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ABSTRACT 

 

 

Recent advances in low dimensional materials (LDMs) have paved the way for 

unprecedented technological advancements. The drive to reduce the dimensions of 

electronics has compelled researchers to devise newer techniques to not only synthesize 

novel materials, but also tailor their properties. Although micro and nanomaterials have 

shown phenomenal electronic properties, their mechanical robustness and a thorough 

understanding of their structure-property relationship are critical for their use in practical 

applications. However, the challenges in probing these mechanical properties 

dramatically increase as their dimensions shrink, rendering the commonly used 

techniques inadequate. This dissertation focuses on developing techniques for accurate 

determination of elastic modulus of LDMs and their mechanical responses under tensile 

and shear stresses.  

 

Fibers with micron-sized diameters continuously undergo tensile and shear deformations 

through many phases of their processing and applications. Significant attention has been 

given to their tensile response and their structure-tensile properties relations are well 

understood, but the same cannot be said about their shear responses or the structure-shear 

properties. This is partly due to the lack of appropriate instruments that are capable of 

performing direct shear measurements. In an attempt to fill this void, this dissertation 

describes the design of an inexpensive tabletop instrument, referred to as the twister, 

which can measure the shear modulus (G) and other longitudinal shear properties of 

micron-sized individual fibers. An automated system applies a pre-determined twist to 
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the fiber sample and measures the resulting torque using a sensitive optical detector. The 

accuracy of the instrument was verified by measuring G for high purity copper and 

tungsten fibers. Two industrially important fibers, IM7 carbon fiber and Kevlar
®
 119, 

were found to have G = 17 and 2.4 GPa, respectively. In addition to measuring the shear 

properties directly on a single strand of fiber, the technique was automated to allow 

hysteresis, creep and fatigue studies. 

 

 

Zinc oxide (ZnO) semiconducting nanostructures are well known for their piezoelectric 

properties and are being integrated into several nanoelectro-mechanical (NEMS) devices. 

In spite of numerous studies on the mechanical response of ZnO nanostructures, there is 

not a consensus in its measured bending modulus (E). In this dissertation, by employing 

an all-electrical Harmonic Detection of Resonance (HDR) technique on ZnO 

nanowhisker (NW) resonators, the underlying origin for electrically-induced mechanical 

oscillations in a ZnO NW was elucidated.  Based on visual detection and electrical 

measurement of mechanical resonances under a scanning electron microscope (SEM), it 

was shown that the use of an electron beam as a resonance detection tool alters the 

intrinsic electrical character of the ZnO NW and makes it difficult to identify the source 

of the charge necessary for the electrostatic actuation. A systematic study of the 

amplitude of electrically actuated as-grown and gold-coated ZnO NWs in the presence 

(absence) of an electron beam using an SEM (dark-field optical microscope) suggests that 

the oscillations seen in our ZnO NWs are due to intrinsic static charges.  
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In experiments involving mechanical resonances of micro and nanostructured resonators, 

HDR is a tool for detecting transverse resonances and E of the cantilever material. To add 

to this HDR capability, a novel method of measuring the G using HDR is presented. We 

used a helically coiled carbon nanowire (HCNW) in singly-clamped cantilever 

configuration and analyzed the complex (transverse and longitudinal) resonance behavior 

of the nonlinear geometry. Accordingly, a synergistic protocol was developed which (i) 

integrated analytical, numerical (i.e., finite element using COMSOL 
®

) and experimental 

(HDR) methods to obtain an empirically validated closed form expression for the G and 

resonance frequency of a singly-clamped HCNW, and (ii) provided an alternative for 

solving 12
th

 order differential equations. A visual detection of resonances (using in situ 

SEM) combined with HDR revealed intriguing non-planar resonance modes at much 

lower driving forces relative to those needed for linear carbon nanotube cantilevers. 

Interestingly, despite the presence of mechanical and geometrical nonlinearities in the 

HCNW resonance behavior, the ratio of the first two transverse modes f2/f1 was found to 

be similar to the ratio predicted by the Euler-Bernoulli theorem for linear cantilevers. 
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CHAPTER 1 

 

INTRODUCTION 
 

 

As Richard Feynman had foreseen in his famous 1959 lecture, scientists have discovered 

that there indeed is “plenty of room at the bottom.” The advent of micro and 

nanotechnology has virtually revolutionized the scientific ideologies and methods. 

Researchers since then have discovered the enormous potential of low-dimensional 

materials both in fundamental science and technological applications. The effect is 

tangible in the fields of energy storage, biomedical research, homeland security, wireless 

communication and artificial intelligence. The superior properties and unique 

applications of these smart materials have created unparalleled synergy between 

previously independent fields of science. The technological achievements have reached 

new milestones, radically advancing the society.  

 

1.1 Low Dimensional Materials: Brief Introduction 

 

Materials with at least one physical dimension in the scale of micro/nanometers, 

intermediate between atomic and bulk, are referred to as low- dimensional materials 

(LDMs).  The interest in size reduction burgeoned with the advent of sophisticated 

lithographic and micro fabrication techniques. Micromachining and fabricating integrated 

circuitry (IC) in silicon became a reality, drastically reducing the size of electronics. The 

past fifteen years has seen an outstanding progression in the capabilities of conceiving 
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extremely complex structures and operational devices.[1]  Often movable, a variety of 

these structures, including cantilever beams, gears and suspensions can perform complex 

mechanical and analytical functions with high precision. Their reduced size, improved 

performance and diverse functionalities have led to intriguing innovations.[2, 3] Through 

their lab-on-chip ability, these microelectro-mechanical entities (MEMS) have 

miniaturized the current technology. They form an integral part of the existing world of 

smart gadgets and superfast computers, and are the “brains” in many of the 21
st
 century’s 

advanced systems[4] including unmanned aerial and ground vehicles, robots and non-

destructive evaluation devices. 

 

 In conjunction with MEMS which are typically top down devices, high performance 

micro fibers (diameter ~1-100 μm) similarly have demonstrated extraordinary 

capabilities. Generally synthesized using bottom up approaches, their light weight and 

ultrahigh strength have lent a pronounced robustness to many macro devices and 

instruments. These thin highly flexible filaments can be bundled or woven to a desired 

shape or form. Carbon fibers (CF) such as IM7 and organic fibers (including Kevlar
®

 and 

spider silk) have marked their niche and can now be found in energy storage 

applications[5], flexible electronics[6] and composite reinforcements[7]. In fact, CF has 

been successfully used in spacecraft components and many other aerospace 

application([8] and references therein). They not only reduce the effective weight of these 

machines but simplify their maintenance. Their strength has also been exploited in 
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defense for ballistic impact protection and surveillance drones. Microfiber properties 

have been tailored for highly specific chemical purification and water filtration. 

 

The nanoscale regime (typically 1 - 100 nm) also offers a myriad of fascinating 

morphologies, intriguing phenomena and extraordinary properties. Geometries of the 

nanomaterials can vary from simple linear (for eg. multiwalled nanotubes or nanowires) 

to complex non-linear (for eg. coiled carbon nanotubes, Y-junctions nanotubes and 

tetrapods). A few such geometries are shown in Fig. 1.1.  
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Figure 1.1 Examples of some morphologies of low dimensional materials. Zero 

dimensional (0D) (a) MoS2 fullerene having onion-like structure (TEM),[9] (b) graphene 

quantum dot (HRTEM) in which the hexagonal arrangement of the carbon atoms is 

visible[10], (c) Buckminster fullerene carbon (C60) molecules (TEM) are closed 

molecules of 60 or more carbon atoms exhibiting a truncated icosahedron structure; 

model shown in (d),[11] One dimensional (1D) (e) SEM image of as grown vertically 

aligned carbon nanotubes (CNTs) (f) Concentric shells of a multiwalled CNT (MWCNT) 

(TEM) (g) A schematic drawing of a MWCNT (h) Four pronged tetragonal Zinc oxide 

(ZnO) nanostructure (SEM) (i) helically coiled carbon nanowires (HCNWs) (SEM)[12] 

(j) ZnO nanobelts (SEM)[13] (k) ZnO nanowires (SEM)[13] (l) comb like ZnO 

(SEM)[13], (m) Y-junction carbon nanotubes (SEM)[14]. 2 Dimensional (2D) (n) SEM 

image of a single layer graphene sheet with its schematic as seen in (o). 3Dimensional (p) 

micron size IM7 carbon fibers (CF) (SEM). 3Dimensional (3D)hierarchical CNT and CF 

can be self-assembled to synthesize macrostructures that possess the qualities of its 

components (q) SEM image of a buckysponge made from CNT and CF (r) optical image 

of a buckypaper made from self-assembled CNTs. (s) SEM image of the top surface of 

the buckypaper. SEM: Scanning electron microscope; (HR)TEM: (High- resolution) 

transmission electron microscope.  
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Although the study of nanomaterials can be traced back centuries, it was mostly the 

advent of electron microscopes, state-of-the-art spectroscopes and the drive to 

continuously shrink semiconductor devices that gave nanoscience its current-scientific 

interest. Nanomaterials are not just reduced forms of bulk materials, but are often 

fundamentally different physical systems. As the material size is reduced towards the 

atomic scale, small enough to confine only a few electrons or phonons, the fraction of 

surface atoms in comparison with the bulk atoms considerably increases. Consequently, 

these materials have very a high surface area.  Different coordination number and 

unsatisfied bonds at the surface atoms induces a scaling effect in its properties such as its 

boiling point. On the other hand, quantum confinement of electrons alters the density of 

states and thus varies its band gap energies. A similar effect has been found in layered 

metal dichalcogenides. [15, 16] Exfoliating them into a few layers or single layer 2D 

systems transforms them from an indirect to a direct band gap material. Nanoscience has 

also provided us the world’s stiffest material, the sp
2
 hybridized carbon nanotubes 

(CNTs).[17] This amazing robustness is solely due to its chemical bond nature. However, 

in general, LDMs are found to exhibit enhanced mechanical properties partly due to 

lower point defect density, dislocations and grain boundaries. Their distinct band 

structures result in improved electrical conductivity and high charge mobility.[18, 19] 

These promising electrical properties have been leveraged to devise high performance 

electronics including transistors[20], switches[21] and even superconductors[22]. 
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These enhanced electrical and mechanical functionalities have made them ideal for use in 

nanoelectro-mechanical (NEMS) devices, a natural and logical step towards 

miniaturization of MEMS. Materials such as carbon nanotubes and ZnO nanowires have 

been implemented into sensors[23], power generators[24], memory storage[25] and 

advanced nanorobotic applications.[26] The next section briefly introduces cantilevered 

electromechanical devices and the pronounced advantages of using LDMs as cantilevered 

NEMS/MEMS structures.  

 

1.2 Cantilevers as Resonators 

 

Cantilevers can arguably be called one of the most popularly applied mechanical 

structures. It is thus not surprising that these structures are deep rooted in the realm of 

MEMS and NEMS. Their small size allows for unprecedented sensitivity to 

environmental parameters including temperature[27, 28], pressure[29], and humidity[27], 

and improved dynamic performance. By coating the cantilevers with a thin chemically 

selective receptor layer, they can be made to respond selectively to specific chemical and 

biological species[30]. This response has been extensively utilized to detect low levels of 

contaminants in fluids[31], and to sense the dew point[32] and lubricity of a fluid.[33] 

Recently, many MEMS/NEMS applications in bio-sensing [34-36] and bio-medical[37-

40] have garnered significant attention. The sensitivity of micro/nanocantilevered 

structures has been explored with cantilevered systems used successfully to detect mass 

as low as a few zeptograms (10
-21

 g). [41] Inducing differential stress through selective 



 8 

coating is a sensitive technique enabling high selectivity and using the ambient pressure 

to manipulate the quality factor (full width half maximum of the power spectrum; Q-

factor) of the mechanical resonance is also highly useful. These features make micro and 

nanocantilevers ideal candidates for a wide variety of sensing applications and attractive 

alternatives to traditional sensing technologies. Microcantilevers generally consist of 

lithographically fabricated monolithic cantilevers (commercially available cantilevers are 

typically ~ 300 μm x 25 μm x 2 μm) or clamped microfibers. Fabricating nanocantilevers 

is highly challenging due to large surface stresses. Hence, high aspect ratio nanomaterials 

such as carbon nanotubes or nanowires are used are cantilevers. As an added advantage, 

bottom up nanomaterials have fewer defects[42], and their different chemical structures 

offer varied mechanical properties.  

 

While the optical detection of mechanical oscillations has proven useful for determining 

motion in microcantilevers, the reflected beam intensity is insufficient for nano-sized 

cantilevers. To address this problem, MEMS and NEMS systems employ electrical 

detection of mechanical motion at a very small scale.  From an application viewpoint, the 

electrical detection of motion, such as a capacitive readout of the mechanical motion, is 

highly desirable because it can be readily integrated with NEMS devices that are fully 

compliant with standard complementary metal oxide semiconductor (CMOS) 

technologies.   

 



 9 

 

Figure 1.2: Various LDMs may be used as cantilevered structures to probe their 

mechanical properties (a) A doubly clamped (guitar like) single carbon atomic thick layer 

graphene sheet[43] across a trench (b) The first (i) and second (ii) transverse resonance 

modes of a singly-clamped (diving board like) CNT. [44] 

 

Sazonova et al.[45] electrically actuated and measured the resonant frequency of a 

doubly-clamped single-walled carbon nanotube (SWCNT) using a mixer technique, 

which is based on the CNT’s transistor properties. Although valuable for a beam in a 

doubly clamped guitar-string like configuration, the mixer technique cannot be applied to 

a singly-clamped cantilevered nanostructure. Alternatively, a technique for detecting 

nanoscale displacements has been demonstrated using a single electron transistor[46]. 

However, this device operates at low temperatures (30 mK) and in a relatively high 
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magnetic field (8T).  Electrically induced mechanical oscillations in multi-walled carbon 

nanotubes (MWCNTs) have also been recorded using non-electrical detection methods 

that utilized a transmission electron microscope (TEM), [44] scanning electron 

microscope,[47] field emission microscope[48] or an optical microscope.[49] For use in 

practical applications, however, the resonating system must be portable, and therefore a 

capacitive readout of the mechanical motion as described above for microcantilevers may 

be preferable to other techniques.   

 

In the following section commonly used actuation (input signal → mechanical response) 

and detection (mechanical response → output signal) techniques that are applicable to 

both the “diving board” singly clamped cantilevers and the “bridged” doubly clamped 

cantilevers are discussed. It will also be established that the Harmonic Detection 

Resonance (HDR), see section 1.5 for details, method may be useful, for both organic and 

inorganic materials (as referenced above) for detecting oscillations in nano-sized 

cantilevers. 

 

1.3 Actuation Techniques 

Of the various transduction mechanisms that result in a mechanical motion of the 

cantilever, three popular techniques are discussed below. 

 

1.3.1 Piezoelectric: One of the most extensively applied techniques entails the use of a 

piezoelectric material that generates a mechanical strain when subjected to an electric 
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field. This method is used in two geometries. Either the cantilever may be driven by an 

external piezoactuator mounted close to it or for more control, a thin layer of suitable 

piezoelectric material, e.g. lead zirconium titanate is deposited on the cantilever. Upon 

the application of an electric field, the piezoelectric film either expands or contracts, 

which in turn bends the cantilever. Piezoactuation is notably used in atomic force 

microscopy (AFM) and is used for both static and dynamic deflection modes. Similar 

actuators are also used in inkjet systems [50, 51] and disk readers. Though this is an 

efficient transduction method, the post process deposition of the piezoelectric layers 

makes it complicated and costly for mass production.  

 

1.3.2 Electrostatic:  The electrostatic actuation mechanism is based on Coulomb’s law, 

from which it follows that two oppositely charged elements will experience an attractive 

force.  In this method, an alternating potential difference is applied across a conducting 

microcantilever and counter-electrode (CE) resulting in an attractive electro(quasi)static 

force.  In response to this force, the cantilever deflects. This actuation mechanism, which 

is the desirable technique for applications demanding high forces for small 

displacements, is quite common, efficient and straightforward to fabricate[52]. If the 

elements are modeled as a parallel plate capacitor, the electrostatic force, FE, is given by 

Equation 1.1 

 

2
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F
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 (1.1), 
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where ε is the permittivity of the medium separating the electrodes, A is the plate area, V 

is the applied voltage, and d is the separation distance.  Continuing efforts have been 

made to develop the applicability and efficiency of this technology, such as either 

reducing the applied voltage, [53] or increasing the frequency.[54]  

 

1.3.3 Magnetic: A current carrying element placed in a magnetic field experiences a 

Lorentz force in a direction perpendicular to both the current and magnetic fields.  This 

mechanism is the basis for magnetic force microscopy and scanning hall probe 

microscopy. [55] Also, a magnetic micro-actuator has been developed that utilizes an 

electroplated permalloy that possesses a high magnetic permeability. [56] However, the 

limited number of magnetic materials compatible with existing micro-manufacturing 

processes, and only planar coils, make it difficult to generate magnetic fields on a chip; 

thus the applicability of the magnetic transduction to MEMS and NEMS has been 

somewhat limited.  

 

In addition to the above mentioned techniques, a cantilever may also be actuated through 

the radiation pressure from an optical source to induce resonance. [57] An electro-

thermal actuation[58] method was also developed that is based on the heat produced by 

electric current when it is passed through a cantilever, which in turn bends the cantilever, 

similar to a bimetallic effect, owing to the different expansion coefficients of two 

different materials.  
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1.4 Detection Mechanisms 

 

Detection involves converting either the static deflection or the dynamic response of the 

cantilever into a useful output signal, which usually is electrical in nature.  The dynamic 

response may include shifts in the natural resonance frequency, changes in vibrational 

amplitude (A) and phase (ϕ), or changes in Q-factor. 

 

1.4.1 Optical: A laser beam is employed to optically detect the motion of the cantilever 

surface. There are two common methods for such detection: 

a) Laser Beam Deflection: A laser spot is focused on the cantilever and the reflected 

beam is directed to a position on the photo-detector, which acts as a position sensitive 

device (PSD).  The beam spot is deflected while resonating and is detected by the PSD to 

calculate the frequency and other parameters. 

b) Interferometric Detection: This optical detection system utilizes the sensitivity of 

interferometry between the incident and reflected beams. An optical beam illuminates the 

reverse side of the cantilever. The reflected light and the incident light form an 

interference pattern which is focused on a PSD. When the cantilever actuates, the 

interference pattern shifts, which used to calculate the displacement, resonance 

frequency, and force. Various types of interferometer, such as homodyne,[59, 60]or 

heterodyne,[61, 62]  may be used. Though interferometry can measure a deflection in 1 

pm range, positioning the optical elements is difficult. 
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Figure 1.3: Laser Beam Deflection configuration to detect the motion of the micro 

cantilever: (a) A laser beam is focused on the cantilever surface with the reflected beam 

directed on a position sensitive photo detector.[63] (b) Interferometer used to detect the 

resonance of a cantilever.[64] 

 

1.4.2 Piezoelectric/piezoresistive: Piezoresistance is the change in resistivity of a 

material with applied stress. This variation of resistivity can be used to detect the 

deflection of micro-cantilevers. The intrinsic piezoresistivity of silicon can be enhanced 

by doping, making piezoresistive detection highly compatible with CMOS processes. 

Piezoresistive elements are typically placed at the base of the cantilever where the 

stresses from bending are greatest, and are usually arranged in a Wheatstone bridge 

configuration in order to negate such common mode effects as thermal variations.[30] 

 



 15 

1.4.3 Capacitive: This detection method is based on the principle of the change in 

capacitance between a resonating cantilever and a CE in proximity. As the cantilever 

deflects, the capacitance of the arrangement varies, causing charge to either move on or 

off the cantilever as a function of the oscillating displacement.[65]  If this charge or 

current can be measured, the mechanical vibration of the microcantilever can be inferred.  

The capacitive detection method avoids the need for an optical system and its associated 

alignment requirements.  Additionally, cantilevers suitable for capacitive detection do not 

require some of the elaborate fabrication steps generally pertaining to piezoresistive 

detection elements. These advantages make it a versatile technique. 

 

Though electrostatic actuation is easy to implement, conventional capacitive detection 

has proven difficult, mostly because of the parasitic signal that obscures the dynamic 

signal from the resonating cantilever.  This parasitic signal includes both the static 

capacitance of the microcantilever and CE and all the stray capacitance of nearby circuit 

elements.  Several methods have been proposed to enhance the dynamic capacitance or 

lower the parasitic capacitance of the system, such as the use of single electron 

transistors, [66] and controlling the direct wafer bond line width[67] and the use of comb 

drives. [68, 69]  Also, since the ratio of dynamic to parasitic signal depends on the ratio 

of cantilever deflection to total gap distance, attempts have been made to minimize the 

parasitic effects by positioning cantilevers extremely close to the CEs. In addition to the 

pull-in problems imposed by designs with a small gap distance, each of these solutions 

increases the complexity, cost of production, and potential for device malfunction or 
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failure. However, there are two methods that allow a sensitive electrical detection of 

resonance signal. The first method discussed in section 1.5 is the HDR method that is 

based on continuous driving of cantilever and performs the detection at a higher 

harmonic of the driving frequency. The second method discussed in section 1.6 is based 

on transient motion of a resonating cantilever and monitors the ring down of the 

cantilever once the driving force has been removed. The advantages and applications of 

both these methods are briefly discussed in the respective sections. 

 

1.5 Continuously Driven: HDR 

 

HDR is a capacitive detection method that was developed to avoid the parasitic 

capacitance without significantly increasing the complexity of the device.  The nonlinear 

electrostatic force on the cantilever from a nearby CE induces a rich harmonic structure 

in the resulting electrical signal from the cantilever.[70]  These higher harmonic signals, 

integral multiples of the driving frequency, do not suffer from significant parasitic 

effects.  Hence, by measuring the dynamic response of microcantilevers at these 

harmonic frequencies, it is possible to obtain significantly higher signal-to-background 

ratios (SBR) and Q-factors, resulting in a greatly improved sensitivity in HDR based 

sensing devices. In that HDR is a completely electrical actuation and detection scheme, it 

is directly scalable to micro- and nano-devices with a straightforward integration into 

standard micro-lithographic processes. This scalability allows for simple portable HDR 

based sensing devices that require no complicated components, such as lasers, magnets or 
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piezoelectric elements. Consequently, it reduces the cost and makes the device highly 

reliable. HDR does require circuitry to detect the higher harmonics, but this should be 

possible to realize on a single chip. In addition, the possible gap distances over which 

HDR is applicable are relatively high, allowing for precise alignment, higher stability and 

voltage control. The HDR scheme meets these requirements and provides several unique 

advantages not present in other detection techniques.  

 

1.5.1 Experimental Set up 

 

A typical HDR assembly consists of a pre-amplifier, a signal generator, a dc power 

supply, and a lock-in amplifier (details later in the section), Fig. (1.4). Here, a cantilever 

(micro or nano) was manipulated over an optical dark-field microscope to position it near 

the CE (an electrochemically etched tungsten tip; W-tip) obviating the need for time 

consuming lithographic processes.  

 

Depending on its dimensions, the cantilever is placed parallel to and within 1–10 μm 

from the CE. An electrostatic force is generated by applying an ac peak voltage, Vac (to 

induce periodic motion), with a dc offset, Vdc (to overcome work potentials).  To avoid a 

zero crossing in the net excitation voltage (Vnet = Vac+Vdc), Vdc is maintained at values 

higher than Vac. The experiments can be performed under ambient conditions, 

demonstrating that HDR does not require any elaborate apparatus to control temperature 

or pressure. 
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Figure 1.4: A schematic of the HDR experiment. The driving signal consists of a tunable 

frequency ac signal (Vac) with a dc (Vdc) offset. The tungsten tip (W-tip) counter electrode 

(CE) actuates the micro/nanocantilevers to resonance. The signal from the resonating 

cantilever is amplified using a pre-amplifier. This amplified signal reaches the lock-in 

amplifier which detects it at higher harmonics. HDR allows the detection without using 

any optical elements.[71] 

 

In order to minimize the crosstalk between the metal contacts holding the cantilever and 

counter electrode, a Faraday cage is used, which surrounds the metal contact for the CE 

and extends around the probe tip leaving about 2 mm of the tip exposed. This helps 

increase the SBR, a noise reduction consideration that is crucial when working at the 

nanoscale.  The lock-in amplifier detects the output of the pre-amplifier, which is 

proportional to the current, at a harmonic (integer multiple) of the oscillator driving 

frequency, Ω.     
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It is worthwhile to briefly describe the operation of lock-in amplifiers since they are such 

an integral component of the HDR detection system.  Lock-in amplifiers are electronic 

instruments capable of extracting extremely small signals of known frequency from 

otherwise noisy signals.  For this reason they are ideally suited for measuring the higher 

harmonic components which can be many orders of magnitude smaller than the first 

harmonic of the cantilever’s electrical response. In lock-in amplifiers the reference 

frequency signal, in this case the driving frequency Vref cos(Ωt), is mixed with (multiplied 

by) the output signal from the cantilever, Vin(t), (Equation 1.2) and averaged over many 

periods of the reference frequency.  If the signal from the cantilever has a Fourier 

component at the reference frequency, the result is proportional to the amplitude of that 

component. The input signal is also multiplied by Vref sin(Ωt) so that both the phase and 

amplitude of the input signal can be determined. If the reference frequency is set to a 

multiple of the driving frequency, the amplitude and phase or harmonic components may 

be determined. The result is a signal that is proportional to the amplitude of a Fourier 

component of the output signal from the cantilever at the reference frequency.  

 mix in ref 0 0

1
( ) ( ) cos( )cos( ) 1 cos(2 )

2
V V t V t V t t V t       

  (1.2) 

The outputs of typical lock-in amplifiers are the quadrature (90
o 

out of phase) 

components of the input signal at the reference frequency, from which the overall 

amplitude and phase of the output signal from the cantilever can be determined.  Early 

lock-in amplifiers multiplied the input signal by a square wave reference signal, which 
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includes many higher harmonics.  The availability of lock-in amplifiers, based on digital 

signal processing (e.g., the Stanford Research Systems Model SR830) which multiplies 

the input signal by a sinusoidal reference signal, avoids this problem. Consequently, only 

the  amplitude of a single Fourier component of input signal is given, thereby providing 

more accurate harmonic measurements.[72] 

 

1.5.2 Electrical Response Spectra and Skove plots of resonance 

 

A micro-cantilever exhibits a variety of resonance peaks, which are evident when the 

amplitudes of the electrical HDR signals are plotted over a wide range of frequencies. 

The nature of the resonance peaks are often more thoroughly elucidated with an 

examination of their polar representations, called Skove plots, in which A is plotted 

versus ϕ with the driving frequency as the parameter.  A single-degree-of-freedom 

oscillator shows a counterclockwise circle. In the HDR polar plots, overlapping curves 

occur for each resonance peak (primary and super-harmonic) existing in the harmonic 

spectrum.  One such plot for a microcantilever for one of its resonance peaks is shown in 

Fig 1.6. The resonance frequency may be determined from the polar graph by noting 

where the phase changes most rapidly. In some cases the polar representation shows that 

the resonance is no longer circular, but rather is closely approximated by a class of curves 

known as limaçons.[73] Limaçons result from highly nonlinear systems where two 

separate terms contribute to the electrical signal, neither of which can be neglected. 
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Figure 1.5: A typical amplitude and phase response measured by the HDR system in the 

second harmonic of the signal near resonance frequency, ω0, for a silicon microcantilever 

300 μm long, 35 μm wide, and 2 μm thick.   
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Figure 1.6: Skove (polar) plot of a silicon micro-cantilever corresponding to the signal in 

Fig. 1.5. The frequency is a parameter, with the beginning and ending frequencies 

indicated. The plot illustrates the circle that a resonance displays on a Skove plot. 

  

Though the cantilever is a continuous system in which masses and forces are distributed 

along its length, it can be modeled more simply as a discrete multiple-degree-of-freedom 

system using classical Euler-Bernoulli beam theory (EB theory) and a classical method 

known as the Assumed Modes Method[74] for the calculation of the natural vibration 

frequency of a structure.  In this model each mode of vibration is governed by the typical 
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second order linear differential equation of motion (EOM) of a driven damped harmonic 

oscillator (Equation 1.3).  This model, which applies equally for micro and 

nanocantilevers assuming they are slender, homogeneous, and isotropic, is expressed as: 

 

 ( ) ( ) ( ) ( )
m

mz t bz t kz t F t  
         (1.3) 

where zm(t) is the tip deflection of the m
th

 mode.  The effective modal parameters: mass, 

mm, damping assumed to be linearly dependent on the velocity, bm, stiffness, km, and 

force, Fm(t).[75]  

 

1.5.3  Modes of Vibration 

 

The mode shapes are the fundamental shapes that a vibrating structure can assume, or 

equivalently the Eigen functions of its governing equation.  All possible motions of a 

vibrating structure can be decomposed into a sum of these independent mode shapes.  

Scanning Electron Microscope (SEM) images indicating the first two modes of vibration 

of a microcantilever beam are shown in Fig. 1.7. 
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Figure 1.7: SEM images of the same cantilever vibrating at (a) the fundamental mode 

and (b) the second mode. The dimensions of this cantilever are w = 2 μm, h = 800 nm and 

l = 40 μm.[76] 

 

Note the distinction between modes and harmonics. Often the term “harmonic”, which is 

defined as being an integer multiple of some fundamental frequency, is confused with the 

modes of vibration.  The confusion arises because for doubly clamped structures, e.g., 

violin strings, where the frequencies of higher modes of vibration are all integer multiples 

of the first mode frequency.  Thus for doubly clamped systems, harmonic and modal 
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frequencies are essentially interchangeable.  For singly clamped cantilevers, however, the 

frequencies of the higher modes are not integer multiples of the first, and thus the 

harmonic and modal frequencies are not equivalent. 

 

The natural frequency (ωm) of the m
th

 mode for a general cantilever of length L is given 

by Equation 1.4 where E is Young’s modulus of the material and  is density. For the 

rectangular cross-sections, e.g., the silicon micro-cantilevers examined in this work, the 

area moment of inertia (I) is I = wh
3
/12, and the cross-sectional area is A= wh, where w 

and h are the width and thickness of the cantilever respectively.   

  

2

4
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       (1.4). 

 

Equation 1.4 gives the frequency of the first mode of a singly clamped (cantilever) beam 

where βmL=1.875 for m = 1. As discussed previously, the higher mode frequencies are 

not integer multiples of the first (fundamental) mode and so should not be called 

harmonics. 

 

This thesis is generally concerned with only the first mode of vibration for several 

reasons.  The first mode has the greatest tip deflection and bends everywhere toward or 

away from the counter electrode, which facilitates both actuation and detection. In 

general, the amplitudes of the higher modes are negligible, hence detecting them is 
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challenging.  Finally, the lock-in amplifier used has a limited frequency range; therefore, 

harmonics of most of the higher modes could not be measured.   

 

1.5.4  LDMs : Ultrasensitive Resonators 

 

Qualitatively, Q-factor is a measure of the efficiency of an oscillator and is related to the 

sharpness of the resonance peak.  It is defined, in general, as the ratio of the natural 

frequency, ω, and bandwidth, ∆ωFWHM, of the power spectrum (A
2
 squared Vs Ω) 

resonator.  For a simple harmonic oscillator, the Q-factor is also related to the 

dimensionless damping ratio, γ0, as shown in (Equation 1.5) where ∆ωFWHM is the 

bandwidth of the resonance peak.  
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0
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2FWHM

Q factor


 
  


 (1.5) 

 

In cantilever sensing applications a high Q-factor is desirable. Differentiating the 

fundamental resonant frequency ω0 = (k/m)
1/2

 , combining with (Equation 1.5), and 

assuming that the minimum detectable frequency shift is proportional to ∆ωFWHM, results 

in (Equation 1.6), in which it is evident that the minimum measurable mass change, 

∆mmin, of a cantilever sensor requires both a high  Q-factor and resonant frequency.   
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Clearly, for increasing the sensitivity of the resonator, a high resonance frequency is 

desired. Due to their extremely low mass, LDMs can operate at a much higher 

fundamental frequency and so are highly suitable for ultrasensitive detection.                                       

  

1.5.5 Nonlinearity and Duffing-like Effects 

 

A characteristic feature of many MEMS devices of recent research interest is the 

nonlinear response to ac driving signals.[77] It has been postulated that nonlinear spectral 

features may allow for a greater dynamic range and enhance the sensitivity.[78] While 

studying the behavior of electrostatically driven and measured cantilevers, it was noticed 

that it is possible to drive them hard enough to observe Duffing-like jumps in their 

amplitude-frequency behavior.[79]  Duffing-like behavior provides the ability to engineer 

the ultra-high-sensitivity of this bi-stability.[80, 81] Typically in a Duffing resonator, 

above some critical driving amplitude, the response becomes a multi-valued function of 

frequency in some finite frequency range. The presence of a bi-stable region results in a 

dramatic jump transition from a near-zero solution to that of high amplitude, perhaps 

useful in sensing technologies.[82] Nonlinearity effects on resonance are often described 

using the classical Duffing equation [83], given by  
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2 3

0 0 E2 ( )oz z z z F t        (1.7), 

    

where ε is a small parameter, FE is an externally applied force, γ0 is the positive viscous 

damping, ωo is the resonant frequency, and α0 can be either a positive (spring hardening) 

or a negative (spring softening) constant. The externally applied force is typically 

sinusoidal, (Equation 1.8), 

E ( ) cosF t K t 
 (1.8), 

where K is a constant.   

 

The response curves for the cantilevers have two stable states in some frequency range 

caused by nonlinearities which lead to the so-called “jump” phenomena. When the 

driving frequency is slowly increased at constant amplitude, the response amplitude will 

jump up at a frequency less than the ω0 that is measured at low amplitude.  The response 

amplitude will also jump to a frequency lower than ω0 when the frequency is decreased 

from well above ω0. The “hardening” and “softening” of springs occurs in which the 

dynamic spring constant kd = dFE/dz either increases or decreases as z increases. For 

spring hardening, the resonance curve bends toward the higher frequency. For spring 

softening, such as in the experiments described here, the resonance peak bends toward 

lower frequencies. For a given frequency, at which two stable steady-state solutions exist, 

the initial conditions determine which of these represents the actual response of the 
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system. Thus, in contrast with linear systems, the steady-state solution of a nonlinear 

system depends upon the initial conditions. [84] 

 

Figure 1.8: Steady state solutions under different excitation amplitudes A showing three 

stages of Duffing behavior. The natural resonance frequency, ω0, is shown by the central 

line which differs from the driving frequency.  In region (III) the system has only one 

stable solution which with decreasing frequency bifurcates into a stable solution and an 

unstable (dashed curve) solution. This stable solution grows in amplitude higher than the 

stable solution accessible with increasing frequency as Ω continues to decrease (region 

II). When the slope becomes infinite, this stable solution drastically collapses to the low 
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amplitude solution which is stable again (shown by dashed arrows in region I). (c) shows 

what one would expect in the first harmonic for a large third order non-linearity.[85]  

 

A schematic of the stable steady state solutions under different excitation amplitudes is 

provided in Fig. 1.8. Here, some terminologies are defined in the A vs. Ω curves which 

are used in the experimental data analysis.  If the excitation amplitude A (in our case, a 

function of Vac) is less than the critical amplitude, only one solution exists, and no bi-

stability is possible, Fig. (1.8a). If the excitation amplitude equals the critical amplitude, 

the system is on the edge of the bi-stability, in which a single point exists where A vs. Ω 

has an infinite slope showing incipient Duffing, Fig. (1.8b). If the excitation is greater 

than the critical value, the system is in the bi-stable regime with three possible solutions 

over a range of frequencies, Fig. (1.8c). Two of these solutions are stable. With 

increasing frequency the solution jumps from the low amplitude stable solution (region I) 

to another high amplitude stable solution (as shown by solid arrows) bypassing the 

unstable (experimentally unobservable) solution (shown dashed in region II). The large 

amplitude solution is stable and decreases with increasing Ω and finally enters into region 

III.  

 

1.6  Pulsed Ring-Down Method 

 

Similar to the capacitive HDR method, which is a continuous excitation technique, an 

alternative method incorporating intermittent actuation has been developed to overcome 
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the problem of parasitic capacitance. The pulsed ring-down method [86, 87] exploits the 

capacitive ring-down of a resonating cantilever upon a pulsed electrical excitation. A 

lock-in amplifier is unnecessary for signal detection, and a feedback loop is not needed to 

adjust the driving signal to the cantilever resonance. The experimental configuration in 

Fig. 1.9 is similar to that used for HDR, except the lock-in amplifier has been replaced by 

a digital storage oscilloscope. 

 

Figure 1.9: Experimental setup. (a) dc voltage source, microcantilever/counter-electrode 

(MCCE) system, and digital storage oscilloscope. (b) Equivalent circuit of MCCE system 

and amplifier. The inner shaded area denotes region of isolated electric charge, q. CM is 
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the capacitance of the MCCE system, about 0.087 pF; CE is the external capacitance, 

about 38 pF; R is the drain resistor, about 100 MΩ; and Vdc is the applied constant 

potential, about 9.24 V. Typical amplitude and ring-down time was 37 mVpp and 3.7 ms. 

(c) Edge view SEM image of MCCE geometry in the overlap region.[86]  

 

The detection method is based on the principle of mechanical ring-down resulting in 

decaying oscillations in the capacitance when the excitation signal is withdrawn (Fig.1.9). 

This technique has important applications for concurrently measuring the density and 

viscosity of a either surrounding gas or gas mixture. Though this concept was previously 

proposed, only recently has a simple, robust, and accurate method of creating, measuring, 

and analyzing the ring-down signal been developed. Here, in a microcantilever resonating 

as a damped oscillator in a fluid environment, the free ring-down waveform contains 

information about the gas density and viscosity, which are often called the imaginary and 

real parts of the complex drag force. There is also an electrostatic force that acts on the 

system, resulting from the capacitance and voltage between the microcantilever and CE.  

Calculating this force requires modeling the MCCE geometry, which may be 

approximated by a series of wire segment/truncated-plane capacitive elements, where the 

wire segment represents the CE and the plane represents the cantilever. From the sum of 

the forces acting on the cantilever, its motion may be calculated. Finally, from the 

equivalent circuit of the MCCE (Fig.1.9b) the output voltage may be expressed as a 

function of displacement. 
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A microcantilever is made to undergo ring-down in the presence of various gases. Using 

the data collected, the voltage V(x) as a function of the displacement x was adequately 

modeled, and x was deduced from V, (Fig. 1.9). The function V(x) depends on the 

geometry of the capacitor model, and its accuracy is reflected in how well the calculated 

waveform matches the experimental data. The increase in frequency during the ring-

down (caused by a decrease in spring softening with a decrease in amplitude) is essential 

for determining the electrical parameters (capacitor geometry), because a ring-down 

signal that varies in both amplitude and frequency requires a very particular fit, thus 

enabling a better empirical determination of V(x). 

 

The ring down approach has been successfully employed to measure the density ρ and 

viscosity η mixtures of gases. Fig. 1.10 depicts the experimental comparison of results to 

NIST reference values for various gases at ambient temperature and pressure. The 

method provides the high degree of accuracy for determining the composition of three-

component mixtures of known gases. The high sensitivity of this technique enables 

distinction between mixtures of H2 and D2 to ±1% D2. Though the densities of H2 and D2 

are almost identical, the composition of their mixture can be determined accurately due to 

a significant difference in their viscosities. If the system is calibrated with the specific 

components, an even more precise quantification of gas mixture composition is possible. 
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Figure 1.10: Plot of simultaneous measurement of viscosity and density. Error bars show 

the associated uncertainties resulting from the damping force correction functions applied 

to compensate for limitations, in the oscillating sphere model, for fluid damping.[86] 

 

The use of a pulsed ring-down in a capacitive system is advantageous in that it eliminates 

the need for a lock-in amplifier for either detection or a feedback loop to adjust the 

driving signal to the cantilever resonance. Also the data collection is quick (~100 ring-

downs/s), can be averaged, and does not involve scanning a frequency range to obtain 

entire resonance peak shapes. Not only does the nonlinear capacitance give greater 

sensitivity in the electrical signal, but it also perturbs the motion of the cantilever, 
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introducing some harmonic content, and causing the frequency to increase as the 

amplitude decreases.  These characteristics aid in the determination of an accurate 

capacitance model, as well as in analysis of the ring-down waveform, important aspects 

of the pulsed ring-down method. 

 

1.7 Conclusion 

 

The HDR method is one of the few detection methods applicable to the nanoscale, and it 

is certainly a simple to implement.  The vast potential of nanotechnology is only 

beginning to be realized, and it is anticipated that capacitive detection will be 

increasingly utilized in even smaller cantilevers.  Though the HDR method, as reviewed 

in this work, was only implemented for singly-clamped cantilevers, extending this 

technique to a doubly-clamped (fixed–fixed) geometry can lead to greater range of 

applications.  Due to their versatility and simplicity, micro and nanocantilevers will 

almost certainly be an integral component of many future MEMS and NEMS devices.  

As such, there will always be a need for a simple and effective sensing and actuation 

method, and for this there is perhaps no better choice than HDR. 
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CHAPTER 2 
MECHANICAL PROPERTIES OF SOLIDS 
 

The reduced size of LDMs offers new scientific possibilities and technical advantages. 

The size effects of LDMs are intriguing but are yet to be completely understood. Some of 

their material properties are steered by quantum mechanics and thus differ from the usual 

classical behavior.[16, 88] The ability to predict the mechanical response is a prerequisite 

to engineer materials with tailored properties. The desire to have a complete control of 

the ensuing behavior of a material has motivated researchers worldwide to design 

innovative methods to determine its mechanical nature. This collaborative effort has led 

to LDMs becoming integral components in next generation computer chips[89], ballistic 

impact protection[90], high frequency electronics[91, 92] and longer lasting 

satellites.[93] 

  

The next section briefly introduces the mechanical parameters usually studied in elastic 

solids.  

 

2.1 Mechanical Properties of Structural Solids 

 

Material properties of solids pertain to their crystal structure and bond strengths. Under a 

stress (σ), a solid body changes shape resulting in a strain (ε). When this stress is small, 

the strain is linear with the stress. Provided this stress is below the elastic limit of the 
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material, its removal results in the body recovering to its undeformed state. This elasticity 

correlates to the nature of forces acting between the atoms or ions and the interatomic 

potentials in the lattice. Like many other physical properties of crystalline material, 

elasticity may be highly anisotropic.  

 

The response of structural materials under a deformation has been studied experimentally 

and theoretically for decades. The established well known relation is Hooke’s Law of 

elasticity, named after Dr. Robert Hooke who discovered it in 1660. In Cartesian co-

ordinates, Hooke’s law can be written in a generalized form as: 

ij ijkl klC 
  (i, j = 1,2,3)            ( 2.1), 

where σij is defined as the ith component of force acting on the jth component of unit area 

normal resulting in a strain εkl  (Fig 2.1). Cijkl is the stiffness constant and is a 4
th

 rank 

tensor[94]. The stress and strain relations can also be expressed in an alternate, and 

sometimes more convenient form: 

ij ijkl klS 
 (i, j = 1,2,3)        (2.2). 

where Sijkl  refers to an inverse stiffness tensor (or compliance tensor).   

Figure 2.1: Direction of stress and strain components on a cube of material. 
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The stress and strain are rank 2 symmetric tensors i.e. ij ji 
 and ij ji 

, with 6 

independent elements each. The compliance constant on the other hand is an 81 element 

tensor. However, it has been shown that  

ijkl jikl ijlk klijs s s s  
. 

The symmetry of the Sijkl and Cijkl allows an introduction of a simple and concise matrix 

notation that facilitates reduction in number of suffices while dealing with higher order 

rank tensors. This is done by following transformation rule: 

Tensor notation 11 22 33 13, 31 23, 32 12, 21 

Matrix notation 1 2 3 4 5 6 

 

Simultaneously, the 2 and 4 factors are introduced such that  

Sijkl = Smn : when m and n are 1,2 or 3, 

         2 Sijkl =Smn: when m or n are 4,5 or 6, 

         4 Sijkl l = Smn: when m and n are 4,5 or 6. 

 

Using these transformations, Smn (or just S) can be written as a 6x6 square matrix with 36 

elements. The symmetry of the compliance (stiffness) tensor permits reducing it to a 

simpler form with “only” 21 independent elements that may be measured to completely 

describe the elastic properties of the material. The crystal symmetry can further reduce 

the number of independent elements to as few as 3 isotropic materials. Qualitatively, the 

diagonal elements of S correspond to the elasticity when the measured strain components 
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are in the same direction as the applied stress components. On the other hand, the off-

diagonal elements describe the coupling between the applied stress and the deformations 

in the directions perpendicular to the applied stress components. 

 

Different testing techniques probe different regions of this compliance matrix based on 

whether the material is subjected to bending, pulling or twisting. In the simplest case of a 

homogenous isotropic material, two independent stiffness constants E (Smm; m=1,2,3), G 

(Smm; m = 4,5,6) and their combinations, are enough to completely characterize its 

response under stress. The stiffness constants are then rendered independent of the 

direction and thus are equal in all directions. The elastic parameters E and G in isotropic 

materials are related through the Poisson ratio () which is the negative ratio of the 

transverse to axial strain. The slope of the stress vs strain curve (Fig 2.2) can be used to 

measure the corresponding elastic constant. The shape of the curve also gives insights 

into the yield strength, its brittle or ductile nature and its ultimate strength.  
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Figure 2.2: A typical stress vs strain curve. The initial linear regime is the elastic region 

following the Hooke’s Law. Beyond the yield point, the materials begin to exhibit 

plasticity before it finally fails when the strain has reached its ultimate limit.  

 

Changes in the crystal structure or defects in the solid modify its material parameters. 

The presence of grain boundaries as in a polycrystalline material or dislocations in a 

crystalline material allows slippage under stress and thus modulates the yield strength. It 

is worth noting that elastic modulus of the material indicates its stiffness to the applied 

stress which is many times mistaken for its strength. The strength of the material is 

judged by its resilience before fracture or specific deformations. Furthermore, strain in 

the material often results in dislocations which have the ability to move, allowing the 
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sample to extend plastically in the direction of the strain, also known as creep. By 

controlling the rate of stress (or strain) the creep mechanism can be probed. With a slow 

quasi-static increase in stress, the dislocations have enough time to move into an 

equilibrium position. However, when the stress is rapidly increased, the material doesn’t 

have enough time to equilibrate or deform, as generally the case during sudden impacts 

resulting in a different stress vs strain curve. The sample can also be subjected to cyclic 

loading and unloading to study the effects of fatigue. Fatigue analysis is a critical study 

especially for device application as it probes the life of the device before the properties of 

the materials begin to degrade. To sum up, well characterized properties are imperative 

for accurate theoretical modeling that would result in rational designs and ensure the 

reliability of the device.  

 

There exists a plethora of testing instruments that can perform measurements and 

characterize the mechanical nature of solid material. Instruments such as the INSTRON 

are standard techniques employed widely in research and industry. However, reduced 

physical dimensions of the materials acutely constraints the application of these well-

established measurement methods. Hence, mechanical characterization of small scale 

materials such as fibers is often performed on bundles or yarns and statistically estimated 

for each strand. For example, IM7 carbon microfibers are usually delivered in a tow of 

12000 fibers (Fig 2.3).  An analysis of the tow, while necessary to characterize its 

properties, neglects the misaligned orientation and slipping of the fibers resulting in a 
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skewed measurement when extrapolated to represent an individual fiber, thus limiting the 

microscopic understanding of its material properties. 

 

Figure 2.3: A tow of IM7 (top) consists of 12000 strands (bottom left) of carbon fiber. 

Each of these fibers (bottom right) is about 5 μm in diameter. Mechanical testing 

techniques should be designed to perform tests directly on the microfiber. 

 

For an accurate analysis, the mechanical tests must be conducted on isolated materials. 

Some of the techniques that allow assessment on individual LDMs are discussed in the 

next section. 
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2.2 Current Testing Methodologies for Isolated LDMs  

 

The past decade has witnessed major advancements in the development of newer, direct 

and indirect methods that probe the mechanical properties of small scale materials. Of all 

the possible methods, scaled-down INSTRON like techniques are by far the most utilized 

approaches to monitor the tensile/shear behavior of a yarn or fiber under a load. Typically 

a sample is mounted between two clamping ends, one of which is fixed. Preset strains are 

then applied to the sample and the corresponding stresses are measured. However, as the 

fiber dimension decreases and mounting becomes difficult, the utility of the instrument 

becomes limited. Alternate methods such as the fiber puller have proved to exhibit higher 

sensitivity[95]. The puller works using a capacitive detection scheme and is highly 

sensitive to small displacements. It also allows a study of higher order elastic constants, 

hysteresis and creep in the fiber. Recently, newer techniques have been used some of 

which are discussed below. 

 

Nanoindentation:  Scanning probe microscopy has proven to be a powerful tool to 

examine the surface topography and material hardness.[96] A high stiffness constant and 

sharp AFM tip is used to raster over the sample and provide a lateral load.[97] The 

ensuing deflection in the tip is optically detected using a reflected laser beam (Fig 2.4). 

The sharp cantilever tip (tip radius ~ 10 nm) allows local probing and displays unique 

accessibility. It may be used in either the static or dynamic mode. However, the static 
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mode is prone to errors due to slipping or shearing of the tip. In addition, it provides only 

a comparative idea of material hardness.  

 

Figure 2.4: A schematic showing the use of a stiff AFM cantilever tip to provide stress 

(or strain) to an individual nanowire. The resulting displacement in the cantilever is 

detected optically. The ensuing force vs displacement curve is shown in the graph on the 

right. [98] 

 

Three point bending test under electron microscope: A three point test is a standard 

testing scheme used in macro wires and beams. In the micro/nanoscale, the sample is 

usually laid over a trench which is usually micro-fabricated using lithographic techniques 

(Fig. 2.5).[99] The sample can be prepared for the test through drop casting or di-

electrophoresis techniques. The ends are then secured using deposition methods such as 

the Focused Ion Beam (FIB) or electron beam deposition. A piezoelectrically controlled 

AFM cantilever is used to apply a pre-determined load on several points along the length 
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of the sample. The resulting strain is either visually measured under a transmission or 

scanning electron microscope or high speed camera. If the two ends are physically 

separate, then the same doubly clamped geometry can be used for examining the bending 

stiffness. This can be done by closing in the two ends of the substrate, forcing the LDM 

sample to bend or even buckle. However, this technique is limited to fairly conductive 

samples as the electron beam can induce defects on the samples. The electron beam can 

also potentially charge the sample making imaging increasingly difficult. 

 

Figure 2.5: AFM probe used for applying a controlled stress on a doubly clamped LDM 

over a trench.[100] 

 

Spectroscopy: Spectroscopy is a high resolution, non-destructive technique, used as an 

effective characterization tools for probing the surface atoms. Micro Raman spectroscopy 

was primarily a scientific research tool but instrumental advancement has now made it a 

commonly employed industrial method. The Raman spectrum is a signature of the 

vibrational response of atoms to the illuminated light and has been shown to be extremely 

sensitive to mechanical stress or structural changes.[101] Subtle alteration in the spectral 
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peaks can be used to monitor the material response. This high sensitivity has been 

recently used extensively to probe the mechanical structures of 2D layered 

materials.[102] Due to their high Raman cross section, carbon materials have been the 

most popular candidates studied through the Raman analysis. Under a stress, the material 

bond stiffening leads to a shift in characteristic Raman peaks such as the G band. This 

shift can be used to calculate an elastic modulus of the material. This technique however, 

can only be effectively employed if the sample is Raman active. Resonant Acoustic 

spectroscopy is another effective tool where the propagation of long wavelength acoustic 

waves through the solid can be studied.[103] Measuring parameters such as the 

frequency, velocity and attenuation allows the investigation of a variety of physical 

properties of the material. Propagation of elastic surface acoustic waves along the sample 

surface can be monitored and offers an easy probing technique especially when only one 

side of the sample is accessible. 

 

Electromechanical resonators: One of the most prevalent methods of examining Young’s 

modulus (1/S11) is to measure the resonant electrostatic deflection in singly or doubly 

clamped cantilever geometry.[44] A cantilever consisting of the material to be tested is 

subjected to an alternating electrical signal by applying an ac voltage to a closely placed 

counter electrode, inducing time dependent charge induction. The induced charge deflects 

the cantilever at a frequency which can be tuned by the driving signal. When the driving 

frequency matches the resonance frequency of the cantilever, the vibrational amplitude 

reaches its maxima. This resonance frequency of a cantilever is a function of the 
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cantilever geometry and its material properties and hence its precise detection can be 

used for accurately probing the Young’s modulus.[104] This sort of bending analysis also 

allows a study of the nonlinear behavior of free standing resonators such as the 

mechanical Duffing response, wave like buckling and rippling distortion. Due to its 

various advantages, electromechanical resonance tool was a natural choice for probing 

the mechanics of the cantilevered LDMs of interest to this dissertation. 

 

2.3 Difficulties Accompanying Current Techniques 

 

Diverse techniques, as discussed above, have been designed to analyze specific aspects of 

the material’s structure. Though techniques with very high sensitivities have been 

reported, the small scale of LDMs still poses several challenges in efficiently employing 

these techniques in a scalable fashion. Some of the major difficulties are: 

(a) Isolating individual fiber/nanomaterials: Synthesized nanomaterials such as the 

nanotubes/nanowires are grown as aligned or randomly oriented forests. Separating 

individual tubes/wires requires sophisticated imaging and manipulation tools and can 

be time consuming even when possible. 

(b) Micromanipulation requires specialized devices e.g. piezocontrollers or nano-

tweezers, capable of holding and moving the sample in steps comparable to its own 

size. 

(c) Mounting and securing: Due to their small dimensions, the sample can get 

damaged while mounting if it is not properly handled. Once mounted, appropriate 
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clamping methods must be selected. Epoxy polymers suitable for macro wires may 

fail when used to secure the micro/nanomaterials. 

(d) Finding suitable actuation and detection techniques: Imaging at small dimensions 

requires modern tools such as state of the art electron microscopes. These instruments 

are bulky and extremely expensive. 

 

Electrostatic actuation has been acknowledged as a highly versatile technique that has 

been successfully applied to micro and nanoscale materials. Detection techniques 

however have posed a bigger challenge. Some of the detection mechanisms are known to 

affect the material properties and thus lead to incorrect measurements. The capacitive 

detection scheme suffers greatly due to presence of high parasitic capacitance that 

overwhelms the very small electric current (usually in nA) from the resonating 

micro/nano cantilevers. As recognized in chapter 1, the HDR technique provides an easy 

route to electrically detect resonance signals at the higher harmonics of the driving 

frequency, circumventing the parasitic signal. Since the actuation geometry can be used 

for detection as well, additional apparatus or bulky imaging instruments are unnecessary.  

 

HDR is sensitive to the varying gap distance between cantilever and CE.  Hence, it is 

primarily based on the bending (or tensile) characteristics of the cantilever and is not 

suitable for directly probing the shear properties of materials. In fact, shear 

characterization is an often neglected front of mechanical characteristics. The research 

conducted during this dissertation is focused on designing new techniques for measuring 
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shear and tensile properties of isolated LDMs. The dissertation is hierarchically 

structured into following three divisions: 

 

1. Developing a technique to enable direct measurement of the shear modulus of single 

microfibers: A twister apparatus was designed, built and tested.[105]  (Chapter 3) 

 

2. Elucidating the effects of detection techniques in measurement of the mechanical 

properties of low dimensional nanomaterials: We examined low frequency oscillations 

and transverse mechanical resonance of pristine and gold coated (Au-ZnO) ZnO 

nanowhiskers (NW) under an optical microscope and scanning electron microscope. By 

simultaneous HDR detection we decoupled the contribution of the electron beam on the 

measured resonance parameters.[106] (Chapter 4) 

 

3. Probing mechanical behavior of a geometrically nonlinear cantilever via a helically 

coiled nanowire (HCNW): Transverse resonance of a helically coiled geometry was used 

as an alternate method of measuring the shear modulus of the comprising material. Using 

experimental and computational results we developed an empirical formula that can 

calculate the resonance frequencies of first two transverse modes. We also study the 

interesting planar and non-planar mechanical resonance modes resulting from exotic 

morphology of the coiled cantilever.[107] (Chapter 5) 
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The following sections briefly introduce the statement of the research work, the details of 

which can be found in the subsequent chapters. 

 

2.4 Direct Measurement of the Shear Modulus of Individual Microfibers 

 

High-performance fibers with multifunctional capabilities are now manufactured 

routinely for industrial, scientific and commercial applications and devices. Knowledge 

of their mechanical properties is invaluable as an engineering aid and in our 

understanding of the molecular structure and internal bonding. In contrast to tensile 

studies, the measurement of shear behavior has received comparatively little attention, 

even though shear characteristics are important in the design of high strength materials.  

 

Two well-known methods for determining the shear properties of individual fibers are the 

torsion pendulum[108, 109] and the Kawabata torsion tester[110] (Fig 2.6). The torsion 

pendulum measures the natural frequency of rotational oscillation of a mass (whose 

moment of inertia is known) suspended by the fiber sample. Though simple in design, the 

dynamic nature of the torsion pendulum makes the study of creep or hysteresis very 

difficult. Gravitational force on the mass results in a pre-stress on the fiber which may be 

significant, particularly when the size of the fiber is less than a few microns. Moreover, 

the torsion pendulum does not lend itself to measuring shear yield, fracture, fatigue, or 

nonlinear behavior. The quasi-static system developed by Kawabata overcomes many of 

the limitations of the torsion pendulum and is used industrially, but is bulky and 
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expensive. Its torque detector, which uses a pair of linear differential transformers, would 

appear to have a significant moment of inertia (resulting in a longer response time), 

thereby limiting hysteresis measurements.  

 

 

Figure 2.6: (a) A set up of a torsional pendulum. A known mass is suspended by the 

fiber. Upon actuating, the natural frequency of rotational oscillations can be used for 

calculating the shear modulus of the fiber[111] (b) Kawabata torque tester twists the fiber 

with a pre- determined strain and the ensuing stress is measured using linear differential 

transformers.[110] 

 

 

The design and working principle of an inexpensive bench-top prototype, referred to as 

the “twister” is discussed in Chapter 3. The instrument uses a quasi-static method to 

measure the longitudinal shear properties of an individual microfiber. In the setup, a 

sample fiber is subjected to a specified twist angle, and the resulting torque is measured 

by a sensitive optical detection system. The applied twist can be precisely controlled, so 
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that not only the shear modulus, but the yield and ultimate strength may be determined. 

In addition, other shear characteristics may be studied, including creep, hysteresis and 

nonlinearity. The system is fully automated, making cyclic loading for fatigue 

measurements easy to perform. The results with various known fibers matched closely 

with the literature values, warranting its precision. In addition, measured shear moduli for 

technologically important microfibers including IM7 and Kevlar
®
 are reported. 

 

2.5 Fundamental Mechanism for Electrically Actuated Mechanical Resonances of 

Zinc Oxide Nanowhiskers  

 

Low dimensional inorganic materials have gained much deserved attention in the past 

decade. Owing to their semiconducting behavior and tunable band-gap, applications in 

flexible displays and photo-voltaics have been successfully developed. Of the large 

functional oxides family, ZnO is one of the most important II-VI semiconducting 

materials. It portends promising applications due to its wide and tunable direct band-gap 

(3.37 eV at 300 K) and high exciton binding energy (60 meV). Its interesting 

piezoelectric properties have led to the development of self-powered nano-generators,[24, 

112, 113] transistors,[114] sensors[23, 115] and actuators.[116] In addition, ZnO displays 

a rich diversity in physical structure and can be found as straight or helically coiled wires, 

four pronged tetrapods, comb-like and many more (See Fig 1.1). These unique structural 

and electrical properties have led to the exploration of ZnO nanostructures as key 

components for innovative MEMS and NEMS and AFM tips.  
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These recent advances motivated researchers to characterize the mechanical properties of 

ZnO nanostructures. Knowledge of the elastic modulus is essential in formulating 

accurate theoretical models required for predicting the reliability and robustness of the 

proposed devices. Some of the techniques introduced in section 2.3 have been employed 

to determine the Young’s modulus of ZnO nanowires.  For example, Huang et al.[117] 

measured the Young’s modulus of ZnO NWs (dia. 40-120 nm) to be 58 GPa (using 

mechanical resonance) while Ni et al.[118] found a value of 31 ±2 GPa (using a three-

point bending test with an AFM). One of the popular techniques to investigate the 

mechanical properties is to study the static or dynamic flexural transverse motion of the 

cantilever. The singly or doubly clamped cantilevered nanomaterial is actuated 

electrically using a counter electrode and the resulting mechanical resonance is observed 

visually under a SEM or TEM. In this regard, Hoffmann et al.[119] measured a Young’s 

modulus of ~ 100 GPa (bending under electron microscope) for a ZnO NW (dia.  60- 300 

nm) while Chen et al.[120] showed that the Young’s modulus is size dependent (~140 

GPa (550nm radius) to > 200 GPa (radius < 50nm)). An existing incoherence was 

observed in the measured Young’s modulus values, which seemed to be dependent on the 

measurement technique. It is worth noting that most of the techniques require an electron 

beam for imaging while the tests are conducted. Though SEM/TEM enables a high-

resolution imaging, it makes the electron beam an indispensable part of the experiment. 

Subsequent research[121, 122] has shown that an impinging electron beam (e-beam) on a 

semiconducting nanostructure (as in the case of examining mechanical resonance in a 

ZnO nanowhiskers, named due to their very high aspect ratio, under an electron 
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microscope) can significantly affect its electronic properties, and thereby alter its 

resonant behavior.  However, this e-beam effect has been largely neglected while 

measuring the resonance frequency of ZnO nanoresonators. Furthermore, visual detection 

techniques fail to provide complete quantitative information about the cantilever motion, 

including the phase of its oscillation and the nonlinear effects that lead to instabilities in 

its resonance behavior. In order to detect the ZnO resonance parameters without any 

external perturbation, we employed the HDR technique and studied the cantilever 

behavior under different regimes.  

 

 

 

Figure 2.7: Schematic of a HDR set up coupled with the SEM. The microscopes used in 

this study were optical (Dark field) and electron (SEM). The optical set up allows 

measurement in ambient pressure whereas the SEM chamber may be used for studying in 

a vacuum environment.[106] 
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The basic HDR scheme, explained in the previous chapters, was employed. A conducting 

CE (usually a chemically etched tungsten tip; W-tip) is placed in close proximity (~ 5-10 

μm) to the ZnO NW cantilever and Vac with a dc offset (Vdc) is applied across the counter 

electrode-cantilever (CCE) arrangement. The lock-in amplifier detects the output of the 

pre-amplifier, which is proportional to the current, at a harmonic (integer multiple) of Ω.   

 

In general, there are two possible mechanisms for the mechanical oscillations or actuation 

of the cantilevered NW. When a conducting cantilever is actuated electrically, on 

applying Vac (the absence of Vdc) due to the nature of charge induction, the cantilever 

must vibrate at twice the driving frequency. Observation of this expected behavior 

confirms that the cantilever is properly grounded. In the static charge mechanism, stray 

(extrinsic) static charge is physically or chemically bound to the cantilever, and the 

electrical force on the cantilevered NW will correspond to the Coulomb force 

experienced by this bound charge due to the oscillating charge on the CE that is produced 

by the signal generator operating at Ω. As a result, the cantilever oscillation frequency 

will be Ω. This low frequency test is crucial to ensure a proper grounding of the 

cantilever and establish the source of the charge responsible for the observed vibrations.  

 



 56 

 

Figure 2.8: Schematic of the cantilever’s amplitude dependence on the input signal. 

Under the influence of sinusoidal excitation, the oscillation frequency of the conducting 

cantilever is twice the driving frequency. In the presence of a static charge on a 

cantilever, the resulting oscillations will be at the driving frequency.[106] 
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As detailed in chapter 4, these low-frequency oscillations and the HDR resonance spectra 

of ZnO NW observed under an optical microscope are significantly different from results 

obtained under an electron microscope. This unusual behavior was further probed by 

varying the electron beam interaction with the sample and detecting its ensuing effects on 

the HDR signal. The designed experiments conducted were the following  

(a) Examining the low frequency oscillations and first transverse mechanical 

resonance of pristine and gold coated (Au-ZnO) ZnO NWs under an optical microscope. 

The HDR method was simultaneously employed to detect the electrical signal of their 

resonances.  

(b) Conducting similar resonance examination under an SEM. The e-beam was 

systematically varied by increasing the magnification of the instrument and noting the 

ensuing change.  

 

Spectroscopic investigation provided further information regarding the mechanism to 

which this electron beam dependent resonance was attributed. 

 

2.6 Probing Mechanical Resonance of a Helically Coiled Carbon Nanowire (HCNW) 

 

Nature has inspired scientists through its multitude of nonlinear complex structures that 

exhibit tailored properties and diverse functionalities on multiple length scales. For 

example, biomolecules including DNA, bacterial flagella and various proteins adapt 

nonlinear geometries, particularly spring-like or helically coiled morphologies, for e.g., 
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double-helix, α-coils or helices, which facilitate specific functionalities in living 

organisms. Indeed, this ubiquitous nanoscale helically coiled morphology has been 

proposed for enabling elastic memory devices,[123] flexible electronics,[124] impact 

protection,[90] nano-inductors, and efficient electromagnetic shielding.[125] Despite 

their enormous potential and their widespread applications, the mechanical behavior of 

helically coiled structures has evaded an accurate understanding at any length scale (nano 

to macro) mainly due to their geometrical complexity. Helically coiled topologies suffer 

from poor characterization, especially mechanical properties, and thus remain severely 

under-utilized in the realization of robust electronic, mechanical, and optical devices. 

While a few studies have focused on investigating the elastic properties using axial 

elongation[126]/compression[127] and atomic force microscopy (or force modulation 

microscopy)[128-130], an in-depth study of the dynamic mechanical response of 

helically coiled structures is incomplete due to the difficulties involved in exciting purely 

longitudinal/transverse resonances. This difficulty stems from the distinct helical 

geometry which exhibits convoluted shear and tensile motions when a singly-clamped 

coil is transversely driven. Theoretically, the resulting motion is described by a set of 

coupled 12
th

 order differential equations[131, 132] that are nearly impossible to 

analytically solve for the Eigen modes and their associated frequencies. In view of this 

mathematical complexity, helical coils are often treated as straight pillars[129, 133] 

without completely accounting for the shear/tensile component, thus  preventing the 

acquisition of accurate Eigen modes and frequencies.  
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In chapter 5, we developed a synergistic protocol which (i) integrated analytical, 

numerical (i.e., finite element using COMSOL 
®

) and experimental (HDR) methods, to 

obtain an empirically-validated closed-form expression for approximating the G and 

resonance frequency of a singly clamped HCNW, and (ii) circumvented the need for 

solving 12th order differential equations. From the experimental standpoint, a visual 

detection of resonances (using in situ SEM) combined with HDR revealed intriguing non-

planar resonance modes at much lower driving forces than those needed for linear carbon 

nanotube cantilevers. Interestingly, despite the presence of mechanical and geometrical 

nonlinearities in the HCNW resonance behavior the ratio of the first two transverse 

modes (f2/f1) was found to be similar to the ratio predicted by the EB theorem for linear 

cantilevers. We employed the HDR method[71, 134] to experimentally resonate isolated 

HCNWs and deduced their G by concurrently validating the experiments with analytical 

and numerical models.  

 

In particular, we developed an analytical model that elucidates the contribution of shear 

stress when a helical coil is subjected to a transverse moment.  By collating the individual 

components of shear and bending stresses, we derived a closed-form expression for the 

fundamental transverse resonance frequency of HCNWs as a function of both E and G. 

The values of G obtained in our analytical model provided only a coarse estimate due to 

several limitations imposed by our assumptions.  Accordingly, we employed the 

numerical finite element COMSOL 
®
 technique to estimate more accurate G values 

started from the coarse analytical estimates. Furthermore, we observed intriguing 
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resonance modes (e.g., a circularly polarized mode) in HCNWs with a characteristic 

signature in the HDR signal, thus facilitating the electrical detection of nonlinear 

resonance modes.  In general, we demonstrated that the HDR technique, in tandem with 

our analytical model and COMSOL
®
 simulations can serve as a standard protocol 

circumventing the need for solving 12
th

 order differential equations for  probing the shear 

properties of coiled geometries. 
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CHAPTER 3 

DIRECT MEASUREMENT OF THE SHEAR MODULUS 

OF MICROFIBERS 
 

3.1 Experimental Setup 

 

The twister,[105] shown schematically in Fig. 3.1, incrementally applies an angular 

displacement (θ) to one end of a fiber sample and measures the resulting torque using the 

torsional deflection (θref) of a reference tube coupled with an optical sensor. Note that the 

twist in the sample (θsample) =  θ - θref , however θref /θ < 10
-4

 so that θsample ≈ θ (within 

0.01%); therefore we will use θsample to refer to the twist provided by the stepper motor as 

well as to denote the sample twist.  

 

The setup consists essentially of two parts – the driving and the detecting units. Each unit 

incorporates a length of 304 stainless-steel hypodermic tubing viz. a short (~ 3 mm) 

driving tube (D-tube) and a long (~72 mm) thin (310 μm OD, 190 μm ID) reference tube 

(R-tube) as shown in Fig. 3.1a. The opposing ends of these coaxially configured tubes, 

separated by an adjustable distance, serve as the mounting points for the sample fiber. 
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Figure 3.1: (a) Schematic of the twister setup. (b) Diagram of a fiber to define sample 

parameters: length L, radius r, twist angle θ , and shear strain γ .  Note γ = rθsample /L. 

[105] 

 

The free end of the D-tube is coupled to a stepper motor, providing a high-resolution 

angular displacement (±1.57 mrad) in increments of 31.4 mrad to the sample. To 

accommodate a range of sample gauge lengths, the stepper motor is mounted on an X-

axis micrometer stage, allowing the stepper motor/D-tube assembly to be moved parallel 

to the sample axis, varying the distance between the two sample mounting ends. In 

addition, the stage provides a means to adjust the slack in the mounted fiber or to apply 

tension to the sample, if desired. In our setup, sample lengths up to 20 mm can be 
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accommodated; however, this may be increased with only slight modifications to the 

design. The R-tube, at its opposite end, is fixed to an immovable block. 

 

The optical detection system comprises a small mirror (aluminized glass microscope 

cover slip,    2 mm x    4 mm x    0.17 mm) attached to the R-tube close to its sample end, 

and oriented so that its plane is parallel to the axis of the tube. A low-power red laser 

(BEA Lasers, model #201-1-650) is reflected off the mirror and collected by a position 

sensitive detector (PSD) which uses a dual-element photodiode (Hamamatsu 3096-02) in 

an arrangement similar to that in an AFM. A simple op-amp circuit (Fig. 3.2) amplifies 

the signal to produce an output voltage that varies linearly with the position of the laser 

spot.  

 

Figure 3.2: Dual element PSD amplifier circuit. The output voltage (Vout) is linear with 

displacement of the laser spot on the detector.[105] 
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The laser can be adjusted to optimize the position of the spot on the mirror. The PSD is 

attached to a Z-axis micrometer stage, which is used to calibrate the detector and assure 

its linearity, as will be discussed later. The entire setup is mounted on a thick aluminum 

base that acts as an optical bench and helps reduce vibrational noise.  

 

LabVIEW
©

 assisted control and data acquisition allows a broad range of experimental 

parameters. For example, the stepper motor can be programmed to increment by a 

specified angle, dwell for a specified duration (to study the creep in the fiber, if desired) 

during which data acquisition from the PSD occurs, and then repeat the sequence for a 

specified number of increments or decrements. The output voltage from the PSD is 

interfaced using an analog-to-digital card. The minimum angular increment of the stepper 

motor is 0.0314 rad, but if necessary, a servomotor motor may be substituted to provide 

increased resolution or rotation rate. A sample is subjected to a maximum twist sufficient 

(typically between 3.14 and 62.8 rad depending on its torsional stiffness) to produce an 

optimal response in the PSD. The shear strain (γ) at the fiber surface (where it is the 

largest), is given by γ = rθsample /L , where r and L are the sample radius and length, 

respectively.  The shear strain was calculated for the maximum twist angle for each fiber 

(Table I).  The overlap of the twisting and untwisting data (see Fig. 3.6) indicates that no 

sample damage occurred due to shear strain. The detector (mirror and R-tube) has a low 

moment of inertia, permitting instant rotation and short dwell times, so that the system 

may be used to study hysteresis and fatigue strength, in addition to shear modulus, yield 

strength, ultimate shear strength, nonlinearity, and creep. 
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3.2 Calibration of the R-tube 

 

The thick aluminum base consists of two parallel aluminum plates hinged together at one 

end. The top plate can be rotated to an upright position, perpendicular to the horizontal 

bottom plate (Fig. 3.3). This allows the R-tube to hang vertically.  

 

 

Figure 3.3: Schematic of reference tube calibration. The upper plate is rotated vertical to 

convert the R-tube into a torsion pendulum. The torsion constant (κref) is calculated from 

the resonance frequency (f) and the moment of inertia (I) of a test mass. [105] 

 

A mass with an appropriate I about the rotation axis is then attached to form a torsion 

pendulum (I = 2.931x10
-5

 kg·m
2
 in our calibration). On providing and releasing a small 

initial torque, we actuate the free rotational oscillation of the system and measure its 

Fixed

R-tube 
(torsion  
constant κref )

Test mass
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of inertia I)
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I
f

ref
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resonance frequency (f), from which we calculate the torsion constant (κref) of the R-tube. 

Analogous to the spring constant in Hooke’s law, κ is defined by 

T      (3.1), 

where T is the torque and θ is the torsion angle. Assuming negligible damping, 

224 fIref  
       (3.2). 

On calibrating the reference tube, we obtained κref = 0.76 ± 0.01 nN·m/µrad.  

 

3.3 Calibration of the photo-detector 

 

The optical system that measures the torsion in the R-tube is calibrated by measuring the 

change in voltage resulting from a known displacement of the laser spot on the PSD. 

Rather than move the laser, we manually move the PSD a specified distance using the 

attached Z–axis micrometer. At its center position, with equal intensity on both 

photodiode elements, the PSD produces zero output voltage. As the laser spot is 

displaced, conductance is decreased in one photodiode and increased in the other, 

producing an output that is linear over a range of ±4 V (Fig. 3.4). This corresponds to a 

displacement of approximately ±40 μm, which is equivalent to an R-tube rotation of ±100 

µrad. The rotation of the R-tube as a function of the PSD displacement is found using 

elementary optical geometric principles as shown in Fig. 3.5. In our setup, the distance 

from the mirror to the PSD is 0.20 m, giving a proportionality constant of 2.5 µrad/μm. 
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Figure 3.4: Typical calibration curve for the photodetector is a plot of output voltage of 

the photo detector vs linear displacement of the laser (lower X-axis) and its 

corresponding angular displacement (upper X-axis). Experimental measurements fall 

within the linear range. Note that the torque T = θref κref = 24.33Vµrad · 0.76 nN·m/µrad = 

18.5V nN·m. [105] 

 

 

Accordingly, we apply this factor to the calibration curve to give θref directly from the 

detected output voltage, facilitating calculation of the torque as a function of output 
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voltage. To ensure reliable results, a calibration curve is obtained before and after data 

collection for each sample. The PSD response is ~103 mV/μm which is equivalent to 

41.2 mV/μrad in terms of θref . With our κref, the linear range of ±4 V corresponds to a 

torque of ±76 nN·m. 

 

Figure 3.5: Schematic of optical detector system (not to scale). Note that if the R-tube 

rotates by θref, the laser beam angle changes by 2θref.[105] 
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3.4 Mounting the Sample Fiber 

 

We isolated a single strand of the microfiber to be measured, and mounted it with the aid 

of a stereo microscope. Any initial twists or bends were carefully avoided. The sample 

ends were inserted into the tube and secured using high strength epoxy glue (Devcon). 

Capillary action at the end of the tube draws the glue slightly into the tube, aiding in 

centering the fiber on the axis and increasing the strength of the bond. Though the labeled 

curing time for the epoxy was a few hours, we found that allowing it to remain overnight 

held the fiber more securely.  

 

3.5 Operation of the twister 

 

During a test, the stepper motor rotates the D-tube a specified angle (θsample) applying a 

twist to the fiber (Fig.3.1b). The fiber experiences a shear stress and transmits the torque 

to the R-tube. This produces an angular displacement (θref) in the R-tube, rotating the 

attached mirror by θref as well. The reflected laser beam rotates by 2θref  (as illustrated in 

Fig. 3.5) displacing the laser spot on the PSD, and the output voltage V is recorded. The 

calibration curve allows us to calculate θref from V, and multiplying it by κref we obtain T. 

Since T is equal in the sample and the R-tube, Equation 3.1 may be written as: 

    -    -sample sample ref refT     
  (3.3) 

A typical plot of T vs. θsample (which was linear for our samples) is shown in Fig. 3.6.  
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Figure 3.6: Typical data from one twisting and untwisting sequence of a single Cu wire 

(r = 7.5 μm, L = 16.5 mm). The average slope is 15.15 nN•m/rad, which is the torsion 

constant of the sample (κsample).[105] 

 

The slope dT/dθsample is the torsion constant of the sample (κsample) from Equation 3. The 

shear modulus (G) of the fiber material may then be calculated from: 

sample

sample

L dT L
G

J d J




   
    
   

   (3.4), 

where L is the sample length and J is the second moment of inertia. Assuming a circular 

cross-section for the fiber, J = ½ π r 
4
, where r is the radius.  
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3.6 Results and Discussion 

 

The accuracy of the twister results was verified by testing a 7.5 μm diameter tungsten 

wire (gauge length 17.6 mm) and a 15 μm diameter copper wire (gauge length = 9 mm). 

The diameter of the samples was measured within ±3 % using an SEM (Fig. 3.7). Note 

that this implies a ±12 % uncertainty in G. 

 

Figure 3.7: SEM images of fiber samples; (a) tungsten, (b) copper, (c) Kevlar
®

 119, and 

(d) IM-7. [105] 



 72 

In addition, we measured the shear modulus of a few industrially important fibers, two of 

which have not been previously reported (IM-7 and Kevlar
®

 119). The gauge length did 

not make a significant difference in measured properties.  

 

Material  Dimensions Max sample 
twist  

 θ 

Shear modulus G Shear 
strain 

γ 

Refs. 

  Dia. Length Meas. Lit. Diff.   

  μm  mm rad Gpa %  mrad   

Copper  15 16.5 3.14 41.4 45.4 -8.8 2.6 NIST 

Tungsten  7.5 17.6 31.4 156 160.6 -2.9 6.7 JAP 

Kevlar® 119  11 17.6 62.8 2.42 NA NA 19.6 Note 1 

IM7  5.3 17.5 62.8 16.5 NA NA 9.5 Note 2 

 

Table 1: Shear modulus measurements. Note 1: The G of Kevlar
®
 119 has not been 

previously reported. Note 2: IM6 (a fiber similar to IM7) has a reported[109] G = 10.1 

GPa, and unspecified PAN based carbon fibers have a reported G ranging from 14-

18.GPa.[135]  

 

The shear moduli of the metal fibers are consistent with the published values of G for the 

bulk isotropic material, indicating that these fibers are isotropic as expected, although it is 

possible for fabrication processes to introduce anisotropy in metals.  

 

In contrast, G for the polymer and carbon fiber samples was much lower than would be 

expected if the fibers were isotropic. For example, IM7 fiber has E = 280 GPa and the 

measured G = 16.5 GPa. If the material were isotropic, the resulting Poisson ratio is ν = 
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E/2G – 1 = 7.2.  Because it is extremely rare for materials to have ν > 0.7, we suggest that 

IM7 may only be transversely isotropic, with properties different in the axial and radial 

directions, and possibly the core of the fiber being different than at its surface, as has 

been shown for some carbon and Kevlar
®
 fibers that have a core/skin structure[136]. 

Note that if the skin thickness is the same in two fibers of different diameter, then the 

thickness may be calculated from measurements of G for the two fibers.  For Kevlar
®

 119 

fiber, in a similar analysis, the Poisson ratio is ν = 53.9/4.84 – 1 = 10.1, which again 

suggests a large anisotropy in accord with the reasons given above.  Additionally, this 

observation is consistent with the proposed structure of Kevlar
®
 fiber being comprised of 

polymer chains parallel to the fiber axis, with the attraction between the chains being 

much weaker than the covalent bonds in the chains themselves.  

 

3.7 Conclusion 

 

While the characterization of micron sized fibers has mostly been centered on their 

tensile properties, the measurement of shear properties is important for the design of high 

strength materials and for elucidating their anisotropy and non-uniformity, and thus their 

microstructure. The twister is a simple and inexpensive apparatus capable of accurately 

measuring the shear properties of individual fiber strands. The twister is expected to fill a 

niche among the various methods used for evaluating shear behavior of emerging fibers, 

thus enabling greater access to the measurement of their fundamental properties and 

development of new and useful devices. 
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CHAPTER 4 

FUNDAMENTAL MECHANISM OF ELECTRICALLY 

ACTUATED MECHANICAL RESONANCES OF ZnO 

NANOWHISKERS 

 
 

4.1 Synthesis and Characterization  

 

ZnO NWs with diameters varying from 500 nm to 1 μm were synthesized via the vapor 

solid mechanism in a chemical vapor deposition (CVD) method (Fig 4.1).[137]  

Amalgamated Zn pellets (Fisher Scientific, 99.999 % pure) were mixed with anhydrous 

Zn(Ac)2  (Fisher Scientific, 99.98 % pure, molar ratio of 10:1) and placed in a ceramic 

boat (Coorstek No. 600036). A Si (100) wafer was placed face down over the ceramic 

boat (to completely cover its downstream end), and the boat was heated to 650 
o
C under 

40 sccm of flowing Ar in a 1” dia. quartz tube reactor. After attaining thermal 

equilibrium, the Ar flow was continued for 15 min, after which it was shut off and 

replaced with 20 sccm of flowing O2 for another 15 min. Subsequently, the furnace and 

gas flow were shut off and the samples cooled to room temperature.  

 

The as-grown ZnO NWs were characterized using Photoluminescence (PL), X-Ray 

diffraction (XRD), and Raman spectroscopic techniques. PL spectra (Fig 4.2a) showed 

the expected near band edge emission ~380 nm (3.37 ev) of semi-conducting ZnO. The 
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PL peak in the visible region (~512 nm) for ZnO NW is relatively broad due to presence 

of inherent defects in ZnO NWs. A detailed study of the origin of such defects was 

studied through PL and non-linear optical spectroscopy.[137] XRD diffractograms (Fig 

4.2b) showed Bragg peaks that corresponded to the wurtzite ZnO structure with lattice 

parameters, a and c, of 0.327 and 0.524 nm, respectively. The Raman spectrum (Fig 

4.2c); excitation at 514.5 nm in a Dilor XY triple grating spectrometer (equipped with TE 

cooled CCD) confirmed the wurtzite structure via. the presence of Raman peaks at ~407 

cm
-1

 (E1(TO)), 437 cm
-1

 (E2), and 582 cm
-1

 (E1(LO)).[116, 118] (Appendix A). 

   

Figure 4.1: False colored scanning electron microscopy image of as-grown ZnO 

Nanowhiskers sample grown using chemical vapor deposition method. [106] 
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Figure 4.2: (a) Photoluminescence (PL) spectra of bulk and as-grown ZnO NWs excited 

at 351 nm. Both spectra show a prominent peak ~380-385 nm corresponding to the band-

gap of ZnO. The hump in the yellow-green region (~520 nm) in the PL spectrum of ZnO 

NWs is due to the presence of defects which includes Zn and O vacancies. (b) An X-ray 

diffractogram of as-grown ZnO NWs in which the peaks indicated by the * correspond to 

the Al sample holder. (c)  Raman spectrum of as-grown ZnO NWs which shows peaks 

corresponding to the wurtzite ZnO crystal structure, along with the second order Raman 

feature at ~331 cm
-1

. [106]  
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For elucidating the mechanical properties of ZnO NWs in the presence of an impinging e-

beam, we used two distinct setups, detailed in the following sections. 

 

4.2 Dark-field Optical Microscope Set-up 

 

The dark field setup did not employ an e-beam for visual detection of the oscillatory 

motion. As shown in Fig. 4.3a, a cantilevered ZnO NW (800 nm thick) was aligned 

parallel to an Au-coated W tip using micro-manipulators attached to a dark-field 

microscope. This arrangement allows the charged tip to serve as the CE for applying an 

electrical force proportional to the charge present on the tip. The cantilevered ZnO NW is 

actuated by a tunable AC signal (Vac = 5 – 8 V) applied to the CE, from a signal generator 

(SRS DS345). The AC signal was swept through the desired frequencies, ranging from 

0.5 Hz to 80 kHz, and the resulting oscillations were detected visually using a high-

resolution camera (Spot Insight V 3.2) attached to the dark field microscope. The dark-

field setup was used to observe the mechanical resonance of as-grown ZnO NWs and Au-

coated (thickness ~30 nm) ZnO NWs (Fig 4.3a). 

 

4.3 Scanning Electron Microscope Set-up 

 

 In this setup, resonating ZnO NWs were examined using an electron probe beam. The 

NWs, attached by SEM tape to a tungsten tip, were mounted on a custom made sample 

stage and loaded into an SEM chamber operating under high vacuum (Hitachi SU6600).  
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Figure 4.3: Two different microscopes were used in this study: (a) a dark-field 

microscope which uses white light for visual detection of resonance of the ZnO NW and 

(b) a scanning electron microscope which uses an e-beam for visual detection. The ZnO 

NW is off resonance in the top images in panels (a) and (b), and in resonance in the 

corresponding bottom images. The dashed lines in the bottom panel of (b) serve as a 

guide to the eye. [106] 

 

 

For a more precise parallel alignment of the ZnO NW with the CE (Fig. 4.3b), a PI Block 

Nano Positioning piezodriven stage was used (see Appendix B). The electrical signal 

from the cantilever was collected using the electrical feed-throughs into the SEM 

chamber. The accelerating voltage was varied from 5 kV – 20 kV and the emission 
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current was fixed at 32 μA. The e-beam was incident in a nearly perpendicular direction 

to the NWs, and the images were captured using the secondary electrons. 

We first examined the motion of as-grown and Au-coated ZnO NW cantilevers under 

high driving voltages (5-8 V) at very low frequencies  (~ 1 Hz) under the dark-field 

microscope setup Interestingly, the as-grown ZnO NWs oscillated at the driving 

frequency, while the Au-coated ZnO NW oscillated at twice the driving frequency, the 

latter behaving similar to a conducting cantilever (Fig 2.8). Only a small charge can be 

induced onto the as-grown ZnO NW. 

 

    For a static charge on a semi-conducting ZnO NW, the force on the NW due to a 

charged CE a distance z from the cantilever is proportional to QNWQCE/z
2
 , Q being the 

respective charge in the NW or CE, and oscillating at the frequency of the voltage Vdc + 

Vaccos(Ωt)  applied to the CE.   In this case negligible current flows are implied and we 

see no charge flowing to and from the cantilever. 

 

For a dynamic charge induced on a grounded conducting NW, the force on the NW is 

equal to the derivative of the energy ½ CV
2
 stored in the capacitor (C) formed by the NW 

and the CE with respect to the distance z between the NW and the CE.  This gives a force 

proportional to         
2 2

dc dc ac ac/ dz{  2 cos( ) ½ [1  cos(2 )]}dC V V V t V t    
 which 

oscillates at both the frequency applied to the CE and at twice that frequency.  In this case 

we see current flowing to and from the cantilever, with maxima at both the resonance 

frequency of the cantilever system and at half that frequency. 
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4.4 Results and Discussions 

 

The mechanical response of ZnO NWs at low frequency suggests that the as-grown ZnO 

NWs follow the static charge mechanism in contrast to the dynamic charge induction 

observed in the Au-coated ZnO NW. Although a mechanical resonance was visually 

observed for both cantilevers under the dark field microscope, the as-grown ZnO NW 

cantilever had noticeably lower amplitude of vibration compared to the Au-coated NW. 

Importantly, only the Au-coated ZnO NW produced an observable electrical signal (Fig. 

4.4).   

 

At higher frequencies (up to 80 kHz), the amplitude of any other induced vibrations at 

atmospheric pressure was smaller than we could observe (~ 100 nm).  The inset (Fig. 4.4) 

is a the Skove plot. A nearly circular polar plot validates the detection of electrical 

resonance. The low-frequency oscillatory behavior and absence of an electrical signal 

from as-grown ZnO NW (in the dark-field microscope setup) may be explained in terms 

of its wide band-gap and the static charge mechanism (discussion in section 2.4). 

Previous reports have ascribed dynamic charge induction as the fundamental mechanism 

for the oscillatory motion in ZnO NWs.[117, 138]  
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Figure 4.4: The 2
nd

 harmonic HDR signal from a resonating Au-coated ZnO 

nanowhisker (amplitude-red; phase-blue). The resonance was detected, for both as-grown 

and Au-coated ZnO NWs under the optical microscope setup but the electrical signal was 

observed only for Au-coated ZnO NW. The inset is a Skove plot that shows the measured 

amplitude (r) and phase (θ) in a polar co-ordinate system. A nearly circular polar plot 

validates the detection of electrical resonance. [106] 

 

It is worth noting that such experiments were performed in the presence of an e-beam 

(unlike the dark-field setup) and many of the proposed applications of ZnO NWs are 

based upon devices working under ambient conditions. Hence, it is important to decouple 

the e-beam effects from the intrinsic properties of ZnO NWs. To achieve this objective, 
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we next examined the mechanical response of as-grown ZnO NWs in the SEM setup 

described above. 

 

 

Figure 4.5: (a) Comparison of the squared “visual” amplitude in an SEM (red squares) 

and the electrically detected signal (green dots) of the mechanical motion of the as grown 

ZnO NW. The visual detection is done by measuring the physical amplitude of oscillation 

in the SEM. Clearly, the Q-factor of the electrical signal is comparable to the squared 

“visual” signal, highlighting the accuracy of the HDR measurement. Additionally, HDR 

provides the phase (blue triangles) of the cantilever motion which cannot be obtained 

visually. (b) Under the electron beam, HDR exhibited a resonance peak for the as-grown 

ZnO NW, and this peak vanished when the beam was turned off. [106] 

 

The oscillatory motion of the as-grown NW was clearly seen in the SEM setup (Fig. 

4.3b). Interestingly, a corresponding electrical signal was also observed for the as-grown 

ZnO NW in the SEM setup under similar driving conditions to those used in the dark-
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field setup. Fig 4.5a shows that the magnitude of the electrical response scales almost 

exactly with the square of the observed mechanical amplitude, highlighting the 

correspondence between the two. In addition, the electrical signal allows the observation 

of the relative phase of the motion and further improves the sensitivity of the 

measurement of resonant behavior. 

 

Remarkably, we did not observe any electrical signal from the as-grown ZnO NW when 

the e-beam was turned off (Fig. 4.5b). We found that the oscillatory motion of the as-

grown NW (and hence the HDR output) is influenced by the interaction between the e-

beam and the NW. We varied the SEM magnification and measured the resulting HDR 

output across the resonance frequency to confirm the effects of e-beam incidence on the 

HDR output signal. The behavior of NWs (as a function of magnification) may be 

categorized into three different regimes viz., low, medium and high magnification. 

Interestingly, no HDR output could be observed in the low magnification regime (1x-

2000x). As shown in Fig. 4.6, the HDR output increases rapidly with increasing 

magnification in the medium magnification regime (2000-4000x).  Above 4000x 

magnification the electrical amplitude could no longer be precisely determined as 

nonlinearities (for example, the Duffing[84, 139] behavior described in Fig. 5.8) 

associated with large cantilever deflection obscured the peak height of the HDR signal. 

The SEM magnification is the ratio of view screen area (computer screen) to the scanned 

sample area[140]. The raster coils (in the SEM) scan the sample line by line, left-to-right 

and top-to-bottom, much like reading a book. A higher magnification (achieved by 
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reducing the scanning area) increases the e-beam scan frequency.  Consequently, 

increasing the magnification increases the interaction of the NW with the e-beam. 

Beyond a threshold magnification (2000x in this case), the interaction is strong enough to 

induce observable current (hence finite HDR output) into the sample. Furthermore, in the 

high magnification regime (> 4000x), the induced currents are sufficiently high to cause 

non-linearity in the NW motion.   

 

 

Figure 4.6: (a) A plot of the maximum electrical amplitude as a function of e-beam 

magnification x. The SEM images in the inset figure suggest a direct correlation between 

the measured electrical amplitude and the observed amplitude of the oscillating NW. 
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The results described in the preceding paragraph can be rationalized from the infrared 

spectrum depicted in Fig. 4.7. Several absorption peaks are present in the range of 1000-

4000 cm
-1

 for as-grown ZnO NWs. The broad band at ~3500 cm
-1

 is attributed to 

chemisorbed hydroxyl groups (due to its hygroscopic nature) on the ZnO NW surface. 

The C-H stretch peaks at  ~2800 cm
-1

, symmetric and asymmetric carboxylate peaks at  

~1385 cm
-1

 and 1630 cm
-1

 originate from reactive carbon-containing plasma species 

(from Zn(Ac)2) physisorbed on the ZnO NW surface during synthesis. When exposed 

only to the relatively weak oscillating driving voltage (as in Fig. 4.3a), these polarized 

functional groups attached to NW may act as static bound charges and cause ZnO NW to 

oscillate at the same frequency as the driving frequency, consistent with the static charge 

mechanism (Fig. 2.8). However, as has been recently shown, e-beam irradiation in the 

SEM chamber (few kV) can increase  ZnO NW’s electrical conductivity by generating 

electron-hole pairs across its band gap  of  ~3.37 eV.[121]  Thus, an increase in the SEM 

magnification leads to an increase in the electrical conductivity of the ZnO NW. 

Consequently, in the presence of the e-beam, the magnitude of both the electrical signal 

and the mechanical motion are significantly amplified due to dynamic charge induction 

that drives the ZnO NW at twice the driving frequency. In addition, this dynamic flow of 

charge gives rise to an electrical signal (Fig. 4.5). 
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Figure 4.7:   The infrared transmission spectrum of as-grown ZnO NWs  reveals the 

nature of the many functional groups present on the surface of the NW. [106] 

 

We note that the resonance peak at higher amplitudes shows non-linear effects (Duffing 

effect) (Fig. 4.8a). In this work the nonlinearities result in the peak amplitude occurring at 

higher frequencies with increasing amplitude, implying that there is a “spring hardening,” 

rather than the spring softening seen in similar cantilevers at ambient and lower 

pressures.  We expect the forces due to static charges to lead toward smaller spring 

softening than dynamic charges, which are always attractive between the cantilever and 

the counter electrode.   Further studies are needed to understand the source and 

mechanism of the observed frequency increase.  
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Figure 4.8: (a) The 2
nd

 harmonic HDR signal of an as-grown ZnO NW (driven into 

resonance inside the SEM at a magnification of 2500x) as a function of the frequency of 

driving ac voltage. The observed asymmetry in the resonance peaks is due to the 

nonlinear oscillatory motion of the NW at a higher input voltage. Note that the Duffing-

like nonlinearity drives the peak amplitude to higher frequencies, unlike what is generally 

observed for the other conducting nanostructure cantilevers[141]. (b) SEM images of a 

resonating ZnO NW at 2 Vp-p and 1 Vp-p ac signal. (c) Skove plots corresponding to the 

2
nd

 harmonic signals depicted in (a). For a damped simple harmonic oscillator the Skove 

plot is a circle. The non-circular Skove plots at higher voltages indicate the presence of 

increasing non-linearity at high actuation voltages. [106] 
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Heuristically, we can envision two distinct domains of NW oscillation as a function of 

the incident beam intensity. At low or no beam intensity (the static charge region), bound 

charges from polarized surface groups on the NW will dominate the driving mechanism. 

The physical motion will be constant with respect to intensity and the electrical and 

visual signals will be extremely small, virtually undetectable in all but the largest 

whiskers. For large beam intensities, sufficient free carriers can be generated, and the 

resonance will fall in the dynamically induced charge regime, with both the mechanical 

and electrical signals increasing with beam intensity. The exact oscillatory behavior of a 

given NW will depend on its density of surface-trapped holes, and on carrier density. 

[121] 

 

4.5 Conclusion 

 

We have presented a model, involving both static and induced charge mechanisms, to 

explain the observed resonance behavior of an electrostatically driven ZnO NW. The 

importance of checking the low frequency response of the cantilever to verify a static or 

dynamic actuation mechanism was discussed. Evidently, a semi-conducting as-grown 

ZnO NW yields a real-time electrical signal and provides a high precision amplitude 

signal in the presence of an e-beam, implying that the interaction of semi-conducting 

nanostructures with electron probe beams modifies their intrinsic electronic properties, 

and has led to incorrect identification of the actuation mechanism. 
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CHAPTER 5 

PROBING MECHANICAL RESONANCES OF 

HELICALLY COILED NANOWIRE 
 

5.1 Methods 

In order to probe the mechanical behavior of the coiled cantilevers, we first synthesized a 

forest of randomly oriented HCNWs using a previously reported two–stage, liquid 

precursor based, thermal CVD method.[12] These as-prepared HCNWs were 

characterized using SEM (Hitachi SU-6600) and TEM (Hitachi 9500), see Fig. 5.1.  

 

For HDR experiments, an isolated HCNW mounted on an electrochemically etched W-tip 

was used as the cantilever (see Appendix B for the set up). The W-tip was brought into 

contact with a double-sided conducting carbon adhesive tape (PELCO Tabs
TM

; Ted Pella) 

and then used to isolate a single HCNW from a forest. The tip was then mounted on the 

SEM jig (Appendix B). The HDR setup was used within either an SEM chamber (Hitachi 

SU-6600 or S-3400) to provide a stable vacuum (< 1 Pa) which mitigated damping 

losses, or a dark-field optical. Importantly, the mechanical resonances observed under the 

SEM were simultaneously detected “electrically” using the HDR method. For all 

experiments discussed below, Vdc was held constant at 9 V while Vac was varied within ± 

9V.  Briefly, in the HDR method, a cantilever is actuated by either static or dynamic 

charge induction depending on several factors such as the presence of static charges, 
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functional groups, and the intrinsic electrical conductivity of the cantilevered structure. In 

the absence of Vdc, the dynamic (static) charge induction mechanism often resulted in a 

vibration at twice (same) the driving frequency for well-grounded electrically conducting 

cantilevers.[106] Accordingly, the motion of a cantilevered HCNW was observed at ~1 

Hz under the dark-field optical microscope to confirm the presence of  the dynamic 

charge induction mechanism ( see section 4.3 for the rationale) and ensure that the 

HCNW was properly grounded. However, HCNWs were always found to be positively 

charged when exposed to an electron beam, possibly due to the ejection of electrons. 

Nonetheless, the HCNWs were found to be neutral when the electron beam was turned 

off, as observed from our dark-field experiments.  

 

In previous studies, we found a strong correlation between the presence of structural 

defects and the mechanical properties of nano-cantilevers in particular MWNT.[142] In 

view of this correlation and to eliminate the effects of sample heterogeneity in this study, 

all HCNWs were consistently selected from the same synthesis batch (HCNW1- HCNW4 

shown in Table II). It is worth noting that the harmonics and resonance modes overlap in 

the traditional doubly clamped geometry, e.g., strings in a guitar; therefore, we used the 

singly clamped geometry to distinguish the resonance modes of HCNWs from their 

harmonics.  
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Figure 5.1: (a) Scanning electron microscope image of as-prepared HCNWs. (b) The 

coiled structures are solid wires as evident in the TEM image. (c) The selected area 

diffraction pattern reveals a polycrystalline structure of HCNWs. 

  

The transverse resonance frequency (f) of a singly clamped cantilever can be calculated 

by the well-known relationship, f = 1/2π (k/meff)
1/2

 where k is the spring constant and meff 

is the effective mass of the cantilever.[143] In contrast to a straight cantilever, k for the 

transverse bending mode of a HCNW is a function of both E and G of the material, which 

makes it difficult to compute the resonance frequencies. This motivated us to adapt the 
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following protocol (Fig 5.2) to obtain an experimentally validated closed form expression 

for resonance frequency (fANA). We employed the HDR method to obtain the frequencies 

of first two modes (f1 and f2) of HCNWs and deduced their shear modulus by 

simultaneously validating experiments with analytical and numerical models. 

 

 

Figure 5.2: Protocol followed for probing the mechanical resonance of helically coiled 

carbon nanowires. The experimental technique (HDR) is used in tandem with analytical 

and iterative (finite element analysis based COMSOL
®
 simulation) methods used for 

determining the shear modulus of the coiled cantilever.[107]  
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5.2 Modeling: 

 

To begin with, the HCNWs were analytically modeled, primarily to understand the 

contribution of the twisting and bending upon application of a transverse moment on a 

coiled geometry. [107] 

 

For further discussion, the following labels for the physical parameters of a HCNW are 

introduced (Fig 5.3):  

r- radius of the wire;  

D- diameter of HCNW;  

p- pitch of HCNW;  

n- number of turns;  

l- length of HCNW (note that l= n.p);  

M- Moment experienced by a turn of the HCNW upon bending with a radius of curvature 

γ; and α-pitch angle of HCNW.  
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Figure 5.3: (a) Geometrical parameters of an HCNW (b) One turn of the coil modeled as 

a planar ring connected with a rigid rod, compensating for the pitch. (c) Left panel - one 

turn of the coil with no moment. Right Panel - Bending of the coil under moment M. An 

imaginary cylinder (dashed lines) is a guide to understand the bending mechanism. (d) 

Vector diagram of the displacements upon bending as seen in (c) (e) Dimensions of a 

quarter of a turn of the HCNW.[107] 
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Initially, one turn is considered under a moment (M) in the plane of the HCNW axis. To 

simplify the model, we approximated one HCNW turn as a planar ring connected with a 

rigid rod ( Fig. 5.3b) as  shown by Wahl.[144]. The deflection angle φq of a quarter turn 

of the coil (5.3 e) is a sum of the deformation due to bending (φb) and torsional strain (φt) 

under moment M. The component of φq due to the bending strain (φb) is  

 

2 2
2

0 0

1
sin sin sin

2 2 8
b

D MD MD
M d d

EI EI EI

 


        

   (5.1), 

where I= πr
4
/4  is the area moment of inertia, Msinθ is the component of M along the axis 

of the wire, and the additional sinθ is the ratio of φ to the component of bending in the 

plane of the wire, and θ is the angle along the quarter turn of the coil.  Similarly the 

component of φq due to the torsional strain (φt) due to the moment M is: 

2 2
2

0 0

1
cos cos cos

2 2 8
t

D MD MD
M d d

GJ GJ GJ

 


          (5.2), 

where J = πr
4
/2  is the polar moment of inertia, Mcosθ is the component of the moment M 

along the axis of the wire, and the additional cosθ is the ratio of φ to the component of 

bending in the plane of the wire. 

 

At larger pitch angles, the bending and twisting components of the HCNW are 

convoluted i.e. the twisting portions experience an additional bending. Hence, to 

compensate for this effect, we introduce a factor cos
2
α to the denominator of φb (for 
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increased bending) and to the numerator of φt (for reduced twisting). (See computational 

analysis section for details). Thus the equations (5.1) and (5.2) become 

28 cos
b

MD

EI







 ; 

2cos

8
t

MD

JG

 
 

      (5.3). 

For a complete turn, the total deformation φ (under the M) = 4(φb+ φt.) yielding 

2

2

cos

2 cos 2

MD MD

EI GJ

  



       (5.4), 

where the first turn is bending (4φb) and the second turn corresponds to shear deformation 

(4φt). 

 

The spring constant k for a complete turn of the coil is defined as F/z where F is the force 

acting on a single turn, and z is the displacement resulting from F.  F is related to the 

moment by F = M/p, where p is the pitch of coil.  From Fig.5.3d, z may be expressed as  

z cos   
     (5.5). 

Using the small angle approximation, we know that      

p 
   (5.6) 

Hence, from equations (5.5) and (5.6) we obtain the following  

(1 cos )
p

z 


 

. 
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The series expansion of cos ϕ yields:    

2 41 1
cos 1 ...

2 24
     

 

Under small angle approximation we can neglect the fourth and higher order terms. Thus 

we get 

2

2

p
z





 
  

  , that gives 

2
z p

 
  

       (5.7). 

Combining these relations we obtain: 

2
1

2

zp p

k M M

  
   

       (5.8). 

On substituting φ (equation 54) in equation (5.8), we get tensile and shear spring 

constants for one complete turn. 

2

4 2

1

cosb

p D

k Er 


     (5.9), 

2 2
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p D

k Gr




     (5.10). 

 Finally, to obtain the combined spring constant we use the relation for adding springs in 

series: 
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tb kkk

111


 (5.11), 

which was validated by comparing to iteratively calculated resonance frequencies (see 

Fig 5.2). 

 

Note that k is inversely proportional to the cube of the length for cantilever beams. 

Hence, an n
3
 term was incorporated to accommodate the total number of the turns in the 

coil. The relation between number of coils n and k was verified using COMSOL
®
 as 

follows: 

We modeled an HCNW in COMSOL
®
 and systematically varied n (and thus the length), 

keeping other geometrical parameters constant. We then calculated the mass of the 

COMSOL
®
 generated HCNW by calculating its volume within COMSOL

®
 and 

multiplying it with input material density. The fCOM for each of the HCNWs was obtained 

using the formula; f=1/2π(k/meff)
1/2

 , we were able to calculate the corresponding k. 

Clearly from data fit (Fig. 5.4), k is directly proportional to n
-3

. 
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Figure 5.4: Spring Constant (k) vs number of turns (n) plot. The fitting clearly indicates 

that k varies with n
-3

.[107] 

 

Following the above analysis, for a HCNW of n turns, we can obtain the spring constant 

from equations (5.2) and (5.3) by incorporating an n
3
 term. Thus, we get 

3
3 1 1 1

turn b t

n
n

k k k k

 
   

 
, yielding 

3 2 3 2 2

4 2 4
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cos 2

n p D n p D
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     (5.11). 

Hence, we can then obtain fANA as 
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        (5.12), 

 

Similar to above analysis, on comparing the fANA and fCOM for different pitch angles, the 

cos
2
α factor was obtained. 

 

Next, we simulated the resonance frequency fCOM for various HCNWs with different 

geometric parameters (n, r, D, p). Based on our COMSOL
®

 results, fANA matched within 

12 % of fCOM. Thus the fANA was scaled by a dimensionless factor s = 0.88 to minimize the 

deviation from fCOM. The scaling accounts for the simplification of a HCNW to a planar 

ring attached to a rigid rod. Thus, we get the final expression  

1
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2

1 cos 1
(0.88)

2 2 cos
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r
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p G E



 



  
   

        (5.13). 

 

This closed-form expression (equation 5.13) is a solution for HCNW resonance 

frequency, which includes the effects of both E and G.  As described in Fig. 5.2, 

experimentally obtained resonance parameters of HCNWs can be used in conjunction 

with equation 5.13 to obtain an estimate of G. It is noteworthy that equation 5.13 is not 

limited to HCNWs and may be used to estimate the G (or f) of any helically coiled 

geometry whose E and f (or G) are known.  
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5.3 Measuring Resonance Parameters 

 

The flexural spring constant of HCNWs is expected to be lower than its axial spring 

constant due to their moderately high aspect ratio (ratio of length to diameter of the 

HCNW~10
2
). Hence, the probability of actuating transverse resonance modes 

(perpendicular to the HCNW axis) is much higher relative to axial modes (parallel to the 

HCNW axis). Figs. 5.5a-5.5c and 5.5d-5.5e show the transverse modes for two different 

HCNWs, HCNW1(r- 64 nm; D-290 nm; p- 876 nm, l-13.35 μm) and HCNW2(r-142 nm; 

D-750 nm; p-1116 nm; l-26.78 μm). A direct visual examination under the SEM revealed 

that the HCNW1 (HCNW2) resonated at frequency f1~30 kHz (82.35 kHz) at its first 

mode (Fig. 5.5b) and at f2 ~190 kHz (547 kHz) at its second mode (Fig. 5.5c). The 

corresponding HDR amplitude signal for the first mode of HCNW2 (excited with 5 Vac  at 

~1 Pa; Fig. 5.5f) showed a single transverse resonance peak with a Q-factor of ~150.  
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Figure 5.5: SEM image of a singly clamped HCNW (HCNW1- radius 64 nm; coil 

diameter 290 nm; pitch 876 nm): (a) off resonance, (b) first transverse mode at  driving 

frequency f1 ~ 30 kHz, (c) second transverse mode at driving frequency f2 ~190 kHz. (d) 

Off resonance SEM image of HCNW2 (radius 142 nm; coil diameter-750 nm; pitch 1116 

nm) (e) First transverse mode (f1 ~ 82.5 kHz ). (f) HDR signal for transverse mode for 

HCNW2 with driving voltages Vac = 5 V , Vdc = 9 V. The resonance amplitude peak 

(blue) is similar that of a Si microcantilever. The black trace represents the phase signal. 

The dotted lines in (b) and (c) serve as a guide for the eye.[107] 
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To examine the coupling between bending and shearing moduli of ‘geometrically’ 

nonlinear HCNW cantilevers, we actuated HCNWs at a higher driving force by either 

increasing the ac driving voltage (~ 8Vac) or reducing the gap distance between HCNW 

and the CE. A higher driving force was observed to result in ‘mechanical’ nonlinearities 

such as the characteristic Duffing-like jumps in cantilever motion (see Fig. 5.7). 

Interestingly, as shown in Fig. 5.6, we found that: i) the HCNWs resonated in a non-

planar circular mode when the driving voltage was increased > 8Vac (or the gap distance 

is reduced < 5 μm), and ii) simultaneous with the observation of the circular mode, the 

HDR amplitude signal exhibited a bifurcation (Fig. 5.8) of an otherwise single transverse 

resonance peak (Fig. 5.5f).   

 

Through visual comparison, we confirmed that the lower (higher) frequency peak 

corresponded only to the planar transverse (non-planar circular) resonance. As we varied 

the driving frequencies (from 85 to 95 kHz), we observed the onset of the non-planar 

modes between 90-94 kHz, and a clear rotation of the plane of resonance (circular mode 

as seen in Fig. 5.6). As shown in Fig. 5.7, the onset of non-planar motion was also 

evident for an independent HCNW3 (r-103 nm; D-330nm; p- 1.104µm; l - 44 μm). 

During the reverse frequency sweep, we observed a typical hysteresis (as indicated by the 

hatched area in Fig. 5.8) associated with mechanical nonlinearities (i.e., non-planar 

circular mode).  
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Figure 5.6: (a) SEM image of HCNW2 resonating in circular mode at a driving signal ~ 

94 kHz.[107] (Note: This figure was highlighted on the cover of the Clemson Glimpse 

magazine in 2013). 
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Figure 5.7: The circular resonance behavior can be seen in HCNW3 (wire radius103 nm; 

diameter 330 nm and pitch 1.014 μm) in (a) off resonance, (b) Ω = 53.5 kHz, (c) Ω = 54 

kHz, and (d) Ω = 56.5 kHz, where Ω is the driving frequency. On applying relatively 

higher driving voltages, the nanocoil actuates in an in-plane transverse mode. On further 

sweeping the driving frequency, its motion is transformed into an elliptical mode (c) 

which becomes close to a circular motion when it hits the resonance frequency.  
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Figure 5.8: HDR signal shows a bifurcation in the resonance signal. The peak at ~90 kHz 

corresponds to an in-plane transverse resonance that occurs before the onset of the 

circular mode (peak at 93.5 kHz). [107] 

 

The hysteresis was more prominent for the higher frequency peak or circular mode (gray) 

relative to the lower frequency peak or transverse mode (green). It is worth noting that 

the bifurcation of the resonance signal disappeared upon restoring the initial actuation 

conditions (i.e., Vac ~5V) indicating that the difference between the driving forces 
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necessary for actuating planar vs. non-planar mechanical modes is significantly low for 

HCNWs than for straight cantilevers (e.g., multi-wall carbon nanotube or MWCNTs). 

Indeed, the high actuation threshold for non-planar modes in straight cantilevers has been 

a major bottleneck in understanding mechanical nonlinearities (e.g., Duffing-like circular 

modes). Although non-planar modes were reported previously in some straight 

nanocantilevers[145] (SiC nanowires, MWCNTs and Si nanocantilevers[146]), the 

necessary driving force was sufficiently large to destroy the samples impeding detailed 

studies of their nonlinear mechanical behavior. The helically coiled geometry plays a 

pivotal role in enabling the actuation of otherwise inaccessible non-planar modes at 

significantly lower ac voltages (~ 8V) due to two reasons: i) a low transverse k of 

HCNWs allows them to bend easily relative to their straight counterparts (e.g., 

MWCNT); and ii) the inherent asymmetry of HCNWs separates the otherwise degenerate 

x-, y-polarizations in mechanical resonance. As described below, our numerical analysis 

using COMSOL
®
 also confirmed that the helically coiled geometry leads to non-

degenerate x-, y-planar modes that can be actuated simultaneously to produce the 

observed non-planar modes (Fig 5.9). Although the nature of the electrical force in HDR 

experiments is such that it favors the excitation of only one of the two (x or y) modes, the 

coupling between bending and shear moduli in a HCNW provides a channel for the 

exchange of energy between x- and y-modes resulting in non-planar resonance. 

Therefore, the resonance analysis of other materials (e.g., Si and ZnO) in their helically 

coiled geometry will allow for elucidating the nonlinear mechanical properties without 

breaking or destroying the cantilever.  
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Figure 5.9: COMSOL
®
 Simulated plots of representative helical coil geometry. (a) Off 

resonance (b) First transverse mode –Y polarization (b) First transverse mode- X 

Polarization.  
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We also attempted to actuate a purely axial mode parallel to the axis of HCNW by 

placing a blunt W-tip in tip-to-tip geometry (3 Vac, 9-10 Vdc) with HCNW. However, the 

parametric nature of the driving force always resulted in an asymmetric combination 

mode (distinct from the circular mode) consisting of transverse resonance and axial 

stretching (Fig. 5.10).  

 

Figure 5.10: SEM images depicting a mixed resonance mode in HCNW1 detected at ~ 

29.5 kHz. This asymmetric mode results from the mixing of axial and transverse motions 

of the nanocoil. The inset depicts the same when the HCNW is off resonance. The dotted 

line is a guide to the eye. 
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The analysis of transverse resonance modes in COMSOL
®
 revealed that the ratio of the 

second and first modes (f2/f1) is 6.27- a ratio predicted by EB theory exclusively for 

straight cantilevers. Our HDR experiments showed that f2/f1 ~ 6.75 ± 0.38 for 3 different 

HCNWs, deviating only slightly from the straight cantilever case, in agreement with 

COMSOL
®
. The experimental and COMSOL

®
 results prove that although EB theory is 

insufficient to predict the motion of HCNWs accurately, the ratio f2/f1 is a true 

transcendental constant independent of the geometry of the resonating cantilever. Such an 

observation allows us to predict the second mode of transverse resonance by the 

following relation  

2

6.27

2 eff

k
f

m


                   (5.7). 

 

The protocol described in Fig. 2.9 was applied to HCNWs to obtain their G. The HCNWs 

isolated for HDR studies were carefully characterized to accurately obtain r, R, p and n. 

We calculated the HCNW resonance frequency (fCOM) using Eigen-frequency study under 

the fixed-free boundary condition and a fine mesh construction for a numerically stable 

solution in COMSOL
®
. We used equation 5.6, experimental HDR results, and an 

estimated E=120 GPa (similar to MWCNTs) to obtain an initial estimate for GANA for 

HCNWs. Subsequently, we implemented a series of COMSOL
®
 simulations on HCNWs 

1-4 (see Table II) by varying E ~ 80-200 GPa (in steps of ~20 GPa) and G~5-10 GPa (in 

steps of ~1 GPa) to obtain a fCOM that matched f1. Since there could be more than one set 

of E & G values that could result in a fcom~f1, we used the experimental and COMSOL
®
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data from HCNWs 1-4 to identify correct E and G values. As shown in Table II, HCNW 

1-4 resulted in a GCOM value ranging from 5.8 to 10.3 GPa with an average value of ~8 

±2 GPa.  

 

HCNW 

No. 

f1 

(kHz) 

r 

(nm) 

D 

(nm) 

P 

(nm) 

n 

α  

(degree) 

 

GCOM (GPa) 

E= 200 GPa () E = 80 GPa () 

1 30 63.5 290 876 48.4 43.9 8.6 (10.63) 10.0 (3) 

2 82 112 750 1116 24 Variable 5.8 (16.24) 6.2 (5.45) 

3 56 103 330 1014 40 44.4 7.9 (11.66) 8.3 (3.82) 

4 70 73 256 1187 29.5 55.9 6.2 (15.13) 10.3 (2.88) 

 

 

 

 

 

 

 

 

 

 

 

 

Avg. = 7.1 8.7 

Std. 

Dev. = 

1.3 1.9 

 

Table II:  Observed resonant frequency f1; dimensions r, D, p, n, α; and transverse shear 

modulus GCOM (and corresponding Poisson Ratios) calculated using E = 200 and E = 80 

GPa for the HCNWs.[107] 

 

 

The Poisson ratio(=E/2G-1) of HCNWs was found to be as high as 2.88 – 16.24 based 

on the values of GCOM shown in Table II suggesting that the HCNWs may be anisotropic 

i.e., the elastic properties are different in the direction parallel and perpendicular to the 

axis, or that HCNWs are inhomogeneous.  
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5.4 Conclusion  

 

We mechanically resonated HCNWs and studied their resonance modes using the HDR 

technique.  Clearly the HDR electrical signals were found to inherently carry the 

signature of the excited resonance mode (circular vs planar) as seen under an SEM. We 

developed a model (based on experimental, analytical, and numerical methods) capable 

of predicting the first and the second transverse resonance modes applicable to any 

helically coiled cantilevers irrespective of their dimensions. Our experiments showed that 

HCNWs had a G ~8 ±2 GPa. The corresponding Poisson ratios suggested a possible 

anisotropy in the HCNWs. Resonating coiled nanostructures offers a possible method of 

probing shear modulus using transverse resonance based HDR method. 
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CHAPTER 6 

SUMMARY AND FUTURE WORK 

 

Nanoscale materials provide an excellent platform for the ingenious harness of many 

intriguing phenomena. In the past decade, nanomaterials have emerged as the scaffolds 

for many practical applications in energy generation/storage, environment, health, and 

information technology. Of interest to this work is the understanding and accurate 

determination of mechanical response of isolated low-dimensional nanomaterials using 

facile non-destructive techniques. In this regard, we have developed a new instrument 

viz., the twister explained in chapter 3 to determine the components of shear tensor in 

nanofibers. The twister is expected to fill a niche among the various methods used for 

evaluating shear behavior of emerging fibers, thus enabling greater access to the 

measurement of their fundamental properties and development of new and useful devices. 

While the present work focused on the design, construction, calibration, and automation 

of the twister, future efforts will be directed towards the determination of shear properties 

of carbon nanotube yarns.[147, 148]  Previously, Baughman et al., have shown that a 

dense forest of vertically aligned CNT array can be spun in to yarns, scrolls, and bi-

scrolls of different architectures. Such fibers are expected to exhibit a high degree of 

anisotropy and non-uniformity due to inter-tube interactions, slipping, and creep. The 

twister can be used to study such properties and play a pivotal role in rationally designing 

fiber compositions for use in medical implants and automobiles.  



 114 

This work (chapters 4 and 5) underscores the importance of selecting the “appropriate” 

detection techniques that can probe mechanical properties of individual nanostructures 

without changing their properties. While the electronic and mechanical properties of 

nanostructures such as ZnO NWs are considerably modified in the presence of the 

electron beam, such effects may be used to intentionally induce defects and monitor their 

influence in real time providing us new ways to understand materials properties. We 

developed a new empirical protocol based on experimental data, analytical, and 

numerical modeling to study the mechanical properties and determine the elastic moduli 

of individual helically coiled “spring-like” nanostructures. As a part of the future work, 

the harmonic detection of resonance technique could be used to study: i) the internal 

friction between the walls of nanotubes (viz., double walled and multi-walled) by 

determining the inverse of Q-factor of the resonance as a function of pressure, and ii) the 

mechanical robustness of single-layer atom-thick “flatsheets” (e.g., graphene) for next 

generation electronics and resonators. Indeed, coupling these 2D resonators with 

electrical detection may lead to new limits of sensitivities in bio-sensing. 
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Appendix A 

 

 Characterization of ZnO Nanowhiskers 

 

Raman Spectroscopy: The Raman spectrum was obtained using the Ar+ ion laser 

excitation at 514.5 nm in a Dilor XY triple grating spectrometer equipped with TE cooled 

CCD.  Our  samples showed first-order modes at 379 cm
-1

 (A1 (TO)), 580 cm
-1

 (E1 (LO)), 

and 437.5 cm
-1 

(E2) in addition to the second order peak at ~337 cm
-1

.  

 

X-ray diffraction: The X-ray diffractogram of our samples is in agreement with the 

standard JCPDS data for wurtzite ZnO (powder diffraction file #36-145). 

 

Photoluminescence: The PL spectra were obtained using a JY-Horiba Nanolog equipped 

with Liq. N2 cooled Triax 550 single grating spectrometer and Xe lamp.  
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Appendix B 

 HDR set up under a Scanning Electron Microscope 

This custom made jig is capable of micro-manipulating the cantilever HCNW w.r.t the 

W-tip to a desired orientation. The piezocontrollers enable precise alignment in X,Y & Z  

directions. 

 

 

Figure B1: The jig used to hold the Cantilever-W Tip in the SEM. Voltages to the jig are 

controlled though the BNC connectors on the SEM chamber. 
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APPENDIX C 

 

C.1 List of symbols used 

  

Note: ω=2π f; For the sake of clarity, the terms ω and f are sometimes used 

interchangeably, depending on the context. 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol Description Units 

Q-factor Quality factor - 

Vac AC voltage applied to Cantilever V 

Vdc DC voltage applied to Cantilever V 

Vnet Total applied voltage V 

Ω Driving frequency Hz 

ω Angular Resonance frequency rad/s 

∆ωFWHM Full width half maximum Hz 

E Young’s modulus Pa 

G Shear modulus Pa 

ρ Density Kg/m
3
 

L Length of cantilever m 

I Moment of Inertia Kgm
2
 

Vout Output voltage of twister V 

f1 , f2 First, second mode  resonance frequency Hz 

r Radius of the HCNW wire m 

D Diameter of HCNW m 

p Pitch of HCNW m 

n Number of turns in HCNW - 

l Length of HCNW m 

M Moment experienced by one turn of HCNW Nm 

γ Radius of curvature upon bending under M m 

α Pitch angle of HCNW radians 

SBR Signal-to-background-ratio - 
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C.2 List of abbreviations 

 

1. AFM: Atomic Force Microscopy 

2. CE: counter Electrode 

3. CE: Counter Electrode 

4. CF: Carbon Fiber 

5. CMOS: Complementary Metal-Oxide Semiconductor 

6. CNT: Carbon Nanotube 

7. CVD: Chemical Vapor Deposition 

8. EB theory: Euler Bernoulli Theory 

9. EOM: Equation of Motion 

10. FIB: Focused Ion Beam 

11. FIB: Focused Ion Beam 

12. HCNW: Helically Coiled Nano Wire 

13. HDR: Harmonic Detection of Resonance 

14. (HR)TEM:  (High Resolution) Transmission Electron Microscope 

15. IC: Integrated Circuits 

16. LDM: Low Dimensional Materials 

17. MEMS:  Micro Electromechanical System 

18. MWCNT: Multi Walled Carbon Nanotube 

19. NEMS: Nano Electromechanical System 

20. NW: Nano Wires or Nano Whiskers 

21. PSD: Position Sensitive Detector 

22. PSD: Position Sensitive Detector 

23. SEM: Scanning Electron Microscope 

24. SWCNT: Single Walled Carbon Nanotube 

25. W-tip: Tungsten tip 
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