366 research outputs found

    A telehealth system for Parkinson's disease remote monitoring. The PERFORM approach

    Get PDF
    This paper summarizes the experience and the lessons learned from the European project PERFORM (A sophisticated multi-parametric system FOR the continuous effective assessment and monitoring of motor status in Parkinson s disease and other neurodegenerative diseases). PERFORM is aimed to provide a telehealth system for the remote monitoring of Parkinson s disease patients (PD) at their homes. This paper explains the global experience with PERFORM. It summarizes the technical performance of the system and the feedback received from the patients in terms of usability and wearability

    Objective Assessment of the Finger Tapping Task in Parkinson's Disease and Control Subjects using Azure Kinect and Machine Learning

    Get PDF
    Parkinson's disease (PD) is characterised by a progressive worsening of motor functionalities. In particular, limited hand dexterity strongly correlates with PD diagnosis and staging. Objective detection of alterations in hand motor skills would allow, for example, prompt identification of the disease, its symptoms and the definition of adequate medical treatments. Among the clinical assessment tasks to diagnose and stage PD from hand impairment, the Finger Tapping (FT) task is a well-established tool. This preliminary study exploits a single RGB-Depth camera (Azure Kinect) and Google MediaPipe Hands to track and assess the Finger Tapping task. The system includes several stages. First, hand movements are tracked from FT video recordings and used to extract a series of clinically-relevant features. Then, the most significant features are selected and used to train and test several Machine Learning (ML) models, to distinguish subjects with PD from healthy controls. To test the proposed system, 35 PD subjects and 60 healthy volunteers were recruited. The best-performing ML model achieved a 94.4% Accuracy and 98.4% Fl score in a Leave-One-Subject-Out validation. Moreover, different clusters with respect to spatial and temporal variability in the FT trials among PD subjects were identified. This result suggests the possibility of exploiting the proposed system to perform an even finer identification of subgroups among the PD population

    A wearable biofeedback device to improve motor symptoms in Parkinson’s disease

    Get PDF
    Dissertação de mestrado em Engenharia BiomédicaThis dissertation presents the work done during the fifth year of the course Integrated Master’s in Biomedical Engineering, in Medical Electronics. This work was carried out in the Biomedical & Bioinspired Robotic Devices Lab (BiRD Lab) at the MicroElectroMechanics Center (CMEMS) established at the University of Minho. For validation purposes and data acquisition, it was developed a collaboration with the Clinical Academic Center (2CA), located at Braga Hospital. The knowledge acquired in the development of this master thesis is linked to the motor rehabilitation and assistance of abnormal gait caused by a neurological disease. Indeed, this dissertation has two main goals: (1) validate a wearable biofeedback system (WBS) used for Parkinson's disease patients (PD); and (2) develop a digital biomarker of PD based on kinematic-driven data acquired with the WBS. The first goal aims to study the effects of vibrotactile biofeedback to play an augmentative role to help PD patients mitigate gait-associated impairments, while the second goal seeks to bring a step advance in the use of front-end algorithms to develop a biomarker of PD based on inertial data acquired with wearable devices. Indeed, a WBS is intended to provide motor rehabilitation & assistance, but also to be used as a clinical decision support tool for the classification of the motor disability level. This system provides vibrotactile feedback to PD patients, so that they can integrate it into their normal physiological gait system, allowing them to overcome their gait difficulties related to the level/degree of the disease. The system is based on a user- centered design, considering the end-user driven, multitasking and less cognitive effort concepts. This manuscript presents all steps taken along this dissertation regarding: the literature review and respective critical analysis; implemented tech-based procedures; validation outcomes complemented with results discussion; and main conclusions and future challenges.Esta dissertação apresenta o trabalho realizado durante o quinto ano do curso Mestrado Integrado em Engenharia Biomédica, em Eletrónica Médica. Este trabalho foi realizado no Biomedical & Bioinspired Robotic Devices Lab (BiRD Lab) no MicroElectroMechanics Center (CMEMS) estabelecido na Universidade do Minho. Para efeitos de validação e aquisição de dados, foi desenvolvida uma colaboração com Clinical Academic Center (2CA), localizado no Hospital de Braga. Os conhecimentos adquiridos no desenvolvimento desta tese de mestrado estão ligados à reabilitação motora e assistência de marcha anormal causada por uma doença neurológica. De facto, esta dissertação tem dois objetivos principais: (1) validar um sistema de biofeedback vestível (WBS) utilizado por doentes com doença de Parkinson (DP); e (2) desenvolver um biomarcador digital de PD baseado em dados cinemáticos adquiridos com o WBS. O primeiro objetivo visa o estudo dos efeitos do biofeedback vibrotáctil para desempenhar um papel de reforço para ajudar os pacientes com PD a mitigar as deficiências associadas à marcha, enquanto o segundo objetivo procura trazer um avanço na utilização de algoritmos front-end para biomarcar PD baseado em dados inerciais adquiridos com o dispositivos vestível. De facto, a partir de um WBS pretende-se fornecer reabilitação motora e assistência, mas também utilizá-lo como ferramenta de apoio à decisão clínica para a classificação do nível de deficiência motora. Este sistema fornece feedback vibrotáctil aos pacientes com PD, para que possam integrá-lo no seu sistema de marcha fisiológica normal, permitindo-lhes ultrapassar as suas dificuldades de marcha relacionadas com o nível/grau da doença. O sistema baseia-se numa conceção centrada no utilizador, considerando o utilizador final, multitarefas e conceitos de esforço menos cognitivo. Portanto, este manuscrito apresenta todos os passos dados ao longo desta dissertação relativamente a: revisão da literatura e respetiva análise crítica; procedimentos de base tecnológica implementados; resultados de validação complementados com discussão de resultados; e principais conclusões e desafios futuros

    Mobile Phone Sensors Can Discern Medication-related Gait Quality Changes in Parkinson\u27s Patients in the Home Environment

    Get PDF
    Patients with Parkinson\u27s Disease (PD) experience daytime symptom fluctuations, which result in small amplitude, slow and unstable walking during times when medication attenuates. The ability to identify dysfunctional gait patterns throughout the day from raw mobile phone acceleration and gyroscope signals would allow the development of applications to provide real-time interventions to facilitate walking performance by, for example, providing external rhythmic cues. Patients (n = 20, mean Hoehn and Yahr: 2.25) had their ambulatory data recorded and were directly observed twice during one day: once after medication abstention, (OFF) and once approximately 30 min after intake of their medication (ON). Regularized generalized linear models (RGLM), neural networks (NN), and random forest (RF) classification models were individually trained for each participant. Across all subjects, our best performing classifier on average achieved an accuracy of 92.5%. This study demonstrated that smartphone accelerometers and gyroscopes can be used to distinguish between ON versus OFF times, potentially making smartphones useful intervention tools

    Artificial Intelligence Applications for Assessment, Monitoring, and Management of Parkinson Disease Symptoms: Protocol for a Systematic Review

    Get PDF
    \ua9 2023 The authors.Background: Parkinson disease (PD) is the second most prevalent neurodegenerative disease, with around 10 million people with PD worldwide. Current assessments of PD symptoms are conducted by questionnaires and clinician assessments and have many limitations, including unreliable reporting of symptoms, little autonomy for patients over their disease management, and standard clinical review intervals regardless of disease status or clinical need. To address these limitations, digital technologies including wearable sensors, smartphone apps, and artificial intelligence (AI) methods have been implemented for this population. Many reviews have explored the use of AI in the diagnosis of PD and management of specific symptoms; however, there is limited research on the application of AI to the monitoring and management of the range of PD symptoms. A comprehensive review of the application of AI methods is necessary to address the gap of high-quality reviews and highlight the developments of the use of AI within PD care. Objective: The purpose of this protocol is to guide a systematic review to identify and summarize the current applications of AI applied to the assessment, monitoring, and management of PD symptoms. Methods: This review protocol was structured using the PRISMA-P (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols) and the Population, Intervention, Comparator, Outcome, and Study (PICOS) frameworks. The following 5 databases will be systematically searched: PubMed, IEEE Xplore, Institute for Scientific Information’s Web of Science, Scopus, and the Cochrane Library. Title and abstract screening, full-text review, and data extraction will be conducted by 2 independent reviewers. Data will be extracted into a predetermined form, and any disagreements in screening or extraction will be discussed. Risk of bias will be assessed using the Cochrane Collaboration Risk of Bias 2 tool for randomized trials and the Mixed Methods Appraisal Tool for nonrandomized trials. Results: As of April 2023, this systematic review has not yet been started. It is expected to begin in May 2023, with the aim to complete by September 2023. Conclusions: The systematic review subsequently conducted as a product of this protocol will provide an overview of the AI methods being used for the assessment, monitoring, and management of PD symptoms. This will identify areas for further research in which AI methods can be applied to the assessment or management of PD symptoms and could support the future implementation of AI-based tools for the effective management of PD

    Kinect-based Solution for the Home Monitoring of Gait and Balance in Elderly People with and without Neurological Diseases

    Get PDF
    Alterations of gait and balance are a significant cause of falls, injuries, and consequent hospitalizations in the elderly. In addition to age-associated motor decline, other factors can impact gait and stability, including the motor dysfunctions caused by neurological diseases such as Parkinson’s disease or hemiplegia after stroke. Monitoring changes and deterioration in gait patterns and balance is crucial for activating rehabilitation treatments and preventing serious consequences. This work presents a Kinect-based solution, suitable for domestic contexts, for assessing gait and balance in individuals at risk of falling. The system captures body movements during home acquisition sessions scheduled by clinicians at definite times of the day and automatically estimates specific functional parameters to objectively characterize the subjects’ performance. The system includes a graphical user interface designed to ensure usability in unsupervised contexts: the human-computer interaction mainly relies on natural body movements to support the self-management of the system, if the motor conditions allow it. This work presents the system’s features and facilities, and the preliminary results on healthy volunteers’ trials

    Identification of Motor Symptoms Related to Parkinson Disease Using Motion-Tracking Sensors at Home (KAVELI) : Protocol for an Observational Case-Control Study

    Get PDF
    Background: Clinical characterization of motion in patients with Parkinson disease (PD) is challenging: symptom progression, suitability of medication, and level of independence in the home environment can vary across time and patients. Appointments at the neurological outpatient clinic provide a limited understanding of the overall situation. In order to follow up these variations, longer-term measurements performed outside of the clinic setting could help optimize and personalize therapies. Several wearable sensors have been used to estimate the severity of symptoms in PD; however, longitudinal recordings, even for a short duration of a few days, are rare. Home recordings have the potential benefit of providing a more thorough and objective follow-up of the disease while providing more information about the possible need to change medications or consider invasive treatments. Objective: The primary objective of this study is to collect a dataset for developing methods to detect PD-related symptoms that are visible in walking patterns at home. The movement data are collected continuously and remotely at home during the normal lives of patients with PD as well as controls. The secondary objective is to use the dataset to study whether the registered medication intakes can be identified from the collected movement data by looking for and analyzing short-term changes in walking patterns. Methods: This paper described the protocol for an observational case-control study that measures activity using three different devices: (1) a smartphone with a built-in accelerometer, gyroscope, and phone orientation sensor, (2) a Movesense smart sensor to measure movement data from the wrist, and (3) a Forciot smart insole to measure the forces applied on the feet. The measurements are first collected during the appointment at the clinic conducted by a trained clinical physiotherapist. Subsequently, the subjects wear the smartphone at home for 3 consecutive days. Wrist and insole sensors are not used in the home recordings. Results: Data collection began in March 2018. Subject recruitment and data collection will continue in spring 2019. The intended sample size was 150 subjects. In 2018, we collected a sample of 103 subjects, 66 of whom were diagnosed with PD. Conclusions: This study aims to produce an extensive movement-sensor dataset recorded from patients with PD in various phases of the disease as well as from a group of control subjects for effective and impactful comparison studies. The study also aims to develop data analysis methods to monitor PD symptoms and the effects of medication intake during normal life and outside of the clinic setting. Further applications of these methods may include using them as tools for health care professionals to monitor PD remotely and applying them to other movement disorders.Peer reviewe

    Smart Technology for Telerehabilitation: A Smart Device Inertial-sensing Method for Gait Analysis

    Get PDF
    The aim of this work was to develop and validate an iPod Touch (4th generation) as a potential ambulatory monitoring system for clinical and non-clinical gait analysis. This thesis comprises four interrelated studies, the first overviews the current available literature on wearable accelerometry-based technology (AT) able to assess mobility-related functional activities in subjects with neurological conditions in home and community settings. The second study focuses on the detection of time-accurate and robust gait features from a single inertial measurement unit (IMU) on the lower back, establishing a reference framework in the process. The third study presents a simple step length algorithm for straight-line walking and the fourth and final study addresses the accuracy of an iPod’s inertial-sensing capabilities, more specifically, the validity of an inertial-sensing method (integrated in an iPod) to obtain time-accurate vertical lower trunk displacement measures. The systematic review revealed that present research primarily focuses on the development of accurate methods able to identify and distinguish different functional activities. While these are important aims, much of the conducted work remains in laboratory environments, with relatively little research moving from the “bench to the bedside.” This review only identified a few studies that explored AT’s potential outside of laboratory settings, indicating that clinical and real-world research significantly lags behind its engineering counterpart. In addition, AT methods are largely based on machine-learning algorithms that rely on a feature selection process. However, extracted features depend on the signal output being measured, which is seldom described. It is, therefore, difficult to determine the accuracy of AT methods without characterizing gait signals first. Furthermore, much variability exists among approaches (including the numbers of body-fixed sensors and sensor locations) to obtain useful data to analyze human movement. From an end-user’s perspective, reducing the amount of sensors to one instrument that is attached to a single location on the body would greatly simplify the design and use of the system. With this in mind, the accuracy of formerly identified or gait events from a single IMU attached to the lower trunk was explored. The study’s analysis of the trunk’s vertical and anterior-posterior acceleration pattern (and of their integrands) demonstrates, that a combination of both signals may provide more nuanced information regarding a person’s gait cycle, ultimately permitting more clinically relevant gait features to be extracted. Going one step further, a modified step length algorithm based on a pendulum model of the swing leg was proposed. By incorporating the trunk’s anterior-posterior displacement, more accurate predictions of mean step length can be made in healthy subjects at self-selected walking speeds. Experimental results indicate that the proposed algorithm estimates step length with errors less than 3% (mean error of 0.80 ± 2.01cm). The performance of this algorithm, however, still needs to be verified for those suffering from gait disturbances. Having established a referential framework for the extraction of temporal gait parameters as well as an algorithm for step length estimations from one instrument attached to the lower trunk, the fourth and final study explored the inertial-sensing capabilities of an iPod Touch. With the help of Dr. Ian Sheret and Oxford Brookes’ spin-off company ‘Wildknowledge’, a smart application for the iPod Touch was developed. The study results demonstrate that the proposed inertial-sensing method can reliably derive lower trunk vertical displacement (intraclass correlations ranging from .80 to .96) with similar agreement measurement levels to those gathered by a conventional inertial sensor (small systematic error of 2.2mm and a typical error of 3mm). By incorporating the aforementioned methods, an iPod Touch can potentially serve as a novel ambulatory monitor system capable of assessing gait in clinical and non-clinical environments
    corecore