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Gait bout is when an individual performs certain physical activities such as walking or running. In the last few decades, the study
of gait bout has led to substantial progress in treating gait impairment (neuropathic, myopathic, and parkinsonian) in a person.
Recently, gait bout study has been improved by advancing smartphone technology. To perform gait bout tasks, two different
human activity scenarios, such as walking upstairs and standing, are obtained using the axis orientation of a smartphone
accelerometer. To capture the pattern of walking upstairs and standing, we utilize a smartphone device attached to the waist of
30 subjects within the age group from 19 to 48 years old. We propose a human activity recognition model known as the
multivariate triple exponential weighted moving average of the martingale sequence using particle swarm optimization
(MTMS(PSO)) in the experimental setup. MTMS(PSO) utilizes the martingale framework to capture gait bout in human
activity recognition data. Firstly, MTMS(PSO) is an unsupervised learning method that uses smoothing techniques such as
triple exponential smoothing to remove high-frequency noise from the processed activity times series, making the patterns
more visible. Secondly, the activity recognition model involves computing a threshold for identifying gait bout. Thirdly,
MTMS(PSO) uses logical precedent and particle swarm optimization to enhance accuracy and precision. As a result, the
overall MTMS(PSO) accuracy and G-mean are 95:4% and 96:1%, respectively. In addition, MTMS(PSO) technique
independently outperforms other traditional methods such as MRPM(PSO), MGM(PSO), and ELM.

1. Introduction

Ageing is a process that causes physical or physiological
decline that could affect people’s quality of life, resulting in
injuries, decreased mental health, or reduction in physical
activity. Human activity recognition (HAR) is an important
concept in conventional computing as it applies to actual
human condition challenges associated with eldercare and
medicare. HAR is a research area that can track gait bout
(GB) of an individual through the collection of context
information about a user’s condition and environment
[1]. In this instance, a gait can be the pattern of walking,
while GB can be defined as the period of continuous
movement (walking or running) [2, 3]. In this case, GB
is the time interval between gait initiation and termina-

tion. GB essentially requires repetition of stance-swing
cycles [4]. Subsequently, if the foot is on the ground for
more than the specified threshold period, it can be consid-
ered static, therefore non-GB.

Some research has been successful in discovering GB in
HAR time series [5]. However, it is unclear how long an
individual can pause movement (walking) within a GB
before determining it as a separate bout. A pulse of 1 − 5
seconds within GB can potentially alter the amount of GB
and its duration included in the analysis [3]. Also, detecting
composite gait bout still constitutes some challenges, such as
identifying simultaneous movements. For example, an adult
with gait impairment (neuropathic, myopathic, and parkin-
sonian) can be walking toward the kitchen while trying to
answer a phone call. These movements are very complex,
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making sequential analysis complicated. In addition, gait
bout performed by an individual could be interwoven; for
instance, a person can be distracted when there is a knock
on the door while going to the restroom. After attending to
the person at the door, the first person can walk back to
the sitting room. Also, there may be ambiguities defining
similar activities performed by the elderly. For example,
“opening the cupboard” might represent “preparing food”
or “tidying.”

GB analysis could help understand the impact and chal-
lenges of human movement restriction or disability by iden-
tifying transitions and estimating the duration of physical
activity. This information can be beneficial for investigating
and developing new systems that can identify movement
limitations. The world population is ageing, giving rise to
neurological impairment and inactive conditions (arthritis,
Parkinson’s disease) that can impede physical activity [6,
7]. The risk associated with these disorders represents a sig-
nificant challenge to medical practitioners. Therefore, as
mentioned earlier, quantitative activity monitoring can help
to discover and investigate physical movement [8, 9]. The
essential information about the focus and motivation of
our work is summarized as follows:

(i) The purpose of studying and monitoring GB in
activity recognition is, for example, to detect move-
ment patterns and early signs of physical impair-
ment experienced by an individual. Furthermore,
this process could allow clinician(s) to assess move-
ment progress made by people (particularly those
with physical impairment) when testing for the
solution’s efficacy [10, 11].

(ii) The study of GB could help explore and investigate
the effect of free-living environments on people with
gait disorder [12]. In addition, studying GB could
allow medical practitioners to identify this walking
disorder from the onset

(iii) Studying GB could enable the tracking of disease
progression and test the effectiveness of preventive
measures and solutions which can help improve
movement irregularities

(iv) The study of GB could also enable clinician(s) to
monitor and assist people with gait abnormalities
as they may demonstrate unusual movements,
which include symmetry of upper and lower limb
swinging and other normal joint kinematics
[13–15].

(v) By studying and monitoring the gait pattern of peo-
ple with gait disabilities, proper movement modifi-
cations can be advised to enhance their moving
style, and long-term well-being [16].

(vi) The study of GB using human activity data obtained
from smartphones (see subsequent paragraphs) can
offer low-power, low-cost, continuous remote
screening tools for pathology identification that
would enable adjustment to individual needs for

reducing the burden on clinicians and medical
practitioners

The principal objective of this work is to devise ways
by which we can detect GB through the use of wireless
devices (such as smartphones) to monitor people with
movement abnormalities to enable them to live a healthy
lifestyle as they perform daily activities. Furthermore,
wearable technology such as accelerometers and gyroscope
sensors can analyze GB in real-life situations during
human movement [12, 17]. Accelerometer sensors estimate
the displacement of a mass using a location measuring cir-
cuit. That estimation is then transformed into a digital
electrical signal for data processing via an analog to digital
converter (ADC). On the other hand, a gyroscope sensor
measures and maintains orientation and angular velocity.
HAR monitoring using these sensors can characterize
human movement (e.g., walking) given a set of observa-
tions. This process can be achieved by monitoring and
analyzing walking information acquired from various
sources such as the environment and sensors [18, 19].

Sensors such as accelerometers and gyroscopes are
encapsulated in smartphone devices and can be attached to
designated segments of the body such as the wrists, waist,
chest, and thighs [20, 21]. The study of HAR, through accel-
erometers and gyroscope sensors, produces crucial informa-
tion about individual daily movement and lifestyle [22].
Smartphone usage increases tracking GB due to high device
processing power with communication handling and sensors
such as accelerometers and gyroscope [23]. As previously
discussed, accelerometers and gyroscopes in smartphones
can reflect the duration of human movement through the
measure of velocity and displacement [24]. Smartphones
are portable and require no complex architecture to use
them. This characteristic enables a smartphone to acquire
GB information for HAR [23, 24]. Smartphones (with
built-in inertial sensors such as gyroscope and accelerome-
ter) are prevalent nowadays as it makes information and
communication services available for individuals as they
perform their daily activities. However, sensors embedded
in smartphones have drawbacks as a result of random zero
bias, and oscillation noise which affect the reading out-
come [25].

This paper proposes a heuristic thresholding method
called the multivariate triple exponential weighted moving
average of the martingale sequence (MTMS) based on previ-
ous work [26]. This method can identify GB(s) and estimate
their duration using a smartphone attached to the wrist in
unsupervised real-world situations. The novelty of this study
is as follows:

(i) Our method combines the martingale theory with
the triple exponential moving average (TEMA) in
a novel way to find a solution to the problem of
GB detection for HAR time series

(ii) Unlike many GB detection algorithms that need a
sliding window [27, 28], where the window length
could be chosen based on the accuracy of the
methods, the MTMS algorithm does not require
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sliding windows. Therefore, the approach does not
need to observe the model accuracy

(iii) Our approach uses optimized parameters to obtain
the best performance for detecting GB in HAR
sequences

To improve the accuracy and precision of MTMS
method, we utilize the concept of optimization. The optimi-
zation process of tuning the input parameters is to discover
the most efficient parameter value that improves the algo-
rithm’s performance [29–33]. An example of such optimiza-
tion techniques is the particle swarm optimization (PSO).
PSO [34] (discussed further in Section 3.3) is applied to opti-
mize the parameters of our MTMS method for improved
performance. Optimization methods such as genetic algo-
rithm (GA) [35] can be computationally expensive and
demands many iterations. However, in this case, PSO is
the best alternative as it can handle complex problems and
requires a small number of parameters with a correspond-
ingly lower number of iterations [36, 37]. For our proposed
approach, we implement PSO to maximize the G-mean. The
reason why we use G-mean instead of F1 as our preferred
metric is that it can be used to compute the stability between
the classification achievement on the positive and negative
classes [38]. G-mean computation can prevent overfitting
the negative class and underfitting the positive class [39]
when compared to F1. To also handle the challenges of dis-
torted GB points, we implement precedence rules [40].
These precedence rules determine the grouping of bouts in
the HAR data set and deal with the challenges of alignment
and distortion of bout points. The optimization process and
the implementation of the precedence rule are further dis-
cussed in Section 3. We benchmark our proposed technique
against traditional methods (discussed in Section 3.4) for
performance comparison purposes.

The paper structure is as follows: In Section 2, we review
the latest work done on GB detection and discuss the stages
of the algorithm; in Section 3, we introduce our proposed
approach; in Section 4, we show our experimental results
and compare them with the existing methods; in Section 5,
we link and discuss the result obtained in Section 4 to the
healthcare challenges stipulated in Section 1. We summarize
and conclude the paper in Section 6, providing insight into
the outcomes and the next steps of the research.

2. Related Work

In the last few decades, many gait bout detection techniques
have been proposed for human activity recognition; as a
result, recent research is now focused on measuring gait
speed in clinical areas. For instance, the study of biometric
gait pattern classification using an extreme learning machine
(ELM) approach can be implemented to detect early gait
abnormalities such as brain or neurological disorders in
individuals. These abnormalities cannot be discovered using
visual observation alone but also by implementing a robust
quantitative analysis of the movement of an individual. This
procedure can assist in comprehending the neuro-muscular

mechanics related to brain disorders, and this motivated
Patil et al. [41] to evaluate the performance of multi-class
gait classification using several machine learning methods,
namely, KNN, SVM, ELM, and MLP. Experimental results
showed that the ELM gave good results (93:54% overall clas-
sifications) when used to analyze the neuromuscular
mechanics of patients with multiple sclerosis and stroke.
However, the model is a classification based supervised
learning that can be complex for GB detection.

The acquired push recovery capability for anyone is
centred on learning, and the learning mechanism is not
defined to us. Different models based on conventional
mechanics and controls have been created to explore this
mechanism. Nevertheless, these models have limitations.
Semwal et al. [42] believe that an efficient computational
model centred on learning will be effective in addressing
these restrictions and proposed a model that collates
humanoid push recovery data by executing the concept of
utilizing accelerometer sensors in the smartphone. Experi-
mentation is performed using the proposed HMCD and
HLPRDCD solutions to demonstrate knee, hip, and ankle
joint angle changes to analyze smartphone data. Results
show that smartphone data collection is more accurate than
a potentiometer based on HMCD. Also, executing LVQ
shows that push recovery capability depends on age, height,
weight, sex, race, ambidextrous, etc. The limitation of the
model is that it does not implement optimized computa-
tional based on hybrid automata that can coordinate biped
robot push recovery the same way as in humans.

Gait study is vital to discover a person from afar. How-
ever, the major issues associated with human gait-based dis-
covery are high variability, movement obstruction, pose and
speed variance, and regular gait cycle detection. These chal-
lenges motivate Semwal et al. [43] to develop an algorithm
that explores the CASIA A, B, and C data sets to identify
view, clothing, and speed invariant human detection. The
study comprises a robust approach that utilizes computer
vision for human identification. The suggested technique
consists of feature extraction procedures. Feature extraction
approaches consist of gait energy image (GEI) for cloth
invariance, histogram of gradients (HOG) for multiview
invariance, and Zernike moment with random transform
for cross-view invariance. The following methods, namely,
SVM, ANN, and XGBoost-based approaches, are imple-
mented on the CASIA data set. The algorithms achieved
99%, 96%, and 67% detection accuracy independently for
the three scenarios of invariance performed such as speed,
cloth, and pose. However, the model utilizes some super-
vised learning methods that can be complex to develop for
real-time GB detection and require a lot of computational
time.

Most approaches for analyzing HAR involve a robust
feature extraction application and time series pre-
processing. However, this can entail a lot of human effort
that is time-consuming and application-specific. This situa-
tion inspired Dua et al. [44] to propose a deep neural
network-based model that implemented a convolutional
neural network and gated recurrent unit as an end-to-end
model. This model executes automatic feature extraction
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and categorizing of the HAR scenarios. Experiments were
carried out utilizing the wearable sensor’s raw data with
nominal pre-processing and non-handcrafted feature extrac-
tion techniques. The accuracies acquired from the analysis of
the UCI-HAR, WISDM, and PAMAP2 data sets were
96:20%, 97:21%, and 95:27% independently. The results
show that methods outperform some other related
approaches. However, the model’s technique implements a
supervised learning approach that can be complicated to
develop for real-time GB detection and requires a lot of
computational time.

Atrsaei et al. [40] suggested an approach based on a sin-
gle sensor setup. This technique can develop and validate
clinical and home areas by attaching a sensor to the lower
back. The algorithm uses a method known as naive Bayes
classifier (a family of probabilistic classifiers that is centred
on applying Bayes’ theorem with robust (naive) indepen-
dence assumptions between features) that can be utilized to
discover gait bouts in activities around the home environ-
ment. The approach is validated using the data accumulated
from 35 patients with movement disabilities such as multiple
sclerosis. The method achieved a precision of 0:15m/s for
evaluating gait speed with a bias rate of zero. However, the
performance is still limited to noise interference from accu-
mulated data obtained via wireless sensors. The technique is
capable of assessing unsupervised mobility is reflected in its
accuracy of 96:4% and F1 score of 78:6%.

Gait bout study motivated Barrett et al. [45], who sug-
gested a way to improve the evaluation of gait bouts in Fitbit
devices. This is achieved by evaluating gait bouts by develop-
ing the modelled physical activity level from the Fitbit Flex.
The paper’s primary purpose is to contrast the “gold stan-
dard” ActiGraph to that of the modelled Fitbit Freedson
approach and ascertain regular values of expected errors in
gait bout identification between two devices and methods.
The techniques are proxy methods (the proxy method is a
structural design pattern that makes it possible to allow for
the replacement of another object) to estimate the actual
physical activity levels. The approach uses three techniques
to compare bout detection. These techniques are the Acti-
Graph Freedson method, Fitbit Intensity Score, and the
modelled Fitbit Freedson utilizing three varying outcomes.
Firstly, the author compares the duration of gait bout
achieved from the AntiGraph GT3X technique to that of
the baseline of each subject performing physical activity in
a day. Secondly, the same procedure determines the intensity
score achieved by the Fitbit and the modelled Fitbit Free-
dson approaches. Lastly, the author contrasted the gait bout
discovered from the three methods to a labelled gait bout
recorded in a self-report diary for performance evaluation.
This process is still restricted by noise, impacting the algo-
rithm’s overall performance.

GB detection can also be performed using a wrist-
mounted sensor measurement unit. However, the extensive
freedom of wrist motion during daily life situations is a
severe obstacle to a robust and precise GB analysis. These
challenges motivated Soltani et al. [46] to suggest an
approach for identifying GB using a wrist-mounted acceler-
ometer. The method uses a Bayes estimator (Bayes estimator

is a decision rule that minimizes the posterior expected value
of a loss function), least absolute shrinkage, and selection
operator (LASSO) (which identifies the optimal possible fea-
tures to maximize performance on the training data set).
The LASSO can select characteristics that include all biome-
chanical benchmarks (intensity, posture, periodicity, and
non-gait dynamicity). The Bayes estimator and LASSO tech-
niques are followed by two physically significant post-
categorization steps to handle the problems of movement
challenges of the wrist in real-life situations. The proposed
approach has been validated against two data sets consisting
of healthy young and older people, respectively. The algo-
rithm achieved a satisfactory interquartile range within
80:0% to 98:4% for accuracy, sensitivity, precision, and F1
score in the identification of GB. The algorithm also pro-
duces a high correlation of 0:95 between the proposed and
reference methods for the total duration of GB discovered.
This correlation can be further improved by isolating noise
in the HAR sequence.

Ramakrishnan et al. [47] proposed a method, namely,
gait asymmetry metric (CGAM), that synthesizes human
gait motion. CGAM is weighted by normalizing the data to
stabilize each parameter’s effect and combines spatial, kine-
matic, and temporal disproportional parameters. The
approach can enhance the performance of gait patterns by
assisting mechanized recovery approaches. CGAM also
computes the quantifiable thresholds to produce efficient,
comprehensive equivalent gait asymmetry. The study for
the techniques combines clinical estimation, such as a six-
minute walk test (6MWT), timed up and go (TUG), and gait
velocity. These combinations are implemented on gait data
obtained on individuals with movement disabilities such as
stroke before and after recovery. Experimental results show
that the CGAM can produce a higher correlation in estimat-
ing GB. However, this correlation is still restricted to noise
interference in the HAR data set.

The concept of human activity recognition is becoming
relevant in the healthcare domain for observing and moni-
toring disabilities associated with movement. However,
some HAR analysis models can identify changes in the
HAR data stream but cannot measure the change intensity
and duration. This situation motivated Etumusei et al. [48]
to suggest an unsupervised learning technique, namely, mul-
tivariate exponential weighted moving average of the mar-
tingale sequence using genetic algorithm (MEWMS(GA)).
The method can discover change duration and intensity by
applying the martingale framework in HAR data sets. The
model also uses optimization techniques to obtain the opti-
mal parameter value in the weighted average by executing
a genetic algorithm. Experimental outcomes show that the
proposed approach improves over current martingale tech-
niques. Furthermore, the method does not focus on estimat-
ing gait bout(s).

Ho and Wechsler [26] recommended a martingale
framework based on the testing for exchangeability property
of data values to discover changes in time series. The method
comprises a clustering approach and the implementation of
a metric called strangeness, which shows how data points
differ. Consequently, the strangeness was used to compute
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the P-value and the randomized power martingale (RPM).
This method can detect a transition in a data sequence from
the experiment performed. However, there are restrictions to
the algorithm's performance. For example, the technique can
capture some false positives due to noise. Also, the method
can analyze unsupervised multivariate data sequences.

Consequently, in some of our previous work [48–50], we
proposed several robust thresholding methods that can ana-
lyze time series to detect changes. These methods can be cat-
egorized into two stages. Firstly, the methods use smoothing
techniques such as a moving median or a Gaussian moving
average to isolate and minimize the impact of noise in both
univariate and multivariate time series. Secondly, the
approaches use optimization methods such as GA and PSO
(see Section 1). However, the technique was not designed
for GB(s) detection.

2.1. Background of Research. As we can deduce from previ-
ous paragraphs, current algorithms can discover GB in
HAR data sets acquired from wireless sensor technologies.
However, the performance of these approaches is still lim-
ited by noise interference which can influence result render-
ing. Also, some of these approaches are not optimized for
maximum performance. Furthermore, some of these
methods use a supervised learning approach to detect
changes in a HAR data set. However, the supervised learning
approach has the following restrictions: it can be complex
and expensive to implement, takes a lot of computation
time, and cannot be used in real-time. Moreover, it might
be challenging to use with dynamic and growing data [51].

To address the limitations stated previously, we present
an unsupervised learning model [52] known as a multivari-
ate triple exponential weighted moving average of the mar-
tingale sequence (MTMS) method. Further elaboration of
the research novelty outlined in Section 1 includes:

(i) The MTMS model is straightforward and not com-
plicated. It does not take much computation time

(ii) Our model can be implemented on dynamic and
growing data without restriction

(iii) The MTMS approach can identify GB(s) and esti-
mate their duration by analyzing HAR data
obtained using a smartphone attached to the wrist
in unsupervised real-world situations

As previously explained in Section 1, the MTMS
approach uses the martingale framework and the triple
exponential moving average (TEMA) as a smoothing factor
[53, 54]. The triple exponential moving average can smooth
time series fluctuations, making it easier to discover patterns
without the lag related to traditional moving averages (MA)
[55, 56]. Informally, it does this by obtaining several expo-
nential moving averages (EMA) of the actual EMA and sub-
tracting some of the lag. TEMA can help to identify trend
order and short-term signal alteration. TEMA is more suit-
able compared to the EMA for this type of analysis because
it reacts more adequately to trend variation in time series
[54, 57]. In addition, we can apply an optimization algo-

rithm (PSO), which is further explained in Section 3.3.
PSO gives the optimal parameter value for enhancing the
performance of the proposed algorithm.

2.2. Applicability of the Suggested Approach. The proposed
approach can be translated into a real-time healthcare sys-
tem that can monitor an individual’s GB(s) during physical
activities. This system can be in the form of a mobile app
that can process and analyze accelerometer data set for GB
discovery. Our proposed system or application can log a
subject’s movement throughout the day. This application
can also help observe patients with movement disabilities
(especially the elderly) or older adults living alone. Further-
more, clinicians can use the information from this health
application to provide adaptive healthcare services to users.
The relevance of this smartphone system is outlined below:

(i) It is cost-effective as it does not require additional
hardware or sensors

(ii) It is efficient in mobility as it can be placed in the
pocket

(iii) It is non-obtrusive and does not make a subject feel
awkward or uncomfortable

(iv) It does not require supervision as smartphones can
be with an individual daily

(v) A smartphone is likely to be with the users during
their daily activities. This situation makes our health
application effective in monitoring the movement of
an individual

Our proposed system involves five distinct stages: the
pre-processing of the HAR data set obtained using a smart-
phone, the analysis of the HAR data sequence using our rec-
ommended algorithm, the recognition and the discovery of
GB, and finally, the re-initialization of the system.

3. Human Activity Recognition Model

This section explains the proposed approach for analyzing
the HAR data set. Our recommended technique aims to
identify GB using an accelerometer embedded in a smart-
phone attached to the wrist in unsupervised real-world situ-
ations. In the following paragraphs, we shall discuss the
HAR data, pre-processing approach, the martingale concept,
threshold computation, logical preferences, particle swarm
optimization technique, and applicability of our recom-
mended model.

3.1. HAR Data Set. The HAR data is accessed publicly from
the UCI machine learning repository and through the
research work of Anguita et al. [1, 58]. The data is then
adapted for only the stand to walk of stairs scenarios. The
HAR sequence acquired from smartphone devices attached
to different participants consisted of 30 volunteers ranging
from 19 to 48 years old. Each volunteer performed the
experiment protocol twice, and each scenario was at least
executed twice on each test to imitate repetition (see
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Table 1). A timeout of between 29 and 70 seconds in which
the subject remains still (stand) was arranged to differentiate
between each walk upstairs scenario. This data set is
obtained from an accelerometer embedded in a smartphone.
The smartphone is mounted in a suitable part of the body
(preferably the waist) of the participant to make it possible
to monitor or record gait scenarios performed by individ-
uals [1].

A smartphone is recommended for the experiment as
there are many limitations to using mobile devices in an
unconstrained environment. This limitation includes varia-
tion in mobile hardware architecture, low memory capacity,
non-robust operating system, embedded sensor quality, and
periodicity of acquired data. These constraints make the
experiment HAR difficult. However, smartphones can over-
come some of these challenges. Moreover, the signals
received using on-body sensors such as smartphones are
possibly beneficial over signals obtained by video cameras
due to the reasons outlined:

(i) Smartphones can mitigate the limitations of envi-
ronmental constraints and stationary settings that
cameras often encounter [59]

(ii) The signal information obtained from on-body sen-
sors such as smartphones are accurate, efficient, and
effective [59]

(iii) Smartphones enjoy the advantages of information
privacy in contrast to that acquired using video or
camera [59]

The Samsung 19100 Gallaxy S II has 32GB of storage
(microSDHC), 1GB of RAM, and a dual-core 1.2 Hz cortex
- A9 hard drive. These features make it the ideal device for
the experiment. The element of these movements comprises
triaxial acceleration and action label using video recording.
Each participant executes the scenario twice using a smart-
phone (Samsung 19100 Galaxy S II) attached to the waist
(the most prominent smartphone placement for effective
accelerometer orientation capture is either the human waist
or thigh for the walking upstairs scenario [60]) of the
volunteers.

Consequently, smartphones have inserted a triaxial
accelerometer that can estimate the subject’s acceleration.
Figure 1 shows the axis orientation of the inertial sensor of
the waist-mounted smartphones executed for the experi-
ments and its casing. Furthermore, Figure 2 shows the orien-
tation of the smartphone attached to the waist. The x-axis
estimates the vertical movement, while the y-axis measures
the horizontal movement in the lateral direction. Further-
more, the z-axis estimates the action in the posterior-
anterior direction. The Acceleration signal was recorded at

a constant rate of 50Hz, which is moderately fast for obtain-
ing human body movement information. [61]. The labelling
procedure was achieved manually by choosing the videos
recorded during the experiments as ground surveillance
and contrasting them with the log files of the inertial sig-
nals [1].

Our goal is to identify GB (the continuity of the same
movement patterns) in the experiment. As mentioned ear-
lier, GB is the time interval between gait initiation and ter-
mination in this case. GB essentially requires repetition of
stance-swing cycles [4]. Subsequently, if the foot is on the
ground for more than a certain threshold period, it can be
considered static, therefore non-GB. The participants per-
form several actions, such as the stand and walk-up-stairs
dynamic scenario. The walking-up-stairs scenario is repre-
sented as GB or mobility, while standing is classified as
non-mobility or non-GB. .

These actions are implemented several times in the data
set [40]. Table 1 represents the scenario discussed.

The encapsulated accelerometer in the smartphone is
used to capture triaxial linear acceleration and triaxial angu-
lar velocity at a consistent rate of 50Hz which is sufficiently
fast for obtaining human body motion information [61].
The multivariate triaxial data accumulated from these activ-
ities have been labelled manually utilizing video recording.
In addition, the acquired data set has been randomly divided
into two sets, where 70% of the participants were chosen for
creating the training data and 30% of participants for devel-
oping the test data. The randomization of the partition is to
make sure that no samples were obtained from the same user
in both subsets.

3.2. The Pre-Processing Approach. The sensor signals,
acquired through embedded accelerometers in smartphones,
are pre-processed by employing various filters [1]. Firstly,
the median filter and a low Butterworth filter with a thresh-
old frequency of 20Hz are included to reduce noise in the
signal. The Butterworth filter is a signal processing filter
devised to procure a response frequency that is as flat as pos-
sible in the passband [63]. The threshold frequency was cho-
sen according to work presented in [61] which stipulates
that the energy spectrum of the human movement lies
within the range of 0Hz and 15Hz. From these procedures,
a triaxial total acceleration A was produced. The clean signal
is expressed as the total of the two acceleration vectors given
as the gravitational component G and the body motion
acceleration BA was separated by utilizing another low-
pass filter (assuming that the gravitational element only
influences the lowest frequencies). The experiment in sepa-
rating the two signals shows that 0:3Hz was the maximal
baseline frequency to attain a constant gravity G. This result
was achieved by varying the baseline frequency from 0:1 to
1:0Hz using an increment of 0.025Hz and measuring the
minimum square error of the filtered gravity signal by sub-
tracting the standard gravity constant (9:81m/s2). Conse-
quently, the acceleration time derivative (dA/dt2),
otherwise known as Jerk, was estimated. Consequently, the
signal is sampled using a fixed-width sliding window of
about 2:56 sec and an overlap of 50% equivalent to 128

Table 1: Overview of activities in the HAR data set.

Label Types Time range

Stand(2) Non-mobility 29s-70s

Walk upstairs(2) GB 18s-28 s
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readings per window. This overlap is effective in executing
other HAR methods, such as in work stipulated in [64, 65].

The fixed-width sliding window and overlap were cho-
sen for the following reasons [1]:

(i) The cadence range of a normal individual walking is
between 90 and 130 steps per minute [66] which
represents a minimum speed of 1.5 steps per second

(ii) A minimum walking cycle consists of two practical
steps per window sample

(iii) A minimum speed of 50% is chosen as the average
human cadence so that individuals with slower
cadence due to disability or age are not excluded
from the experiment

(iv) Frequency domain signals demand the fast Fourier
transform (FFT) [67] that maximize the power of
two vectors (2:56 sec Ã—50Hz =128cycles)

Furthermore, for each window, a vector of features
(accelerometer 3-axial raw signals (tAcc-XYZ) was acquired
by computing variables using the time and frequency
domain. This feature extraction, namely, signal magnitude
area (SMA), mean, standard deviation (STD), entropy,

and signal-pair correlation (Corr), was implemented in
previous work [1]. Subsequently, the FFT was utilized to
locate the frequency elements for each window. Finally, a
normalization technique is used to remove data redun-
dancy [68, 69].

The labelled normalized vector of features standing and
walking upstairs scenarios are illustrated in Figure 3 inde-
pendently. Each plot in Figure 3 represents the accelerome-
ter 3-axial signals X, Y, and Z, separately. The red lines in
the plots separate the areas that show the participant walking
up the stairs at different time intervals in a dynamic HAR
scenario. The rest of the data represents some inactive activ-
ity when the participant is only standing. Finally, these pat-
terns are analyzed using an unsupervised learning approach
(see Section 3.3) for the discovery of GB. The HAR process is
illustrated in Figure 4.

3.3. GB Detection Model. The pre-processed data is analyzed
using the martingale framework, which originated from
probability theory and was initially observed in gambling.
Moreover, the idea has been utilized in diverse sectors such
as in finance (for financial asset pricing) [70]. In addition,
the martingale theory has been used in domains such as sur-
vival analysis, decision-making, and investment optimiza-
tion [71]. In [49, 50], the research outcomes demonstrate
that the martingale idea can be applied to the statistical anal-
ysis of time series such as terrestrial data and HAR. These
outcomes show the martingale methodology’s practicability
and efficacy in discovering changes in the data-producing
model for time series data streams. Ho and Wechsler [26]
suggested a martingale approach, namely, randomized
power martingale (RPM). This method can obtain better
precision and recall than the traditional sequential probabil-
ity ratio rate for change identification. We apply the martin-
gale procedure through a heuristic thresholding method to
analyze HAR data sets for GB detection. To improve the
result’s precision and recall, we use several techniques such
as TES, logical preferences, and PSO optimization tech-
niques. The advantage of the proposed algorithm is that it
can obtain better precision or recall and does not use sliding
windows like the RPM method in GB detection.

The profile of the data analysis involves the following steps:

(i) Compute the martingale point

x

y

z

(a) (b)

Figure 1: Samsung Galaxy S2 Smartphone. (a) Arrows display axis orientation of the accelerometer. (b) The case and belt of the smartphone
utilized for the experiments [1].

x

y

z

Figure 2: Smartphone placed on the waist to capture accelerometer
orientation x, y, and z [62].
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Figure 3: Continued.
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(ii) Compute the MTMS point (see Section 3.3)

(iii) Compute the threshold (see Section 3.3)

(iv) Determine the GB(s) that occurs in HAR

(v) Implement logical preferences to improve GB(s)
discovery (see Section 3.3)

(vi) Optimize the algorithm’s parameters to improve its
accuracy and precision further (see Section 3.3). We
shall further explain this procedure in the following
section

3.3.1. Randomized Power Martingale. Ho and Wechsler [26]
suggested an extension to the martingale approach by pro-
posing a metric known as strangeness. Strangeness repre-
sents to what extent a new data point differs from the
previous one in a time series.

Let us consider a series Z = fz1,⋯, zi−1g, where there is a
newly registered point zi. Let us also examine the situation
where the data points in Z have been clustered into k disjoint
sets Y1,⋯, Yk, ðk ≤ i − 1Þ [72].

Definition 1. The strangeness of zi is defined as

si = s Z, zið Þ = zi − Crk k, ð1Þ

where Cr is the midpoint of the cluster Yr , for some r ∈ f1
,⋯, kg such that zi ∈ Yr . k:k represents the selected distance.

The strangeness of zi is used to compute a “probability”
time series where its points are called bpi . If for j = 1, 2,⋯, i,
sj is the strangeness of zj and θi is a fixed value in ½0, 1� [26,
73], then bpi is computed as follows:

p̂i Z ∪ zi, θið Þ = # j : sj > si
� �

+ θi# j : sj = si
� �

i
, ð2Þ

where “#” is a function that counts the number of j satisfy-
ing the following condition. For instance, #ðj : sj > siÞ is the
number of j satisfying sj > si, where sj is the strangeness esti-
mation stated in equation (1).

Intuitively, p̂i measures the probability of being more
strange than zi. Thus, the set of p̂i can be utilized to compute
a new sequence known as the randomized power martingale.

Definition 2 (see [26]). The randomized power martingale
(RPM) is enumerated by ε ∈ ½0, 1� determined at each time
point as

M εð Þ
n =

Yn
i=1

εbpi ε−1
� �

: ð3Þ

Therefore, for a fixed ε ∈ ½0, 1�, we can compute MðεÞ
i .

This model will discover GB when

M εð Þ
n > t, ð4Þ
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where t is the threshold. The threshold will be explained in
successive paragraphs.

Let us consider a data sequence fX1,⋯, Xsg, where each
point Xi is a j vector, and j is the number of variables of the
study. Mn will be computed for each variable at any time
point. The next step involves reducing this new multidimen-
sional sequence into a single metric. TheMn is computed for
each variable at a given time point. The k-th mean of these
values is determined using the equation:

Nk =
Mn X kð Þ

1
� �

+Mn X kð Þ
2

� �
+⋯+Mn X kð Þ

j

� �

j
, ð5Þ

where XðkÞ
i is the i-th variable of Xk.

Nk, known as a multivariate randomized power martin-
gale (MRPM), will be our new point for analysis in the mul-
tivariate HAR data set. The following section explains the
computation of the threshold (t). In the next section, we
introduce a method that improves the performance of the
previously described martingale approach. The proposed
method can estimate GB in HAR.

3.3.2. Multivariate Triple Exponential Weighted Moving
Average of the Martingale Sequence (MTMS). In previous
work, Alevisakos et al. [74] use time-varying and asymptotic
control limits to examine and explore the mathematical
properties of the triple exponential weighted moving average
(TEWMA) or triple exponential smoothing (TES) chart. The
TEWMA chart is more effective when detecting small shifts
in the process mean compared to the double exponential
weighted moving average (DEWMA) and EWMA charts,
respectively. Some instances of TES implementation can be
found in the work of Ongiri et al. [75], who use TEM to
remove high-frequency noise in hydrological data to make
a vital prediction on water demand. Also, Dev et al. [55] sug-
gested a triple exponential smoothing based forecasting
methodology that isolates high-frequency noise from time-
varying data of estimated solar irradiance to make the time
series pattern feasible to make a forecast of up to 20
minutes.

As discussed earlier, this previous work motivates us to
propose a thresholding method that implements TES on
the martingale framework to discover GB in HAR time
series.

Triple exponential smoothing (TES) extends exponential
smoothing to support time series patterns that replicate at
every k element, where k can be any number other than
one [76]. To obtain the new point of the sequence, we use
TES to define the exponential weights over time [77].
Finally, TES is applied to signal analysis to remove high fre-
quencies encountered in the signal [77]. Suppose we gener-
ate a sequence of observations Nk at a given point with
size ðlÞ, where k = 1, 2,⋯, l. EWMA is given as:

Rk = α Nkð Þ + 1 − αð ÞRk−1, R0 = 0, ð6Þ

where Rk is the measure of the succeeding value of Nk. α is

the smoothing factor (SF) in ½0, 1�. The SF represents the
weighting applied to the most recent observation. The higher
the SF, the more weight is placed on the current observa-
tions, and the less weight is placed on previous observations.

Given a data sequence Nk with replicated pattern cycle
variation (L). L is a positive integer that delegates the num-
ber of preceding samples. It also refers to the number of data
points after which a new season begins. Consequently, TES
[77–80] is given as:

Hk+m = Rk +mbkð Þck−L+1+ m−1ð ÞmodL,
R0 =N0,

Rk = α
Nk

ck−L
+ 1 − αð Þ Rk−1 + bk−1ð Þ,

bk = β Rk − Rk−1ð Þ + 1 − βð Þbk−1 ,

ck = γ
Nk

Rk
+ 1 − γð Þck−L ,

ð7Þ

where Hk+m is the measure of Nk at point k +mðm > 0Þ.
Note that α is associated with the level of the series, β is asso-
ciated with the trend, and γ is associated with the repeated
pattern factors [77]. For our technique, we express the rela-
tion of the smoothing factors as β = α2 and γ = α3. For a
given time, t, modL is the cycle of observation, and ck repre-
sents the expected proportion of the trend that was predicted
[55]. To initialize a set of reproduced pattern factors, a min-
imum of 2L periods is required, which expresses two entire
seasons of historical data. ck−L+1+ðm−1ÞmodL is the counterbal-
ance into the index of the seasonal element against the last
set from the observed time series point. Consequently, we
apply the TES on the martingale point to obtain the MTMS
points. The MTMS point is represented as follows:

MTMSpoint = γ
Mk

Rk
+ 1 − γð Þck−L , ð8Þ

where Mk is the martingale sequence at a given point with
size ðlÞ and k = 1, 2,⋯, l. Rk is the estimator of the succeed-
ing martingale value (Mk). The following section discusses
GB detection by presenting a thresholding method using
MTMS points.

Table 2: PSO parameter values.

Parameters Value

InertiaRange [0.10000, 1.1000]

InitialSwarmSpan 200

MaxIterations 200 ∗ NumberOfVariables

MaxStallIterations 20

MinNeighboursFraction 0.250

SwarmSize: 100

SelfAdjustmentWeight 1.4900

SocialAdjustmentWeights 1.4900
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3.3.3. Threshold Computation. Ley et al. [81] suggested a
technique that is defined as �x ± 3 ∗MAD, where �x denotes
the mean of the data points and the MAD the median abso-
lute deviation. We compute the threshold usingME ±MAD,
where ME denotes the median of our time series window.
This threshold will enable the discovery of GB in the HAR
data set. The condition for GB detection is

MTMSpoint > t: ð9Þ

MTMS can determine GB in the data set. If MTMS is
more significant than the threshold t, GB is detected, and
if MTMS point is lesser than the threshold, GB has not taken
place. The interval at which the MTMS point is greater than
t is considered mobility (walking upstairs), while the con-
trary is referred to as non-mobility (standing). In the follow-
ing section, we shall implement a technique known as logical
precedent on the martingale sequence to improve the algo-
rithm effectiveness in bout detection.

3.3.4. Logical Precedent. To improve the precision of the GB
discovery, we apply two basic rules [40] as follows:

(i) The non-mobility intervals that are less than 3
seconds and are between two mobility periods are
translated into mobility

(ii) The mobility intervals of less than 3 seconds are
translated into non-mobility periods

The neuro-psychological reasons for the two rules are
that GB less than 3 seconds are presumed not to be exact

GB. In contrast, a non-mobility interval of fewer than 3 sec-
onds connecting two mobility intervals can be acknowledged
as a brief, inconsequential recess [40]. Consequently, any
gait bout of 3 seconds and above is considered a real walking
bout [82]. This understanding will enable us to potentially
isolate unwanted GB detection due to noise or unwanted
readings captured by sensors in the HAR time series. The
following section will explain the optimization technique
used to improve the algorithm’s parameters for enhanced
performance.

3.3.5. Particle Swarm Optimization. Particle swarm optimi-
zation (PSO) is a robust stochastic optimization method that
uses fewer parameters to solve complex problems [83, 84].
PSO combines the features of both GA and evolution
methods. This combination makes the PSO technique com-
putationally inexpensive in memory consumption and
speed. In addition, PSO can manage ongoing optimization
problems, where each population is assigned an arbitrary
velocity that pushes them through the solution hyperspace.
The PSO optimization aim is to locate the optimum function
that either maximizes the fitness function or minimizes the
loss [36, 85]. PSO involves the following [85, 86]:

(i) For every iteration, measure the fitness value for
each particle

(ii) If the fitness value of the particle is less than the
Pbest (personal best location discovered by each
particle), then the Pbest is updated with the parti-
cle’s location as it is the current best achievable
result at the point in time

Data: Input (F): HAR multivariate data set
Result: Output: MTMS points
1: Initialize: Mð0Þ = 1; i = 1;
2: Set values for cluster group k, ε value, Set the period of historical data (at least 2L periods) for training the TES model;
3: while do
4: A new example of zi is discovered;
5: ifF= { null } then
6: Set the strangeness of zi ≔ 0
7: else
8: Compute the strangeness of zi and the data points in F
9: Compute p̂i of zi;
10: Compute Miof thevectors using (3);
11: Translate the dimension into single metrics Compute Rk points;
12: Compute Hk+M points;
13: Compute MTMS points
14: Compute threshold t using MTMS points;
15: end
16: ifMTMS ≥ tthen
17: GB discovered
18: else
19: Add zi into F;
20: end
21: ifi = i + 1then;
22: end
23: end

Algorithm 1: The proposed algorithm.
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(iii) Identify the particle with the best fitness value from
the overall particles as the Gbest (the best global
position found by the swarm)

(iv) After discovering the Pbest and Gbest values, the
particle’s velocity and position are updated. This
process is represented below:

vei =Wvi + ciri Pbest:i − xið Þ + c2r2 Gbest − xið Þ, ð10Þ

where xi = xi + vi, vi = velocity of the ith particle (in our case,
velocity is the mechanism utilized to shift the particle (mar-

tingale points) so as to perform a search for optimal solu-
tions) [87], where i = 1, 2⋯ n, xi = position of the ith
particle, Pbest:i = personal best of the ith particle, ri and r2
are random numbers, and ci and c2 are the acceleration coef-
ficient that determines the amount of the influences on the
particles velocity in the path of the global and local optima
[88]. W is the inertia weight which ascertain the contribu-
tion rate of the particle’s preceding velocity to that at the
present time point [89]. In the next session, we shall imple-
ment the PSO using G-mean metrics.

We use the PSO approach to identify the maximal
parameter using G-mean metrics. The PSO utilizes the fit-
ness function (F) to acquire the optimal parameter value of
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Figure 5: PSO iteration.
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a method. In this case, the fitness function is the maximum
G-mean value computed with a specified range of parame-
ters. The fitness function is given as:

It is represented as follows:

G −meanmax = max ε,αð Þ G −mean MTMSð Þ
� �

, ð11Þ

where ε and α range from 0 to 1 for each activity [29]. As we
have discussed earlier, PSO uses equation (11), which is the
fitness function, to locate the maximum G-mean exploring
within the parameter interval values [29]. PSO parameters
are chosen to maximize the fitness function and can be seen
in Table 2.

The new optimized sequence is known as MTMS(PSO)
points. The MTMS method is illustrated in Algorithm 1,
which shows the step-by-step implementation of the pro-
posed approach.

3.4. Baseline Methods. In this section, we will elaborate and
discuss the previous heuristic thresholding methods (multi-
variate randomized power martingale and multivariate geo-
metric moving average martingale) [50, 71]. These methods
have been adapted for GB discovery. We selected these base-
line methods to implement the martingale framework to
detect transitions in the data set. These methods can be com-
pared with our proposed MTMS techniques to evaluate the
algorithm’s performance within the martingale family.

3.4.1. Multivariate Randomized Power Martingale. As dis-
cussed previously, we adapt the RPM method to discover
GB in a multivariate HAR data set. The following step is
taken to compute the MRPM(PSO) approach:

(i) Compute the RPM points for the vectors to give a
new multivariate sequence

(ii) Translate the new computed multivariate sequence
to a single metric

(iii) Compute the threshold of the series

(iv) Optimize the parameter of the algorithm using PSO

3.4.2. Multivariate Geometric Moving Average Martingale
(MGM). Apart from MRPM(PSO), we consider another
technique that is based on GB detection called geometric
moving average Martingale (GMAM) [71]. The GMAM
method makes use of SF described in Section 3.3. Conse-
quently, we adopt this method to analyze multivariate time
series, namely, MGM. The MGM algorithm steps are shown
below:

(i) Compute the GMAM points of the multivariate
HAR data set

(ii) Translate the vectors into single metrics by finding
the average of the GMAM vectors

(iii) Compute the threshold of the series

(iv) Optimize the parameters using the PSO technique

3.5. Evaluation Metrics. This section explains the measure of
the performance of our method using popular evaluation
metrics [90]. These metrics are evaluated using a confusion
matrix (CM) [91]. The CM depicts the predicted class of
the activity (GB and non-GB). Consecutively, the CM is used
to determine the accuracy, precision, recall, harmonic mean
ðF1Þ, and G-mean in terms of GB detection [40]. The accu-
racy, recall, precision, specificity, sensitivity, and G-mean
matric can analyze the optimal selection for MTMS
approaches. In this case, the confusion matrix (CM) can
evaluate the performance of the algorithm [91].

Accuracy [92] is an intuitive performance metric defined
as the ratio of GB(s) correctly detected in HAR to the total
observations. The following gives accuracy:

Accuracy = TP + TN
TP + FP + FN + TN

: ð12Þ

We define true negatives (TN) as the false GB(s) cor-
rectly identified as false. True positives (TP) are the actual
GB(s) that are correctly identified, while false positives
(FP) are incorrect GB(s) identified as true. False negatives
(FN) are the actual GB(s) identified as incorrect. Therefore,
precision, recall (also known as sensitivity), F1 score, and
specificity are computed as follows:

Precision = TP
TP + FP

,

Recall sensitivityð Þ = TP
TP + FN

,

F1score = 2 ∗ Recall ∗ Precision
Recall + Precision ,

Specificity = TN
TN + FP

:

ð13Þ

G-mean [38, 91] is the measure of the correlation and
the overall efficiency of the activities. G-mean combines
the recall and the specificity. A low G-Mean denotes a poor
performance in classifying positive cases irrespective of
whether the negative possibilities are precisely classified.
The G-mean metric is vital to prevent overfitting the false-
negative and underfitting the false-positive class.

G-mean is defined as:

G −mean =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Recall ∗ Specificity

p
: ð14Þ

A high G-mean signifies a preferable performance in the
positive grading cases, while a low G-mean denote low per-
formance [38]. These performance metrics properly evaluate

Table 3: Confusion matrix of MTMS (PSO) method on the test set.

Non-GB GB Total (predicted)

Non-GB 428 99:3%ð Þ 22 10:0%ð Þ 450
GB 03 0:7%ð Þ 197 90:0%ð Þ 200
Total (reference) 431 100%ð Þ 219 100%ð Þ 650
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the proposed approaches in locating GB(s), mainly on
imbalanced HAR data sets. The evaluation performance for
our methods is measured using evaluation metrics such as
accuracy, precision, recall, harmonic mean ðF1Þ, and G-
mean [32, 93].

3.6. Statistical Analysis of GB Detection. Our proposed
method can estimate the GB(s) in the HAR data set. The

step for identifying the duration of each GB in the sequences
are outlined below:

(i) We first detect the number of bouts using our sug-
gested algorithm

(ii) We then estimate GB in HAR data set

The estimation of GB is obtained by computing the time
(sec) of its occurrences. As explained earlier, GB is the length
of time in seconds the GB takes place. GB is given as:

GB = Seconds TPð Þ: ð15Þ

We also use different statistical techniques (Spearman’s
rank correlation and mean square error) to estimate the total
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Figure 6: MTMS(PSO) implementation.

Table 4: Confusion matrix of MGM(PSO) method on the test set.

Non-GB GB Total (predicted)

Non-GB 425 98:6%ð Þ 30 13:7%ð Þ 455
GB 06 1:4%ð Þ 189 86:3%ð Þ 195
Total (reference) 431 100%ð Þ 219 100%ð Þ 650

14 Journal of Sensors



GB(s) detected. Spearman’s rank-order correlation (SROC)
[94, 95] is the non-parametric version of the Pearson
product-moment correlation. SROC can measure the capac-
ity and order of relationship between two ranked variables.
We can use SROC to estimate the correlation between the
actual GB discovered and the predicted GB.

Given two sequences Xi and Yi, we can compute dbi for
every i by firstly converting the two sequences ðXi andYIÞ
into rank ðrXi and rYiÞ. Consequently, we then compute
the difference between the two ranks of the sequences. di is
given as:

di = r Xið Þ − r Yið Þ: ð16Þ

Subsequently, SROC is given as:

ρ = 1 − 6∑di2
n n2 − 1ð Þ , ð17Þ

where n is the number of observations and i = 1, 2,⋯, n. ρ is
the Spearman rank correlation coefficient. In our case, the
actual GB(s) is represented as Xi while the predicted GB(s)
is described as Yi.

The mean square error (MSE) can estimate the total
GB(s) identified in HAR sequence [96]. MSE is the sum of
the squared difference between actual and estimated GB(s).
MSE is given as:

MSE = ∑n
i=1 Xi − Yið Þ2

n
: ð18Þ

As explained earlier, the SROC value can show how two
variables are correlated, while MSE can be referred to as a
loss function used to estimate how efficient an algorithm
is. The following section discusses the experimental result
of our suggested method and previous martingale
approaches.

4. Results and Discussion

This section discusses the proposed techniques used to iden-
tify GB in HAR. The section also describes the pre-
processing methods and results obtained from experimenta-
tion using our proposed method and other baseline
methods.

4.1. Cross-Validation Procedure. A cross-validation tech-
nique is implemented on two different time series called
ds1 and ds2. Firstly, we implement our method
(MTSM(PSO)) using the training data set (ds1) to obtain
the best optimal parameter values that maximize G-mean.
These parameter values are subsequently implemented to
analyze the test data set (ds2). Both ds1 and ds2 consist of
404 and 650 data points. When we run the algorithms on
the training set, our optimal parameter values that maximize
G-mean are ε = 0:7763 and α = 0:9999. The MTMS(PSO)
optimization process for the train set is illustrated in
Figure 5(a). We then use these optimal parameter values
on a test set (ds2). The confusion matrix (CM) for

MTMS(PSO) performance on the test data set is illustrated
in Table 3. Consequently, the exact process is repeated for
both the MRPM(PSO) (see Figure 5(b)) and MGM(PSO)
algorithm, first on the training set and then on the test data.
MTMS(PSO) output is illustrated in Figure 6(a) while the
corresponding MTMS(PSO) output on the test data set is
shown in Figure 6(b). The CM for these approaches is pre-
sented in Tables 4 and 5 independently.

4.2. Confusion Matrix Analysis. To evaluate our algorithm
performance, it is vital to note that the column of CM
(Tables 3–5) shows the reference non-GB and GB, while
the row gives the predicted non-GB and GB. Subsequently,
we observe from Table 3 that 90% of GB (walk upstairs)
are discovered by the MTMS(PSO) approach. Also, the algo-
rithm can identify 99:3% of non-GB (standing). However,
the algorithm only identifies 0:7% non-GB as GB and 10%
GB as non-GB. Additionally, Table 4 illustrates that the
MGM(PSO) technique is able to detect 86:3% of GB and
98:6% of non-locomotion, respectively. Nevertheless, the
algorithm can discover 13:7% of non-GB that are GB and
1:4% GB that are non-locomotion independently. Lastly,
Table 5 shows that MRPM(PSO) approach can detect 50:7
% of GB and 91:6% of non-GB independently. Besides, the
algorithm can discover 49:3% of non-GB that are actual
movement and 8:4% of GB that are truly non-GB.

To summarize the analysis above, we can conclude that
the MTMS(PSO) approach is more efficient as the percent-
age detection of GB is slightly higher (over 3%) compared
to the MGM(PSO) and MRPM(PSO) separately. In addition,
the false detection rate of the MTMS(PSO) method is lower
than the baseline approaches.

The CM outlined above can be used to compute the eval-
uation metrics, which is summarized in Table 6 and shows
the median and the interquartile range (interquartile range
shows the range in values of lower quartile from the value
of the upper quartile) of outcomes (accuracy, sensitivity,
specificity, precision, F1, and G-mean) for both the training
and test set.

4.3. Evaluation Metrics of GB Detection. Table 6 shows the
evaluation metrics of our proposed and previous
approaches, respectively. The accuracy, sensitivity, specific-
ity, precision, F1 score, and G-mean for both the train and
test data set are determined by finding the median of both
results and the percentage value. The results in Table 6 are
further simplified in Table 7. Table 7 shows the performance
improvement (in percentage) of the proposed approach
compared to MGM(PSO) and MRPM(PSO) methods,

Table 5: Confusion matrix of MRPM(PSO) method on test set.

Non-GB GB Total (predicted)

Non-GB 395 91:6%ð Þ 108 49:3%ð Þ 503
GB 36 8:4%ð Þ 111 50:7%ð Þ 147
Total (reference) 431 100%ð Þ 219 100%ð Þ 650
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respectively. When we compare our suggested approach to
MGM(PSO) method, we can observe that our method gives
a better accuracy metric (over 2:0% over) compared to that
of the MGM(PSO) approach. Subsequently, our approach
offers better sensitivity (over 3:0%) and specificity (over 1:0
%) metrics compared to the MGM(PSO) technique. Also,
our proposed approach gives a preferable precision (over
3:0%) compared to the MGM(PSO) method. Consequently,
our methods produce an improved F1 (over 3:0%) and G-
mean (over 2:0%) measure compared to the MGM(PSO)
technique.

Consequently, we compare our suggested approach to
the conventional MRPM(PSO) method and observe that
our technique gives a better accuracy metric (over 18:0%).
In addition, our process produces a preferable sensitivity
(over 22:0%) and specificity (over 16:0%) metrics compared
to the previous MRPM(PSO) technique. Also, our approach
gives a better precision (over 38:0%) compared to that of
MRPM(PSO) method. In addition, our methods produce
an improved F1 (over 33:%) and G-mean (over 19:0%) mea-
sure compared to the traditional martingale technique.

Also, we compare our work to that of Patil et al. [41]
who proposed a method (ELM) that evaluates the perfor-
mance of multi-class gait classification. In Table 8 we pres-
ent the classification accuracy of classifying GB(s).

Generally, the ELM technique achieved a classification
accuracy of 92:0% in detecting the GB(s). However, our
method achieved an overall 95:4% accuracy rate in detecting
GB in HAR obtained from smartphones. The advantages of
our method over the ELM technique are given as follows:

(i) Our model is a practical sequential GB detection
approach to capture new HAR data points com-
pared to the ELM approach

(ii) The ELM can only analyze labelled data sets for gait
pattern detection. However, our suggested algo-
rithm can analyze unlabelled HAR data sets for
GB discovery without supervision

(iii) Our proposed method can adapt to changes in data
patterns and

Overall, we can conclude that our method produces a
superior outcome compared to the conventional ELM and
MGM(PSO), respectively.

4.4. GB Detection Analysis. This section discusses the metric
performance results for the evaluation of our proposed algo-
rithm. The two metrics considered are the results of the
Spearman test and mean square error (MSE). The Spearman
test results between the estimated values of GB detected by
our algorithm and that of the reference values were obtained
as R2 = 0:9141. Also, the Spearman test for the evaluated
value of GB discovered by the MGM(PSO) technique and
that of the reference values was acquired as R2 = 0:8758.
Consequently, the Spearman test for the GB identified by
the MRPM(PSO) method to that of the reference or test
value is established as R2 = 0:4783. From the test, we can
ascertain that the proposed MTMS(PSO) method gives a
higher correlation than the baseline methods. The Spearman
test is illustrated in Figures 7(a)–7(c). Furthermore, the MSE
obtained between the evaluated values of GB discovered and
that of the reference points for MTMS(PSO), MGM(PSO),
and MRPM(PSO) is 0:3807, 0:8758, and 0:5072, respec-
tively. The result shows that our proposed MTMS(PSO) is
efficient (it produces a low error rate) compared to
MGM(PSO) and MRPM(PSO), respectively. The low MSE
rate is attributed to the fact that the suggested approach
can diminish noise, leading to false positives effectively com-
pared to the baseline methods. These results (SROC and
MSE) are outlined in Table 9.

4.5. Computation Time. We also performed several runs
(six) for the various algorithms (MRPM(PSO), MGM(PSO),
and MTMS(PSO)) and presented the outcome in Table 10.
The run iteration time for MRPM(PSO) is computationally
efficient compared to MGM(PSO) and MTMS(PSO),
respectively, as can be observed in Table 10. This evidence
is attributed to the fact that MGM(PSO) and MTMS(PSO)
are extensions of MRPM technique that adapt the original
martingale method. The results show us that the computa-
tion time of executing MTMS(PSO) method is slightly
higher (fraction of seconds) compared to the baseline
methods (MRPM(PSO) and MGM(PSO)). However, we
intend to further validate the proposed algorithm’s compu-
tational time by experimenting with other HAR data sets.

From experimentation analysis, we can conclude that
our proposed MTMS(PSO) method produces better perfor-
mance in detecting GB compared to MRPM(PSO) and
MGM(PSO) approaches. The following section provides fur-
ther discussion of the results.

5. Discussion

This paper developed an effective algorithm to identify
GB(s) and estimate their durations using a smartphone
attached to the wrist in unsupervised real-world situations.
The goal of this study is to provide a reliable, cost-effective,
and efficient detection method that would be able to detect
GB(s) in HAR. Two different accelerometer data sets (ds1

Table 7: Performance improvement of the proposed MTMS(PSO)
approach compared with the baseline methods.

Metrics MGM(PSO)% MRPM(PSO)%

Accuracy 2.9 18.6

Sensitivity 3.1 22.3

Specificity 1.3 16.6

Precision 3.6 38.5

F1 score 3.2 33.2

G-mean 2.3 19.6

Table 8: Comparison of novel methods.

Approaches
Training accuracy

(ds1)
Test accuracy

(ds2)
Overall
accuracy

ELM 92.0 92.0 92.0
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and ds2) were utilized to validate the effectiveness of our
proposed algorithm. Our approach can detect most of the
GB(s) in the data set. Our recommended algorithm achieves
a high level of accuracy 95% overall and is extremely com-
pelling from a diverse point of view. For instance, GB(s)
detection was performed with a significant sensitivity of
98:5%. Our algorithm’s discovery of GB(s) detection in
HAR proved sufficient for walking categorization. There
are very few miscategorizations experienced by our proposed
approach between standing and walking upstairs. For
instance, the misclassification of standing is 0:7% while the
misclassification for walking is 10:0%. The precision, also
called the positive predictive value of our proposed approach,
is 87:7%, while the F1 and G-mean values for the execution of
the proposedmethod are 92:7% and 96:1% independently (see
Table 6). These results confirmed that our suggested approach

is computationally efficient and provides reliable details about
GB(s) in HAR, suitable for a cost-effective and real-time
computer-aided GB(s) discovery system. This system will
enable clinicians to assess the movement of the elderly or per-
sons withmovement abnormalities. In Section 1, we presented
some such systems and also briefly discussed how GB(s) study
can help address these challenges. The following section shall
elaborate on how this real-time feedback system can help
improve gait impairment. Also, we shall link the results out-
lined above to these challenges.

5.1. Cost Effectiveness in Terms of Applicability in
Discovering GB(s). Our recommended healthcare systems
can incorporate smartphone devices (for accumulating
human recognition data), pre-processing procedure (for
processing the collected time series), and the proposed algo-
rithm application (for analyzing the time-varying data
stream for GB detection). These innovative healthcare mon-
itoring systems are noninvasive, low power, and low cost
and will assist clinicians or caretakers in supplying long-
term remote monitoring assistance, carrying out an early
diagnosis, tracking abnormal movement symptoms over
time, and categorizing or predicting pathological states [97].

5.2. Early Diagnosis of Gait Abnormalities. The possibility of
identifying early signs of movement abnormalities, especially
for the elderly, could be accomplished using our proposed
algorithm. This early diagnosis could be realized by moni-
toring and studying GB of older individuals using our rec-
ommended method. The following outlines could address
or manage gait abnormalities in a person (elderly) in a real-
time feedback system or application using our suggested
algorithm.
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Figure 7: Correlation plot.

Table 9: Percentage performance of the proposed MTMS(PSO)
compared to MGM(PSO) and MRPM(PSO).

Method Correlation R2� �
MSE

MRPM(PSO) 0.4783 0.5072

MGM(PSO) 0.8758 0.3997

MTMS(PSO) 0.9141 0.3807

Table 10: Optimization run time.

Approach Number of runs Ave iteration time

MRPM(PSO) 6.0 0.104872 sec

MGM(PSO) 6.0 0.128132 sec

MTMS(PSO) 6.0 0.410360 sec
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(i) Healthcare researchers could track the movement of
the elderly in real-time by monitoring and observing
the daily activities of the elderly using our proposed
health real-time system [2, 98, 99]

(ii) Our suggested system could estimate GB and non-
GB activities achieved by an individual [100, 101]

This feedback from our proposed healthcare system could
empower medical practitioners to measure the daily gait
movement of the elderly [99, 102]. In addition, an unusual
observation in the GB study outcome could prompt healthcare
professionals to address the root cause of any concerns relat-
ing to gait disparity [103, 104]. These concerns might lead to
further testing (on muscle strength, muscle tone, and coordi-
nation) and the medical solution’s implementation to find an
immediate solution to the gait issue [105, 106].

5.3. The Effect of a Free-Living Environment on People with
Movement Disabilities. Our proposed healthcare solution
could enable the practical monitoring of the elderly or per-
sons with gait disorder as a result of neurological or non-
neurological causes [104, 107, 108]. These conditions can
lead to poor coordination, unsteadiness, and staggering gait
for the older generation [109]. Our proposed healthcare sys-
tem could assess the gait movement of these individuals in
their homes and surroundings through sensor devices, as
explained earlier. The recommended healthcare application
can also identify gait disorders by implementing our pro-
posed healthcare system. Such healthcare systems could dis-
cover and analyze the GB of the older person to assess their
movement and coordination daily [104]. This solution could
enable healthcare workers to adjust their treatment and
exercise levels based on these findings.

5.4. Tracking of Parkinson’s Disease Progression and Risk
Prevention Measure. Gait can be described as a person’s pat-
tern of walking. Gait disorder associated with Parkinson’s
disease (PD) exhibits decrements in acceleration and stride,
such as walking with a shortened sequence of two steps
and low acceleration. Previously, the unified Parkinson’s dis-
ease rating scale (UPDRS) motor score was used to study
motor symptoms of PD sufferers [110]. However, the score
is not related to gait and posture improvement or deteriora-
tion. Therefore, there is a need for analysis of gait activity
performed by PD patients using our suggested system to
assess the degree to which PD affects the movement and
posture of the patient. In addition, this gait assessment could
assist healthcare professionals to enhance current practices
that may aid in symptoms monitoring, rehabilitation pro-
cesses, therapy strategies, risk assessment, and avoidance.
In the following section, we will discuss the conclusion and
future work.

6. Conclusion and Future Work

This paper briefly discusses the RPM approach, which can
discover abnormalities in time series. We propose a feasible
and efficient method in terms of cost and applicability. The
approach involves using a smartphone to capture the pattern

of human activity scenarios such as walking upstairs and
standing. The smartphone is attached to the waist of 30 sub-
jects of the age range from 19 to 48 years old. The acceler-
ometer embedded in this smartphone can pick up
movement via its sensitivity to triaxial orientation. Subse-
quently, we implement an unsupervised learning technique
known as the MTMS(PSO) in the experimental setup. The
suggested method can reduce frequency noise by adding a
smoothing procedure (TEMA) to the processed accelerome-
ter data. The method further used logical precedence and
optimization technique to improve the accuracy and preci-
sion. The method does not use a window size that can be
implemented to measure the accuracy and precision rate of
some traditional methods.

The proposed approach can identify GB(s) in HAR data.
The proposed MTMS(PSO) gives a slightly higher G-mean
value (over 3:0%) compared to the MRPM(PSO). Our sug-
gested algorithm was also compared with the previous
MGM(PSO) approach. Experimentation shows that our
method produces a better result (over 1.0%) in accuracy,
specificity, precision, F1, and G-mean independently. In
addition, our method outperforms the ELM approach.

Our recommended methods can study and measure gait
irregularities or patterns in a person with movement disabil-
ities. Also, our proposed method can be used to test how effi-
cient deterrent remedies can improve gait disorder,
especially in the elderly. Additionally, our system’s informa-
tion on gait patterns analysis could ensure the implementa-
tion of effective clinical decisions to assist or monitor such
pathological behaviour.

Further study will include the following:

(i) We will also need to validate the approach using a
wide range of HAR data streams to characterize
GB in the movement of people with disabilities,
especially the elderly

(ii) To investigate the nature of GB associated with cer-
tain gait disabilities and how they can be distin-
guished in the HAR data set

(iii) To examine the correlation between the extent of tran-
sition and gait abnormalities using MTMS(PSO) value

(iv) To use our proposed healthcare system to assist
people with gait abnormalities who demonstrate
uncommon movements that involve the exchange
of the upper and lower limb swinging in time and
other joint dynamics

(v) To implement and validate the algorithm’s perfor-
mance on other time series from a different domain
for anomaly or change detection

(vi) To also improve the algorithm, thereby making it
computationally efficient

Data Availability

The HAR data is accessed publicly from the UCI machine
learning repository through the research work of Anguita
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