuudella, havaita sydämen rytmihäiriöt (n=435) 95-97%, tarkkuudella, sekä havaita iskeeminen sairaus noin 75% tarkkuudella (n=22). Lisäksi MEMS-kaksoistahdistuksen avulla voidaan parantaa sydämen 4D PET-kuvan laatua, kun liikeepätarkkuudet voidaan eliminoida paremmin. Doppler-kuvantamisessa (TDI, Tissue Doppler Imaging) GCG-analyysi (terveillä, n=9) osoitti lupaavia tuloksia sydänsykkeen ajoituksen ja intervallien sekä sydänlihasmuutosten mittaamisessa. Päätelmä: Tämän tutkimuksen tulokset osoittavat, että kardiologisilla MEMS-liikeantureilla on kliinistä potentiaalia sydämen toiminnallisten poikkeavuuksien diagnostisoinnissa. Moniuloitteinen MCG voi edistää eteisvärinän (AFib), sydäninfarktin (MI) ja CAD:n havaitsemista. Lisäksi MEMS-liiketunnistus parantaa sydämen PET-kuvantamisen luotettavuutta ja laatua
    corecore