1,178 research outputs found

    Automated segmentation of tissue images for computerized IHC analysis

    Get PDF
    This paper presents two automated methods for the segmentation ofimmunohistochemical tissue images that overcome the limitations of themanual approach aswell as of the existing computerized techniques. The first independent method, based on unsupervised color clustering, recognizes automatically the target cancerous areas in the specimen and disregards the stroma; the second method, based on colors separation and morphological processing, exploits automated segmentation of the nuclear membranes of the cancerous cells. Extensive experimental results on real tissue images demonstrate the accuracy of our techniques compared to manual segmentations; additional experiments show that our techniques are more effective in immunohistochemical images than popular approaches based on supervised learning or active contours. The proposed procedure can be exploited for any applications that require tissues and cells exploration and to perform reliable and standardized measures of the activity of specific proteins involved in multi-factorial genetic pathologie

    Fractional Entropy Based Active Contour Segmentation of Cell Nuclei in Actin-Tagged Confocal Microscopy Images

    Get PDF
    In the framework of cell structure characterization for predictive oncology, we propose in this paper an unsupervised statistical region based active contour approach integrating an original fractional entropy measure for single channel actin tagged fluorescence confocal microscopy image segmentation. Following description of statistical based active contour segmentation and the mathematical definition of the proposed fractional entropy descriptor, we demonstrate comparative segmentation results between the proposed approach and standard Shannon’s entropy obtained for nuclei segmentation. We show that the unsupervised proposed statistical based approach integrating the fractional entropy measure leads to very satisfactory segmentation of the cell nuclei from which shape characterization can be subsequently used for the therapy progress assessment

    An Unsupervised Approach for Overlapping Cervical Cell Cytoplasm Segmentation

    Full text link
    The poor contrast and the overlapping of cervical cell cytoplasm are the major issues in the accurate segmentation of cervical cell cytoplasm. This paper presents an automated unsupervised cytoplasm segmentation approach which can effectively find the cytoplasm boundaries in overlapping cells. The proposed approach first segments the cell clumps from the cervical smear image and detects the nuclei in each cell clump. A modified Otsu method with prior class probability is proposed for accurate segmentation of nuclei from the cell clumps. Using distance regularized level set evolution, the contour around each nucleus is evolved until it reaches the cytoplasm boundaries. Promising results were obtained by experimenting on ISBI 2015 challenge dataset.Comment: 4 pages, 4 figures, Biomedical Engineering and Sciences (IECBES), 2016 IEEE EMBS Conference on. IEEE, 201

    A workflow for the automatic segmentation of organelles in electron microscopy image stacks.

    Get PDF
    Electron microscopy (EM) facilitates analysis of the form, distribution, and functional status of key organelle systems in various pathological processes, including those associated with neurodegenerative disease. Such EM data often provide important new insights into the underlying disease mechanisms. The development of more accurate and efficient methods to quantify changes in subcellular microanatomy has already proven key to understanding the pathogenesis of Parkinson's and Alzheimer's diseases, as well as glaucoma. While our ability to acquire large volumes of 3D EM data is progressing rapidly, more advanced analysis tools are needed to assist in measuring precise three-dimensional morphologies of organelles within data sets that can include hundreds to thousands of whole cells. Although new imaging instrument throughputs can exceed teravoxels of data per day, image segmentation and analysis remain significant bottlenecks to achieving quantitative descriptions of whole cell structural organellomes. Here, we present a novel method for the automatic segmentation of organelles in 3D EM image stacks. Segmentations are generated using only 2D image information, making the method suitable for anisotropic imaging techniques such as serial block-face scanning electron microscopy (SBEM). Additionally, no assumptions about 3D organelle morphology are made, ensuring the method can be easily expanded to any number of structurally and functionally diverse organelles. Following the presentation of our algorithm, we validate its performance by assessing the segmentation accuracy of different organelle targets in an example SBEM dataset and demonstrate that it can be efficiently parallelized on supercomputing resources, resulting in a dramatic reduction in runtime

    Achieving the Way for Automated Segmentation of Nuclei in Cancer Tissue Images through Morphology-Based Approach: a Quantitative Evaluation

    Get PDF
    In this paper we address the problem of nuclear segmentation in cancer tissue images, that is critical for specific protein activity quantification and for cancer diagnosis and therapy. We present a fully automated morphology-based technique able to perform accurate nuclear segmentations in images with heterogeneous staining and multiple tissue layers and we compare it with an alternate semi-automated method based on a well established segmentation approach, namely active contours. We discuss active contours’ limitations in the segmentation of immunohistochemical images and we demonstrate and motivate through extensive experiments the better accuracy of our fully automated approach compared to various active contours implementations

    Statistical region based active contour using a fractional entropy descriptor: Application to nuclei cell segmentation in confocal microscopy images

    Get PDF
    We propose an unsupervised statistical region based active contour approach integrating an original fractional entropy measure for image segmentation with a particular application to single channel actin tagged fluorescence confocal microscopy image segmentation. Following description of statistical based active contour segmentation and the mathematical definition of the proposed fractional entropy descriptor, we demonstrate comparative segmentation results between the proposed approach and standard Shannon’s entropy on synthetic and natural images. We also show that the proposed unsupervised statistical based approach, integrating the fractional entropy measure, leads to very satisfactory segmentation of the cell nuclei from which shape characterization can be calculated

    Microscopy Cell Segmentation via Adversarial Neural Networks

    Full text link
    We present a novel method for cell segmentation in microscopy images which is inspired by the Generative Adversarial Neural Network (GAN) approach. Our framework is built on a pair of two competitive artificial neural networks, with a unique architecture, termed Rib Cage, which are trained simultaneously and together define a min-max game resulting in an accurate segmentation of a given image. Our approach has two main strengths, similar to the GAN, the method does not require a formulation of a loss function for the optimization process. This allows training on a limited amount of annotated data in a weakly supervised manner. Promising segmentation results on real fluorescent microscopy data are presented. The code is freely available at: https://github.com/arbellea/DeepCellSeg.gitComment: Accepted to IEEE International Symposium on Biomedical Imaging (ISBI) 201

    Automated Segmentation of Cells with IHC Membrane Staining

    Get PDF
    This study presents a fully automated membrane segmentation technique for immunohistochemical tissue images with membrane staining, which is a critical task in computerized immunohistochemistry (IHC). Membrane segmentation is particularly tricky in immunohistochemical tissue images because the cellular membranes are visible only in the stained tracts of the cell, while the unstained tracts are not visible. Our automated method provides accurate segmentation of the cellular membranes in the stained tracts and reconstructs the approximate location of the unstained tracts using nuclear membranes as a spatial reference. Accurate cell-by-cell membrane segmentation allows per cell morphological analysis and quantification of the target membrane proteins that is fundamental in several medical applications such as cancer characterization and classification, personalized therapy design, and for any other applications requiring cell morphology characterization. Experimental results on real datasets from different anatomical locations demonstrate the wide applicability and high accuracy of our approach in the context of IHC analysi

    Methods for Analysing Endothelial Cell Shape and Behaviour in Relation to the Focal Nature of Atherosclerosis

    Get PDF
    The aim of this thesis is to develop automated methods for the analysis of the spatial patterns, and the functional behaviour of endothelial cells, viewed under microscopy, with applications to the understanding of atherosclerosis. Initially, a radial search approach to segmentation was attempted in order to trace the cell and nuclei boundaries using a maximum likelihood algorithm; it was found inadequate to detect the weak cell boundaries present in the available data. A parametric cell shape model was then introduced to fit an equivalent ellipse to the cell boundary by matching phase-invariant orientation fields of the image and a candidate cell shape. This approach succeeded on good quality images, but failed on images with weak cell boundaries. Finally, a support vector machines based method, relying on a rich set of visual features, and a small but high quality training dataset, was found to work well on large numbers of cells even in the presence of strong intensity variations and imaging noise. Using the segmentation results, several standard shear-stress dependent parameters of cell morphology were studied, and evidence for similar behaviour in some cell shape parameters was obtained in in-vivo cells and their nuclei. Nuclear and cell orientations around immature and mature aortas were broadly similar, suggesting that the pattern of flow direction near the wall stayed approximately constant with age. The relation was less strong for the cell and nuclear length-to-width ratios. Two novel shape analysis approaches were attempted to find other properties of cell shape which could be used to annotate or characterise patterns, since a wide variability in cell and nuclear shapes was observed which did not appear to fit the standard parameterisations. Although no firm conclusions can yet be drawn, the work lays the foundation for future studies of cell morphology. To draw inferences about patterns in the functional response of cells to flow, which may play a role in the progression of disease, single-cell analysis was performed using calcium sensitive florescence probes. Calcium transient rates were found to change with flow, but more importantly, local patterns of synchronisation in multi-cellular groups were discernable and appear to change with flow. The patterns suggest a new functional mechanism in flow-mediation of cell-cell calcium signalling
    • 

    corecore