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Abstract

The aim of this thesis is to develop automated methods for the analysis of the

spatial patterns, and the functional behaviour of endothelial cells, viewed under

microscopy, with applications to the understanding of atherosclerosis.

Initially, a radial search approach to segmentation was attempted in order to

trace the cell and nuclei boundaries using a maximum likelihood algorithm; it

was found inadequate to detect the weak cell boundaries present in the available

data. A parametric cell shape model was then introduced to fit an equivalent

ellipse to the cell boundary by matching phase-invariant orientation fields of the

image and a candidate cell shape. This approach succeeded on good quality

images, but failed on images with weak cell boundaries. Finally, a support

vector machines based method, relying on a rich set of visual features, and a

small but high quality training dataset, was found to work well on large numbers

of cells even in the presence of strong intensity variations and imaging noise.

Using the segmentation results, several standard shear-stress dependent pa-

rameters of cell morphology were studied, and evidence for similar behaviour

in some cell shape parameters was obtained in in-vivo cells and their nuclei.

Nuclear and cell orientations around immature and mature aortas were broadly

similar, suggesting that the pattern of flow direction near the wall stayed ap-

proximately constant with age. The relation was less strong for the cell and

nuclear length-to-width ratios.

Two novel shape analysis approaches were attempted to find other properties

of cell shape which could be used to annotate or characterise patterns, since a

wide variability in cell and nuclear shapes was observed which did not appear

to fit the standard parameterisations. Although no firm conclusions can yet be

drawn, the work lays the foundation for future studies of cell morphology.

To draw inferences about patterns in the functional response of cells to flow,
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which may play a role in the progression of disease, single-cell analysis was per-

formed using calcium sensitive florescence probes. Calcium transient rates were

found to change with flow, but more importantly, local patterns of synchronisa-

tion in multi-cellular groups were discernable and appear to change with flow.

The patterns suggest a new functional mechanism in flow-mediation of cell-cell

calcium signalling.
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1. Introduction

1.1. Atherosclerosis and its Importance

Cardiovascular diseases (CVDs), are one of the main causes of premature death

(under the age of 75) in the developing world. Heart disease alone is causing one

in three deaths in both genders. According to the British Hearth Foundation

(BHF) [4], CVDs were estimated to cost the UK alone £26 billion annually. In

healthy arteries, blood flows around the body supplying organs with oxygenated

blood, and thus maintaining a fully functional system. If damage to the inner-

lining of the artery occurs, lipoprotein influx into the wall can cause plaques

which lead to reduction in blood flow due to a blocked or reduced lumen of the

artery, this condition is known as atherosclerosis. Formation of atherosclerosis

is strongly associated with many forms of CVDs.

Atherosclerosis is a Greek word and was used by Marchand in 1904 [102], in

the sense that “athero-sclerosis” means mature plaque. Atheromatous means

lipid-rich soft tissue and sclerotic is hard tissue, which is collagen rich [134].

Atherosclerosis is the major cause of cardiovascular morbidity and mortality,

with underlying pathological processes that may begin during childhood [45,

123, 159]. Despite having been studied since the last century, the exact causes

of atherosclerotic lesion formation are not clear. The process is thought to

involve lipoprotein influx into the wall, across the endothelium, and chronic

inflammation. Over time, lipids accumulate in the inner wall and plaques deve-

lop, resulting in reduction or blockage of blood flow. Eventually, this condition

can lead to heart attack and strokes [46, 113, 147].
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1. Introduction

1.1.1. Human and Animal Lesion Stages and Patterns

The initial stage of atherosclerosis (initial or type I lesion, which can be de-

tected by a microscope using histological staining) starts developing with the

accumulation of large quantities of oxidized low density lipoprotein molecules

(LDL, a fat or cholesterol carrying plasma protein) causing formation of ma-

crophage foam cells [68]. Then, these macrophage foam cells and lipid-laden

smooth muscle cells (SMCs) form fatty-streaks, the second stage of lesion in

atherosclerosis. The third type of lesion is in between early (clinically silent)

and advanced stages, and it contains fatty streaks as well as collections of ex-

tracellular lipid droplets and particles that disrupt the layers of intimal SMCs

[26]. A fourth lesion type is the first stage of a histologically advanced lesion,

which contains dense lipid cores. Lipid cores thicken the arterial wall, and can

be seen by the naked eye. The next level of lesion is usually termed atheroscle-

rosis or atherosclerotic plaque. This new fibrous connective tissues may cause

arteries to become narrower and develop fissures, haematoma, and/or throm-

bus. If the lumen gets smaller, the blood flow gets restricted and can cause

angina (heart pain) [24]. Significant problems arise when a lesion completely

blocks blood flow or develops into a more complex form, which contain hema-

toma, haemorrhage, and thrombotic deposits, or fibrous plaque, that ruptures

[147].

Plaque rupture and endothelial erosion are the two main causes of coronary

thrombosis [68]. As determined by Pasterkamp and Falk [134], the main patho-

logical features indicating a plaque is vulnerable to rupture include atheroma-

tous core size and consistency of the core which depends on temperature and

lipid composition. The thickness, cellularity, and stiffness of the fibrous caps

vary greatly as the cap thinning and reduction in collagen content increases the

vulnerability of a plaque to rupture.

Following [180], four major lesion patterns can be found in human and ani-

mals around the intercostal branch ostia which show the progression of lesions

with age, Figure 1.1(a). Figure 1.1(b) shows changes in lesion patterns around

human intercostal branches with age. In children and in cholesterol-fed im-

mature rabbits, downstream arrow-head lesions develop. The lateral lesion
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forming at the lateral margins of ostia, and spontaneous patterns can be seen

in human younger adults and cholesterol-induced rabbits. Upstream-streak oc-

curs in adult humans and mature cholesterol-fed minipigs, progressing to the

raised-lesion (which usually resembles a volcano) in old age [180].

More than 300 risk factors for CVDs have been identified in the literature

[142]. These are categorised as modifiable and non-modifiable risk factors.

Non-modifiable risk factors include age, gender, family history, genes, and birth

weight. The major modifiable risk factors are: high LDL cholesterol, high blood

pressure, smoking, low HDL cholesterol, physical inactivity, diabetes, obesity,

homocysteine, and blood viscosity [142].

A question was raised by William Arid in [14], as to how these systematic

disturbances get channelled into non-random, geometrically defined patholo-

gical lesions. This is usually explained by local alterations in haemodynamic

forces [14]. It is therefore necessary to understand the effect of these forces on

the localisation of atherosclerotic lesions.

1.2. The Effect of Haemodynamic Forces on the

Localisation of Atherosclerosis

A striking feature of atherosclerosis is its non-uniform distribution within the

arterial system. This is most evident in regions of branching and curvature, and

has therefore been attributed to spatial variation in mechanical forces, parti-

cularly the haemodynamic wall shear stress exerted on the endothelium by the

flow of blood. Throughout life, changes in arterial dimensions occur, even if

a disease is present or not, due to the homeostatic system which maintains a

constant perfusion throughout the body. Haemodynamic forces play an impor-

tant role in vascular pathologies, particularly in relation to the localisation of

atherosclerotic lesions [46].

Haemodynamics is the study of the relationship between pressure, viscous

resistance to flow, and volume flow rate in the cardiovascular system [18]. The

effect of haemodynamic forces may be partially explained as follows: a tangen-

tial force (blood flow) acts on the endothelial surface, resulting in a frictional
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(a) Average lesion size around intercostal
branch ostia (white circle) in young humans.

Blue = Fetus, Green = Neonate, Red = Infant.
Adapted from [155].

(b) The arrowhead, the lateral, upstream streak, and the volcano patterns. Adapted
from [180].

Figure 1.1.: Lesion patterns found in rabbit and human aorta. Blood flow is
from top to bottom.
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force, due to viscous resistance to flow. Therefore, wherever flow occurs, shear

stress exists [47]. Its magnitude can be estimated using Poiseuille’s law as a

frictional force per unit area, which states that shear stress is proportional

to blood flow viscosity, and inversely proportional to the third power of the

internal radius of the vessel [119]. Shear stress can be calculated using:

τs = 4ν
q

r3
(1.1)

Here, ν is fluid viscosity, r is the arterial radius, and q is the flow rate, and

shear stress, τs, is usually measured in Pascals (Pa) or dyne/cm2 (dyne/cm2

= Pa ×10). Thus, a small change in r greatly influences τs [47]. In different

imaging modalities, different ranges of shear stress have been measured [119].

Shear stress has been shown to be the main determinant of vessel calibre and

influences vessel wall remodelling [26].

Haemodynamic factors either directly influence endothelial physiology or in-

directly modify local concentrations of chemicals, thereby influencing associa-

tion between these molecules and their endothelial receptors [46]. Near-wall

blood velocity, on which shear stress depends, cannot be accurately measured

by current techniques. However, endothelial cells (ECs) form a monolayer bet-

ween the blood and arterial wall [46] that is regulated by haemodynamic forces

through flow mediated signal transduction [119]. Of relevance to the present

study, endothelial cells and their nuclei align with the predominant flow direc-

tion and elongate in response to increased shear. Therefore, the cells can be

viewed as “flow sensors” and their shape used to assess patterns of wall shear

stress. For example, studies such as [38, 53], including this thesis are aimed at

understanding why the pattern of disease around aortic branches changes with

age [16, 25].

1.3. Role of the Vessel Wall and Endothelium in

CVDs

In the cardiovascular system, the endothelium is a monolayer of cells located

between blood flow and arterial wall, and has a unique response to fluid forces
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Figure 1.2.: Diagram of endothelium and vessel. Adapted from [74].

[46]. It is considered a sparse and expansive organ system, covering a total

surface area of 7000 m2, due to its vast extension, and has the ability to perform

a complex array of specialized functions [14, 60]. As atherosclerotic lesions are

formed predominantly in the large arteries, the structure of the vessel may

play an important role in the susceptibility to lesions or resistance [24]. Except

capillaries, all blood vessels are made up of three main layers, namely the intima

(inner layer), media (middle layer), and adventitia (outer layer), as shown in

Figure 1.2.

The intima is made up of the endothelial cells monolayer. The changes in the

pathology of intima, such as deposition of fatty substances, calcium, collagen

fibres, cellular waste products and fibrin, may result in the formation of athe-
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rosclerotic plaque. The media or the middle layer of the artery is made up of

smooth muscle cells, and elastin and collagen fibrils. The adventitia is usually

made up of fibroblasts, fibrocytes and thick bundles of collagen fibrils [74].

1.4. Endothelial Cell

This and the next Section 1.5 give a brief overview on endothelial cell and its

heterogeneous response, but the most comprehensive reviews in the literature

are provided by W. C. Aird in [14, 15].

Of approximately 60 trillion endothelial cells in a vascular bed, every cell

may be thought of as a sensing device, which receives an input from the outside

environment. Each cell then undergoes phenotypic changes based on the input

it sensed [14, 15].

Inputs to ECs could be both bio-chemical and bio-mechanical. Input changes

in both time and space, and could be an enormous range of signals, such as

growth factors, pH, oxygen, and hormones. Bio-mechanical signals are pri-

marily shear stress and cyclical strain. ECs transduce these signals via si-

gnalling pathways that begin from the cell surface and end at the level of

post-transcriptional or transcriptional modification. The phenotype or output

of the cell may be a change in cell shape or calcium flux; changes in protein

and/or gene expression; proliferation, migration, or cell death. ECs show he-

terogeneous response in their structures and functions [14], discussed in detail

in Section 1.5. A schematic diagram, adapted from [35], showing mechanical

forces stimulate endothelial cells through the activation of mechanosensors is

shown in Figure 1.3.

1.5. ECs Heterogeneity

Endothelial cell heterogeneity occurs throughout the body. Genotypic and phe-

notypic differences exist between veins and arteries, between vascular beds, and

even between different sites of the aortic valves [14, 60, 160]. Cell to cell varia-

tions between endothelial cells on a small spatial scale have not been studied

extensively. This is rather surprising, as many researchers have measured en-
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Figure 1.3.: Schematic diagram showing mechanical forces to stimulate endo-
thelial cells through the activation of mechanosensors. Adapted
from [35].

dothelial cell heterogeneity in well controlled conditions such as a parallel plate

flow chamber.

Direct communication between endothelial cells occurs mainly through gap

junctions, anchoring junctions and tight junctions. While tight junctions regu-

late permeability, anchoring junctions allow cytoskeleton proteins to interact

from cell to cell and through these junctions endothelial cells may compen-

sate for differences in stretch. Gap-junctions consist of connexin-based pores

that allow direct transfer of proteins between cells. Importantly, tight junction

assembly, anchoring junction formations and connexin-40 expression patterns

are regulated by shear stress. This indicates that interaction between cells is

shear stress dependent and therefore different shear stress levels might induce

different levels of co-ordination between cells in a monolayer, like the ones,

described in Section 1.7.2 of the thesis, in flow chambers.

At a cellular level, cell-cell variability has been attributed recently to stochas-

tic gene expression [37]. These studies have been followed by more extensive

studies, where besides stochastic gene expression differences in pathway capa-

city, differences between protein synthesis capacities were taken into account

as additional explanations for cell-cell variations. Pathway capacity merely
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describes the efficiency of pathways to generate and control transcription fac-

tors, while protein synthesis is due to translation of genes. It should be clear

that cellular differences are considered a stochastic process and will lead to

uncorrelated variation in output measures like gene expression, while cell-cell

communication results in synchronisation of cells and clustering. It is likely

that a combination of both processes occurs in endothelial cell monolayers.

ECs display structural and functional variations at a single point in time.

From a structural perspective, endothelial cells differ in size, shape, thickness,

and nuclear orientation in different locations of the vascular bed [14]. The main

functions of the endothelium are the maintenance of anticoagulant properties,

the physiological control of lumen diameter and vasomotor tone, blood cell

trafficking and haemostatic balance. It is involved in the regulation of vascular

permeability, proliferation, and the pathological consequences associated with

acute inflammation, wound healing, and cardiovascular disorders such as the

focal localisation of atherosclerosis [46].

1.5.1. The Role of Ca+2 Probes in ECs Biology

Calcium dependent pathways play a central role in the biology of endothelial

and smooth muscle cells. Calcium is a major intermediary molecule in some

key signalling pathways including the regulation of several nuclear transcrip-

tion factors, cytoskeleton re-organisation, disruption of intercellular junction

and adhesion proteins, endothelial permeability and nitric oxide synthase ac-

tivity [103]. Early in-vitro experiments using a flow chamber revealed a flow

dependent increase in calcium in endothelial cells, where this increase was rela-

tive to the magnitude of the applied shear stress [187, 188]. This response has

been identified to begin in the caveolar area and to propagate through the cell

membrane as a calcium wave. This suggests a possible localisation of one of the

mechanosensory receptors in the caveolae. In addition to the intracellular wave,

intercellular waves of calcium concentration have also been identified [85].

Several studies reported single-cell asynchronous calcium oscillations in res-

ponse to flow [152]. The number of cells oscillating as well as the magnitude and

the frequency of oscillations was found to rise as the level of shear increased.
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Hemlinger, [71, 72], reported also that pulsatile flow induced considerably more

single cell calcium oscillations than steady flow although the average calcium

level was not changed.

Propagation of calcium waves has been proposed to occur through gap junc-

tions, through the release of ATP and paracrine interaction. In the present

research, it is argued that if ATP plays a role, the presence of transport of ATP

by fluid flow would change the synchronisation of calcium waves in the presence

of flow as compared to the absence of flow. However, if intracellular movement

through gap junctions appeared the dominant process, then flow would not

have an effect on calcium synchronisation. For calcium synchronisation, a new

analysis method is developed which is discussed in detail in Chapter 6.

The above story describes the biological motivation behind the study of en-

dothelial cells and their role in the formation of atherosclerosis lesions leading

to CVDs. This forms the background to the research presented in the next

chapters. It also emphasises the importance of accurate and automated analy-

sis techniques in order to understand the disease patterns more reliably, quickly

and accurately.

In order to understand spatial patterns of endothelial cells and analyse au-

tomatically, the first step is always to acquire cell data and then develop the

algorithms for automated analysis. Image data will be described in Section 1.7

was provided by the Physiological Flow research group, Department of Bioengi-

neering, Imperial College London. More specifically, the rabbit data, described

in Section 1.7.1, is provided by Dr Andrew A. Bond and the in-vitro data,

described in Section 1.7.2, is provided by Dr Nicolas Foin. The author has de-

veloped different algorithms for automated analysis based on code developed by

herself and standard and modified libraries of Matlab, unless otherwise stated.

1.6. Different Types of Staining Techniques

The range of physical principles underlying the image contrast mechanisms

of different microscopy procedures is large, and still growing. Silver nitrate

staining that dates back to Ramón y Cajal and Camillo Golgi who used it to

delineate dendritic structure, relies on the reduction of the nitrates to metallic
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(colloidal) silver which appears black. Hematoxylin and eosin (H&E stain) is

commonly used in light-microscopy for medical diagnostic purposes. Under

visible light illumination, hematoxylin imparts a blue appearance to cell nuclei

due to its affinity with nucleic acids; eosin, on the other hand tends to lend a

pink appearance to cytoplasm. Thus, the nature of the contrast mechanism of

H&E staining is an absorption-based colour shift. Other contrast systems may

rely on ratios of intensities. Fluorescence-based contrast mechanisms often rely

on labelling agents, or fluorophores, which absorb visible light typically emitting

at a specific wavelength. For example, fluorescein angiography is a method that

can be used to visualise very small blood vessels in the retina. This is used as

a diagnostic technique in ophthalmology, where sodium fluorescein is injected

into the patient and one or more red-free (filtered) images are acquired. In

cell microscopy, it is increasingly common to use fluorescent proteins for the

purpose of labelling and contrast enhancement because of their higher specificity

and lower phototoxicity. For example, Green Fluorescent Protein (GFP), a

protein that exhibits bright-green fluorescence when exposed to blue light, can

be expressed by naturally occurring or genetically modified cellular organisms

and is widely used in live-cell studies [169]. Two-photon microscopy, whereby

pulsed lasers generate non-linear effects in tissue leading to fluorescence at

specific wavelengths, are gaining wide usage in neuroscience as they permit

confocal in vivo imaging of cortical tissue.

In the variety of techniques outlined above, the contrast mechanisms can be

very different because the physical processes underlying the formation of the

image can vary widely. For example in two-photon imaging, a photomultiplier

tube (PMT) or a charge-coupled device (CCD) may be used to capture the

image, whereas in GFP based imaging standard video microscope techniques

may be employed. This variety of imaging systems and contrast mechanisms

means that the appearance of structures can vary dramatically across studies.

The structures such as statistics of object-background pixels, including correla-

tion statistics between neighbouring pixels can indeed vary quite a lot. A very

simple example might be in Micro-CT imagery where the existence of partial

volume effects in cone-beam acquisition could increase the spatial correlation

between pixels of an image in a structure-dependent way and the severity of
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this effect would be dependent on the reconstruction algorithms. The nature

of spatial correlations would be quite different in a confocal microscopy system

in which out-of-plane structures could be a source of structural noise.

The variety of contrast mechanisms suggest that approaches which are based

on training from hand-labelled ground-truth images might be a more efficient

way of approaching segmentation problems, particularly where large data sets

must be analysed.

1.7. Introduction to the Datasets used in this Study

1.7.1. In-vivo ECs and ECn Datasets1

Endothelial monolayers were stripped from the descending thoracic aortas of

rabbits by a modified Häutchen procedure. In principle this involves pressing

the endothelial surface of the opened aorta against a double-sided adhesive tape

adhered to the surface of a microscope slide. Descending thoracic aortas of im-

mature (6-7 weeks) and mature (> 6 months) male New Zealand White rabbits

(Interfauna strain; Harlan UK) were fixed in situ at physiological pressure. The

aortas were dehydrated in ethanol and cut perpendicular to their longitudinal

axis to give rings containing pairs of intercostal branches. Each ring was cut

longitudinally along its ventral aspect and pressed (endothelial surface down)

on to a strip of double-sided adhesive tape adhered to a microscope slide. The

tissue was air dried and immersed in glycerol before the intima and media were

peeled away, leaving the endothelium attached to the tape. Nuclei were stained

with propidium iodide (PI) after treatment with RNase. Aortas were obtained

from 3 male New Zealand White rabbits (one mature and two immature) that

had been perfused in situ with a silver nitrate solution2. A montage of images

representing the area around the origin of an intercostal artery from the tho-

racic aorta was obtained through a Zeiss Axioplan epifluorescence microscope

1This work was done by Dr Andrew R. Bond of Department of Bioengineering, Imperial
College London, London, United Kingdom.

2All animal procedures complied with the Animal (Scientific Procedures) Act 1986 and
were approved by the Local Ethical Review Panel of the University of Reading or Imperial
College London.
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Figure 1.4.: Original sample pair of ECs and ECn images with a size of
661×1101 pixels, acquired through the method described in Section
1.7.1.
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[16, 24]. Images of thoracic aorta of montage images were then subdivided as

shown in Figure 1 in [16]. One pair endothelial cells (ECs) and endothelial

nuclei (ECn) images of the sample images (with a size of 661 × 1101 pixels)

taken from one of the montages is shown in Figure 1.4. Detailed information

on data acquisition is given in [25].

1.7.2. In-vitro ECs Datasets3

Cell Culture

Human pulmonary artery endothelial cells (HPAEC) obtained from Clonetics

(San Diego, CA) were grown on a 1% gelatin-coated tissue culture flask in

M199 supplemented with 15% FBS, 2 mmol/l L-glutamine (GIBCO-BRL), 50

g/ml heparin and 30 g/ml EC growth factor [3]. The cells used in the present

experiments were from passages 3 to 6. HPAEC were seeded at a 50 % cell

density in IBIDI luer IV slides as described in [5]. After two days of culture

the cells formed a confluent monolayer and were ready for experimentation.

Dye Loading

The calcium dye loading was performed as described by [188, 187]. In brief, the

cells were washed three times with Serum free M199 and then incubated at 37

deg in 5% CO2 for 40 min with 5 umol/L indo-1-AM [7] and 0.04 % pluoronic

F127 dispersing agent (Molecular Probes, Invitrogen). The cells were then wa-

shed and incubated with complete medium for 10 min. Next, the slides were

rinsed 3 times with Phosphate-buffered saline (PBS) and placed on the micro-

scope stage. In the presence of calcium, the indo-1 dye shifts its fluorescence

emission peak from 480 to 405 nm. This process is reversible and variations

in calcium concentration can be retrieved by calculating the ratio of intensity

between the two wavelengths.

3This work was done by Dr Nicolas Foin of Department of Bioengineering, Imperial College
London, London, United Kingdom.

14



1. Introduction

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Figure 1.5.: Red and green indo-1 fluorescent images of original samples.
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Shear Stress

In the flow experiment PBS was used to perfuse the chamber. A reservoir of

PBS was maintained on a hot plate at 37 degrees. The flow was supplied by

a peristaltic pump (Atto instruments SJ-1220, Tokyo) and the perfusion rate

was determined to produce the shear stress required by the slide manufacturer

specification [5].

Microscopy

Fluorescent images from Indo-1 were obtained with a confocal laser microscope

equipped with an UV argon ion laser (MRC-1000 UV, Bio-Rad) as previously

described in [187]. A laser with a 351-nm wavelength excited cells through a

× 40 objective. The light was separated into 405 and 480nm wavelengths by a

beam splitter before reaching the photomultipliers. One sample pair of red and

green fluorescent images is presented in Figure 1.5.

1.8. Related Issues

In this thesis, we will address the problems related to automated analysis of

in-vivo cell data. Among these, one was the detection of weak cell boundaries

with low-contrast and low signal-noise ratios between cell boundaries and the

background. Some of this thesis work was aimed at developing low-level vision

algorithms to address the segmentation problem. In the data given, some cell

boundaries were so thin, weak and noisy that they were hard to discern by eye.

Weak cell boundaries can be described as those which have very low contrast or

signal to noise ratio (SNR and CNR). A demonstration of the SNR and CNR

is given in Chapter 3.

In the ECn data, there was significant intensity variation among nuclei. The

problems which needed to be addressed in analysing these images of nuclei

include proper selection of the intensity threshold. Another problem was that

some nuclei overlapped with multiple other nuclei. A solution for overlapped

nuclei was to discard these and work only on isolated cells and nuclei in the

images. This was sufficient to enable further analysis and to supply data in the
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quantities needed.

When performing shape analysis, an interesting challenge that was faced was

the question of the numbers of identifiable patterns, or modes, of cell shapes.

In in-vitro data analysis, the biggest issue was to measure the cell move-

ment and change in intensity over time in each cell. There were some cells

which overlapped in the given data. Those were also discarded to do single-cell

analysis.

1.8.1. Challenges and the Problem of Analysing Large Datasets

With the introduction of computerised systems in hospitals of the developing

world for diagnosis and pathology, an enormous amount of medical image data

is produced each year. With the increase in the size and complexity of the

datasets, it is important and necessary to develop robust techniques to analyse,

evaluate and interpret the information contained in these rich datasets. Their

large size poses different challenges from the methods developed for small or

moderate sized datasets.

Automated analysis is needed for modeling and quantitative analysis of these

large data sets, simulations, and sometimes real time interventions, as manual

assessment of medical images is a tedious, error prone task that often requires

an expert for the analysis and to give an opinion.
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1.9. Project and Thesis Aims

The main contribution of this thesis is to develop algorithms to analyse the

spatial patterns of endothelial cells, and the functional behaviour of endothelial

cells under different flow conditions, in order to understand the patterns or

formation of atherosclerotic lesions.

During the course of this research, two different projects were tackled re-

garding understanding endothelial cell behaviuor and analysis. The two main

sub-projects are:

First

To build an automated analysis system for microscopy cell images to gather

information on large numbers of cells automatically. Also, to study changes

with age in the pattern of wall-shear stress by examining shear-dependent mor-

phological features of ECs and ECn. In order to achieve this, several steps are

needed, including segmentation of the cell nuclei and boundaries, associating

cells and their respective nuclei, and building a shape analysis technique to

identify patterns in cell shape in different animals or within different regions of

the blood vessel.

Second

To analyse in-vitro data acquired from video sequences of fluorescent micro-

scopy of cells under flow conditions. The main objective here is to draw infe-

rences about pattern formation of cell behaviour, and the functional behaviour

of cells during flow conditions. Cell-cell heterogeneity, as discussed in Section

1.5, at cellular-level has not been studied extensively, though it may play a role

in progression of disease. In order to analyse cell behaviour, single-cell probes

are needed, and in this thesis a Ca2+ probe, as discussed in Section 1.5.1, res-

ponses to the flow are used for the analysis to get these answers: How do cells

interact with each other (synchronicity)? Are there groups among cells? Is

there any sentinel cells, which initiates internal cell signalling and communica-

tion processes?
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1.10. Thesis Structure

Chapter 2 reviews the image segmentation techniques that are relevant to the

cells and nuclei segmentation. Some classification techniques are also presented

which are applied to cell and nuclear data.

Chapter 3 presents different methods explored in this research for segmen-

tation of EC nuclei (ECn) and EC boundaries (ECs). As the detection of the

nucleus was an easier task than the cell itself, due to higher contrast and signal

to noise ratios, different proposed segmentation algorithms are presented for

ECn and more specifically for ECs boundaries.

Chapter 4 gives a comparative analysis between stress effected morphological

parameters of EC boundaries and EC nuclei in order to understand the age-

related changes in patterns in rabbit data.

In Chapter 5, shape analysis techniques developed for EC boundaries and

nuclei are presented to detect and classify morphological and variational modes

of the shapes in EC cells and nuclei.

Chapter 6 describes the EC behavioural analysis in controlled flow and some

techniques developed during this thesis work to detect the heterogeneity among

cells, more specifically the formation of intricate patterns in Ca2+ probes among

themselves and their neighbourhood.

Chapter 7 presents the main findings, outcomes achieved and conclusions

made from this research, with a critical overview of the advantages and limita-

tion of the methods developed. Some suggestions for improvements upon the

current work are provided in the Future Work section.
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2. Review of Cell Segmentation and

Classification Techniques

2.1. Introduction

Automatic analysis of cells and their nuclei may require segmentation, registra-

tion, labelling, and classification tasks to be performed [158]. First, segmenta-

tion is performed to isolate the object of interest (cells and nuclei in this case).

The purpose of labelling and classification is to extract useful information about

isolated objects and assign them to different classes. This Chapter gives a brief

overview of relevant techniques.

2.2. Cell Segmentation

Segmentation techniques for automated analysis can be broadly categorised into

feature based, edge-based, region-based, and model-based techniques.

In this section, a brief survey of the latest cell and nuclei detection and seg-

mentation techniques is given. For detailed image segmentation techniques, the

author recommends [30, 58, 59, 69, 81, 117, 138, 141], as review papers.

Segmentation of cell regions is an important step in automated analysis of

medical images. It is always difficult for a machine to partition images into

regions without prior information. In broader terms, there is no universal me-

thod or general algorithm to segment an image for all data types and contrast

mechanisms. One of the reasons for this is that a 2-D image can be represen-

ted in an infinite number of possible ways. Another reason, as described by

Palvidis in [77], is that an image segmentation problem involves psychophysical

perception of an image and might not be susceptible to any analytical treat-
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2. Review of Cell Segmentation and Classification Techniques

ment. Algorithms often use heuristics and a priori knowledge about the image

to be segmented.

Segmentation involves partitioning an image into its constituent parts or

regions so that the union of these regions recreates the complete image, f(x, y),

as described below in Equation (2.1), where Ri is the ith region:

f(x, y) =
∪

i=1:n

Ri (2.1)

In general, the regions in which the image is to be segmented must have some

common criteria or features such as grey level, variance, shape etc. There are

some conditions for the above equation to be satisfied as described in [59]: 1)

the segmentation step should not terminate until all pixels in an image have

been processed, 2) each region must be contiguous, and last but not least, 3)

regions should meet some similarity criterion.

There are two main reasons for the complexity of the image segmentation

task in biological and medical image data. Firstly, biological structures possess

a degree of natural variability that is not easily captured by simple models of

deformation: the natural modes of variation are surprisingly broad, even if one

excludes pathological conditions. In contrast, in man-made object recognition

projective models of view transformation have proven very powerful when used

either for view invariance, or for inferring structure from tilt. On the other hand,

once biological structure labelling has been achieved, and pixel locations along a

two or three dimensional object have been determined, modes of variation have

successfully been analysed to study some aspects of biological variability (see,

for example, [101]). Such studies have also had applications in face processing,

in film post-production and also in forensic analysis, where the effects of ageing,

for example, may be predicted through the principal components of variation

over time. However, this author is not aware of widespread application in

studying biological shapes acquired through microscopy.

The second reason pertains to the variety of contrast mechanisms found in

biological imaging. In tissue or biological fluid microscopy, the contrast of a

sample can be dramatically altered by the choice of staining. Creating algo-

rithms that are robust to these changes requires tolerance not only to scale and
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slice orientation changes (for tissue), but also to the property of texture, which

is highly variable in biological data, even within a given staining.

Much of the research in cell image analysis is done on the nuclei. There are

mainly two reasons for this: (a) most of the diagnostic information is associated

with the nucleus [195], and (b) segmentation of the nucleus is much easier than

of the cell itself. The contrast between cytoplasm and extracellular space can

become very weak, even undetectable, such as, in case of this study, for finding

the ECs boundaries. Due to complexity of the images, even detection of the

nucleus is not always trivial [196].

Segmentation techniques in general, and cell segmentation techniques in par-

ticular, are often divided into the following types which are reviewed in detail

in the next sections:

1. Feature-based techniques

2. Edge-based techniques

3. Region-based techniques and

4. Model-based techniques

2.2.1. Feature-based Techniques

Thresholding

Researchers have developed various techniques to overcome difficulties of cell

and nucleus segmentation. The simplest method for isolation of cells and nu-

clei from tissue images is thresholding [138]. Feature-based segmentation is a

special multi-dimensional case of thresholding. The basic idea of feature-space

segmentation techniques is to partition a d-dimensional feature space, where

d is the number of dimensions of feature space, computed for each pixel to be

segmented. A feature vector is a d-dimensional vector of features, usually sta-

tistical measurements that describe some properties of each pixel. The number

of feature vectors is usually equal to the number of pixels in the image. Each

pixel in the original image is mapped to a location in feature space based on

its local properties. Once the feature space has been generated from all pixels
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in the image, it is then partitioned. Then, the feature space is mapped back to

the original image space to produce the segmented image.

Even though, there is no set of rules defined for selecting the features for any

application [36, 135] in general each feature should be:

1. Unique and parsimonious (implies little or no redundancy),

2. Scaling, rotation and translation invariant,

3. A complete, congruent, and compact set.

Some other properties could be:

1. Ability to reconstruct the image from its descriptors,

2. Physical interpretation: features should relate to some physical proper-

ties,

3. Features should be gathered automatically to avoid or reduce human bias

or error.

Figure 2.1 (a) shows an example of a partitioned 2-d feature space with two

apparent classes. A more detailed description on feature selection is given in

[129]. Once the features are selected, the next step is feature normalisation.

In a normalisation stage, these features are transformed in such a way that all

should become dimensionless. The simplistic step for normalisation is given in

Equation (2.2):

N(i,d) =
F(i,d)− µd

σd
, ∀d, i (2.2)

Where µd and σd are the population mean and standard deviation of the dth

feature and ith element of input space, F is the feature space and N is the

normalised feature space with a zero mean and a unit variance. This reduces

the arbitrary range of some dimensions of the feature vector. Feature domain

segmentation can be either supervised or unsupervised. The detailed review of

these techniques is presented in Section 2.4.
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Thresholding is a 1-d feature-based (that feature usually being greyscale)

segmentation technique. For greyscale images, thresholding is a way to distin-

guish pixels of lower intensity from higher intensity values. The thresholding

operation can be expressed as:

g(x, y) =

{
1 if f(x, y) ≥ t, ∀(x, y)
0 otherwise

(2.3)

where g(x, y) represents a binary image of the greyscale image f(x, y) and t

is the threshold value.

In thresholding, the assumption is made that object and background pixels

in the image can be distinguished by their grey-level values. For example, in

an image of a tissue section, cells can be segmented from their background

with a grey-level threshold, t, by analyzing dominant values such as the gray

level of the cells and background intensities carefully. Figure 2.1 (b) shows

the histogram of a scalar image that possesses three apparent classes, corres-

ponding to the three modes. Thresholding techniques are relatively useful in

microscopy but can be improved [131]; the main problem is to determine an ap-

propriate threshold. In practice, it is impossible to find a single threshold level

to suit a whole tissue section image, therefore additional information is needed.

The problem can be avoided by the use of local thresholds, as described by

Niblack [128]. In early stage of this thesis, a modified version of Niblack’s me-

thod was presented in [83] to automatic cell boundary detection. This method,

described in detailed in Section 3.2, is limited by the problem of accurately

finding a binary map representing the locations of image cell boundaries. In

[148], Sahoo et al. divided thresholding techniques into point dependent glo-

bal, region dependent global, local, and multi thresholding. In [178], an image

analysis program was applied to count individual cells in tumours labelled for

proliferation markers, by an algorithm which selected thresholds automatically.

Similarly, the grading of bladder tumours is presented in [124], based on local

thresholding. These methods were developed for the segmentation of nuclei

and background. In the tissue sections, automated detection of cells can be

found in [116, 133]. A watershed algorithm is applied in [174] to determine the

contours of cells. In [27], cytoplasm was separated from background in cervical
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Figure 2.1.: (a). Feature space method (b). histogram method and (c). region
growing. Adapted from [138].

cell images by varying the threshold using the stability of the perimeter of the

cell. With the determination of a threshold, cytoplasm and nucleus were clus-

tered into cytoplasm, folded cytoplasm and nucleus. Surveys on thresholding

techniques are presented in [148, 150].

Mathematical morphology approaches combined with other segmentation

techniques also have been widely used to isolate cells and nuclei, and find mor-

phological features, such as granulometric moments in [162]. Another study

[163], applied morphological operations followed by extraction of nucleocyto-

plasmic ratio and hyperchromasia features to segment the nuclei.

2.2.2. Edge-based Techniques

Edge detection is a low-level technique applied to images in order to detect

discontinuities or sharp changes in image brightness. Segmentation techniques

based on edges or gradients use the discontinuity of image intensities or texture

at the boundary between objects, but these methods are sensitive to noise

and do not work well on broken contours [95]. The performance of basic edge

detectors is reviewed in [167].

In [91], Kaspersen et al. introduce a continuous wavelet transform method

for detection of edges in ultrasound images. An example of cell detection using

edges may be found in [196]. Edges can also be detected in histological images

by applying the Laplacian operator, and Laplacian of Gaussian (LoG) opera-

tors, such as in [12, 126]. In [164], a variation of the Hough transform for
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ellipses has been proposed for the determination of the location of the nuclei.

The result obtained with edge detection is usually a set of edges or sometimes

broken edges plus artefacts or noise. Additional processing is usually needed to

reconstruct the edges or borders of the regions. The Canny edge detector [29]

along with morphological operations is another useful method, which I have

also employed for segmentation of ECn, to be discussed later in Chapter 3. Va-

rious methods have been developed to perform edge linking, such as sequential

edge linking combined with threshold in [179] to extract the contour of a region

of interest in a mammogram while in [153] an application is presented to fill in

the gaps between edge segments.

2.2.3. Region-based Techniques

Region-based algorithms use region growing, splitting and merging of regions

with different homogeneous intensities or properties being examined to partition

the areas of interest. These algorithms are more time consuming and work best

on images which are illuminated evenly [182]. Further applications of region

growing can be found in [107, 170]. These algorithms require a seed point for

the start which is usually entered manually, as shown in Figure 2.1 (c), in which

region growing has been used to isolate one of the structures. These algorithms

are mostly used with other segmentation techniques.

Low-level segmentation techniques discussed so far mostly require a conside-

rable amount of user guidance, and automating these techniques is very difficult

when the shapes are complex or variable. Noise and other image artefacts can

result in incorrect regions and boundaries using these methods [58, 59, 138].

Deformable model based segmentation, discussed in the next section, can over-

come many of these limitations.

2.2.4. Deformable Models

Deformable models, also known as active contour models or snakes, are in-

troduced in [92]. Snakes, for example are curves defined within an image do-

main that can move under the influence of forces derived from the image data

[184]. Snakes have been used in many medical imaging applications such as
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Figure 2.2.: Segmentation of bladder and prostate using deformable model.
Adapted from [41].

[31, 33, 54, 88, 106]. An application of snakes for the detection of the bounda-

ries of nerve cells can be found in [185]. Other examples of cell detection by

snakes can be found in [112, 136, 165, 186]. Figure 2.2 shows the segmentation

of bladder and prostate using deformable model [41]. The difficulties encounte-

red with snakes, especially in irregular shapes or noisy images are: initialization

of the snake, which must begin close to the candidate boundary so that it can

converge correctly and requires the initial shape of the contour to be defined,

difficulty in dealing with concave boundaries, and susceptibility to noise which

can cause errors when the boundaries are not smooth. Due to the iterative

nature of active contour methods, they may be slow and computationally ex-

pensive. Some of the researchers have tried to address the snake initialisation

problem, such as in [104, 143]. A candidate shape model developed for fitting

ellipses on to cell boundaries will be presented in Section 3.5. This model tries

to find the boundaries of cells with an elliptical hypothetical orientation field

and the candidate cell orientation field derived from the image. A critique of

this model vis-a-vis other approaches will be given in Chapter 3.

2.2.5. Statistical Models

To overcome difficulties encountered by the above discussed segmentation tech-

niques, another possible way is to use statistical models. An approach using 2-D

Markov random field in polar coordinates with the use of a statistical Bayesian

framework for local smoothness of image data is proposed in [34] to automa-

tically detect the boundary of the left ventricle from echocardiographic image.

H. Knutsson et al. in [97], introduced a new method of segmentation and regis-
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tration with the use of a Morphon. The Morphon approach allows an intuitive

interface for specifying prior information. They show its performance on a 2-D

ultrasound heart image sequence with the aim of segmenting the heart wall. Wu

et al. [181] selected a different approach for cell segmentation, by initializing a

parametric image to approximate the cell image. Statistical models have been

proposed to track the cell and boundary information such as in [195].

2.2.6. Other Methods

Several other complex and computationally intensive schemes have been deve-

loped to extract various types of boundary information, such as wavelet trans-

forms [91]. Methods for cell nuclei microscopy data analysis include maximum

likelihood methods of radial search [126]. A modified version of this technique

was initially tried on our ECn and ECs images, but was found to be unsuitable,

for reasons that will be discussed in Chapter 3.

2.3. Segmentation Performance or Validation

Despite the fact that much research is done in this field, it is very difficult

to compare any two segmentation algorithms, unless they are implemented on

the same data, as many of these programs are optimised for a specific problem

and for a specific imaging modality. Validation is necessary to quantify the

performance of a segmentation method. The most straightforward approach

to validate a segmentation technique is to compare the automated segmen-

tation with a manually obtained ground-truth [183]. This approach does not

guarantee a perfect truth model, due to human observer’s flawed performance.

If a ground-truth is available, the quantification of accuracy or precision is

application-dependent, it may be based on region information or number of

correctly classified or misclassified pixels [138]. Segmentation software for me-

dical images is usually evaluated by comparing its results with a segmentation

done by experts. An algorithm can also be evaluated by analysis of synthetic

or physical phantom images [192]. There are several databases available for

different imaging modalities with their respective manually identified (label-
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led) counterparts, which can be used to evaluate or check the performance of

segmentation algorithms. These include the MNI [1], SBIA [2], IBSR [6] and

STARE [76] databases. Some reviews on the evaluation of image segmentation

techniques are presented in [191, 192, 193].

2.4. Classification of Cells in Image Analysis

Due to the complexity of nature, classification of objects in medical images is as

difficult as the segmentation, described earlier in this chapter. Solutions may

be sought using different approaches of artificial neural networks and machine

learning algorithms. These techniques can also be applied for detecting or

segmenting the objects of interest. We will present in Chapter 3, a method of

segmenting cell boundaries from the background implemented with a machine

learning algorithm, Support Vector Machines (SVMs), discussed in detail later

in this section.

Classification is a decision making process, and refers to the task of assigning

a number of classes to a d-dimensional feature space. Let f, be a feature vector

in a feature space, F, then the objective is to assign F into one of n classes,

represented as Θ = {θ1, θ2, · · · , θn}. Mathematically, it can be formulated as:

F
Φ7−→ Θ, F ∈ Rd

This mapping, Φ, is usually done with a mathematical function having some

adjustable parameters. These are typically determined using information pro-

vided by a set of data for which the expected mapping output is known. Clas-

sification techniques can be divided into supervised and unsupervised learning.

2.4.1. Supervised Classification

The type of classification in which a partitioning of a feature space generated

from an image is done with its ground-truth or labels or known classes, is also

known as supervised classification in machine learning. Classifiers are called

supervised methods because they require training data before they can attempt

automatic classification of new unseen data. There are a number of ways in

which training data can be applied in classifiers.
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Figure 2.3.: General ANN model. Adapted from [8].

Artificial Neural Networks

Artificial neural networks (ANNs), are generally non-linear systems and are

motivated by biological neural networks [86]. Neurons are their basic building

blocks. A neuron takes a number of inputs with a weight assigned to each input

to generate a single weighted output. A general ANN model, adapted from [8],

is presented in Figure 2.3. One of the main advantages of ANNs over other

classification techniques is that they can approximate any function through a

training process [158]. ANNs have been used extensively over the past four

decades for both classification and clustering [86].

Some ANN applications have been reported in cytological and histological

analysis. For example, ANNs have been used for the segmentation of biological

tissue sections for tumour grading in histological images in [89]. Different ap-

proaches for counting cells in tissue sections using ANNs is given in [156, 82].

ANNs can be used as a classifier such as in [67], as well as a clustering method

such as [20, 144, 145] or as a deformable model [173].

Support Vector Machines (SVMs)

Conventional statistical learning methods tend to find functions to map high

dimensional feature vectors to their respective classes, therefore, empirical risk
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minimisation (ERM) of training examples does not imply good generalisation to

novel test data. However, SVM learning is based on structural risk minimisation

(SRM), which addresses the problem of ERM, by minimising a generalisation

bound error (a sum of learning error rate made on novel test or unseen data).

The idea of SVMs, a class of kernel-based machine learning algorithms, being

used for classification and regression was proposed by Vapnik et al. in [171]. For

generalised error, Vapnik-Chervonenkis (VC) dimension has been mostly used

as a quantitative measure. SRM can select minimum error on the unseen data

by minimising empirical error of a function on training examples and selecting

a function with a low VC dimension. This is the reason SVM has a potential to

perform well on unseen data; and has outperformed many competing methods

[51].

The idea of VC dimension can be represented by using hyperplane classifiers,

so the main objective of SVM classifiers is to determine a decision boundary or

a hyperplane between classes of data observed in a high-dimensional input space

i.e. multivariate data. As shown in Figure 2.4, margin m is the distance from

the hyperplane to the closest data point for two classes of input data. The input

space or data for the SVM to classify could be either linearly or non-linearly

separable. A brief description of SVMs is presented here, and the most of the

following formulations are adapted from [151], unless otherwise cited whenever

needed.

Separable Data

The main component of an SVM is known as the maximal margin classifier,

and it works only for data which are linearly separable in the feature space.

Let,
[
(x1, y1), (x2, y2), . . . , (xl, yl)

]
⊆ (X × Y ), represents a given l training

examples set. X ⊆ Rd denote the vectors lying in the input space, assumed

Euclidean, Y ⊆ {+1,−1} is the label data for two classes, xl are the training

examples and yl are the labels.

Then, the goal of the SVM is to define a functional margin of the training set

with respect to a maximal margin hyperplane to separate all the data instances
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Figure 2.4.: A 2-class SVM maximal margin hyperplane in a 2-D feature space,
with its support vectors filled o and �. Adapted from [42].

[151]:

wT · xi + b ≥ +1 ∀yi = +1

wT · xi + b ≤ −1 ∀yi = −1, ∀i, i = 1, · · · , l (2.4)

where w is the hyperplane coefficient vector and b is the bias term [98].

Mathematically, this hyperplane can be found by minimising the cost function:

1

2

(
wT ·w

)
=

||w||2

2
(2.5)

subject to Equation (2.4), and therefore to maximise m, the distance between

2 classes.

Non-separable Data

Of course, data may not always be linearly separable as in Figure 2.4. To

account for this, non-negative slack variables, denoted by ξi, can be introduced,

leading to
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wT · xi + b ≥ +1− ξi, ∀yi = +1

wT · xi + b ≤ −1 + ξi, ∀yi = −1

ξi ≥ 0, ∀i i = 1, 2, . . . , l (2.6)

where, the ξi must be greater than 0 and Σiξ
i is an upper bound on the

training errors. Hence, the objective function to be minimised becomes

(
||w||2

2
+ C

(
Σiξ

i
)α)

, α > 0, (2.7)

The cost function in Equation (2.7) constitutes the so-called structural risk,

which balances the empirical risk (i.e., the training errors). C, usually chosen

by the user, is the penalty to errors and controls trade-off [51].

Kernel Technique

In place of using non-linear curves, one may map the data into higher dimen-

sional feature space by Φ(x) : Rd 7→ H, and then find a linear solution in H.

That is, if H is a Hilbert space, there must be a kernel function in the original

space, Rd, that describes the inner product in H [171]. This is the basic idea of

kernel functions, K(x, z) = ΦT (x) · Φ(z):

K(Si, xi) = ΦT (Si) · Φ(xi) (2.8)

There are several transformation functions, some typically available kernels

are given in Table (2.1), here, γ determines the area of influence Si has over

the data space, S is the number of support vectors, δ, and p are polynomial

co-efficient. A more detailed mathematical description of SVMs is given in

[151].

Some applications of the SVMs as a classifier in microscopy images which

have been reported previously are presented here. For example, in [110], Ge-

novesio et al. used SVMs at pixel level to segment and detect tuberculosis. In
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Table 2.1.: List of different kernels typically applied in SVMs.

Kernel K(x, z) = ΦT (x) · Φ(z)
Radial Basis Functions(RBF) exp(−(xi − Si)2 · (−γ))

Sigmoid tanh(γ(xi · Si) + δ)

Polynomial (γ(xi · Si) + δ)p

Linear (xi · Si)

[63], the grading of tumours by SVMs was reported to perform well on both low

and high-grade tumours, able to classify at the rate of 87.5% and 83.8% respec-

tively. In [109], Lee et al. segmented different areas of brain tumour with the

help of 6 classifiers, among them one being was the SVM. Yong Fan et al. [52]

showed that brain images of normal subjects and schizophrenic patients could

be discriminated with high accuracy (91.8%) with the help of the SVM. Issam

et al. [51] applied an SVM approach to the automatic detection of microcalcifi-

cation clusters in digital mammograms. Automatic classification of liver disease

using SVMs was presented in [108], for differentiating between hepatoma, cysts

and cavernous haemangioma and also between normal tissues, in CT images.

Kalatzis, et al. in [90] have used SVM as a classifier to distinguish between

diabetic and non-diabetic brain image samples with 99.1% reported accuracy.

For automated characterisation of skin lesion images (malignant melanoma and

dysplastic naevus), Ilias et al. in [84] reported 94.1 % performance accuracy of

SVM. Hua et al. [79], applied an SVM to predict the subcellular localization

of proteins from their amino acid compositions. Similar to this study, in [80],

Murphy et al. successfully classified sub-cellular patterns in multi-cell flores-

cence images. In [168], Tscherepanow et al. use an SVM as a classification tool

to distinguish cells from non-cells automatically. In [100], it was reported that

SVM and a Random Forest Method achieved the best accuracy in cell classi-

fication and feature reduction. In [70], N. Harder et al. trained SVM for the

classification of different phases of nuclei. Wang et al. [177] proposed a new

online Support Vector classifier to classify cell nuclei into different phases.

Pierna [139] proposed a system which analysed many samples using either

partial least squares (PLS), an ANN or SVM classification models in an effort

to improve the enforcement of legislation banning the use of meat and bone
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meal (MBM) in compound animal feeds. The methodology combined imaging

spectroscopy and chemometrics. While all three chemometric classification al-

gorithms performed admirably in analysing the training data, and when analy-

sing the data of spectral types which were represented within the training data

set (vegetal and MBM particles), the ANN and SVM models showed superiority

over PLS in generalisation ability when unmodelled data were encountered (i.e.

background pixels). Although in some applications, such as that of Pierna, the

performance of the SVM is not necessarily better than a well-trained ANN, it

is considered that the dangers of overtraining a learning system are reduced

in SVMs, partly because of the nature of the maximal margin as a criteria for

learning to classify patterns. A comparison of segmentation results for vascu-

lar EC boundaries between different thresholding techniques, with the results

obtained from a model developed for using SVMs, is presented in Chapter 3.

2.4.2. Unsupervised Classification

Cluster analysis, a method of unsupervised learning, separates the feature space

into subsets (clusters), based on some mutual similarity of subset elements. Si-

milar objects should reside in the same clusters, and different objects in different

clusters. Various approaches to data clustering can be taken, but there are two

main groups of methods; hierarchical and partitional clustering [86].

Hierarchical methods

Hierarchical clustering is an important category of clustering methods; the re-

sults of hierarchical clustering may be represented in a tree structure called a

dendrogram. The root of the tree forms a single large grouping of data, while

the leaves represent individual observations or proximities, Figure 2.5.

There are two main approaches for creating hierarchical clustering: divisive

and/or agglomerative. In divisive hierarchical clustering, clustering starts from

the root and recursively splits the clusters till the tree becomes all leaves; ag-

glomerative clustering starts from the leaves and successively merges clusters

together. Merging or division is performed according to some criterion or pa-

rameter, e.g. the distance or similarity between feature vectors of the objects.
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Figure 2.5.: A dendrogram obtained using a single-link agglomerative clustering
algorithm, — represents the similarity distance chosen to find the
number of clusters in the given data. Adapted from [86].

Partitional clustering methods

Partitional clustering methods sequentially assign each pattern to one cluster,

and can be divided into parametric and non-parametric. Non-parametric clus-

tering analysis is a most simple, practically useful approach to cluster analysis.

The most common method in this category is the K-means cluster analysis

method given by MacQueen [118].

Parametric clustering analysis techniques are based on class-conditional pro-

bability distributions and require a distribution parameter estimation such as

the minimum error criterion [158]. The computational complexity of probability

density estimation methods varies according to the amount of prior informa-

tion. This is used to describe the shape of the density functions, and hence find

their unknown parameters. This is why this class of learning methods is also

known as parameter learning. More detailed descriptions of cluster analysis

methods and algorithms are given in [56, 86, 99, 158].

Clustering techniques were applied for cell nuclei segmentation by Walker et

al. in [176]. K. S. Fu et al. [114] proposed to segment blood cell neutrophil

images using iterative segmentations. With some basic assumptions on the

image, an initial segmentation was obtained, which was then used to determine

some critical information from the image. This information then determined

the number of clusters. Aggarwal et al. [13] used a combination of threshol-
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ding and clustering techniques to segment cervical smear images. Thresholding

at a pre-set grey level was used to extract the nucleus. 233 images were tes-

ted, and the nuclei were successfully extracted with a reported accuracy of

87.6%, and 88.1% success rate for isolating cytoplasm. In [127, 172], Murphy

et al. describe a systematic approach for interpreting subcellular patterns in

light microscopic images, using a combination of supervised and unsupervised

clustering methods, with the help of a rich set of sub-cellular location features

(SLF). In [30], Di Cataldo et al. presented an automated analysis system ba-

sed on two methods for segmentation of cancerous immunohistochemical tissue

images; one method allowed detection of cancerous areas with a reported ac-

curacy of 91 % and another achieved automated segmentation of the nuclear

membrane of cancerous cells with a reported accuracy of 83%.

2.4.3. Other Clustering Algorithms

A review of the many other clustering algorithms that have been developed

is beyond the scope of this thesis, but these include: squared-error clustering,

graph-theoretic clustering, nearest neighbour clustering, and fuzzy clustering.

These algorithms are reviewed in detail elsewhere [86, 99].

2.4.4. Clustering Validity

Cluster validity analysis is the assessment of the output, and is a measure of

goodness of a clustering algorithm. Often, this analysis uses a specific criterion

of optimality, and this criterion is usually based on subjectivity, hence there

are few gold-standards in clustering [86]. The desired number of clusters is

generally specified by the user to start the clustering process, and the number

of clusters chosen is always based on some assumptions made by the user about

the data. It is still unclear how to find the correct number of clusters; so a

question always remains: how to validate the chosen number?

Cluster validation is important because the credibility of the result depends

on the number of clusters initially chosen and is important in many medical ap-

plications. To address this issue, researchers have proposed different approaches

to validate the clusters, or at least give an idea of the number of possible clus-
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ters in a given dataset. There are three types of validation studies. An external

assessment of validity compares the recovered structure to an a priori structure.

An internal examination of validity tries to determine whether the structure is

intrinsically appropriate for the data. A relative test compares two structures

and measures their relative merit [86]. These indices are described in detail in

[17, 19, 86, 122].

2.5. Summary

In this chapter, a brief review of existing techniques has been presented, with

emphasis on what might be most applicable to cell and nuclei data for the

present project. Some basic segmentation approaches are discussed and revie-

wed briefly in this chapter, in order to understand the proposed segmentation

techniques which will be presented next in Chapter 3. The principles of classi-

fication techniques such as SVMs are discussed in detail, and other techniques

relevant to cell and nuclei classification are also presented, with a brief review

of their previous applications.
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3. Proposed Segmentation

Techniques and Results

3.1. Proposed Segmentation Techniques

The plethora of segmentation techniques, discussed in Chapter 2, is testament

to the fact that there is no general approach that performs well across all image

types. Moreover, it is difficult for members of the microscopy community to in-

corporate changes to any one of these methods without a significant investment

in effort, and such changes tend to suit only one resolution or segmentation pro-

blem. In this chapter, different segmentation techniques are introduced for cells

and their nuclei segmentation. Different techniques have been devised, as no

single previously developed method worked on all types of data. In the course of

this research project, a number of methods were applied, including algorithms

that have been previously suggested, including a radial edge search method

and a probabilistic boundary optimisation. New algorithms were also develo-

ped and tried, specifically aimed at extracting parameters of a model-based fit

to endothelial-cell shape. The failure of all these approaches to satisfactory

segment a large number of cell boundaries led to an alternative machine lear-

ning approach, which is presented at the end of the chapter. In this approach,

a user would provide a training set of manually labelled data. The process of

automated segmentation would then follow a supervised training, in which an

appropriate set of features is first selected, then trained using a suitable ma-

chine learning algorithm. These techniques along with the results are presented

in this chapter for segmentation for ECs and ECn.
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3.2. Radial Method

3.2.1. Edge Map

Initially, the given cells and their respective nuclei images, f1(x, y) and f2(x, y),

where (x, y) represents spatial coordinates, were passed through respective thre-

sholds (t1, t2). For the nuclei image, a global optimum threshold, t1, was ad-

justed as: t1 = µ ± σ, where µ and σ are the mean and standard deviation of

intensity values of the particular image.

Connected component labelling [48] was used to enumerate the regions and

areas in the binary cell nuclei image, g1(x, y), with the help of Equation (3.1).

∀i gi(x, y) =

{
1 if fi(x, y) ≥ ti, ∀(x, y)
0 otherwise

(3.1)

Here, i = 1 or 2. The centroids of the regions were found using moment

calculations and a database of cell nuclei was created using the region property

values (e.g. areas, centroids, etc). A local threshold, t2, was set up manually for

the cell image according to the intensity values of the candidate cell boundary,

in order to get the cell image, g2(x, y), from Equation (3.1). Here, t2 varies with

the candidate cell. The cell search started from the nuclei centroid position as

a reference.

3.2.2. Radial Initialisation

From the centroids of the nuclei and their respective cell images, a radial search

was performed using Equation (3.2).

h(xi, yi) = ∀j : argmin{h(xi(j), yi(j))} (3.2)

where xi(j) = x0 + ri cos(θj), yi(j) = y0 + ri sin(θj), i = 0, ..., N − 1, where

N is the number of radial lines, j = 0, ...,M , M is the maximum length of the

radial lines specified by the user, θj = 0, ..., (2π − ∆θ) with an increment of

(∆θ = 2π
N ), (x0, y0) is the initial starting point of the radial search and (x0 and

y0) are the centroid location of the nuclei. h(x, y) could be g1(x, y) or g2(x, y)

depending upon the image on which processing is carried out. In this radial
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search M = 100 and N = 512 radial lines were chosen to get the finer angles of

the boundaries. The points which were on the centroid location or those which

were very far from the cell were eliminated.

3.2.3. Radial Interpolation

After finding initial boundary points through the radial search, an interpolation

was done using the formula given in Equation (3.3). Points found in this way

then describe the best potential boundary points in that candidate cell.

∀k : (x
′
k, y

′
k) = αβ(xk+1, yk+1)+(1−α)β(xk+1, yk)+α(1−β)(xk, yk+1)+(1−α)(1−β)(xk, yk)

(3.3)

where α and β are the along x and y axis respectively.

The interpolation function takes initial boundary points, (xk, yk), found from

the radial search as an input and it also needs to have defined maximum, dmax,

and minimum, dmin, distances between the two nearest boundary points. If the

distance between two boundary points, (k, k + 1), is less than the minimum

distance set, i.e. (d(k, k+1) < dmin), then a boundary point either at k or k+1

is eliminated. If the distance is greater than the maximum distance specified,

(d(k, k+1) > dmax), then new boundary points are added between k and k+1.

Figure 3.1 shows the results of radial search on the binarised images (after

applying global and local thresholds) of nuclei and boundary images respecti-

vely. Figure 3.2 shows the results after applying the radial search method. The

algorithms are implemented in Matlab version 7.9.0.

The initialisation is done from the centroid of the cell nucleus, which guaran-

tees that it starts within the desired segmentation region. This method works

very well even on the concave boundaries; it is also very fast and computatio-

nally inexpensive. In this method, manually specified thresholds are needed for

cell and nuclei images. This limits its efficacy as the thresholding technique

did not recognise cell regions which were below the set threshold. For ECs

images, the majority of cell regions were filtered-out, due to weak cell bounda-

ries. For the ECn images, the collaborating biologists did not accept the results

of simple thresholding techniques, as they did not describe the nuclear regions

41



3. Proposed Segmentation Techniques and Results

Radial Search of Nuclei Image
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(a) Radial search on ECn.

Radial Search on Boundary Image Cell

40 60 80 100 120 140 160 180

1060

1080

1100

1120

1140

1160

1180

1200

(b) Radial search on ECs.

Figure 3.1.: Radial search results on ECn and ECs edge maps.
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Radial method results on nuclei image
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(a) Radial interpolation result on nuclei.
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(b) Radial interpolation result on cell.

Figure 3.2.: Radial interpolation results on ECn and ECs images, SNR is suffi-
ciently high in this ECs image.
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Nuclei Image
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Figure 3.3.: One sample of ECn image after applying Canny edge detection
and imfill methods.

sufficiently well. Therefore, on ECn images, a two-step processing approach

was taken which is as follows:

1. Initially, Canny [29] edge detection was applied to the nuclei images.

This was performed using the edge-detection method of the Matlab image

processing toolbox; the default settings for the Canny implementation

were used. The output of this function consists of contours of nuclei

images (binarised images).

2. Then, on the resulting binary nuclei images (contours of the nuclei) found

through step one, a morphological operation (imfill(), described in [121],

as implemented by the image processing toolbox of Matlab) was applied.

In this step, a filling of the boundaries of the nuclei edges was achieved,

based on 4-connectivity. This operation yields binary images with com-

pletely filled nuclei. One example of a binarised nuclei image is given in

Figure 3.3.

3.3. Likelihood Maximisation Method

After finding a set of initial boundary points described in the previous section,

an algorithm was needed which would optimise these boundary points to get
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the most accurate pixel set for EC images. To do so, a likelihood function

was defined in with three types of information, intensity values, distance and

direction of the candidate pixels, was incorporated. Some of formulations given

in this section are based on the prior work [126] of T. Mouroutis of Imperial

College London.

When a possible set of boundary pixels X = {x1, x2, ..., xn} is known, the

likelihood can be estimated that the pixel xi, i = 1, 2, ..., n belongs to the set

X, based on grey scale information. Assume that the conditional probability

density functions pgrey(xi) of the intensity values for boundary points from the

respective centroid is Gaussian, given by:

pgrey(xi|X) =
1√

2π · σgrey
· exp

(
−
(xigrey − µgrey)

2

2σ2
grey

)
(3.4)

We can evaluate pgrey(xi ∈ X) = pgrey(xi), where xigrey is the grey scale value

of the pixel xi, µgrey and σ2
grey are the mean and variance of the pgrey. Here,

µgrey and σ2
grey can be calculated from X ′

i = X − xi, X
′
i is a set of remaining

n− 1 boundary points, and µgrey = E{X ′
grey}, σ2

grey = V ar{X ′
grey}.

Following this, the direction vectors of all boundary points from the set of

X are calculated. Assume di is the direction vector of a current boundary

point xi, then, the six nearest neighbourhoods N6(xi) of xi can be described as

di(N6) = N6(
−→µ (xi)). The probability of the direction at location (xi) is given

by:

pd(xi|X) = pd(xi) =
1√

2π · σd
· exp

(
−(xid − µd)

2

2σ2
d

)
(3.5)

The priors of this model are the gradient values. Hence, this function may

be written as:

pe(xi|X) =
N∑
i=1

1√
2π · σ

· exp
(
−(d(x)− µi)

2

2σ2

)
· gi (3.6)

where N is the number of the gradient image local maxima along the radial

search line, µi is the distance of the gradient maxima location, σ the variance
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of the original Gaussian smoothing filter, and gi the prior for each Gaussian

component of the mixture model calculated as previously described.

After analysing the derivations of the partial likelihood functions for each

pixel, the individual likelihood function can be formulated for the ith pixel

xi of the pixel set X. By assuming independence of these partial-likelihood

functions, this function can be defined as in Equation (3.7), and the total

likelihood function will be calculated as in the Equation (3.8).

l(xi|X) = pgrey(xi|X) · pd(xi|X) · pe(xi|X) (3.7)

L =
n∏

i=1

l(xi|X) (3.8)

3.3.1. Likelihood Maximisation Algorithm

Let X0 = {x1, x2, ..., xn} and l0i = l(xi|X0), i = 1, 2, ..., n. We define L(X0) =
n∏

i=1

l0i . Let, ji = argmax l0i be the index of the pixel with highest value of

individual likelihood function. Along the jth radial line a search for the pixel

xm that maximises the value of the total likelihood function L(Xmodified) where

Xmodified is the modified set of pixels created from X0 by substituting xj with

xm. Once the pixel xm has been modified xj is substituted by xm in the original

X0. If no pixel has been found along jth search line that increases the value

of L compared to L(X0), pixel xj remains intact. Then, we repeat the search

along the search line corresponding to the pixel with the next highest value of

the individual likelihood function. Eventually, all the lines have been searched

and the resulting set of pixels is denoted with X1.

This process, given in Algorithm 3.1, continued iteratively, and after a com-

plete search along the lines, a new, more precise set of pixels is generated. The

set created after the kth iteration will be denoted with Xk. The optimization

will be terminated when, after an entire iteration, Xk+1 = Xk. The resulting

set of pixels X is the set that maximises the likelihood function and is the set of

boundary pixels that best describes the potential boundary points of the cell.
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In previous studies [126], it was guaranteed convergence of this algorithm.

However, when this maximisation method was applied to EC images, it some-

times could not converge, or sometimes it converged on the boundaries of other

nearby cells due to distorted boundaries, low boundary signal and poor contrast

of the images. Some results are presented in Figure 3.4 on two examples of bet-

ter quality cells in one image.

Algorithm 3.1 Algorithm for Likelihood Maximisation

X := [ initial boundary points ] {Initialise boundary points found through
radial method described in section 3.2.}
rank := 0
nochange := 1
while nochange == 1 do

rank := rank + 1
Xk+1 := L(X0)(rank)
call function for maximising indices
if currentboundary == newboundary then

nochange := 1
else

nochange := 0
end if
newboundary := currentboundary

end while

In the next Section 3.4, a demonstration for signal to noise ratio (SNR) and

contrast to noise ratio (CNR) of the ECs and ECn images is presented to explain

the problem faced during the segmentation methods presented previously in this

thesis.

3.4. SNR and CNR of ECs and ECn

To give a demonstration of the SNR conditions, in order to assess the appli-

cability of intensity thresholding techniques, boundary and background points

were manually selected from four good quality EC boundary and ECn images,

where some of the boundaries were clearly visible and some were missing. The

SNR and contrast to noise ratio (CNR) using [22] for the EC boundary and
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(a) Boundary points results of radial search
method described in Section 3.2 on one cell.

Note the failure around the cell.
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(b) Boundary points results of the same cell
in Figure 3.4(a) after likelihood maximisation
described in 3.3. Note that some boundary

points converge on to a nearby cell.
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(c) Boundary points results of radial search
method described in Section 3.2 on one cell.

Note failure to converge to the correct
boundary.

10 20 30 40 50 60 70 80 90

60

80

100

120

140

160

180

(d) Boundary points results of the same cell
in Figure 3.4(c) after likelihood maximisation
described in 3.3. Note convergence of points

in the center of the cell.

Figure 3.4.: Likelihood maximisation method results for two cells. Cell 1 at top
panel and cell 2 at bottom panel. Here, red o shows the centroid
of the cell nucleus and blue . show the boundary points detected.
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Table 3.1.: CNR and SNR of EC and ECn images.

CNR SNR (dB)

ECs Image

1 1.03 0.12
2 1.21 0.21
3 0.66 0.31
4 0.95 0.14

ECn Image

1 3.36 12.99
2 3.24 12.43
3 2.23 4.63
4 19.48 9.30

ECn images were calculated by the formulae given below:

SNR = 10 log10
Powerbd
Powerbg

(3.9)

CNR =
µbg − µbd√
σbg2 + σbd2

(3.10)

where µbg and µbd are the averages, σbg and σbd are the standard deviations

and Powerbg and Powerbd are the power of the background (bg) and boun-

dary (bd) points in the image respectively. The probability density estimate

of boundary and background intensities, as shown in Figure 3.5, is calculated

using the class conditional probability distribution functions given as:

P (i) = PbdP (i|bd) + PbgP (i|bg) (3.11)

where Pbd and Pbg are the prior probabilities of the pixels and P (i|bd) and

P (i|bg) are conditional probabilities of boundary and background respectively.

P (i) is the weighted sum of P (i|bd) and P (i|bg) [83], and explains the histograms

of all pixel intensities pooled together.

In Table 3.1, it can be seen that SNR and CNR for EC images are very

low as compared to ECn images in the same regions. As the SNR decreases,

the output pattern becomes noisier [65], and it becomes extremely difficult to

detect EC boundaries using conventional intensity-based algorithms developed
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3. Proposed Segmentation Techniques and Results

for segmentation.
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Figure 3.5.: Estimated probability density estimation of intensities of four ECs
(top panel) and four ECn (bottom panel) images for object and
object and background classes indicating how weak cell boundaries
are with respect to the background. Even for ECn images the in-
tensities are not high enough to distinguish nuclei from background
easily using intensities only.
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Due to the lack of robustness in finding boundary points in EC images using

the method described above, we attempted to directly fit an elliptical model

to the ECs images in order to overcome SNR problem. Rather than trying to

detect the boundaries accurately, an attempt was made to fit a candidate shape

model described in the Section 3.5 to the ECs image data. Here it should be

noted that, the collaborating biologists specifically wished to find the major

and minor axes and angle of orientation of the ECs and their respective ECn

to estimate the blood flow and shear stress effects on cells and their nuclei.

3.5. Candidate Cell Shape Model

This section describes a method developed to fit equivalent ellipses to the ECs.

In this model, a complex orientation dominant field O⃗(x, y, s) of the image

f(x, y) can be formulated at a decomposition level of s using Equation (3.12).

O⃗(x, y, s) =

3∑
k=1

|g(k π
4
,s)| exp(2jk

π
4
)

ε+

(
3∑

k=1

|g(k π
4
,s)|2

) 1
2

(3.12)

where ε is a constant, j =
√
−1, described in [21], and s is the scale.

This complex field is generated using arrangements of fixed filters, in which

addition of vectors of the magnitude of outputs of complex filter units is per-

formed using complex number algebra. The magnitude of the scaled vector

responses range from 0 to 1 and can be used as an indication of anisotropy, in

which strongly isotropic neighbours will produce values near to 0 and strongly

anisotropic neighbours will produce values near to 1 [21]. An illustration of

this field is given in Figure 3.6, which has been extracted using the second level

decomposition of one of the boundary images.

The cell shape model O⃗θ,a,b
H (x, y) in Cartesian coordinates (x, y) is given by:

O⃗θ,a,b
H (x, y) =

[
1√

2π · σ
· exp

(
−(x2 + y2)

2σ2

)
∗
√

f2
x + f2

y · exp (ı̇2θ)
]

(3.13)
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3. Proposed Segmentation Techniques and Results

Figure 3.6.: Complex orientated dominance field on original boundary image
and a sample template hypothetical orientation field for the can-
didate cell shape model overlaid in blue lines, generated from the
method described in [21], using the second level decomposition.
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3. Proposed Segmentation Techniques and Results

where θ = tan−1(
fy
fx
) and ∗ is the convolution operation. This complex hypo-

thetical orientation vector field for the candidate cell shape model is calculated

using the equation of the ellipse. The elliptical equation in Cartesian coordi-

nates (x, y) is given by: f(x, y) = x−x0
a2

+ y−y0
b2

= 1, where a and b are the

major and minor axes respectively, and x0 and y0 are the centroid location of

the respective cell. For this, the boundary points of the ellipse with the direc-

tion information is calculated by taking the directional derivatives (fx and fy)

given in Equation (3.14) were convolved with a Gaussian mask to generate a

thickened hypothetical orientation field for the candidate shape. The partial

derivatives of f(x, y) with respect to x and y are fx and fy respectively.

fx = b2(x− x0)

fy = a2(y − y0) (3.14)

The orientation fields O⃗(x, y) of the image f(x, y) given in Equation (3.12)

and a hypothetical orientation field O⃗H(x, y) in Equation (3.13) of the candidate

cell, are compared by a sum of dot products between vectors of the boundary

orientation field of the image f(x, y) space and vectors of the hypothetical

orientation field for the given shape around that candidate cell.

The similarity of these fits is optimised over parameters (orientation θ, major

and minor axes a and b) given in Equations (3.15 and 3.16). The whole process

is summarized in the flow chart given in Figure 3.7.∫
Boundary

O⃗(x, y) • O⃗H(x, y|θ0, a0, b0;x0, y0) dx dy

|
∫
Boundary O⃗H(x, y)|

(3.15)

To directly fit the parameters sought (a, b, and θ) centred on the nuclei

centroid at (x0, y0) to begin with the fit of the ellipse. We then perform the

following:

{θ0, a0, b0} = argmaxθ,a,b

∫
Boundary

O⃗(x, y) • O⃗H(x, y|θ, a, b) dx dy

|
∫
Boundary O⃗H(x, y)|

(3.16)
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3. Proposed Segmentation Techniques and Results

Figure 3.7.: Flow chart for the candidate cell shape model.
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Figure 3.8.: A sample plane of integrals over major, minor axes and orienta-
tions.

A template for the extracted hypothetical orientation field is given in Figure

3.6. This vector field is generated using second level decomposition, with a

Gaussian mask of 7 by 7 and depends on the parameters θ, a and b. The

template is the same size as the given image patch. Then, using the orientation

field of the image generated, as described in [21], and the hypothetical field of

the candidate cell (i.e. an ellipse), as shown in Figure 3.6, is optimised over

angle, major axis and minor axis of the shape of the candidate cell. In this

study, the major and minor axes (a and b) values were chosen with an initial

estimate and were measured in pixel units. A range of values between 50 to

110 and between 10 and 35 were chosen for a and b parameters respectively;

and θ varies between 0 to π. One example of a plane of integrals is presented

in Figure 3.8. Here, the best fit to candidate shape or cell was chosen when a

combination of parameters θ, a and b is maximised.

This section has described the model developed for fitting the equivalent

ellipses on ECs boundaries. This model worked well on a few cells where the cell

boundaries were clear, but wherever the cell boundaries were distorted due to

noise or image acquisition problems or natural distortions, fitting of the ellipses
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3. Proposed Segmentation Techniques and Results

Figure 3.9.: Fitting of ellipses on original image with centroids marked in red
×.

failed. One example of a good performance of an ellipse-fit with its original

image is shown in Figure 3.9. Evaluation of different methods presented till

now is presented in the next Section.

3.6. Evaluation of Ellipse-fits on Different Proposed

Segmentation Techniques

To evaluate the method, different users were asked to fit ellipses manually to the

cells where they can be seen clearly, given the centroid locations of the cells from

the nuclei images. Eight näıve human users fitted ellipses on 3 different images,

and cells were chosen which generated similar fits in all the 8 users. These cells

were used as ground-truth for the evaluation of the methods described so far in

this chapter, the average and average ±1 SD for each of the ground-truth cells

was found and overlaid in blue thick and dashed ellipses in Figure 3.10. It can

be seen even in the ground truth results, that there was great variability in the

fitting of the ellipses by the different users.

Next, using the results found through the radial method described in Section

3.2, an ellipse-fit() function, available online in Matlab file exchange [9], was

applied to find the θ, a and b of the cells, and the candidate shape cell model

ellipse results were overlaid on the corresponding cells. These elliptical para-

meters found from different cells are given in Table 3.2. It can be observed that
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3. Proposed Segmentation Techniques and Results

none of the methods, presented until now, worked well on all cells.

1

Figure 3.10.: Ellipses overlaid on the original cell. Ellipses in blue, -.-.- blue,
yellow, and pink represent ground-truth, mean ±1 SD ground-
truth, candidate shape model and radial method segmentation
techniques respectively.

It was therefore decided to apply machine learning algorithms to detect the

cell boundaries, and to do so, SVMs were invoked to perform cell boundary de-

tection. The motivation to use SVMs [171] for segmentation is explained in the

literature review, because recent work has shown this approach to outperform

competing methods in many applications [51].

3.7. Segmentation Algorithm using SVMs

This section presents an application of the SVM learning as a classifier with a

sufficiently rich feature vector to detect thin boundaries of the ECs. The flow

chart of our algorithm is given in Figure 3.11. Features are extracted from the

cell boundary image and mapped into feature space. To train the classifier,

features are extracted from a training image for which there exists manually

labelled data. Then, using the input feature space generated from the training

57



3. Proposed Segmentation Techniques and Results
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3. Proposed Segmentation Techniques and Results

image and an SVM kernel, a decision model is generated; this model is then

applied to segment other boundary images. The SVM classifies image pixels

into two different classes: boundary and non-boundary.

Figure 3.11.: Flow chart of SVM-based segmentation algorithm for endothelial
cell images.

3.7.1. Feature Selection of ECs Images

It was found that cell boundaries were either missing from some parts of the cell

or were thin and of low contrast, making it visually challenging to distinguish

between background and cell boundary. To address this requires the use of fea-

tures that take into account the structure of neighbourhood pixels. Although

low-level edge-linking is usually applied for these types of tasks, it is also pos-

sible to use a sufficiently rich feature vector that incorporates neighbourhood

information appropriate for describing the weak, thin nature of cell boundaries.

SVMs, as classifiers can perform well in high-dimensional datasets [51]. The-
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3. Proposed Segmentation Techniques and Results

refore, the raw neighbourhood pixel values over a 3 × 3 pixel neighbourhood

of a central pixel were used as feature components, giving a 9 dimensional fea-

ture vector for each pixel. This 3× 3 pixel grid was chosen as being typical of

published medical image detection applications (e.g. as in [51]) using SVMs.

The best possible SVM hyper-parameters were then found using a set of hand-

labelled ground-truth data. By adding in and removing features, searching

over SVM hyper-parameters, such as v (tolerance), and γ radial basis function

(RBF) width, an optimal set of features was exhaustively found in each case.

The feature extraction process is next described for the set of features that is

found to lead to a better classification performance.

3.7.2. Feature Descriptor

The general motivation and an intuitive explanation for each selected feature

are explained in this section. Different derived measurements are estimated

around each pixel of an image and assigned to an d dimensional feature vector.

In this study, 33 features are extracted from the neighbourhood of the central

pixel. Although some of the features appear to be constructed from a 3×3 pixel

neighbourhood, those features that are based on filtering, such as gradient fields

and orientation dominance fields, in practice utilise information from much

wider neighbourhoods. The selected features include:

Each pixel in the image is mapped to a 33 dimensional feature vector by

extracting information from a 3× 3 neighbourhood of the central pixel.

� Nine intensity elements extracted from 3×3 nearest neighbours (F1-F9).

� Eighteen features, (F10-F27), extracted from 3 × 3 nearest neighbours

of an orientation dominance field [21]. The magnitude of the vectors in

this field ranges from 0 to 1. The magnitude of the values can be used

as an indication of anisotropy, in which strongly isotropic neighbours will

produce values near to 0 and strongly anisotropic neighbours will produce

values near to 1; an example of this field over a 3 × 3 patch is shown in

Figure 3.12.
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3. Proposed Segmentation Techniques and Results

� Six statistical features generated from the 3× 3 intensity neighbourhood

of a candidate pixel, (F28-F33), given in Table 3.3.

Table 3.3.: Features generated from the 3×3 intensity neighbourhood of a can-
didate pixel.

Feature Feature Equation
Number Name

F1-9 Intensity
(
I(i)

√
n×

√
n(x, y)

)
i=1:n

neighbourhood

F10-27 Orientation
(
O⃗(i)

√
n×

√
n(x, y, s)

)
i=1:n

neighbourhood s = scale.

F28 Median Med(x, y) = med
(
I(i)

√
n×

√
n(x, y)

)
F29 Range Range(x, y) = [Max(x, y)−Min(x, y)]

where Max(x, y) = max
(
I(i)

√
n×

√
n(x, y)

)
Min(x, y) = min

(
I(i)

√
n×

√
n(x, y)

)
F30 Energy E(x, y) =

n∑
i=1

I2(i)
√
n×

√
n(x, y)

F31-33 Second, Third Mr =
1
n

n∑
i=1

(
I(i)

√
n×

√
n(x, y)− µ(x, y)

)r
and Fourth µ(x, y) = 1

n

n∑
i=1

I(i)
√
n×

√
n(x, y),

order moments I(x, y) is the image,
r = 2, 3, 4: second, third and fourth order

moments, n is the number of nearest
neighbors (in our case this is 9),
and i is the candidate pixel.

The 33-dimensional feature vector given in Equation (3.17) is then described

for each pixel in the image in both the training and testing phases of the SVM.

FD = [I(3×3), O⃗(3×3),Med,Range,E,M2,3,4] (3.17)
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Figure 3.12.: Orientation-dominance field overlaid in blue within a 3× 3 neigh-
bourhood of a candidate pixel.
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Figure 3.13.: Examples of different features in the training sample.
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Figure 3.14.: Original image with its ground truth.

Before classifying, the feature vectors were z-scale transformed, using the

formulation, given in Equation (2.2), to get a normalized feature space with

a zero mean and a unit variance for each component. Some sample training

features are shown in Figure 3.13.

3.7.3. Detection of ECs using an SVM-based Method

The normalised 33-dimensional feature vectors are used as an input space to a

supervised SVM classifier that classifies image pixels into boundary and non-

boundary pixels. A binary image is generated in classification, with each black

pixel corresponding to a boundary and each white pixel corresponding to a

non-boundary pixel [63, 98].

The SVM is first trained using the training input feature space with its

ground-truth as a priori, and a kernel to generate a classification model. This

model is then applied to segment (classify) other “unseen” images of the same

general class. This process assigns image points to one of two different classes:

object and non-object. The training patch and its ground-truth are shown in

Figure 3.14.

An RBF SVM kernel, given in Table 2.1, was applied to generate a model,

using LIBSVM [32] via its Matlab interface. The SVM model performance is

dependant on the selection of the model parameters; therefore, during training,

the parameter space was swept to find those parameter choices that yielded the

best accuracy in the training data. This is computationally expensive, as the
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search tries values of each parameter across a wide range. As, the RBF kernel

mainly uses two parameters (C and γ), a range of -4 to +4 with interval of

0.1 for C, and a γ range from 0.1 to 2 with an interval of 0.001 were selected.

To optimise these parameters, 5-fold cross-validation was done on the training

image patch, producing 2144 support vectors. The feature extraction process

for the training phase took approximately 130 seconds. The model generation

process then took 13.38 seconds on a desktop PC with Pentium(R)4 2.8 GHz

processor running Windows XP.

Once the model with the smallest error is generated, segmentation is then

achieved in a straightforward manner. The normalised 33-dimensional feature

vectors of the image to be segmented are computed and supplied to the trained

SVM classifier. This results in a labelled image where each pixel has a value

depending on its class (boundary and background). The segmentation algo-

rithm was applied to images of 56 regions around 7 branches in aortas from 3

different animals. The time in the classification phase varies with the size of

the images to be segmented, but is approximately 12-14 seconds if the features

have already been extracted.

The algorithm detected boundaries to a usable degree of accuracy in 43 out

of 56 regions. In the remaining 13 regions, the image data was blurred or noisy;

one such image is shown in Figure 3.15, and it may be noted that even discerning

the boundaries by eye is difficult. The binary images in Figure 3.16 show more

typical classification results of pixels into boundaries and background by the

SVM algorithm.

3.7.4. Evaluation of SVM-based Segmentation Method

The performance of the SVM-based algorithm in segmenting cell boundaries

was evaluated on four images containing manually traced boundaries. In total,

the performance of the algorithm was assessed using hand-lablled ground truth

on 3.9 million pixels, and the best-performing kernel ranged from 81% to 94%

accuracy.

In another experiment, four image patches of size 128× 128 pixels with their

‘ground truth’, an SVM RBF kernel and two conventional segmentation algo-
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Figure 3.15.: An example of a blurred image (256 × 256 pixels) on which the
SVM technique did not work well. Note that the cell boundaries
are not discernable.

rithms, Canny [29] and Kittler [96], were compared. The Kittler method was

ranked as the best in one thresholding survey paper [150]. Different thresholds

were set for the decision in order to obtain a number of points along a Receiver

Operating Characteristic curve, which describes the performance of a classifi-

cation method and feature space together in addressing a discrimination task

as one alters the balance between either type I errors or type II errors. For the

Canny, 961 possible detection thresholds were applied, and for Kittler, 63 pos-

sible thresholds were applied to each image. The SVM model accuracy is largely

based on the selection of the model parameters, so to find points along an ROC,

a search algorithm attempts training and classification where values of the most

significant kernel parameters are sampled across a wide range. However, since

each image to be assessed might have different statistical characteristics, ge-

nerating an ROC might require slightly different parameters settings. For a

given image, the model is further evaluated with 5-fold cross-validation to find

the best possible combination of parameters. Table 3.4 and Figure 3.17 pre-

sents the classical segmentation technique results in comparison to SVM RBF

kernel, and the Receiver Operator Characteristics (ROC) plots are given in Fi-

gure 3.18. Table 3.4 also includes a comparison with the Otsu method [132],
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Figure 3.16.: Original image and segmented result using RBF kernel. No other
processing has been applied to the SVM classification output and
results are shown at half resolution.

66



3. Proposed Segmentation Techniques and Results

Table 3.4.: Comparison between SVM and different conventional methods.
Here the number of training pixels was 3844 with 2 classes, and
the number of test pixels was 16384.

Method Accuracy

SVM with RBF Kernel 94.09

Otsu [132] 82.22

Kittler [96] 82.21

Canny [29] 71.83

which employs an automatic thresholding and is therefore not easily amenable

to ROC analysis.
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Figure 3.17.: Comparison of results from different image segmentation tech-
niques. Top panel, original image with its ground truth and SVM
segmentation results. Bottom panel, Kittler method, Otsu me-
thod and Canny edge detection results.

Accuracy Measures

The accuracy of segmentation was assessed by noting the number of correctly

classified pixels (either boundary or background) and is defined by (correctly
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Figure 3.18.: ROC plots for different standard SVM kernels available and Canny
and Kittler methods on four images. The performance of the SVM
is better, even when applied to the extremely difficult last two
images.
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Figure 3.19.: One sample of cell and nuclei image pair with traced bounda-
ries overlaid in red using boundary tracing method described in
Section 3.8.

classified pixels):

Accuracy% =
(TP + TN)

(TP + TN + FP + FN)
(3.18)

where TP ,FP , TN , and FN are true positive, false positive, true negative and

false negative respectively.

3.8. Cell Boundary Tracing

After finding the binary images of the ECs using the SVM algorithm and those

for the ECn using the Canny method described in Section 3.2.3, the function

bwtraceboundary() in Matlab image processing toolbox was applied to trace the

boundaries of the segmentation regions. This function results in a structure

array of size n, where n is the number of objects in the binary image. Each

element in the structure contains anX-by-2 matrix, and each column represents

x and y- coordinates of the boundary pixels. This function traces the object

boundaries all the way round and the number of rows depends on the size of

the object. One sample pair of ECs and ECn images with traced boundaries is

presented in Figure 3.19.
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3.9. Discussion
In this chapter, several methods for detecting the ECs and ECn are presented.

These techniques reduce the need for human intervention. Previously this pro-

cess had been done manually [38, 24], since noise and unclear or faint boundaries

lead to the failure of traditional automated segmentation techniques. Manual

analysis is time consuming, subjective and unscaleable. Previous reports have

described computational work on corneal endothelial cell boundary detection,

such as [62, 149, 105, 175], but the cell boundaries are not as challenging to

detect as the EC boundaries in our case. In the initial methods proposed, limi-

tations were revealed, such as the problem of correctly finding an initial edge

map in Section 3.2 and failing to fit the ellipse properly in the method described

in Section 3.5. To address these, a method was proposed utilising a supervised

SVM. This was successfully applied to image data with a poor signal-to-noise

ratio. This algorithm takes into account small spatial centre-surround diffe-

rences in intensity, and orientation dominance patches and other properties of

each candidate pixel in the image, in both training and classification phases,

successfully segmenting 43 out of 56 available regions to an acceptable level (94

%) of accuracy. In this way, an adequate number of cells were collected for

further automatic morphological analysis.

This method does have some limitations as it does not perform well on image

patches where the brightness variation is large and cell boundaries are not

visible by eye. It also requires a manual labelling of one example as input in

the training process. This necessitates selecting a patch with a representative

variation in intensity to yield a satisfactory generalised model. Another aspect

of our algorithm which could be improved is the selection of kernels [39]. In

this study, work has been done only on kernels already available in a standard

SVM package, but performance might be improved by developing a new kernel

for such data, which was beyond the scope of this research. Nevertheless, the

method will enable to explore the relationships between blood flow and cell

behaviour, between cell nuclear shape and cell boundary shape, and between

aspect ratio and cell orientation in different regions around arterial branches,

by allowing large numbers of cells to be analysed, which will be presented in

the next Chapter 4.
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4. Comparative Analysis of In-vivo

Endothelial Cell Data

4.1. Introduction

In this chapter, we present the statistical analysis of changes in patterns for

stress effected morphological parameters of ECs and ECn with age in rabbits.

These statistics were obtained using the binarised images found from the seg-

mentation techniques previously presented in Chapter 3.

4.2. Correspondence between ECs and ECn

This section describes an algorithm which we have developed for supervised

region-wise matching for two binarised images of cells and their nuclei acquired

with two different imaging modalities based on their morphological measure-

ments. This algorithm first created two cell databases, one each for cells and

their nuclei images.

After obtaining the binarised images for both ECs and ECn images, it is

necessary to establish the correspondence between ECn and ECs for further

comparative analysis. In this study, with the help of prior information about

cells and nuclei regions, region-wise matching is done on each database for the

ECs and ECn, resulting in a complete set of cells and their corresponding nu-

clei regions. The results presented here for 56 sets of images (ECs and ECn)

demonstrate that the algorithm found exact matching of cell regions automa-

tically, which provides a starting point for further automatic analysis of collec-

tions of cell regions and their respective nuclei. The algorithm is presented in

the next section.
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4. Comparative Analysis of In-vivo Endothelial Cell Data

Since segmentation methods are never 100% accurate, establishing corres-

pondence in labelled regions between ECn and EC images is not necessarily

straight forward. For example, for any one cell, either the boundary may be

missed or merged with a neighbouring cell, and so entire cells may lack cor-

responding structure in the image pair. This may lead to incorrectly paired

nuclei and boundaries, as shown in one example in Figure 4.1, where nucleus

does not exist, even then a cell is detected, making a study of the relationship

in shear-stress dependent parameters difficult.

From the binary images, all objects are identified using the connected com-

ponent labelling method, available inMatlab. This process is known as labelling,

in this each individual object is named with a unique identifier.

4.2.1. Association between ECs and ECn

As it is already known that the cell nucleus must be within the candidate cell.

Using this as a priori knowledge, the algorithm searched for the best matches

between cells and their nuclei; a flow chart is given in Figure 4.2.

With the help of the nuclei centroids, the regions (labelled components) in

the cell images were located, and the remaining regions were discarded. Only

these found regions were then added into the new ECs and ECn databases.

On these regions in the new databases, several conditions were set to ensure

their validity. For example, if a region was within a certain range of parameters

(such as: area, length, and width), then that region was added to the updated

database of cells, otherwise it was again discarded. In the same way, a search

is applied to the nuclei regions to find the corresponding boundary region for

the nuclei. The algorithm for the association between ECs and ECn is given in

Algorithm 4.1. Here, the minimum and maximum values of area, length, width

values were chosen from studies covered in the literature review. These values

specify a search range used to establish correspondence. Some values are given

in Tables 4.1 and 4.2. One pair of ECs and ECn images is presented in Figure

4.1 after applying this algorithm. As we can see in Figure 4.1, the nuclei and

their respective cells are located and matched, which produces a set of database

for nuclei and their respective cells (1496 cells, in total).
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Removed Unwanted Region in EC Image
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Figure 4.1.: On top, the result of an ECn and EC image pair (labelled with their
selected regions) after the connected components method is applied
initially. Numbers represent the centroid locations of the regions.
Note the missing nucleus or unwanted cell region. Bottom, result
after applying the matching algorithm described in Algorithm 4.1
on the ECn and EC image pair. Numbers represent the centroid
locations of the regions. Note that the unpaired cell regions are
removed from images.

Investigator EC Length µm EC Width µm EC Area µm2

Cornhill [38] 63 19 N/A

Nerem [73] 66.2 14.0 N/A

Lavesque [111] 42.7 20.5 N/A

Andy [24] 39.7 14.4 488.9

Average 52.9 16.9 489

Table 4.1.: Average ECs values reported in literature. Adapted from [24].

73



4. Comparative Analysis of In-vivo Endothelial Cell Data

Figure 4.2.: Flow chart for finding the correspondence between cells and their
nuclei in separate image databases.
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Algorithm 4.1 Association between ECs and ECn

Get labelled nuclei and cell images
find centroids of nuclei and cell regions
n := no: of nuclei regions
for i := 1 to n do

find labelled cell region at locations of ith region of nuclei
Add found entry into a new ECs database

end for
For both ECs and ECn values given in Tables 4.1 and 4.2
select MaxA, MinA, MaxL, MinL, MaxW, MinW
m := no: of cell regions , m ≤ n;
for j := 1 to m do

functionCellRegionConditionalValidityCheck(CellRegion(j))
if MinA < CellArea < MaxA then

if MinL < CellMajorAxis¡MaxL then
if MinW < CellMinorAxis¡MaxW then

Create a new database with conditional ECs and ECn regions
end if

end if
end if
return(ValidCellRegion)
Add validated entry into new ECs and ECn databases

end for

Investigator ECn Length µm ECn Width µm ECn Area µm2

Al-musawi Immature 645 ± 56 573 ± 29 N/A

[16] Mature 703 ± 51 543 ± 106 N/A

Andy Immature 16.53 ± 0.02 7.10 ± 0.02 489.59 ± 1.6

[24] Mature 18.70 ± 0.03 6.01 ± 0.01 483.90 ± 1.21

Average 487

Table 4.2.: Average ECn values reported in literature.

4.2.2. Morphological Measures

From each object, different shape measures can be calculated for further ana-

lysis, such as length, width, and angle. Other measures include:

The general equation for moments calculation is defined as:
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Mpq(x, y) =
n∑

i=1

(xi − µx)
p (yi − µy)

q I(i)(x, y) (4.1)

Here (x, y) are the pixel coordinates of I (image), µx = 1
n

n∑
i=1

Ii(x, y) × xi,

and µy = 1
n

n∑
i=1

Ii(x, y)× yi.

Centroids

The centroids or zeroth order moments or central moments can be calculated

from moments calculations as: µpq =
Mpq

M00
, p+ q = 1.

Length(L)

The longest distance from the centroid to the edge of the object is known as

the long-axis or a measurement for length of an object.

Width (W)

The shortest distance between boundary points and the centroid of the object

is termed the short-axis or width of an object.

L:W Ratio

This is the ratio between long and short-axes. It is a measure of elongation.

L : WRatio = L
W

Angle(Θ)

The angle is the measure of the degree at which the tangent of the object and

the long-axis(L) intersect.

Θi =
1
2 arctan

(
2M11

M20−M02

)
.

where Mpq (moments) general equation is defined in Equation (4.1).
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Figure 4.3.: Map for eight vascular regions, here Upstream Right (UR), Ups-
tream (U), Upstream Left (UL), Right (R), Left (L), Downstream
Right (DR), Downstream (D), Downstream Left (DL),. Adapted
from [16].

Area

Area of an ‘ith’ connected component is calculated as:

Areai =
n∑

j=1

Ii

where n is the total number of pixels labelled as i in the ith region or com-

ponent.

Perimeter

The perimeter of an object is calculated as the total number of pixels on the

boundary or edge of that object.

Shape Index(SI)

Shape Index (SI) is calculated as:

SI = 4π ×
(

Area
Perimeter2

)
4.3. Comparative Analysis Results

Each branch of an artery was subdivided into eight vascular regions, such as

Upstream Right (UR), Upstream (U), Upstream Left (UL), Right (R), Left (L),
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Downstream Right (DR), Downstream (D), Downstream Left (DL), as shown

in Figure 4.3 for cell morphology quantification. Therefore, for all 56 vascular

regions examined in all three rabbits (one mature and two immature), 1496 cells

and their respective nuclei are analysed. The results obtained are analysed in

two different ways:

1. All(1496) cells and their nuclei without separating them according to their

ages,

2. Mature (559) and immature (937) cells and their nuclei separately to see

the relationship and changes among them.

EC ECn r2

Mean SEM/ SEM/ Mean SEM/ SEM/ EC:
Branch Cell Branch Cell ECn

L:W Ratio 7.29 0.08 0.48 2.96 0.02 0.11 0.34

Shape Index 0.25 0.00 0.02 0.71 0.00 0.02 0.32

Angle(o) 20.81 1.79 10.28 18.11 1.81 10.40 0.81

Length(µm) 56.84 0.54 3.11 18.76 0.08 0.45 0.21

Width(µm) 8.34 0.06 0.32 6.51 0.02 0.13 0.24

Area(Pixels2) 294.11 2.77 15.89 92.31 0.38 2.15 0.12

Perimeter(Pixels) 130.05 1.14 6.55 40.89 0.14 0.78 0.17

Table 4.3.: Mean ± SEM per cell and per branch of EC and ECn morphology
parameters and their correlation values found for all cells, here total
number of cells are 1496.

The axis length, axis width, elongation (i.e. L: W ratios), angle of orientation,

circularity (shape index), perimeter, and area of ECn and ECs were calculated

automatically as described previously in the Section 4.2.2. The calculations

of these parameters are reproducible, and the data are expressed as the mean

± SD over branches and over cells and are calculated automatically using the

Matlab mean() and std() functions unless otherwise mentioned. Histograms and

correlation plots between ECs and their ECn, r2 in all cells and age distributions

are given in Figures 4.4, A.1.
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r2 L:W Shape Orien- Len- Wid- Ar- Peri-
Ratio Index tation gth th ea meter

UL 0.24 0.10 0.39 0.83 0.07 0.17 0.22

U 0.19 0.15 0.31 0.87 0.08 0.12 0.22

UR 0.35 0.22 0.44 0.51 0.13 0.31 0.44

L 0.27 0.42 0.38 0.77 0.17 0.24 0.44

R 0.14 0.22 0.25 0.62 0.13 0.12 0.27

DL 0.05 0.44 0.25 0.75 0.18 0.04 0.31

D 0.34 0.16 0.48 0.78 0.10 0.30 0.41

DR 0.18 0.20 0.18 0.79 0.22 0.20 0.12

r2

ranges 0.05-0.35 0.10-0.44 0.18-0.48 0.51-0.87 0.07-0.22 0.04-0.31 0.12-0.44

Table 4.4.: r2 values of different parameters in different regions in all cells, here
total number of cells are 1496.

EC ECn r2

Mean SEM/ SEM/ Mean SEM/ SEM/ EC:
Branch Cell Branch Cell ECn

L:W Ratio 6.10 0.08 0.46 2.62 0.02 0.10 0.24

Shape Index 0.30 0.00 0.02 0.76 0.00 0.02 0.24

Angle(o) 4.82 2.40 13.77 2.65 2.41 13.79 0.73

Length(µm) 50.96 0.56 3.19 17.40 0.08 0.43 0.20

Width(µm) 8.85 0.07 0.40 6.78 0.03 0.15 0.19

Area(Pixels2) 292.41 3.28 18.80 89.83 0.44 2.51 0.15

Perimeter(Pixels) 118.20 1.18 6.73 38.65 0.13 0.76 0.16

Table 4.5.: Mean ± SEM over cell and over branch of EC and ECn morphology
parameters and their correlation values found for immature cells,
here the total number of cells is 937.

4.3.1. Statistical Analysis

Overall, 1496 ECs from the thoracic aortas of 3 rabbits are compared with their

ECn to determine the correlation between the cell shape and the shape of its

nucleus. In all cells as shown in Figure 4.4, there is positive correlation between

the ECs and their ECn for all parameters.
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r2 L:W Shape Orien- Len- Wid- Ar- Peri-
Ratio Index tation gth th ea meter

UL 0.10 0.15 0.08 0.84 0.14 0.08 0.04

U 0.19 0.18 0.28 0.83 0.14 0.15 0.24

UR 0.26 0.18 0.32 0.47 0.17 0.20 0.33

L 0.36 0.38 0.40 0.70 0.20 0.29 0.46

R 0.19 0.13 0.14 0.50 0.22 0.19 0.14

DL 0.18 0.35 0.28 0.50 0.27 0.12 0.39

D 0.13 0.08 0.16 0.78 0.10 0.07 0.14

DR 0.08 0.20 0.13 0.69 0.19 0.09 0.11

r2

ranges 0.08-0.36 0.08-0.38 0.08-0.40 0.47-0.84 0.10-0.27 0.07-0.29 0.04-0.46

Table 4.6.: r2 values of different parameters in different regions in all immature
cells, here the total number of cells is 937.

Length:Width Ratio

From Table 4.3, the L:W ratio of ECs is 7.29± 0.08 and of ECn is 2.96± 0.02

in all regions in all type of animals with different ages. When separating these

by age, then in immature cells the L:W ratios of ECs and ECn are 6.10± 0.08

and 2.62± 0.02, and in mature cells L:W ratios are 9.30± 0.15 and 3.55± 0.03

respectively. The correlation between ECs and ECn in respect of L:W ratios

are 0.34, 0.24, and 0.14 in all cells. In all cells, in all immature and in all mature

cells; the mean and SEM of different parameter values are given in Tables 4.3,

4.5, and 4.7 respectively.

Figures 4.5 and A.2 show the vascular region-wise distribution of ECs and

ECn L:W ratios in mature and immature animals. A straight line through the

origin would represent perfect agreement between cell and nuclear properties.

The apparent absence of SEMs for some points arises where the error bar lies

within the area of the marker. For the two outliers in the plot of length-to-

width ratios, only 14 and 17 cell boundaries could be identified, whereas all

other points have total number of cells ≥ 30 [25].

The ranges for L:W ratios for each region in immature cells are [6.13 - 8.14],

[2.66 - 3.45] and [0.05 - 0.35], and the ranges found for L:W ratios for each
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EC ECn r2

Mean SEM/ SEM/ Mean SEM/ SEM/ EC:
Branch Cell Branch Cell ECn

L/W Ratio 9.30 0.15 0.83 3.55 0.03 0.17 0.14

Shape Index 0.18 0.00 0.02 0.61 0.00 0.02 0.07

Angle(o) 47.98 2.16 12.39 44.36 2.30 13.22 0.89

Length(µm) 66.83 0.99 5.66 21.07 0.11 0.64 0.036

Width(µm) 7.47 0.08 0.46 6.06 0.03 0.19 0.18

Area(Pixels2) 297.01 4.99 28.66 96.54 0.65 3.74 0.10

Perimeter(Pixels) 150.19 2.09 11.99 44.70 0.21 1.20 0.03

Table 4.7.: Mean ± SEM over cell and over branch of EC and ECn morphology
parameters and their correlation values found for mature cells, here
the total number of cells is 559.

r2 L:W Shape Orien- Len- Wid- Ar- Peri-
Ratio Index tation gth th ea meter

UL 0.01 0.01 0.24 0.71 0.00 0.00 0.10

U 0.02 0.07 0.14 0.88 0.10 0.04 0.02

UR 0.13 0.03 0.16 0.82 0.04 0.12 0.08

L 0.09 0.22 0.18 0.07 0.28 0.17 0.04

R 0.01 0.06 0.03 0.64 0.10 0.01 0.00

DL 0.00 0.44 0.17 0.79 0.18 0.00 0.16

D 0.30 0.22 0.39 0.78 0.11 0.26 0.48

DR 0.07 0.39 0.32 0.64 0.04 0.01 0.03

r2

ranges 0.00-0.30 0.01-0.44 0.03-0.39 0.07-0.88 0.00-0.28 0.00-0.26 0.00-0.48

Table 4.8.: r2 values of different parameters in different regions in all mature,
here the total number of cells is 559.
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region in all cells are [5.14 - 6.69], [2.37 - 2.81] and [0.00 - 0.30], in mature cells

are [7.31 - 11.88], [3.08 - 3.70] and [0.08 - 0.36] respectively in ECs and ECn.

Tables 4.5, and 4.7 give the detailed results for each region in mean ± SEM

over branch and SEM over cell, and r2 values are given in Tables 4.4, 4.6 and

4.8.

It is clear from the plots and table values that the cells elongate more with

age, as the difference can be seen more clearly between mature and immature

cells’ L:W ratios. Also, ECs and ECn parameters are inversely correlated, which

demonstrates that more rounded cells and their respective nuclei become more

elongated with age, and vice versa. These results are presented in [25].

Orientation

The mean ± SEM for the angle of orientation of the ECs in all cells is 20.81◦±
1.79◦, whereas the orientation of ECn is 18.11◦ ± 1.81◦. In immature cells,

mean ± SEM the angles are measured 47.98◦ ± 2.16◦ and 44.36◦ ± 2.30◦, and

in mature animals as 4.82◦ ± 2.4◦ and 2.41◦ ± 13.79◦ respectively, these values

can be found in Tables 4.3, 4.5, and 4.7 respectively. The correlation between

ECs and ECn in respect to orientation is strongly positive; the values found

are 0.81, 0.89, and 0.73 in all cells, in all immature and in all mature cells

respectively. The vascular region-wise distribution of EC and ECn angles in

mature and immature animals are shown in Figures 4.6 and A.3.

The ranges for means, SEMs and r2 orientation values for each region in all

cells, in immature cells, and in mature are [−29.91◦−67.10◦], [−66.82◦−72.77◦],

[−41.73◦ − 67.12◦], [−28.06◦ − 54.11◦], [68.46◦ − 66.42◦], [−39.83◦ − 52.97◦],

[0.18−0.48], [0.03−0.39] and [0.08−0.40] respectively in ECs and ECn. Tables

4.5, and 4.7 give the detailed results for each region in means ± SEM over

branch and SEM over Cell, and r2 values in Tables 4.4, 4.6, 4.8 in all cells, and

in all mature and in all immature cells respectively.

The striking difference between L:W ratios and orientation correlations shows

that there is no change in pattern in orientation with age, and also, ECs and

ECn are highly aligned, which demonstrates that cells and their respective

nuclei tend to become more aligned with blood flow. These results are presented
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in [25].

Shape Index

The shape index of ECs is 0.25 ± 0.02, whereas the shape index of ECn is

0.71 ± 0.02. In mature the shape indexes are 0.30 ± 0.02 and 0.18 ± 0.02, and

in immature animals shape indexes are measured as 0.76±0.02 and 0.61±0.02

respectively, the mean and SEM values are given in Tables 4.3, 4.5, and 4.7. ECs

and ECn shape indexes are positively correlated, the values found are 0.32, 0.24,

and 0.07 in all cells, in all immature and in all mature cells. The vascular region-

wise distribution of ECs and ECn angles in mature and immature animals are

shown in Figures 4.7 and A.4.

The ranges of r2, means and SEMs for shape index values for each vascular

region in all cells are [0.1 - 0.44], [0.21 - 0.30] and [0.63 - 0.76], and the ranges

found for shape indexes for each region in immature are [0.01 - 0.44], [0.15 -

0.22] and [0.59 - 0.66], in mature are [0.08 - 0.38], [0.24 - 0.33] and [0.73 - 0.81]

respectively in ECs and ECn. Tables 4.5, and 4.7 give the detailed results for

each region in means ± SEM over branch and SEM over cell, and r2 values in

Tables 4.4, 4.6 and 4.8.

Length

In rabbits, the mean cell length is 56.84 ± 0.54µm, whereas the mean nuclei

length is 18.76± 0.08µm. In ECs the lengths are 50.96± 0.56µm and 66.83±
0.99µm, and in ECn are 17.40± 0.08µm and 44.36± 2.30µm for immature and

immature animals respectively. The mean and SEM values are given in Tables

4.3, 4.5, and 4.7. The ECn and ECs in length are positively correlated, the

values found are 0.21, 0.20, and 0.04 in all cells, in all immature and in all

mature cells. The region-wise distribution of ECs and ECn lengths in mature

and immature animals are shown in Figures 4.8 and A.5.

The ranges for lengths for each vascular region in mean ± SEM (ECs, ECn)

and r2 values are [51.97µm− 63.62µm], [43.15µm− 55.52µm] and [51.09µm−
87.86µm], [17.42µm − 20.52µm], [16.20µm − 18.07µm], [19.02µm − 22.21µm],

[0.51 − 0.87], [0.47 − 0.84] and [0.07 − 0.88] respectively. Tables 4.5, and 4.7
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give the detailed results for each region in means ± SEM over branch and SEM

over cell, and r2 values in Tables 4.4, 4.6 and 4.8.

Width

Mean EC width is 8.34 ± 0.06µm while mean ECn width is 6.51 ± 0.02µm.

In immature rabbits, the mean widths are 7.47µm ± 0.08µm and 6.06µm ±
0.03µm, and in mature animals the widths are measured as 8.85± 0.07µm and

6.78± 0.02µm respectively. The mean and SEM values are given in Tables 4.3,

4.5, and 4.7. ECs and ECn widths are positively but very weakly correlated;

the values found are 0.24, 0.19, and 0.18 in all cells, in all immature and in all

mature cells. The vascular region-wise distribution of EC and ECn angles in

mature and immature animals are shown in Figures 4.9 and A.6.

The ranges for widths for each vascular region in immature are [8.34 −
9.61µm], [6.55 − 6.99µm] and [0.10 - 0.27], and the ranges found for widths

for each region in all cells are [7.59−9.18µm], [6.13−6.79µm] and [0.07 - 0.22],

in mature are [6.91− 8.29µm], [5.91− 6.86µm] and [0.00 - 0.28] respectively in

ECs and ECn. Tables 4.5, and 4.7 give the detailed results for each region in

means ± SEM over branch and SEM over cell, and r2 values in Tables 4.4, 4.6

and 4.8.

Area

Overall, ECs cover area 294.11± 2.77 pixels2 whereas ECn covers area 92.31±
0.38 pixels2. In immature cells areas are 292.41±3.28 pixels2 and 89.83±0.44

pixels2, and in mature animals areas are measured as 297.01±4.99 pixels2 and

96.54± 0.65 pixels2 respectively, the mean and SEM values are given in Tables

4.3, 4.5, and 4.7. There is not a big change in ECs and ECn areas, even with

change in age. This demonstrates that, even with change in age, cells and their

nuclei do not undergo change in their areas. The correlation between ECs and

ECn in area are positive weakly correlated, and the values are 0.12, 0.15, and

0.10 in all cells, in all immature and in all mature cells.

The vascular region-wise distribution of EC and ECn areas in mature and

immature animals are shown in Figures 4.10 and A.7. The ranges for areas for

84



4. Comparative Analysis of In-vivo Endothelial Cell Data

each region in all cells are [240.19− 330.63 pixels2], [88.55− 95.73 pixels2] and

[0.04 - 0.31], and the ranges found for areas for each region in immature all

cells are [248.54 − 326.60 pixels2], [85.90 − 93.41 pixels2] and [0.07 - 0.29], in

mature are [205.67− 415.71 pixels2], [88.63− 108.12 pixels2] and [0.00 - 0.26]

respectively in ECs and ECn. Tables 4.5, and 4.7 give the detailed results for

each region in means ± SEM over branch and SEM over cell, and r2 values in

Tables 4.4, 4.6 and 4.8.

Perimeter

The perimeter of the EC is 130.05 ± 1.14 pixels and ECn is 40.89 ± 0.14

pixels. In EC, perimeters for immature and mature are 118.20 ± 1.18 pixels

and 150.19± 2.09 pixels, and in ECn, perimeters are measured as 38.65± 0.13

pixels and 44.70±0.21 pixels respectively, the mean and SEM values are given

in Tables 4.3, 4.5, and 4.7. The correlation between ECs and ECn in perimeter

is positively correlated, and the results are as 0.17, 0.16, and 0.03 in all cells, in

all immature and in all mature cells. The vascular region-wise distribution of

EC and ECn perimeter in mature and immature animals are shown in Figures

4.11 and A.8.

The ranges for perimeters for each region in all cells are [120.29 - 143.82

pixels], [38.56 - 43.76 pixels] and [0.12 - 0.44 pixels], and the ranges found for

perimeters for each region in immature cells are [102.38 - 127.05 pixels], [36.77

- 39.56 pixels] and [0.04 - 0.46], in mature are [119.44 - 187.94 pixels], [41.12

- 46.76 pixels] and [0.00 - 0.48] respectively in ECs and ECn. Tables 4.5, and

4.7 give the detailed results for each region in means ± SEM over branch and

SEM over cell, and r2 values in Tables 4.4, 4.6 and 4.8.

4.4. Discussion

In this chapter, additional evidence for similar behaviour of endothelial cells

and their nuclei was obtained in vivo. Some of the morphological parameters

have parallel behaviour which suggests that the mechanical forces caused the

same effect in both the cells and their nuclei. Evidence that the time-averaged
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magnitude and direction of haemodynamic wall shear stress is likely to be the

dominant influence on the morphology of the whole cell has been reviewed in

[16]; shear has a greater effect than cyclic strain [194] and mean shear dominates

over unsteady components [73].

Considering first length-to-width ratios, the most striking features are low

values in immature aortas, and high values in mature aortas. The data are

consistent with those previously obtained by Al-Musawi et al. [16]. However,

the relation is less strong for length-to-width ratios than for alignment, so other

influences on elongation, such as pulsatility or wall stiffness (which varies around

branches and changes with age), although not considered further, cannot be

entirely dismissed [25].

Orientations around immature and mature branches are broadly similar, sug-

gesting that the pattern of flow direction near the wall stayed approximately

constant with age. Patterns of elongation and, by implication, near wall flow

did change with age in the descending aorta as a whole. The general tendency

for nuclear elongation to be greater in mature animals has been extensively

discussed elsewhere [26]. The correlations between nuclear and cell orienta-

tions around immature and mature branches are highly positive, and in [180]

it has been suggested that high lesion frequency correlates with greater nuclear

elongation, consistent with lipid deposition occurring in regions experiencing

high wall shear stress at both ages. The relevance to human lesions, which also

switch from a downstream to a lateral or upstream location around intercostal

branch ostia with age [180], remains to be determined.
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Figure 4.4.: Correlation between cells and nuclei for different shape parameters
for all endothelial cells and nuclei, here the total number of cells
are 1496.
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Figure 4.5.: Vascular region-wise ratios and correlation between cells and nuclei
ratios, for mature and immature cells. Here the total number of
cells are 559 and 937 respectively.

88



4. Comparative Analysis of In-vivo Endothelial Cell Data

UL U UR R L DL D DR
−100

−50

0

50

100
Cell Orientation

M
ea

n 
± 

C
el

l S
E

M
s

UL U UR R L DL D DR
−100

−50

0

50

100
Nuclear Orientation

M
ea

n 
± 

C
el

l S
E

M
s

UL U UR R L DL D DR
−100

−50

0

50

100

150
Cell Orientation

M
ea

n 
± 

B
ra

nc
h 

S
E

M
s

UL U UR R L DL D DR
−100

−50

0

50

100

150
Nuclear Orientation

M
ea

n 
± 

B
ra

nc
h 

S
E

M
s

 

 

Mature

Immature

0 50 100 150
0

50

100

150

200

r2 = 0.73163

Cell Orientation in Degrees

N
uc

le
i O

rie
nt

at
io

n 
in

 D
eg

re
es

All EC of Immature Animal

 

 

EC Orientation

0 50 100 150
0

50

100

150

r2 = 0.8942

Cell Orientation in Degrees

N
uc

le
i O

rie
nt

at
io

n 
in

 D
eg

re
es

All EC of Mature Animal

 

 

EC Orientation

Figure 4.6.: Vascular region-wise and correlation between cells and nuclei orien-
tations for mature and immature cells. Here the total number of
cells are 559 and 937 respectively.
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Figure 4.7.: Vascular region-wise shape index and correlation between cells and
nuclei for mature and immature cells. Here the total number of
cells are 559 and 937 respectively.
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Figure 4.8.: Vascular region-wise lengths and correlation between cells and nu-
clei for mature and immature cells. Here the total number of cells
are 559 and 937 respectively.
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Figure 4.9.: Vascular region-wise widths and correlation between cells and nu-
clei for mature and immature cells. Here the total number of cells
are 559 and 937 respectively.
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Figure 4.10.: Vascular region-wise areas and correlation between cells and nuclei
for mature and immature cells. Here the total number of cells are
559 and 937 respectively.
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Figure 4.11.: Vascular region-wise perimeters and correlation between cells and
nuclei for mature and immature cells. Here the total number of
cells are 559 and 937 respectively.
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5. Shape Features Detection in

In-vivo Endothelial Cell Data

5.1. Introduction

From observing the ECs and ECn data, it became clear that there is large

variability in cell shapes, even within a single region. In the literature [16, 25,

38, 111], it has been common to study a few early defined parameters describing

cell shape and organisation, such as the L: W ratio (ratio between major and

minor axis of the shape, which depends on shear stress effects on the cells) and

angle of orientation (which depends on the direction of flow). Instead of looking

at L: W ratios, and angles of orientations, are there some other properties of

cell shape which could be used to annotate or characterise patterns? There is

similarity between cells in different regions but not necessarily in similar types

of regions. For example, cells of left, right, upstream, or downstream regions

of animal 1 might be similar to other regions in the same animal or in different

animals, but not necessarily within the same anatomical location.

Therefore, it could be useful to identify different patterns (shapes) in all

regions and then see how these might be used to categorise the cell shapes.

With this idea in mind, 1496 cells and 7077 nuclei were studied to identify

common patterns or shape behaviour in the population.

5.2. Shape Analysis

Shape analysis is an intermediate step in image processing, and usually starts

with the representation of the objects using shape descriptors or features.

As shown in Figure 5.1, shape analysis begins with the extraction of features
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Figure 5.1.: General flow chart of different stages in shape analysis.

from the shape or binarised object. The normalised features are used as an

input to some suitable classification algorithm to perform recognition of the

shapes or objects. These fundamental stages in shape analysis are discussed in

more detail in the following sections.

5.3. Shape Features

To define the shape of an object in a meaningful way, one approach might be

to define descriptors or features of the shapes. A shape descriptor should have

some robust properties for recognition. Shape descriptors might be defined as

that information about an object which is not influenced by size, location, or

orientation. In other words, a shape descriptor should be translation, rotation,

and scale invariant, and it should form a complete, congruent, and compact set

[129].

There are many approaches to shape representation; following [40], these

techniques can be broadly categorised into contour-based, region-based and

transform-based. The contour-based approach can be further sub-classified into

a parametric description of contours, in which the shape outline is represented

as a parametric curve; a set of contour points, or the shape outline. Boundary-

based shape descriptors use only the object boundary in the description of the

object shape. Region-based methods consider the whole area of an object.

The region-based approaches can be sub-classified as: region decomposition;

bounding regions; and internal features. Transform approaches may be linear

or nonlinear.

Shape is a multi-dimensional component of variation in morphological form

[61]. The description of patterns of variation in morphological shape is therefore

an important step in the recognition of each object and the identification of
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groups of sub-populations that share morphological features of shape [43]. Some

shape analysis applications in biological data are presented in the next Section.

5.4. Shape Features in Biological Images

Shape analysis is an important method in biology to separate broadly similar

animals and plants into different groups, by comparing shapes of the specimens.

It has evolved into the area of morphometrics, and many methods have been

developed to record the positions of “landmarks” on the specimens in 2- or

3-d [190]. The basic idea of biological shape analysis is to find variations in

objects to understand the physiological changes within those objects. Changes

in cellular morphology are important signs in the physiological states of cells,

and play an important role in understanding diseases, such as cancer [28] or, in

our case, the development of atherosclerotic lesions.

Initially, traditional shape variation approaches also known as traditional

morphometrics were focused on to use a linear combination of the inter-landmark

distances in biological structures, as well as angles and distance ratios. Most

modern geometric morphometric methods, which define shape geometrically,

have replaced these traditional morphometic approaches [125]. Statistical shape

analysis is usually based on “Kendall’s shape space” [93, 94].

Some applications of shape analysis for biological problems have been pre-

viously reported. Different moments are applied as feature descriptors, such as

moment invariants [78], and Zernike moments [161]. By using artificial neu-

ral networks (ANNs) as a classifier and image processing techniques, Yang et

al. [189] developed an automatic routine examination system for parasitic di-

seases. For the classification of closed planar shapes using a neural network

is presented in [66]. Chain codes [57] and Fourier descriptors [137] are the

most commonly used boundary shape descriptors. For detecting morphological

variability of Eimeria species, Sommer [157] developed a parametric contour

approach using the Fourier transform. Foran et al. in [55] developed an image

retrieval system which uses textural and similarity invariant Fourier descriptors

for shape characterisation to discriminate between malignant lymphomas and

chronic lymphocytic leukaemia. Multi-scale mathematical morphology has been
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applied for automatically extract features of contours to diatom classification

by using decision trees and k-nearest neighbour in [87]. For the characteri-

sation of cat ganglion neural cells used multi-scale features, whereas for the

same problem Costa et al. [44] addressed by proposing a comprehensive set of

shape measures, such as eccentricity, fractal dimension, influence area, convex

hull area and with the help of several clustering strategies. To understand cell

motility, several techniques have been proposed such as in [64]. Cell shape

analysis methods should not add spurious information, and should not discard

important information [140]. They should also capture biologically important

shape variations in cells [115]. A comparison of quantitative methods for cell-

shape analysis is presented in [140], while [36, 115, 135] provide comprehensive

reviews for shape analysis methods.

5.5. Morphological and Statistical Features

The selection of the features has been identified as the most critical phase in

shape recognition, even more difficult than the classification step. As sugges-

ted in the previous discussion, the description and measurement of biological

shape description and measurement is a fundamental step to assess variation

in natural populations and also to infer its ecological and evolutionary causes

[43]. ECs can be subjected to many morphological analyses. The motivation of

this study is to provide an appropriate descriptive technique for vascular ECs

and ECn shape which could relate to some relevant biological properties of the

cells and nuclei.

ECs and ECn shapes can be mathematically understood as a set of connected

points in a 2-dimensional image, which could be transformed into d-dimensional

feature space Φ. As explained earlier, the transformation space, Φ, is usually

translation, rotation and scaling invariant.

In the present shape study two transformation methods are proposed: one,

shape-descriptor analysis, in which several geometric shape features are ex-

tracted, and another shape-boundary contour analysis. These techniques are

explained below:
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5.6. Shape Feature Descriptor

The features selected for ECs and ECn include:

1. Compactness, which is the indicator of the circularity of the object, and

is given by:

C = 4π
[
A
P 2

]
Where A is area and P is perimeter.

2. Length : Width ratio, which is given by:

LWRatio = L
W

Where L is length and W is width.

3. Eccentricity, calculated as:

E =
[√

L2−W 2

1/2(L)

]
4. Ratio of the difference between maximum and minimum distance (R) with

major and minor axis

ARmax = [argmax(R)−argmin(R)]
(L−W ) .

5. Ratio between length and perimeter

PerLengthR = L
P .

6. Percentage of number of boundary points within the ideal ellipse. The

ideal ellipse can be defined as “A closed, symmetric curve shaped like an

oval, which can be formed by intersecting a cone with a plane that is not

parallel or perpendicular to the cone’s base. The sum of the distances

of any point on an ellipse from two fixed points (called the foci) remains

constant no matter where the point is on the curve” [10]. The ideal

ellipse for one nucleus found using its angle of orientation and major, and

minor-axes and its corresponding perimeter points are plotted in Figure

5.2.
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Bin =

n∑
i=1

Pi

n × 100

if a boundary point is inside the ellipse then Pi is one, else Pi is zero.

7. Fourier descriptors (FD) [137] of the signals.

−15 −10 −5 0 5 10 15

−10

−5

0

5

10

Ideal ellipse with original signal points

 

 
Ideal ellipse
Contour points

Figure 5.2.: Ideal ellipse (in blue), and original nucleus with boundary points
(in red).

The feature vector of each cell boundary and nucleus selected for further

shape analysis is then constructed as:

SD = [C,LWRatio, E,ARmax, P erLengthR,Bin, FD] . (5.1)

Some of these shape descriptors have been widely applied in object recog-

nition. Each descriptor alone is insufficient for a complex recognition task,

but their combination has shown good recognition capabilities [120]. All shape

descriptors are normalised with a zero mean and a unit variance, as given in

Equation (2.2), before further analysis.

5.7. Contour-based Analysis

After the registration operation as explained in Section 4.2, a set of selected

cells and their respective nuclei regions were found. Selected cell contours on
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Figure 5.3.: One sample pair of nuclei and cells images with trace boundaries
overlaid in red after applying the algorithm 4.1 on the Figure 3.19.

one image set were overlaid, as shown in Figure 5.3.
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Figure 5.4.: A few samples of original cells and nuclei contours. All axes are
calibrated in pixels.

The curvature of each object (cell or nucleus) was calculated using its x and y

locations of the edges as a 1d complex signal, or the perimeter contour points of

each object, where (x, y) locations of objects are expressed as complex numbers

in (x+ ı̇y) form. A few samples of nuclei and cell contours are shown in Figure

5.4.

A smoothing operation was then applied, by an interpolation given in Equa-

tion (3.3) in Chapter 3, to all the cells and nuclei to reduce sampling artefacts

in the perimeter contours. A few samples of the smoothed nuclei and cell per-
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Figure 5.5.: A few samples of smoothed cells and nuclei contours. All axes are
calibrated in pixels.

imeter contours are shown in Figure 5.5.
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Figure 5.6.: A few samples of centered cells and nuclei contours. All axes are
calibrated in pixels.

All cells and nuclei contours or signals were then aligned to their respective

centroids. Samples of the centred nuclei and cell contours are shown in Figure

5.6.

To achieve rotation invariance, the cell and nuclei contours were rotated with

respect to the zero-degree as shown in Figure 5.7. The starting point problem

in contours can be addressed in many biological contexts by finding the longest

diameter of the shape. By taking the point which was nearest to zero-degrees;

the object can be shifted left or right along the contour with a suitable angle

of reference to make almost all objects to start from the same point. A few
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Figure 5.7.: A few samples of cells and nuclei contours after being rotated to
zero degree. All axes are calibrated in pixels.

samples of shifted, centred, translated and rotated cells and nuclei are shown

in Figure 5.8. The reconstructed averages of cells and nuclei obtained from all

the perimeter contours available are given in Figure 5.9.
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Figure 5.8.: A few samples of centred and shifted cells and nuclei contours. All
axes are calibrated in pixels.

5.8. Clustering Results

An unsupervised hierarchical clustering technique was adopted to cluster mor-

phological appearances in the cells and in the nuclei. This was implemented

using the functions dendrogram(), linkage() with parameters weighted, complete
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Figure 5.9.: “Average” cell estimated from 1496 cells, and “average” nucleus
estimated from 7077 nuclei respectively.

and average, and pdist() function with Euclidean, and cosine distances, given in

the statistical toolbox of Matlab version 7.9.0 [121] on a PC running Windows.

1. The distances between each object were calculated first. The pdist() func-

tion calculates the distances between feature vectors of every pair of cells

or nuclei in the data, resulting in a square distance matrix of size equal

to the data.

2. Then on the resulting distance matrix, or a more general dissimilarity

matrix found through step (1), an agglomerative hierarchical cluster tree

was generated with the help of the linkage() function.

3. Finally, a dendrogram plot was generated with the functions dendro-

gram(). They are sort of intersect shaped: (⊓) lines connecting objects in

a hierarchical tree. The height of each ‘⊓’ represents the distance between
the two objects being connected.

The hierarchical trees were obtained with combinations of cosine distance,

and weighted, and complete linkages obtained for cells and nuclei with the shape

descriptors described in Sections 5.8.2 and 5.8.3.
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ECs ECn

Cluster Validation Index BCNS BCNSFV BCNS BCNSFV

Silhouette index 3 2 2 3

Davies-Bouldin 5 4 8 5

Calinski-Harabasz 2 10 2 2

Dunn index 3 3 2 2

Hubert-Levin (C-index) 7 5 9 7

Krzanowski-Lai index 3 5 5 9

weighted inter-intra index 7 7 9 7

Range of Indices [2-7] [2-10] [2-9] [2-9]

Table 5.1.: Summary of cluster validation indices for ECs and ECn. Here BCNS
is Best Cluster Number in Signal, and BCNSFV is Best Cluster
number in Shape Feature Vector.

5.8.1. Clustering Validity

Cluster validation was done using the Matlab cluster validity toolbox available

online [11]. This tool allows us to find the optimum number of clusters in a given

data and produces a set of indices based on three categories; external assessment

of validity, an internal examination of validity and a relative test, as discussed

earlier in the review Chapter 2. Some of the indices this tool gives are: Cluster

Validation Index, Silhouette index, Davies-Bouldin, Calinski-Harabasz, Dunn

index, Hubert-Levin (C-index), Krzanowski-Lai index and weighted inter-intra

index, a detailed description of these indices is given in [17, 19, 86, 122]. In this,

different cluster validity indices are calculated for both cells and nuclei data sets

(shape descriptors and perimeter contours separately) and these indices have

given an optimum number of clusters in each data set. The optimum number

of clusters found from each index is shown with a square box in Figures 5.10,

5.11, 5.12, and 5.13 and given in Table 5.1.

From Table 5.1, it can be observed that using the perimeter contours for

vascular ECs, the minimum number of clusters could be 2 and the maximum

10. When looking at the shape descriptor cluster results in Table 5.1, there is

large variation in the estimated optimal number of clusters. It was therefore

hard to determine an ideal number of clusters. Therefore, 8 clusters are selected
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in order to preserve as much distinction as possible without “over-partition”

the data.

Similar observations were made on nuclei data. In Table 5.1, the ECn clus-

ter validity indices results and show great variation in the optimal number of

clusters between methods. So, again for both nuclei data types, 8 clusters were

selected for classification of the nuclei data. The clustering results are presented

in the next subsections individually for both ECs and ECn; shape descriptors

and perimeter contours are documented separately.

5.8.2. Clustering based on Shape Feature Descriptors

For 7077 nuclei, shape-descriptors based on dendrogram trees are computed

and given in Figures 5.14(a) and 5.15(a), and the average shapes for each of 8

groups are given in Figures 5.14(b) and 5.15(b). Similarly, for 1496 cell shapes,

dendrogram trees are given in Figures 5.16(a) and 5.17(a), and eight average

cell shapes are presented in Figures 5.16(b) and 5.17(b) respectively. For each

of the 8 clusters, if any group has less than five members, then for this group,

the average was not calculated. Those cells or nuclei are displayed on top

of each other with dashed curves. To visualize the classification results, the

cluster indices are mapped with different colours on the original data (cells or

nuclei). For the nuclei, Figures 5.14(c-d) and 5.15(c-d) represent the results of

different hierarchical combination indices on two different branches. For cells,

a similar mapping was done and the results are displayed in Figures 5.16(c-d)

and 5.17(c-d).

5.8.3. Clustering based on Contours

Contour-based dendrogram trees for 7077 nuclei and 1496 cells are also com-

puted and given in Figures 5.18(a), 5.19(a), 5.20(a) and 5.21(a) respectively.

Average shapes obtained for all nuclei in their corresponding 8 clusters are given

in Figures 5.18(b), 5.19(b), 5.20(b) and 5.21(b) respectively. Again, to visualize

the clustering results found using contour-based hierarchical trees, data is then

mapped with different colours, as shown in Figures 5.18(c-d), 5.19(c-d), on two

different regions for nuclei. For cells, a similar mapping is done and results are
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Figure 5.10.: Validation indices found for cell signals; an optimal number of
clusters in each index is marked with a square box.
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Figure 5.11.: Validation indices found for cell shapes; an optimal number of
clusters in each index is marked with a square box.
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Figure 5.12.: Validation indices found for nuclei signals; an optimal number of
clusters in each index is marked with a square box.

109



5. Shape Features Detection in In-vivo Endothelial Cell Data

2 3 4 5 6 7 8 9 10

0.15

0.2

0.25

number of clusters(k)

Silhouette index

2 3 4 5 6 7 8 9 10

1

1.2

1.4

number of clusters(k)

Davies−Bouldin index

2 3 4 5 6 7 8 9 10

1000

1500

2000

number of clusters(k)

Calinski−Harabasz index

2 3 4 5 6 7 8 9 10

0.6

0.8

1

1.2

1.4

number of clusters(k)

Dunn index

2 3 4 5 6 7 8 9 10

0.3

0.4

0.5

number of clusters(k)

R−Squared index

2 3 4 5 6 7 8 9 10

0.2

0.25

0.3

number of clusters(k)

C−index index

2 3 4 5 6 7 8 9 10

0

20

40

60

80

number of clusters(k)

Krzanowski−Lai index

1 2 3 4 5 6 7 8 9

0

500

1000

1500

2000

number of clusters(k)

Hartigan index

2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1

number of clusters(k)

RMSSTD group index

2 3 4 5 6 7 8 9 10

0.2

0.3

0.4

0.5

0.6

number of clusters(k)

weighted inter/intra index

2 3 4 5 6 7 8 9 10

0.16

0.17

0.18

0.19

number of clusters(k)

Homogeneity index

2 3 4 5 6 7 8 9 10

0.25

0.26

0.27

number of clusters(k)

Separation index

Figure 5.13.: Validation indices found for nuclei shapes; an optimal number of
clusters in each index is marked with a square box.
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Figure 5.14.: A dendrogram showing 8 clusterings using cosine distance and
complete linkage, reconstructed “average” morphology in each of 8
clusters for ECn shape descriptors, and colour mapping examples
on two vascular regions of 7077 ECn shape descriptors.
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Figure 5.15.: A dendrogram showing 8 clusterings using cosine distance and
weighted linkage, reconstructed “average” morphology in each of 8
clusters for ECn shape descriptors, and colour mapping examples
on two vascular regions of 7077 ECn shape descriptors.
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Figure 5.16.: A dendrogram showing 8 clustering using cosine distance and
complete linkage, reconstructed “average” morphology in each of 8
clusters for ECn shape descriptors, and colour mapping examples
on two vascular regions of 1496 ECs shape descriptors.

displayed in Figures 5.20(c-d), 5.21(c-d).

5.9. Discussion

While literature on ECs and ECn has concentrated mostly on L:W ratios and

angles of orientation, two novel shape analysis techniques are proposed in this

chapter: one, shape-descriptor analysis, in which several geometric shape fea-

tures are extracted, and another, shape-boundary contour analysis. These me-

thods are developed to find modes of shape variation and some other properties

beyond just elongation and aspect ratio among the given cell and nuclear data.

These techniques lay a basic foundation for further studies in cell-morphology

analysis.

Due to time constraints, a detailed biological interpretation has yet to be

done to give a firm conclusion on these shape results. But, initial analysis on

nuclear data show some variations in shape clusters of immature and mature
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Figure 5.17.: A dendrogram showing 8 clustering using cosine distance and
weighted linkage, reconstructed “average” morphology in each of 8
clusters for ECn shape descriptors, and colour mapping examples
on two vascular regions of 1496 ECs shape descriptors.
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Figure 5.18.: A dendrogram showing 8 clustering using cosine distance and
complete linkage, reconstructed “average” morphology in each
of 8 clusters for ECn perimeter contours, and colour mapping
examples on two vascular regions of 7077 ECn perimeter contours.
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Figure 5.19.: A dendrogram showing 8 clustering using cosine distance and
weighted linkage, reconstructed “average” morphology in each
of 8 clusters for ECn perimeter contours, and colour mapping
examples on two vascular regions of 7077 ECn perimeter contours.
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Figure 5.20.: A dendrogram showing 8 clustering using cosine distance and
complete linkage, reconstructed “average” morphology in each
of 8 clusters for ECn perimeter contours, and colour mapping
examples on two vascular regions of 1496 ECs perimeter contours.
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Figure 5.21.: A dendrogram showing 8 clustering using cosine distance and
weighted linkage, reconstructed “average” morphology in each
of 8 clusters for ECn perimeter contours, and colour mapping
examples on two vascular regions of 1496 ECs perimeter contours.

animal nuclei data, these results are presented in Figures 5.22 and 5.23. In these

plots, two distributions (immature and mature animal nuclei) are presented

for both shape analysis techniques, i.e. feature descriptors and contour-based

methods, displaying a range of cluster indices in each distribution. However, it

is clear that the incidence of a few clusters is different in both groups. Initial

analysis on nuclear data clearly show variation in shapes of immature and

mature animal nuclei data. The representation of these shapes with respect to

the atherosclerotic lesion sites and changes in patterns with age are yet to be

determined.
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Figure 5.22.: Cluster indices distribution based on perimeter-contour method in
all immature and mature nuclei. Here, the total number of nuclei
are 4346 and 2731 respectively. Note the incidence of cluster 5
type index in mature rabbit nuclei.
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Figure 5.23.: Cluster indices distribution based on shape descriptor method in
all immature and mature nuclei. Here, the total number of nuclei
are 4346 and 2731 respectively. Note the increased incidence of
cluster 6 type index in mature rabbit nuclei.
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6. Experiments on In-vitro Cells

(Temporal Data)

6.1. Introduction

This chapter describes the experiments done, and new analysis methods deve-

loped in order to study the role of calcium waves in oscillations under different

flow conditions on image sequences of cells in flow field over time. The methods

are presented in this chapter to analyse the spatial and temporal behaviour of

single-cells amongst their neighbourhood using calcium sensitive fluorescent

probes of two different wavelengths, i.e. red and green fluorescence channels.

Two different series of images, represented with green and red florescence, sam-

pled at approximately at a frame rate of, f(5s) or 1 frame per 5 second, were

acquired as described in Chapter 1.7.2.

6.2. Analysis

6.2.1. Cell Database

These image sequences are treated as stacks. An image of maximum intensity

projection over time is found using Equation (6.1):

IMax(x, y) = max
i=1:N

Ii(x, y), (6.1)

where Ii is the ith frame in one of the green channel stacks, represented in

Figure 6.1 and N is the number of frames in the stack. Ii(x, y) is the intensity

value at pixel location (x, y), and i ⊆ 1, · · ·N .

Instead of taking the first frame of the stack as the frame of reference for
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Figure 6.1.: Maximum intensity projection over time image in the green and
red channels representation.

finding the binary image or finding binary images of all the frames in the stack,

MIPT image is found so that just a single image can be used as a stable frame

of reference for each cell. This avoids the need to solve a multi-region and

multi-frame tracking problem, though it may lead to errors in processing if

a cell moves significantly over the course of the experiment. Equation (6.1)

searches over all the N frames in the stack at location (x, y) and finds the

maximum intensity value. This process is repeated until it finds the maximum

intensities for all the pixels in the stack. This image is termed “maximum

intensity projection over time image (MIPT)” and denoted as IMax(x, y), as

formulated in Equation (6.1), and shown in Figure 6.2.

A threshold, t2, is applied to the maximum intensity projection image to find

a binary image to use as a mask. Connected component labelling [48] is used

to enumerate the regions in the binary image IBinary, given by Equation (6.2)

and shown in Figure 6.2.

IBinary(x, y) = IMax(x, y) ≥ t2. (6.2)

A set of cell regions C, as shown in Figure 6.2, is created using connected
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Figure 6.2.: Top panel, original MIPT image, and binary image. Bottom panel,
masks of 50 cell regions, and selected regions representation on the
MIPT image.
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6. Experiments on In-vitro Cells (Temporal Data)

component labelling and the centroid of each region is found using moment

calculations. From the selected regions shown in Figure 6.2, the mean intensity

is calculated for each cell over all the frames in the red stack:

µr(x, y) =

∑
fr,i(x, y) · Cj(x, y)

N × αj
, ∀i ⊆ 1, · · ·N, ∀j = 1 : M, (6.3)

where Cj is the selected jth cell in the ith frame in the stacks, Cj(x, y) takes

values of 1 for pixels in the jth region and zero otherwise, αj is the total number

of pixels in the selected cell Cj , N is the total number of frames in the stack,

and M is the total number of selected cells. The same process was repeated

with the other, green stack to calculate µ2(x, y).

µg(x, y) =

∑
fg,i(x, y) · Cj(x, y)

N × αj
, ∀i ⊆ 1, · · ·N, ∀j = 1 : M, (6.4)

Finally, the fluorescence ratio, rf (x, y), given in Equation (6.5), is calculated

to estimate the calcium proportionate for each frame in the stack. Here, fg and

fr are the green and red fluorescent image stacks.

rf (x, y) =
µg(x, y)

µr(x, y)
. (6.5)

6.3. Results

The calcium fluorescence ratio trend signals, rf (x, y), in a few example cells

during and after flow are shown in Figure 6.3. There are some cells whose

Ca2+ concentration remains the same, while some cells oscillate more, and in

some cells, the value of the rf (x, y) increases in magnitude. This demonstrates

the EC heterogeneity between cells. In order to further analyse the behaviour

of endothelial cells with flow, the perfusion sequence was separated into “during

flow” and “after flow” conditions.
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6. Experiments on In-vitro Cells (Temporal Data)
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Figure 6.3.: Sample cell signals during flow and the signals after flow cessation,
superimposed on top of each other.
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6. Experiments on In-vitro Cells (Temporal Data)

6.3.1. Clustering for In-vitro Data

Clustering of the extracted signals was attempted to try to identify patterns

in the calcium wave activities in both flow conditions. Cluster validation was

done using the toolbox available in the file exchange version of Matlab [11].

In this toolbox, several validation indices were calculated for the hierarchical

clustering algorithm. Validation indices for the signals “during flow” are given

in Figures 6.4; whereas for the “after flow” condition, cluster validation results

are presented in Figures 6.5.

The hierarchical clustering technique was applied to the signals obtained

for all 50 cells studied in this dataset, as illustrated by the dendrograms in

Figure 6.6 during flow and after flow cessation. Average signals under both

flow conditions for all signals are given in Figures 6.6. Of a total of 50 cells

studied in this dataset, cells formed three groups or clusters but some cells

moved from one cluster to another; this suggests that some cells changed their

Ca2+ concentration behaviour, while others remained the same under both

conditions. The results of different cell groups during flow and after flow are

presented in Figure 6.7, and their spatial locations are shown on the MIPT

image in Figure 6.8.

The average signals of each cluster during flow do not change much but the

change can be seen in after flow in average signals, but no significant patterns

were observed through clustering technique. Therefore, instead of looking at

the amplitudes of signals over time, it was then decided to look at the spatial

patterns in cell transients, described in detailed in the next Section.

6.3.2. Calcium Transient Association in Cell Neighbourhood

Ca2+ transients were detected for 50 cells’ “during flow” and “after flow” using

an adaptation of the method described in [154]. In summary, before applying

these algorithms, the signal was smoothed by using a low pass Sovitsky-Golay

filter. After de-trending, the local maxima were determined as the times when

the signal was larger than the signals for the two sampling times before and

after. The signal was then zeroed by subtracting the intensity that corresponded

to the peak of the histogram of local maxima, i.e., the mode of the intensity
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6. Experiments on In-vitro Cells (Temporal Data)

2 3 4 5 6 7 8 9 10

−0.3

−0.2

−0.1

0

0.1

number of clusters(k)

Silhouette index

2 3 4 5 6 7 8 9 10

3

4

5

number of clusters(k)

Davies−Bouldin index

2 3 4 5 6 7 8 9 10

1

2

3

number of clusters(k)

Calinski−Harabasz index

2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

number of clusters(k)

Dunn index

2 3 4 5 6 7 8 9 10

0.06

0.08

0.1

0.12

0.14

number of clusters(k)

R−Squared index

2 3 4 5 6 7 8 9 10

0.16

0.18

0.2

0.22

0.24

0.26

number of clusters(k)

C−index index

2 3 4 5 6 7 8 9 10

0

20

40

60

number of clusters(k)

Krzanowski−Lai index

1 2 3 4 5 6 7 8 9
0

1

2

3

number of clusters(k)

Hartigan index

2 3 4 5 6 7 8 9 10

0.4

0.6

0.8

1

number of clusters(k)

RMSSTD group index

2 3 4 5 6 7 8 9 10

0.4

0.45

0.5

number of clusters(k)

weighted inter/intra index

2 3 4 5 6 7 8 9 10

0.46

0.48

0.5

0.52

0.54

number of clusters(k)

Homogeneity index

2 3 4 5 6 7 8 9 10

0.64

0.66

0.68

0.7

0.72

number of clusters(k)

Separation index

Figure 6.4.: Cluster validity indices found on signals during flow; an optimal
number of clusters for each index is marked with a square box.
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Figure 6.5.: Cluster validity indices found on signals after flow; an optimal num-
ber of clusters for each index is marked with a square box.
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Figure 6.6.: Dendrograms and reconstructed “average” signals corresponding to
the cluster centres for signal vectors during and after flow.
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flow. Several cells in this example [7,20, 28, 45, 48 ] changed from
one shape cluster to another as a result of flow cessation.
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Figure 6.8.: Selected regions displaying different colours for the different clus-
ters during flow and after flow.

maxima. The resulting data was then used as inputs to the transient detection

algorithms, described below.

The transient detection algorithm first uses a Rosin thresholding algorithm,

given in [146], and assumes that signal intensity values are composed of two

populations (noise and transients in the signal), and produces two peaks (one

main peak located at the lower end of the histogram relative to the secondary

population). A line is drawn from this peak to the first empty bin of the

histogram following the last occupied bin, and then a threshold between the

two populations is set at the maximum perpendicular distance between the

histogram and this line. Once it detects all the local maxima in the intensity

signal, the Rosin algorithm is used to find a threshold intensity separating Ca2+

transients from lower amplitude maxima due to noise. The Rosin algorithm is

again applied to the transients identified by the first step to find the threshold

between the lower amplitude transients generated by a single Ca2+ transient and

the higher amplitude transients generated by multiple transients that occurred

within the duration of a single Ca2+ transient.

The second algorithm, described as the Template/Rosin method, uses a tem-

plate of a Ca2+ transient by taking the ensemble average of the intensity signal
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within a window of the detected transient times of the putative transients iden-

tified by the first stage of the Rosin method. Next, the correlation between the

intensity signal and the template was calculated, and the peaks in the correla-

tion were identified. The algorithm then works exactly in the same way as the

previous algorithm but using the correlation signal rather than the intensity

signal. The Rosin algorithm was used to separate the peaks due to transients

from other small peaks due to noise. The transient peaks were then further

separated using the Rosin algorithm into peaks resulting from single transients

and peaks resulting from multiple transients. The amplitude of calcium tran-

sients was calculated as the magnitude of the intensity signal obtained from the

Ca2+ fluorescence ratio signals at detected transient locations. Single and mul-

tiple fluorescence transients can be seen in the cells. A few samples of these are

shown in Figure 6.9. Transient rate was calculated as the number of transients

per cell over time during and after flow.

6.3.3. Transient Patterns in Cell Neighbourhood

Pixel-distance (using Euclidean distance) was calculated between each boun-

dary pixel of the reference cell to all boundary pixels of each other cell in the

database, as given in Algorithm 6.1 and the cell boundaries were overlaid (in

red) for each cell, shown in Figure 6.10. If any pixel in any cell lies within 36 µm

of any pixel in the reference cell, then that cell is identified as a “neighbouring

cell” of the reference cell. This way, all the nearest neighbours were calculated

for cells in the database. The total number of neighbouring cells varies for each

cell.

To look for spatial correlations in Ca2+ transients amongst cell neighbou-

rhoods, an algorithm for detecting Ca2+ transient patterns was developed and

is given in Algorithm 6.2. Briefly, a reference cell was first selected. After oc-

currence of a transient from the reference cell, the nearest neighbours transient

cells within a distance of 36 µm and within the current (“short time range

cell-cell interaction”) and two consecutive frames or 5-10 seconds at a rate of

5 frames per second (“long time range cell-cell interaction”) were located. If

two or more cell transients in this time range were detected amongst the neigh-
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Figure 6.10.: Boundaries for each region displayed in (red) on maximum inten-
sity projection over time image.

Algorithm 6.1 Algorithm to find cell neighbourhood

Initialize maximum(Max) distance for neighbour search;
i := 1: n; n := total number of regions;
while i ≤ n do

Calculate all distances between each pixel of boundary of a region with
each pixel of boundary of another region, yielding, Dist, a L1 × L2 distance
matrix; L1 and L2 are the size (number of pixels) of boundaries of regions;

MaxDist := any(Dist) ≥ Max;
if MaxDist then

N(i) := MaxDist;
end if

end while
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bours, then the nearest neighbour amongst the transient cells was selected as

a new potential reference cell for a further search. In this way, the process

continued until all frames were analysed, and the transient pattern was found

for the reference cell; the same process was then repeated for all the cells.

Algorithm 6.2 Algorithm for identifying calcium transient associations in cell
neighbourhood

j := 1: t; t := total number of frames;
i := 1: n; n := total number of regions;
reference cell := i;
TRANSIENTS := All cells transient timings;
Transient := TRANSIENTS(i);
while j ≤ t do

if any(TRANSIENTS) == j then
find(TRANSIENTS(NN)); NN := nearest neighbours of ith region;
if any(TRANSIENTS(NN)) == j then

Display frame j connection in red;
reference cell := cell which transient at j;

end if
if any(TRANSIENTS(NN)) == j+1 then

Display frame j+1 connection in blue;
reference cell := cell which transient at j+1;

end if
if any(TRANSIENTS(NN)) == j+2 then

Display frame j+2 connection in green;
reference cell := cell which transient at j+2;

end if
end if

end while

Different patterns in calcium fluorescence obtained during and after flow are

depicted in Figure 6.3. It is clear that a large heterogeneity in the response to

flow exists in endothelial cells in culture, as there are endothelial cells where

Ca2+ concentrations remained unchanged, while in other cells the amplitude of

the Ca2+ transients increased Figure 6.11. The relative amplitude of the Ca2+

transients did not change significantly after flow cessation (1.76 ± 0.34 during

flow and 1.72± 0.36 after flow cessation).

131



6. Experiments on In-vitro Cells (Temporal Data)

1 5 9 13 17 21 25 29 33 37 41 45 49
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
 Average ± 1 SD Amplitude / cell

No: of Cell

A
m

pl
itu

de
s

 

 

During Flow
After Flow

1 5 9 13 17 21 25 29 33 37 41 45 49
0

5

10

15

20

25
 Spikes / cell

No: of Cell

N
o:

 o
f S

pi
ke

s

 

 

Dring Flow
After Flow

Figure 6.11.: During flow and after flow amplitude distribution of cells and
transient distribution of cells.

The transient amplitude and rate distributions for each cell are also given in

Figure 6.11, where it can be noted that 84 % of all cells were transient at a higher

rate after flow cessation. If we assume that the transient rate distributions

before and after flow may be modelled by separate Poisson distributions, then

the maximum likelihood estimate of the Poisson parameters changed from 6.06

during flow to 8.24 after flow cessation confirming the findings from Figure 6.11.

Using the transient searching method algorithm 6.2, we found that the tran-

sient endothelial cells formed spatial and temporal patterns with their neigh-

bouring cells. Such patterns are represented in Figures 6.12 and 6.13 at different

timing points during flow and after flow cessation. It is clear that most cells in-

teract with their direct neighbours only (“short range interaction”) while some

cells appear to have (“long range interaction”), and cells form circular pattern

after flow is ceased.
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6.4. Discussion

This chapter ECs behaviour was investigated in a controlled flow environment

and different techniques were developed in this thesis and applied to detect cal-

cium transients in cells and to analyse the patterns of these transients between

neighbouring cells.

A new method is presented for detecting the effect of flow on the spatial and

temporal patterns of calcium activity among neighbouring cells. On average,

the probability of a cell firing in a given frame is 0.05. However, a small number

of cells had a much higher probability (≥ 0.25) of firing if a neighbouring cell

fired during the current frame period. After flow cessation, cells which had

firing probabilities higher than 0.05, formed intricate spatial patterns among

neighbouring cells.

Several groups have postulated that ATP transport may be involved in the

process of flow sensing by the endothelial cell [46, 49, 130]. Interestingly ATP is

released from endothelial cells under shear stress [23] but is - at the same time

- degraded at the cell surface by ATPase. Hence, some investigators suggested

the modulation of ATP concentration at the cell surface by flow to explain the

shear dependent calcium response. Does a mass transport process, in particular

of ATP, really account for the flow dependencies of calcium transient observed?

Controversial results can be found in the literature. The original experiment of

Ando [85] revealed that ATP is necessary for calcium transients but in other

experiments in which ATP release was blocked or ATP effectively degraded,

calcium transients could still be observed [152]. The propagation of the cal-

cium wave to neighbouring cells can be significantly suppressed by a purinergic

receptor blocker, implying that ATP participates in the propagation process

[75]. Heterogeneity in cell responses could be due to a non-uniform distribution

of purinoreceptors. ATP is able to activate the nearby endothelial cells or can

be transported by blood flow downstream. Hong and others suggested a me-

chanism by which ATP acts as an autocrine mediator, integrating individual

cell responses and coordinating vascular function [50, 75]. Further experiments

investigating these calcium waves suggested they are transmitted by both ATP

via purinoreceptors and IP3 via gap junction (connexin 40) [166].
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The current experiments add further to the above mentioned controversies.

If mass transport of ATP plays a role in calcium transients, then flow would

affect propagation of calcium patterns in such a way that they would follow the

direction of the streamlines of the flow field. We did find that the presence or

absence of flow affected the calcium transient patterns, but rather unexpectedly

the calcium transient patterns were very complex, with patterns, perpendicular

to stream lines and even retrograde to the stream lines. These observations

therefore suggest that the effect of flow on calcium transients and their cell-

cell propagation is more likely due to calcium propagation through intercellular

gap and tight junctions and to a smaller amount over stream lines. This then

suggests that transport of species along streamlines is of less importance, at

least in the current experiments.

In conclusion, cell transient appears synchronised in multi-cellular groups,

forming complex patterns that bear little relationship with streamlines of the

velocity field, but that do change with shear stress. The patterns suggest a new

functional mechanism in flow-mediation of cell-cell calcium signalling.
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7.1. Summary

At the beginning of this thesis, the biological motivation behind the study of the

endothelial cell and of heterogeneity in its functions, structure and its spatial

patterns is discussed.

This research is aimed at developing methods for the automated analysis

of spatial patterns of endothelial cells (ECs), and the functional behaviour of

endothelial cells under different flow conditions and in different species. This

would enable researchers to analyse large amounts of microscopy data in order

to understand the patterns of formation of atherosclerotic lesions.

For many types of automatic analysis, the first step is to segment the data,

and then group them into different classes. Various related segmentation and

classification techniques are briefly reviewed in Chapter 2 in order to establish

a context to present the different algorithms developed in this thesis.

The first step is the detection of the cell nucleus and cell boundaries. In

Chapter 3 different algorithms for segmentation are presented for endothelial

nuclei (ECn) and, particularly for endothelial cell (ECs) boundaries.

Chapter 4 analysed changes in patterns for stress affected morphological pa-

rameters of endothelial cells (ECs) and endothelial nuclei (ECn) and how they

varied with age in rabbit data.

In Chapter 5, a hypothesis is suggested on ECs and ECn shapes. This could

be used to look at the other cell shape measurements instead of just looking

at length-to-width ratio and angle of orientation and their relationship to the

functions of the cells. To test this hypothesis, two shape analysis techniques

are developed. This may help in future to understanding and analysis of the

morphological variations in the shapes of endothelial cells and endothelial nu-
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clei.

Chapter 6 investigated the behaviour of ECs in a controlled flow environment

and applied techniques developed in this thesis to detect heterogeneity among

cells, particularly the formation of intricate patterns in single-cell transients

using Ca2+ sensitive florescence probes analysis.

7.2. Research Outcomes

The research outcomes and new methods explored in the thesis may be cate-

gorised into the following headings:

1. Candidate shape model

2. Patch-based feature vector for cell segmentation

3. Morphological parameter based association between in-vivo endothelial

cells and endothelial nuclei

4. Age-related changes in patterns of in-vivo endothelial cell data

5. A hypothesis on in-vivo endothelial cell data

6. A new algorithm for Ca2+ transient pattern detection

These findings are discussed in detail below:

7.2.1. Candidate Cell Shape Model

An approach is introduced in Chapter 3 to fit an equivalent ellipse to the

cell boundary using biologically inspired wavelet models. This approach fits a

parametric model to describe each cell boundary by matching a phase-invariant

orientation field of a candidate cell shape with that acquired from the image.

This approach succeeded on good quality images, but failed on images with

weak cell boundaries.
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7.2.2. Patch-based Feature Vector for Endothelial Cell

Segmentation

The first objective was the detection of the cell nucleus and its boundary. The

detection of the nucleus was an easier task compared to the detection of cell

boundaries due to low-contrast and low signal-to noise ratio of the cell boun-

daries. To perform the segmentation of cell boundaries, a new patch-based

33-dimensional feature vector for cell segmentation is introduced in Chapter 3,

since for the kernel-based support vector machines an appropriate feature set is

vital. Phase invariant orientation patches also turn out to contribute strongly

to the feature vector, and results presented suggest that there is no penalty for

using a large feature vector. A caution considering feature selection is that cer-

tain features should be grouped together: patch-based data are a case in point

- forward feature selection tends not to group data in this way; however, it is

the combination of pixel information in the neighbourhood of a candidate pixel

that is important. Whilst this poses a problem of generalisation from limited

training samples with traditional classifiers, the clear implication from the re-

sults shown here is that the complexity of the resulting decision boundary does

not present an obstacle to good generalisation for an support vector machine

with a Gaussian kernel. A key feature of this approach is its extendibility to

other, similar segmentation problems in different imaging modalities.

The method has some limitations; it does not perform well on image patches

with very large brightness variation or where cell boundaries are not visible by

eye. However, that scenario would pose significant problems for other segmen-

tation approaches as well. It also requires a manual labelling of pixels of one

example as input in the training process. This necessitates selecting a patch

with a representative variation in intensity to yield a satisfactory generalized

model.

Another aspect of this algorithm which could be improved is the selection

of kernels. In this thesis, training has been done using only kernels already

available in a standard SVM package; performance might be improved by de-

veloping a new kernel for such data, which is beyond the scope this research.

Nevertheless, the method enabled us to explore the relationships between blood
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flow and cell behaviour, between cell nuclear shape and cell boundary shape,

and between aspect ratio and cell orientation in different regions around arterial

branches, by facilitating the analysis of large numbers of cells.

7.2.3. Morphological Parameter Based Association between

In-vivo Cells and Nuclei

A new algorithm is introduced in Chapter 4 to find the association between cells

and their respective nuclei using various morphological measures and the nuclei

centroids as a priori information. The algorithm produces a complete set of

associated cells and their respective nuclei for further study of the relationship

between shear-stress dependent morphological measures.

7.2.4. Age-related Changes in Patterns

In this thesis, additional evidence for similar behaviour of endothelial cells and

their nuclei is obtained in vivo. Nuclear and cell orientations around branches

in immature and mature rabbits are broadly similar and found to be highly

correlated, suggesting that the pattern of flow direction near the wall stayed

approximately constant with age. Importantly, the correlation is positive rather

than negative: high lesion frequency correlates with greater nuclear elongation,

consistent with lipid deposition occurring in regions experiencing high wall shear

stress at both ages. The relevance to human lesions, which also switch from

a downstream to a lateral or upstream location around the intercostal branch

ostia with age [180], remains to be determined [25].

In cell and nuclear length-to-width ratios, the most striking features are low

values in immature aortas, with high values in mature aortas. However, the

relation is less strong for length-to-width ratios than for alignment, so other

influences on elongation, such as pulsatility or wall stiffness (which varies around

branches and changes with age), although not considered herein, cannot be

entirely dismissed [25].
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7.2.5. A Hypothesis on In-vivo Endothelial Cell Data

A hypothesis on cell data is presented to look at the data with different dimen-

sions; rather than just looking at simple morphological parameters. In order to

explore this hypothesis, in this thesis, two new shape analysis techniques shape-

descriptor analysis, and a shape-boundary contour analysis, are presented for

cell and nuclear data. These techniques are developed to detect shape varia-

tions in the data given in Chapter 5. Initial analysis on nuclear data clearly

show variation in shapes of immature and mature animal nuclei data. The re-

presentation of these shapes with respect to the atherosclerotic lesion sites and

changes in patterns with age are yet to be determined. Future work will be to

study the significance of this finding.

7.2.6. Calcium Transient Patterns in In-vitro Data

A new method is presented for detecting the effect of flow on the spatial and

temporal patterns of calcium activity among neighbouring cells. On average,

the probability of a cell firing in a given frame is 0.05. However, a small number

of cells had a much higher probability (≥ 0.25) of firing if a neighbouring cell

fired during the current frame period. After flow cessation, cells which had

firing probabilities higher than 0.05 formed intricate spatial patterns among

neighbouring cells.

Transient rate changed with flow, but more importantly, local patterns are

discernible, which changed after stopping the flow. The patterns are not com-

patible with ATP release and suggest a new, unknown mechanism must be in-

volved. In conclusion, cell transients appear to be synchronised in multi-cellular

structures forming spatial and temporal patterns that change with flow.

7.3. Suggestion for Future Work

One future plan is to develop a machine learning algorithm and its code base

for automatic generation of application-specific features and development of the

kernel.

As the relation was less strong for length-to-width ratios than for alignment,
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so other mechanical forces influence on elongation may be involved. There is

a need to study and identify which mechanical forces are acting on cells and

nuclei in order to explain this smaller correlation between cell and nuclei in

length-to-width ratios. There seems to be some patterns in nuclear alignment

in whole aortas, as shown in Figure 1 in [25]; it can also be an area of future

work to find out how and why these patterns have formed.

To confirm the cell shape results, a huge number of cells representing many

animals will be needed, and considerable work is required to explore both the

statistical and biological significance of the results.

In the future, single cell probe analysis will lead to a better understanding of

gene expression patterns at cellular-level and relating these genetic properties

to cell shape and calcium transients will be of great interest.
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A.1. Some Results of Chapter 4
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Figure A.1.: Histograms and normal distribution, as indicated by the superim-
posed curve, of different shape parameters for all endothelial cells
and nuclei, here the total number of cells are 1496.
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Figure A.2.: Cells versus nuclei mean ± STD, mean ± SEMs over branch and
over cell and histograms and normal distribution, as indicated by
the superimposed curve, of ratios for mature and immature cells,
here total number of cells are 559 and 937 respectively.
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Figure A.3.: Cells versus nuclei mean ± STD, mean ± SEMs over branch and
over cell and histograms and normal distribution, as indicated by
the superimposed curve, of orientations for mature and immature
cells, here total number of cells are 559 and 937 respectively.
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Figure A.4.: Cells versus nuclei mean ± STD, mean ± SEMs over branch and
over cell and histograms and normal distribution, as indicated by
the superimposed curve, of shape index for mature and immature
cells, here total number of cells are 559 and 937 respectively.
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Figure A.5.: Cells versus nuclei mean ± STD, mean ± SEMs over branch and
over cell and histograms and normal distribution, as indicated by
the superimposed curve, of lengths for mature and immature cells,
here total number of cells are 559 and 937 respectively.
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Figure A.6.: Cells versus nuclei mean ± STD, mean ± SEMs over branch and
over cell and histograms and normal distribution, as indicated by
the superimposed curve, of widths for mature and immature cells,
here total number of cells are 559 and 937 respectively.
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Figure A.7.: Cells versus nuclei mean ± STD, mean ± SEMs over branch and
over cell and histograms and normal distribution, as indicated by
the superimposed curve, of areas for mature and immature cells,
here total number of cells are 559 and 937 respectively.
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Figure A.8.: Cells versus nuclei mean ± STD, mean ± SEMs over branch and
over cell and histograms and normal distribution, as indicated by
the superimposed curve, of perimeters for mature and immature
cells, here total number of cells are 559 and 937 respectively.
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L:W Shape Angle Length
Ratio Index (o) (µm)

C m σ/ σ/ m σ/ σ/ m σ/ σ m σ/ σ/
# Br C Br C Br C Br C

UL
EC 264 7.31 0.19 1.27 0.25 0.01 0.04 44.22 3.78 25.09 56.48 1.18 7.83
ECn 264 2.93 0.04 0.29 0.71 0.01 0.05 33.66 4.20 27.86 19.00 0.21 1.36

U
EC 158 6.94 0.22 1.01 0.24 0.01 0.04 -29.91 4.97 23.24 55.98 1.49 6.97
ECn 158 2.76 0.05 0.23 0.74 0.01 0.04 -28.06 5.05 23.60 18.38 0.22 1.04

UR
EC 256 7.03 0.24 1.56 0.29 0.01 0.06 -5.70 4.55 29.75 55.65 1.63 10.66
ECn 256 2.90 0.05 0.31 0.72 0.01 0.05 -5.77 4.60 30.06 18.47 0.20 1.30

L
EC 168 6.13 0.21 1.09 0.30 0.01 0.06 -1.40 5.96 31.52 51.97 1.34 7.07
ECn 168 2.66 0.05 0.25 0.76 0.01 0.05 -8.21 5.90 31.21 17.42 0.20 1.06

R
EC 227 7.65 0.22 1.28 0.23 0.01 0.05 51.86 1.21 6.90 53.83 1.33 7.60
ECn 227 3.12 0.05 0.31 0.68 0.01 0.05 49.25 1.67 9.53 18.97 0.21 1.18

DL
EC 219 8.41 0.21 1.41 0.21 0.01 0.05 56.54 3.51 23.26 63.62 1.37 9.07
ECn 219 3.45 0.06 0.37 0.63 0.01 0.05 54.11 3.64 24.06 20.52 0.18 1.21

D
EC 56 7.68 0.57 1.91 0.25 0.01 0.05 67.10 4.79 16.04 62.44 4.21 14.08
ECn 56 2.73 0.10 0.35 0.75 0.01 0.06 51.93 7.66 25.64 17.55 0.39 1.31

DR
EC 168 7.05 0.21 1.38 0.26 0.01 0.05 -11.12 6.25 40.49 58.26 1.30 8.42
ECn 168 2.83 0.04 0.25 0.72 0.01 0.04 -1.91 6.24 40.45 18.34 0.15 0.96

EC ranges 6.13 - 8.41 0.21 - 0.30 -29.91 - 67.10 51.97 - 63.62
ECn ranges 2.66 - 3.45 0.63 - 0.76 -28.06 - 54.11 17.42 - 20.52

Width Area Perimeter

(µm) (Pixels2) (Pixels)
C m σ/ σ/ m σ/ σ/ m σ/ σ
# Br C Br C Br C

UL
EC 264 8.13 0.11 0.72 289.21 5.75 38.16 128.49 2.43 16.13
ECn 264 6.62 0.05 0.33 95.73 1.06 7.05 41.44 0.38 2.53

U
EC 158 8.42 0.15 0.72 289.57 8.23 38.48 131.10 3.18 14.89
ECn 158 6.79 0.06 0.29 95.07 1.19 5.57 40.55 0.40 1.87

UR
EC 256 8.54 0.14 0.91 295.74 7.17 46.81 126.69 3.35 21.91
ECn 256 6.57 0.05 0.36 91.37 0.85 5.53 40.42 0.34 2.20

L
EC 168 9.18 0.19 1.02 303.93 7.88 41.68 120.29 2.85 15.06
ECn 168 6.70 0.07 0.35 88.64 1.02 5.38 38.56 0.34 1.79

R
EC 227 7.59 0.14 0.81 240.19 6.11 34.81 124.39 3.06 17.42
ECn 227 6.29 0.06 0.36 89.36 0.94 5.37 41.08 0.36 2.02

DL
EC 219 8.02 0.14 0.96 314.91 8.26 54.66 143.82 2.95 19.54
ECn 219 6.13 0.06 0.39 94.40 0.87 5.73 43.76 0.32 2.10

D
EC 56 8.77 0.33 1.11 330.63 15.96 53.40 139.74 7.82 26.18
ECn 56 6.67 0.15 0.49 88.55 1.92 6.42 38.84 0.68 2.27

DR
EC 168 8.74 0.15 0.99 327.24 7.52 48.71 132.93 2.73 17.68
ECn 168 6.58 0.06 0.39 92.08 1.07 6.91 40.08 0.28 1.82

EC ranges 7.59 - 9.18 240.19 - 330.63 120.29 - 143.82
ECn ranges 6.13 - 6.79 88.55 - 95.73 38.56 - 43.76

Table A.1.: Vascular region-wise mean ± SEM over branch and over cell of EC
and ECn morphology parameters for all cells. Here total number of
cells is 1496, m = Mean , σ = SEM, C = cells and Br = Branches.
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L:W Shape Angle Length
Ratio Index (o) (µm)

C m σ/ σ/ m σ/ σ/ m σ/ σ m σ/ σ/
# Br C Br C Br C Br C

UL
EC 182 6.10 0.17 1.34 0.29 0.01 0.06 31.36 5.12 39.91 48.92 1.12 8.70
ECn 182 2.61 0.03 0.25 0.76 0.01 0.05 20.44 5.44 42.38 17.66 0.16 1.22

U
EC 123 6.56 0.23 1.26 0.24 0.01 0.05 -41.73 4.47 24.76 53.32 1.65 9.13
ECn 123 2.61 0.05 0.26 0.76 0.01 0.05 -39.83 4.58 25.38 17.73 0.22 1.22

UR
EC 199 5.84 0.19 1.34 0.33 0.01 0.08 -18.35 4.88 34.42 49.38 1.44 10.12
ECn 199 2.66 0.05 0.32 0.76 0.01 0.06 -17.72 4.96 34.95 17.39 0.19 1.32

L
EC 138 5.88 0.22 1.29 0.32 0.01 0.07 12.83 6.66 39.09 52.16 1.48 8.71
ECn 138 2.56 0.05 0.29 0.78 0.01 0.06 4.89 6.67 39.20 17.08 0.22 1.27

R
EC 79 5.14 0.23 1.04 0.33 0.01 0.06 56.64 2.99 13.30 43.15 1.76 7.80
ECn 79 2.37 0.06 0.26 0.81 0.01 0.05 52.97 4.00 17.76 16.20 0.27 1.19

DL
EC 37 6.32 0.45 1.58 0.32 0.02 0.08 42.65 11.28 39.60 51.86 2.57 9.04
ECn 37 2.63 0.08 0.28 0.76 0.02 0.05 45.29 10.67 37.46 17.30 0.30 1.05

D
EC 42 6.29 0.37 1.19 0.28 0.01 0.05 67.12 5.12 16.58 53.96 2.40 7.78
ECn 42 2.44 0.08 0.26 0.80 0.01 0.05 50.87 8.86 28.70 16.33 0.31 1.01

DR
EC 151 6.69 0.20 1.39 0.27 0.01 0.05 -19.77 6.59 46.73 55.52 1.11 7.87
ECn 151 2.81 0.04 0.27 0.73 0.01 0.04 -9.60 6.66 47.23 18.07 0.13 0.92

EC ranges 5.14 - 6.69 0.24 - 0.33 -41.73 - 67.12 43.15 - 55.52
ECn ranges 2.37 - 2.81 0.73 - 0.81 -39.83 - 52.97 16.20 - 18.07

Width Area Perimeter

(µm) (Pixels2) (Pixels)
C m σ/ σ/ m σ/ σ/ m σ/ σ
# Br C Br C Br C

UL
EC 182 8.34 0.12 0.97 268.19 6.44 50.19 113.44 2.35 18.28
ECn 182 6.84 0.05 0.41 92.32 1.01 7.89 39.18 0.30 2.31

U
EC 123 8.45 0.17 0.93 277.30 9.11 50.52 126.77 3.61 20.00
ECn 123 6.90 0.07 0.37 93.41 1.27 7.02 39.56 0.40 2.24

UR
EC 199 8.99 0.16 1.13 290.51 8.15 57.49 114.43 3.07 21.66
ECn 199 6.71 0.06 0.44 88.30 0.87 6.13 38.60 0.31 2.18

L
EC 138 9.61 0.21 1.22 325.29 8.02 47.14 120.48 3.00 17.62
ECn 138 6.83 0.07 0.44 88.64 1.14 6.69 38.01 0.36 2.11

R
EC 79 8.87 0.26 1.15 248.54 11.18 49.68 102.38 3.77 16.77
ECn 79 6.99 0.10 0.46 86.49 1.84 8.17 36.77 0.50 2.21

DL
EC 37 8.91 0.34 1.20 302.68 14.10 49.51 116.31 4.75 16.69
ECn 37 6.69 0.12 0.43 88.05 1.82 6.41 38.36 0.49 1.73

D
EC 42 9.20 0.38 1.22 326.60 16.91 54.80 123.67 4.80 15.56
ECn 42 6.89 0.17 0.54 85.90 2.19 7.09 36.81 0.56 1.82

DR
EC 151 8.79 0.16 1.16 317.28 7.21 51.13 127.05 2.34 16.59
ECn 151 6.55 0.06 0.45 90.27 1.01 7.15 39.47 0.23 1.66

EC ranges 8.34 - 9.61 248.54 - 326.60 102.38 - 127.05
ECn ranges 6.55 - 6.99 85.90 - 93.41 36.77 - 39.56

Table A.2.: Vascular region-wise mean ± SEM over branch and over cell of EC
and ECn morphology parameters for immature cells. Here total
number of cells is 937, m = Mean , σ = SEM, C = cells and Br =
Branches.
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L:W Shape Angle Length
Ratio Index (o) (µm)

C m σ/ σ/ m σ/ σ/ m σ/ σ m σ/ σ/
# Br C Br C Br C Br C

UL
EC 82 10.01 0.32 1.69 0.17 0.01 0.03 72.77 2.17 11.34 73.27 1.82 9.51
ECn 82 3.62 0.08 0.40 0.61 0.01 0.05 63.00 4.70 24.60 21.99 0.40 2.09

U
EC 30 8.50 0.51 1.61 0.21 0.01 0.04 18.58 14.68 46.43 66.88 2.74 8.68
ECn 30 3.36 0.10 0.32 0.65 0.01 0.05 20.21 14.84 46.92 21.05 0.42 1.33

UR
EC 57 11.18 0.57 3.05 0.16 0.01 0.05 38.44 9.24 49.32 77.52 4.24 22.66
ECn 57 3.70 0.06 0.34 0.59 0.01 0.04 35.97 9.49 50.65 22.21 0.24 1.27

L
EC 30 7.31 0.52 2.01 0.22 0.02 0.08 -66.82 1.45 5.62 51.09 3.12 12.09
ECn 30 3.13 0.09 0.34 0.66 0.02 0.05 -68.46 1.27 4.92 19.02 0.40 1.55

R
EC 148 8.99 0.26 1.84 0.18 0.01 0.05 49.30 0.89 6.27 59.53 1.64 11.52
ECn 148 3.52 0.05 0.38 0.61 0.01 0.05 47.27 1.42 9.95 20.46 0.20 1.38

DL
EC 182 8.83 0.23 2.17 0.19 0.01 0.05 59.36 3.54 33.73 66.01 1.51 14.37
ECn 182 3.62 0.06 0.56 0.61 0.01 0.07 55.91 3.80 36.26 21.17 0.18 1.68

D
EC 14 11.88 1.57 5.87 0.15 0.02 0.07 67.05 11.88 44.46 87.86 13.37 50.04
ECn 14 3.63 0.21 0.77 0.61 0.02 0.10 55.12 15.81 59.16 21.21 0.56 2.10

DR
EC 17 10.30 0.87 3.58 0.17 0.03 0.10 65.69 1.78 7.33 82.62 5.51 22.71
ECn 17 3.08 0.16 0.68 0.66 0.03 0.10 66.42 2.21 9.13 20.72 0.69 2.84

EC ranges 7.31 - 11.88 0.15 -0.22 -66.82 - 72.77 51.09 - 87.86
ECn ranges 3.08 - 3.70 0.59 - 0.66 -68.46 - 66.42 19.02 - 22.21

Width Area Perimeter

(µm) (Pixels2) (Pixels)
C m σ/ σ/ m σ/ σ/ m σ/ σ
# Br C Br C Br C

UL
EC 82 7.66 0.20 1.06 335.87 10.05 52.55 161.89 3.81 19.92
ECn 82 6.14 0.09 0.48 103.29 2.39 12.50 46.45 0.80 4.18

U
EC 30 8.29 0.38 1.20 339.87 16.45 52.03 148.87 5.75 18.18
ECn 30 6.34 0.13 0.42 101.87 2.88 9.09 44.63 0.86 2.72

UR
EC 57 6.95 0.16 0.83 314.02 14.91 79.62 169.49 8.46 45.18
ECn 57 6.06 0.08 0.42 102.09 1.65 8.79 46.76 0.47 2.51

L
EC 30 7.21 0.29 1.12 205.67 14.02 54.29 119.44 8.10 31.37
ECn 30 6.13 0.10 0.37 88.63 2.28 8.81 41.12 0.79 3.05

R
EC 148 6.91 0.14 0.98 235.72 7.23 50.80 136.14 3.91 27.49
ECn 148 5.91 0.06 0.41 90.89 1.05 7.34 43.38 0.35 2.48

DL
EC 182 7.84 0.16 1.49 317.40 9.52 90.81 149.42 3.27 31.19
ECn 182 6.02 0.06 0.61 95.69 0.95 9.04 44.86 0.31 2.97

D
EC 14 7.49 0.58 2.18 342.71 39.85 149.09 187.94 24.06 90.02
ECn 14 6.01 0.25 0.94 96.50 3.25 12.15 44.93 1.00 3.74

DR
EC 17 8.28 0.39 1.63 415.71 30.94 127.58 185.17 11.08 45.70
ECn 17 6.86 0.20 0.81 108.12 3.85 15.89 45.49 1.24 5.11

EC ranges 6.91 - 8.29 205.67 - 415.71 119.44 - 187.94
ECn ranges 5.91 - 6.86 88.63 - 108.12 41.12 - 46.76

Table A.3.: Vascular region-wise mean ± SEM over branch and over cell of
EC and ECn morphology parameters for mature cells. Here total
number of cells is 559, m = Mean , σ = SEM, C = cells and Br =
Branches.
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