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ABSTRACT 

This dissertation presents the work done during the fifth year of the course Integrated Master’s in 

Biomedical Engineering, in Medical Electronics. This work was carried out in the Biomedical & Bioinspired 

Robotic Devices Lab (BiRD Lab) at the MicroElectroMechanics Center (CMEMS) established at the 

University of Minho. For validation purposes and data acquisition, it was developed a collaboration with 

the Clinical Academic Center (2CA), located at Braga Hospital. 

 The knowledge acquired in the development of this master thesis is linked to the motor 

rehabilitation and assistance of abnormal gait caused by a neurological disease. Indeed, this dissertation 

has two main goals: (1) validate a wearable biofeedback system (WBS) used for Parkinson's disease 

patients (PD); and (2) develop a digital biomarker of PD based on kinematic-driven data acquired with the 

WBS. The first goal aims to study the effects of vibrotactile biofeedback to play an augmentative role to 

help PD patients mitigate gait-associated impairments, while the second goal seeks to bring a step 

advance in the use of front-end algorithms to develop a biomarker of PD based on inertial data acquired 

with wearable devices. Indeed, a WBS is intended to provide motor rehabilitation & assistance, but also 

to be used as a clinical decision support tool for the classification of the motor disability level. This system 

provides vibrotactile feedback to PD patients, so that they can integrate it into their normal physiological 

gait system, allowing them to overcome their gait difficulties related to the level/degree of the disease. 

The system is based on a user- centered design, considering the end-user driven, multitasking and less 

cognitive effort concepts. 

This manuscript presents all steps taken along this dissertation regarding: the literature review and 

respective critical analysis; implemented tech-based procedures; validation outcomes complemented with 

results discussion; and main conclusions and future challenges. 

  

Keywords: Parkinson's disease; biomarker; Wearable Biofeedback Systems; vibrotactile 

biofeedback; rehabilitation & assistance; clinical decision support tool; 
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RESUMO 

Esta dissertação apresenta o trabalho realizado durante o quinto ano do curso Mestrado 

Integrado em Engenharia Biomédica, em Eletrónica Médica. Este trabalho foi realizado no Biomedical & 

Bioinspired Robotic Devices Lab (BiRD Lab) no MicroElectroMechanics Center (CMEMS) estabelecido na 

Universidade do Minho. Para efeitos de validação e aquisição de dados, foi desenvolvida uma colaboração 

com Clinical Academic Center (2CA), localizado no Hospital de Braga. 

 Os conhecimentos adquiridos no desenvolvimento desta tese de mestrado estão ligados à 

reabilitação motora e assistência de marcha anormal causada por uma doença neurológica. De facto, 

esta dissertação tem dois objetivos principais: (1) validar um sistema de biofeedback vestível (WBS) 

utilizado por doentes com doença de Parkinson (DP); e (2) desenvolver um biomarcador digital de PD 

baseado em dados cinemáticos adquiridos com o WBS. O primeiro objetivo visa o estudo dos efeitos do 

biofeedback vibrotáctil para desempenhar um papel de reforço para ajudar os pacientes com PD a mitigar 

as deficiências associadas à marcha, enquanto o segundo objetivo procura trazer um avanço na utilização 

de algoritmos front-end para biomarcar PD baseado em dados inerciais adquiridos com o dispositivos 

vestível. De facto, a partir de um WBS pretende-se fornecer reabilitação motora e assistência, mas 

também utilizá-lo como ferramenta de apoio à decisão clínica para a classificação do nível de deficiência 

motora. Este sistema fornece feedback vibrotáctil aos pacientes com PD, para que possam integrá-lo no 

seu sistema de marcha fisiológica normal, permitindo-lhes ultrapassar as suas dificuldades de marcha 

relacionadas com o nível/grau da doença. O sistema baseia-se numa conceção centrada no utilizador, 

considerando o utilizador final, multitarefas e conceitos de esforço menos cognitivo. 

Portanto, este manuscrito apresenta todos os passos dados ao longo desta dissertação 

relativamente a: revisão da literatura e respetiva análise crítica; procedimentos de base tecnológica 

implementados; resultados de validação complementados com discussão de resultados; e principais 

conclusões e desafios futuros. 

Palavras-Chave: Doença de Parkinson; biomarcador; Wearable Biofeedback Systems; 

biofeedback vibrotáctil; reabilitação & assistência; ferramenta de apoio à decisão clínica; 
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1.1 MOTIVATION 

Parkinson’s disease (PD) is a chronic progressive neurodegenerative movement disorder 

characterized by a profound and selective loss of nigrostriatal dopaminergic neurons [1]. PD is the second 

most common neurodegenerative disorder and is expected to impose an increasing social and economic 

burden on societies as populations age [2]. 

This disease presents symptoms as akinesia, bradykinesia, rigidity of movements, tremors, postural 

instability, and gait disturbances [3], as episodes of blockage known as freezing of gait (FOG). In addition 

to the motor symptoms, mental disorders like depression or psychosis, and autonomic and 

gastrointestinal dysfunction may occur; all these disorders considerably impair the quality of life (QoL) of 

PD patients [3]. 

Pharmacological therapies are usually followed to treat motor symptoms. They depend on the stage 

of the disease and the patients’ initial response to treatment. With the disease progression, there is a loss 

of medication efficacy, so the patients need higher doses of medication in shorter periods of time [4]. 

Further, surgical interventions (e.g., deep brain stimulation) are usually followed to treat early and late 

complications of PD [5], but likewise medication, in long term, does not alter the course of motor 

symptoms. Medication and surgical treatments have shown to suppress the symptoms of tremor, 

bradykinesia, and muscle rigidity, but do not prevent the progression of other motor complications. The 

treatments are not as effective in treating gait-associated disabilities and postural instabilities, which 

increase the loss of balance and risk of falling, restricting motor performance and limiting the level of 

independence in daily activities [6]. This pharmacologic/surgical barrier encouraged new investigations 

to find new methods/solutions than can help patients with PD to improve their motor symptoms. 

Indeed, new technological-based solutions, namely wearable biofeedback devices (WBD) have shown 

an innovative and enthusiastic perspective. These solutions have proven to be efficient in ensuring 

continuous improvement of motor symptoms, contributing to patient’s greater autonomy [5], [6]. These 

new wearable technologies integrate sensors that can detect alterations on users’ motor performance 

and deliver proprioceptive cues (bio-feedback) [4], [6]. 

Cueing can be defined as using external stimuli which provides temporal (related to time) or spatial 

(related to space) information to facilitate movement (gait) initiation and continuation [7]. Patients may 

use sensory cueing as an artificial means to stimulate the proprioceptive inputs, being the proprioception 

the sense of self-movement and body position [8]. Improving proprioceptive feedback could enhance 

sensory processing deficits, ameliorating gait performance and increase the outcomes of PD-

rehabilitation/assistance [8], [9]. 
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Visual, auditory and vibrotactile cues have been used to aid function in persons with PD. Sometimes 

these cues are provided simultaneously (e.g., vibrotactile-visual cueing) [10]. In these individuals, the 

spatial and temporal characteristics of on-going gait (velocity, stride length and cadence) have been 

improved [11]. Furthermore, sensory cueing can produce changes in postural control, stepping pattern, 

unfreezing gait-blocks, prevent falls, and, consequently, lead to less gait variability. Overall, sensory cueing 

can be used in the daily living of the subjects, improving their performance. 

Although scientific community has continuously developed and improved WBD, as pointed in [12], 

current solutions require (i) integration of all tech-subsystems into a single device, in order to overcome 

wearability issues (ii); ability to be used in patients’ daily lives, considering ergonomic and comfort 

requirements; (iii) personalized biofeedback strategies according to user motor disability level; and (iv) 

include more clinical evidence and usability, 

Also, for the more traditional methods (pharmacological therapies), there is a need to monitor the 

motor manifestations and clinicians usually use scales (e.g. UPDRS). These categorical scales are 

susceptible of subjectivity and noncommon analysis between clinical community [13]. Clinicians are 

limited to the information observed during the medical appointments which can be affected by patients’ 

mood and motivation or medication phase [13]–[16]. Besides, motor symptoms’ assessments during 

routine consultations are strongly dependent of patients’ memory to describe their last motor episodes 

[15]. These facts highlight a remaining challenge among the scientific community: to develop 

technological solutions that enable to monitor motor symptoms in patients’ home-settings providing 

continuous and more objective data [14].From sensory acquisitions, WBD can provide relevant motor 

metrics that are useful for a continuous and objective monitoring of PD motor symptoms. However, 

current WBD do not explore the estimation of these motor metrics as a clinical decision support tool for 

the classification of the disease degree.  

 

1.2 PROBLEM STATEMENT 

This thesis intends to take a systematic approach to address the state-of-the-art limitations of WBD, 

aiming to (i) study the effects of vibrotactile cueing with end-users (patients with PD) and (ii) evolve the 

digital biomarkers field on PD based on kinematic data. Following a user-centred approach, firstly it was 

required to identify which gait-related metrics could translate the effects of biofeedback. These gait-related 

metrics should be estimated based on sensory acquisitions from WBD aiming to use a unique device able 

to provide sensory cueing, but also measure relevant motor metrics. Also, to validate the biofeedback 

strategy, the clinical protocol should include motor daily activities, a carefully delineation of group studies 
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and include usability tests to access the acceptability of the proposed cueing-based strategy and WBD. 

Sensory kinematic-driven data recorded, and consequent gait-related metrics estimated, besides to allow 

to study the biofeedback effects, have potential to be applied to statistical and artificial intelligence (AI) 

methodologies to biomarker PD. Indeed, AI models will allow to be integrated on clinical APP to 

automatically complement traditional examinations during routine consultations. On a hypothetical 

scenario, patients could use the WBD in their homes or during a required moment in consultation, to 

acquire kinematic data & gait-associated spatiotemporal parameters to be applied on the AI-models 

integrated on the desktop clinical APP. The clinical APP will complement the traditional motor examination 

based on UPDRS scale by digitally biomarking the classified score level.  

 

1.3 GOALS AND RESEARCH QUESTIONS 

This dissertation has two main goals. The first one aims to validate a WBD to study the effects of 

vibrotactile biofeedback to play an augmentative role to help PD patients mitigate gait-associated 

impairments. The second key-goal envisions the development of a digital biomarker of PD based on 

kinematic-driven data acquired with the WBS to bring a step advance in the use of front-end algorithms 

to biomarker PD. From an unique device, a WBD, it is intended to provide motor rehabilitation & 

assistance, but also to be used as a clinical decision support tool for biomarker mobility on PD.  The 

system will be validated with PD patients, in a hospital context, through the definition of inclusion and 

exclusion criteria as well as clinical protocols, to enable a user-driven design. 

To achieve these main goals, it is necessary to gather a body of knowledge about current state-

of-the-art of WBD in PD, both technological and clinical validation points-of view. It is required a critical 

analysis on the achievements and limitations of WBD already validated with PD patients, but also on the 

studies about the use of inertial data to determine the disease level or mobility degree stratified by related 

disease -associated scales. This analysis provides the required scientific knowledge to overcome the 

identified tech & end-user driven requirements of this dissertation. Thus, these main aims can be divided 

into several goals, to represent all the methodological steps established to attain the ultimate goal, as 

follows: 

• Goal 1: do a literature review about WBD used in PD to improve motor performance. It is expected 

to summarize the investigations about WBD in PD, their achievements and identify their gaps.   

• Goal 2: to cover a critical review on the literature to understand how wearable sensors can support 

PD monitoring using AI & statistical analysis.  
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• Goal 3: validate a WBD, an instrumented waistband, with end-users. It is expected the acquisition 

and analysis of motor metrics that allow to study the effects of vibrotactile biofeedback.   

• Goal 4: the fourth goal aims to enhance a gait analysis tool (desktop APP) able to segment a gait 

cycle and estimate gait-associated metrics (from different locomotion domains, as pace, rhythm, 

variability and asymmetry) based on sensory information (kinematic data) acquired by WBD. 

• Goal 5: accomplish a statistical study about the gait-associated metrics aiming to study the ability 

of a wearable motion LAB to serve as a biomarker of PD motor stages and an indicator of patients’ 

QoL. 

• Goal 6: the implementation of an AI-based model to classify the mobility level of PD based on 

kinematic-driven data and gait-related metrics.  It is expected with this tool to complement 

traditional clinical motor examination by classifying the UPDRS score. The application of these 

models should lead to an accuracy of at least 95% in the classification of the mobility level.   

In this dissertation we intend to answer several research questions: 

▪ RQ.1 “How have the WBD been implemented, applied and clinically validated in PD to mitigate 

gait associated impairments?”; This research question is associated with Goal 1 and is answered 

in Chapter 2.2. 

▪ RQ.2 “How have the AI-based and statistical methods been used for PD monitoring?”; This 

research question is associated with Goal 2 and is answered in Chapter 2.3. 

▪ RQ.3 “Can gait event-driven biofeedback loop integrated on a WBD help PD patients to mitigate 

gait-associated disabilities?”; This research question is associated with Goal 3 and is answered 

in Chapter 4. 

▪ RQ.4 “Can the wearable motion LAB outcomes contribute as a biomarker of motor stage and 

quality of life in PD supported by a statistical analysis?”; This research question is associated 

with Goal 5 and is answered in Chapter 5.2.2. 

▪ RQ.5 “Which AI model based on wearable motion LAB produces best results as a biomarker of 

motor stages (UPDRS-III score) in PD?”; This research question is associated with Goal 6 and is 

answered in Chapter 5.2.3. 

 

1.4 MAIN CONTRIBUTIONS 

A WBD was validated where positive effects were found regarding the application of vibrotactile 

biofeedback to play an augmentative role to help PD patients mitigate gait-associated impairments.  Also, 



 

 19 

from the same device, it was accomplished a statistical and AI-based analysis to study the ability of a 

wearable motion to serve as a biomarker of PD. In particular, the main contributions of this work are: 

▪ Validation of a WBD, an instrumented waistband, able to provide closed loop vibrotactile cueing to 

help PD patients mitigate gait impairments: clinical protocol, contact with end-users and statistical 

analysis about the effects of the proposed biofeedback and device usability acceptance. 

▪ Gait analysis tool (desktop APP) able to segment a gait cycle into initial and final contact and estimate 

spatiotemporal gait parameters from different domains (as pace, rhythm, variability and asymmetry). 

▪ Statical study about how wearable sensory acquisitions could be applied to biomarker PD motor 

stages and QoL.  

▪ Implementation and comparation of different AI-based models able to stratify PD motor disability 

level. 

 

1.5 DISSERTATION STRUCTURE 

This manuscript is organized as follows. 

Chapter 2 presents the state-of-the-art analysis. After, a contextualization about PD and benefits of 

sensory cueing, it presents a review about WBD used on PD to identify what technologies have been 

applied on WBD and how biofeedback can be provided to these patients. Furthermore, in a second part, 

it is identified on the literature how the wearable sensors have been applied to support PD motor 

monitoring using AI & statistical approaches. 

Chapter 3 presents +sense project and its main modules, with the main focus on the WBD. It 

presents the +sBiofeedback and +sMotion modules, responsible to provide biofeedback and analyze 

users' gait. 

In Chapter 4, a statistical analysis is demonstrated to prove that +sMotion can provide biofeedback 

capable of improving the gait of Parkinson patients. Furthermore, it is intended to show how best to 

provide this biofeedback to the patient. 

In Chapter 5, it is demonstrated statistically that there are specific gait patterns in patients with 

different levels of disease progression and stage. These different levels may be due to motor differences 

in the patients' gait or psychological differences in the patients' quality of life. Various AI methods are also 

introduced in order to distinguish patients by their motor deficits. 

Finally, all the conclusions drawn from this extensive work are described. In addition, further 

improvements that can be developed in the future in order to improve this work are also described. 
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1.6 PUBLICATIONS AND ORAL PRESENTATIONS 

The accomplished work allowed the publication and oral presentation of a conference paper: 

André Branquinho, H. Gonçalves, Joana F. Pinto, Ana M. Rodrigues, Cristina P. Santos.  “Wearable 

gait Analysis LAB as a biomarker of Parkinson’s disease motor stages and Quality of life: a preliminary 

study”, 21st IEEE International Conference on Autonomous Robot Systems and Competitions 

(ICARSC2021), 2021. 
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2.1 INTRODUCTION  

Parkinson’s disease (PD) is the second most common neurodegenerative disorder and is expected 

to impose an increasing social and economic burden on societies as populations age [17]. PD motor 

symptoms includes akinesia, bradykinesia, rigidity of movements, tremors, postural instability and gait 

disturbances [2], as episodes of blockage known as freezing of gait (FOG). 

Pharmacological therapies are usually followed to treat motor symptoms, being prescribed 

concerning the stage of the disease and the patients’ initial response to treatment. With the disease 

progression, there is a loss of medication efficacy, so the patients need larger doses of medication in 

shorter periods of time [4]. Further, surgical interventions (e.g., deep brain stimulation) are usually 

followed to treat early and late complications of PD [2], but likewise medication, in long term, does not 

alter the course of motor symptoms. Medication and surgical treatments have been shown to suppress 

the symptoms of tremor, bradykinesia, and muscle rigidity, but does not prevent the progression of other 

motor complications, such as gait-associated disabilities and postural instabilities, which increases the 

loss of balance and risk of falling, restricting motor performance and limiting the level of independence 

in daily activities with aging [10]. This pharmacologic/surgical barrier encouraged to new innovative and 

enthusiastic methods, which proven to be efficient in ensuring continuous treatment and management of 

motor symptoms [5], [6].  

 

2.1.1 SENSORY CUEING THERAPY AS A NON-PHARMACOLOGICAL/SURGICAL 

INTERVENTION IN PD MOTOR TREATMENTS 

Non-pharmacological/surgical approaches can be represented by two categories, considering the 

timing and durability of the treatment effect, as depicted in Figure 1: (1) transient effect, and (2) long-

lasting effect [18].  

 

Figure 1. Representation of the two approaches followed by clinicians in PD: Transient effect and Long-lasting effect 
therapies. 
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Long-lasting effect therapies includes two potential action mechanisms considering the 

intervention method: active or passive. The active mechanism is based on physical training (such as, 

exercise, aquatic therapy, slackline training, curved-walking training and robot-assisted training) and 

cognitive training (e.g., motor learning, action observation and computerized training).  Passive 

mechanism comprises non-invasive-stimulation as transcranial direct current stimulation, repetitive 

transcranial magnetic stimulation and automated mechanical peripheral stimulation. The effects 

produced by long-term therapies are the result of long-term modulation of the cortico-striatal and thalamo-

cortical circuits[18].  

As to the transient effect therapies, they are based on the use of sensory cues: visual, 

proprioceptive stimuli/vibrotactile, auditory and multiple modalities [18]. Cueing can be defined as using 

external stimuli which provides temporal (related to time) or spatial (related to space) information to 

facilitate movement (gait) initiation and continuation [7]. Patients may use sensory cueing as an artificial 

means to stimulate the proprioceptive inputs, being the proprioception the sense of self-movement and 

body position [8]. Improving proprioceptive feedback could enhance sensory processing deficits, 

ameliorating gait performance and increase the outcomes of PD-rehabilitation/assistance [8], [9]. 

Visual, auditory and vibrotactile cues have been determined to aid function in persons with PD. 

Sometimes these cues are provided simultaneously (e.g., vibrotactile-visual cueing) [10]. In these 

individuals, the spatial and temporal characteristics of on-going gait (velocity, stride length and cadence) 

have been improved [11]. Furthermore, sensory cueing can produce changes in postural control, stepping 

pattern, unfreezing gait-blocks, prevent falls, and, consequently less gait variability. Overall, sensory 

cueing can be used in the daily living of the subjects, improving their performance, and it is possible to 

affirm that the sensory vibrotactile cue allows high improvements in the patients’ gait, specifically, in the 

FOG events [19]. 

The effects produced by the transient therapies are the result of shift to spared motor pathways 

(anterior putamen brain area) [18], based on the biological model of Lewis and Barker, normal gait is 

dependent on processing within both cortical (PPN and GPi/SNr) and sub-cortical (spinal cord) regions 

and the evidence presented suggests a critical role for the PPN (pedunculopontine nucleus) in regulating 

the outflow of these processes in human locomotion. Furthermore, any insult to the integrity of this 

structure would provide a non-dopaminergic mechanism to explain disturbances in gait [20]. Disturbances 

on the output of the GPi/SNr circuitry have a profound effect on determining the level of activation within 

the PPN and in combination this will clinically manifest as a parkinsonian gait [20]. Thus, the literature 
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suggests the use of sensory cueing therapies shifts to spared neural motor pathways, and this way, 

improve the quality of live for the people with parkinsonian gait. 

 
Figure 2. Different neural motor pathways. 

 

2.1.2 NEURAL MECHANISMS OF GAIT WHEN APPLYING SENSORY CUEING 

Motor symptoms in PD result from a degeneration of dopaminergic (DA) neurons in the substantia 

nigra, leading to a DA deficiency in the basal ganglia (BG) [10], [21]–[23]. The basal ganglia play 

significant roles in the production and control of automatic and well-learned motor movements [24].The 

internal timing depends on striatal dopaminergic levels [22], with unusual levels come timing problems, 

and these problems could be a potential marker for frontal and striatal dysfunctions in PD, causing the 

gait impairments. This is supported by the finding that DA replacement therapy reduces the timing deficits 

in PD, and that timing deficits are induced by changes in the expression levels of dopamine receptors 

(striatal D2 receptors) [22]. 

There are two fundamental modes of timing, which present distinct underlying neural networks, 

the implicit and explicit timing [25]. Explicit timing is required to make deliberate estimates of duration 

and relies on internal sense of time. Implicit timing utilizes external cues and relies less on conscious 

time-based judgments, engaging automatic timing systems. An example of an implicit timing task is the 

serial prediction task, which requires the subject to use a regularly timed stimulus to make temporal 

predictions about future stimuli [22]. 

Between these two timings, the patients with PD have greater difficulty with explicit timing. More 

specifically, PD patients have problems with explicit temporal discrimination tasks involving tactile, visual, 

and auditory stimuli. Also, the performance of explicit timing decreases as disease severity increases. 

While implicit timing mainly recruits the cerebellum and is less dependent on the BG and the 

supplementary motor area (SMA), explicit timing recruits the BG, the SMA, the mid-premotor cortex 

(PMC), and the cerebellum [22].  
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The BG–SMA–PMC network is directly involved in rhythm perception in the presence or absence 

of motor actions. In this network, the dorsal striatum (caudate and putamen) of the BG serves the most 

crucial role since it generates the internal pacing required for time estimation [22]. Thus, the BG is directly 

involved in perceptual and motor timing. The D2 receptors in the striatum mediate the DA signaling that 

controls the speed of this internal pacing. The lack of DA innervation to the BG in PD causes slower 

internal pacing, which leads to problems in motor and perceptual timing abilities [22]. However, although 

patients with PD have impairments with external timing due to internal pacing dysfunction, they still can 

make temporal predictions through implicit timing. There implicit timing is still mostly intact, so they 

compensate the disruption in the BG-SMA-PMC (explicit timing) by recruiting the cerebellum (essential for 

implicit timing) [22], [25]. So, patients can still use external cues to inform decisions based on time, for 

example when the next step should occur. Therefore, biofeedback systems apply sensory cueing for 

patients use their implicit timing abilities still present to recalibrate their internal clock with external cues 

[25]. 

The schema in the next figure summarizes the basic neural pathways involved in gait with the 

application of sensory cues. In the absence of external cueing, internal cueing signals generated by the 

BG–SMA–PMC circuit feed into the motor programs, which are carried out in the medial motor areas 

comprised of the SMA and the cingulate motor area [22]. During locomotion, the somatosensory 

information, such as proprioception, is carried by the spinocerebellar, the spinothalamic, the 

spinoreticular, and the spinohypothalamic tracts back to the brain. The information carried by the 

somatosensory feedback modulates the internal clock of explicit timing in the BG–SMA–PMC circuit and 

helps plan and predict future cued motor tasks. The external cues can overtake the damaged BG and, by 

inducing motor–sensory feedback signals that recalibrate internal pacing, help the patients improve their 

gait. After the correct temporal scheme is re-established and potentiated through the BG–SMA–PMC 

circuit, patients can sustain improved locomotion for a period in the absence of external cueing [22]. 

 

Figure 3. The basic neural pathways involved in gait with the application of sensory cues. 



 

 26 

2.1.3 WEARABLE BIOFEEDBACK DEVICES: THE POTENTIAL TO PROVIDE MOTOR 

ASSISTANCE & MONITORING 

The technological evolution and application of miniaturized and portable assistance/rehabilitation 

devices has allowed the use of sensory cues through WBD. They are equipped with sensors that enable 

sensory acquisition and can trigger a cue-information. The sensors may detect alterations on gait or 

balance, and through the detection of such motor anomalies deliver proprioceptive cues [4], [6]. Most of 

the reviews have positive findings in favour of the use of sensory cueing and they conclude that the effect 

of external sensory cued therapy on activities for daily living of patients with PD is helpful. 

Parkinson's disease (PD) can cause various symptoms, and its severity will depend on the stage of 

the disease. Diagnosing this disease in its early stages is very difficult, since the early symptoms of this 

disease can be confused with symptoms of other neurological diseases. Accurately diagnosing PD is 

important so that patients can receive the proper treatment and advice regarding care. In addition, 

diagnosing PD early is important because treatments such as levodopa are more effective when 

administered early in the disease. Non-pharmacologic treatments, such as increased exercise, are also 

easier to perform in the early stages of PD and may help slow down disease progression [1]. 

For optimal treatment of this disease, it is important to know the state of its progression, since motor 

manifestations, ability to perform daily functional activities and symptomatic response to medication may 

differ depending on the level of disease progression. For rating the severity of disease clinical scales are 

used, of which the most common are the Unified Parkinson Disease Rating Scale (UPDRS), Hoehn and 

Yahr [26] staging and PDQ-39. 

The UPDRS scale is the most accepted tool for evaluation of interventions and as a clinical tool to 

follow patients. The current UPDRS includes four subscales. Subscale 1 covers mentation, behavior and 

mood. Subscale 2 rates activities of daily living. Subscale 3 is a clinician rating of the motor manifestations 

of PD. Subscale 4 covers complications of therapy. Data for subscales 1, 2, and 4 are elicited from 

patients and caregivers, whereas data for subscale 3 is examination-based [26].  

The Hoehn and Yahr staging is probably one of the most widely known evaluation of people with PD 

and was first described in 1967. It is really a simple staging from 0 to 5 of the motor manifestations of 

PD, intended to reflect the degree of progression, and combines features of motor impairment and 

disability [26]. 

The PDQ-39 is a 39-item self-report questionnaire that assesses the health-related quality of 

Parkinson's disease over the past month, how often patients experience difficulties on the 8 dimensions 

of quality of life, and the impact of the disease on specific dimensions of functioning and well-being [27]. 
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These categorical scales are susceptible of subjectivity and noncommon analysis between clinical 

community [13]. Clinicians are limited to the information observed during the visitors which can be 

affected by patients’ mood or medication phase [13]–[16]. Besides, motor symptoms assessments 

during routine consultations are strongly dependent of patients’ memory to describe their last motor 

episodes [15]. These facts highlight a remaining challenge between the scientific community to develop 

technological solutions that enable to monitor motor symptoms in patients’ home-settings providing 

continuous and more objective data [14], [28]. 

 

2.2 HOW WEARABLE BIOFEEDBACK DEVICES CAN IMPROVE MOTOR 

PERFORMANCE IN PARKINSON’S DISEASE: A REVIEW 

2.2.1 INTRODUCTORY INSIGHTS 

Some studies have already been developed and with positive findings with the use of sensory 

cues through WBD. However, for future research in WBD, it is important to understand what has already 

been achieved and what limitations are yet to overcome. 

The literature biofeedback systems employed different sensory cues (visual, auditory and tactile), in 

open or closed loop and to different purposes to improve the motor symptoms in PD patients: FOG [29]–

[34], balance [10], [35]–[39] and reducing the risk of fall [40], [41]. The sensory cues are applied to 

produce changes in postural control [40], [42], stepping pattern [32], unfreezing gait-blocks [29], prevent 

falls [40], [41], and, consequently less gait variability. Other reviews [14], [43], [44], usually, have some 

of the follow gaps: portray only one problem, like FOG for example, do not include studies that improve 

other problems associated with PD; use only patients with a specific stage of disease; do not describe the 

location of the sensors and actuators; do not depict the algorithms used and the processors used;  do 

not refer the wearability of the biofeedback system; they do not describe how the articles validate the 

WBD; sometimes, they only use articles that have one specific outcome; and they don’t feature the 

biofeedback strategies employed in the articles. This review aims to cover the identified gaps.  

The purpose of this review is to find out how the technologies were integrated into the WBD; how 

the biofeedback strategies were applied; and how the devices were validated (study population, 

protocols, criteria study metrics and WBD effects). 

This review objective is to determine what type of WBD have been assessed in PD, in the last ten 

years, and with which goals and effectiveness. For this purpose, it was summarized and assessed the 

quality of the current evidence. The following questions were investigated and answered: 
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▪ RQ1 “Which technologies were integrated WBD, what are their setting parameters and where 

were they placed?  

▪ RQ 2 “How have the biofeedback loops been applied in PD to mitigate gait-associated 

impairments?” 

▪ RQ.3 “How the WBD have been clinically validated?” 

 

2.2.2 METHODS: DATA SOURCES, SEARCH STRATEGY AND STUDIES SELECTION 

An electronic systematically search was carried out on databases as Google Scholar, PubMed 

and Web of Science, looking for research papers that based on sensory cueing biofeedback technologies 

for improving PD gait-associated disabilities. The literature search was performed according to the 

guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), as depicted 

on Figure 4. The keywords used on the databases were: [“Biofeedback AND Parkinson's Disease”]; 

[“Freezing of gait AND Parkinson's Disease”]; [“Freezing of gait AND Medical Devices”]; [“Sensory Cues 

AND Parkinson’s Disease”]; [“Rehabilitation AND Parkinson’s Disease”]; [“Vibrotactile AND Parkinson's 

Disease”]; and [“Parkinson's Disease AND Assistance”]. 

Studies were included in the review if they fulfilled the following inclusion criteria: (i) studies of 

idiopathic PD; (ii) cueing systems were used as part of rehabilitation or assistance strategies; (iii) wearable 

technology was integrated; and (iv) results were published in the English language and within the past 10 

years. The exclusion criteria were: (i) studies not validated with patients with PD; (ii) studies that used 

invasive therapies; and (iii) studies that do not present technological resources. 

 

2.2.3 RESULTS 

2.2.3.1 GENERAL RESULTS 

A total of 97 articles were identified: Google Scholar (n=31), PubMed (n=42), and Web of Science 

(n=23) databases. Duplicates were removed (n=61). Articles were excluded if the titles (n=6) and 

abstracts (n=9) did not correspond to the inclusion and exclusion criteria. If the abstract of an article did 

not provide enough information to determine its eligibility, the full article was reviewed. After the full-text 

papers were reviewed, fifteen articles met the eligibility criteria and were included in this scoping review. 

Figure 4 depicts this approach. Fifteen original studies were identified [10], [29], [38]–[42], [30]–[37] 

and were grouped and discussed according to their application goal, if they were used to mitigate FOG, 

to improve balance or to reducing the risk of falls. 
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Figure 4. PRISMA Flow Chart. 

 

2.2.3.2 TECHNOLOGY SUPPORTING WBD 

WBD are constituted by a cueing system or actuation system that is responsible for providing the 

cues, and a sensory system that is responsible for acquire physiological measurements.  

WBD developed to mitigate PD gait-associated disabilities employed the three types of sensory cueing. 

Eleven studies applied vibrotactile cueing, while four studies used visual cueing and three investigations 

utilized auditory cueing. The systems that used vibrotactile cueing are based on linear [10], [29], [34], 

[35] and rotary electromagnetic actuators [30]–[33], [36], [37], [41]. The vibratory frequencies applied 

varied from a range of 200-300Hz. Regarding on-body vibratory motors location, different zones were 

used, being a higher concentration of studies which integrated motors in upper trunk, namely in waist 

level [25], [29], [35], [37], [41] and torso [10]. Less frequently, some studies placed the vibrotactile 

actuation system on the head [36], ankle [30], legs [16], [31]–[33] and wrist [34]. 
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For the visual cueing, the information was provided using monitors [10], [38], [39] or semi-immersive 

binocular head-mounted displays [40].  

For the auditory cueing, the information was provided using headphones [42] and earphones [30]. 

Regarding the sensory acquisition system, Inertial Measurement Units (IMUs) [10], [29]–[35], [40] 

were frequently integrated into the WBD. Advantageously IMUs have built-in tri-axial accelerometers, 

gyroscopes and/or magnetometers on a single miniaturized chip, such as SwayStar [36], e Sensaction-

AAL [42], TMA [38], Xsens [39] and VertiGuard [41]. Thirteen studies [10], [29], [39], [40], [42], [30]–

[36], [38] used acceleration and angular velocity as input of control biofeedback strategies. Only [38] 

used the magnetometer output signals. Force sensor resistive (FSRs) were also employed in sensory 

acquisition systems [32], [37], [39], being integrated on shoe insoles [32]. Conversely to these wearable 

sensors, IMUs and FSRs, [37] and [39] used force plates to provide the sensory information regarding 

patients’ gait and balance. 

 In terms of total wearability, only five studies from the total of fifteen studies did not integrate the 

actuation and sensory system on a unique device. 
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 Table I. Information about the Gait-associated disabilities, Sensory cueing system, Sensory acquisition system and Single one wearable system 

 
Articles/Year 

 

 
Gait-associated 

disabilities 

 
Sensory cueing system 

 
Sensory acquisition system 

 
Single one 

wearable system 

Cue Device Number Location Device Location Number 

[35]/2018 Balance 
 

Vibrotactile C2 tactors (LRA) 4 Waist IMU Lower back 1 Yes 

[36]/2012 Balance 
 

Vibrotactile ERM 8 Head SwayStar Lower back 2 Yes 

[37]/2018 Balance Vibrotactile Sensory Kinetics System 
ERM 

8 Waist Force plate 
 

Feet 1 No 

[10]/2015 Balance Vibrotactile or visual, 
or both 

C2 tractors (LRA)/ one 
monitor 

4 Torso IMU Lower back 1 No 

[38]/2017 Balance Visual and auditory Moving avatar displayed on 
the monitor and/or auditory 

feedback about his/her 
motion 

2 Eyes Wearable inertial 
sensors (TMA) 

Upper trunk, lower 
trunk, and 
lower limbs 

8 No 

[39]/2013 Balance Visual 42" flat-panel LCD monitor 1 Eyes Inertial sensors (Xsens) 
and a 

force plate 

Feets, upper leg and 
chest  

 

3 No 

[42]/2011 Posture Auditory System with headphones 1 Ears Sensaction-AAL Lower 
Back 

1 Yes 

[40]/2014 Falls Visual Semi-immersive binocular 
head-mounted display 

1 Eyes IMU Cranial vertex and at 
the level of the spine 

2 Yes 

[41]/2012 Falls Vibrotactile Vibration stimulator ERM 4 Waist Vertiguard Belt 1 Yes 

[29]/2018 FOG open-loop cueing 
(auditory), close-loop 

(vibrotactile) 

VibroGait (LRA)/ 
metronome 

1 Waist wireless, synchronized 
inertial sensors (IMU) 

both shins, feets, 
wrists, sternum and on 

the posterior trunk 

8 No 

[30]/2019 FOG Auditory and 
Vibrotactile 

Vibration motor (ERM) and 
BLE capable earphones 

2 Ankle IMU Ankle 2 Yes 

[31]/2017 FOG Vibrotactile Vibratory motor ERM 2 Leg MPU 6050/IMU Right leg 1 Yes 

[32]/2016 FOG Vibrotactile Vibratory motor ERM 1 Left sole IMU/pressure 
sensor embedded into 

a shoe insole 

Right ankle/foot 1/1 Yes 

[33]/2017 FOG Vibrotactile Micro Vibrating motors DC 
ERM 

2 Both legs IMU Right limb (ankle) 1 Yes 

[34]/2016 FOG Vibrotactile C-2 tactor (LRA) 1 Wrist IMU Shins 2 Yes 
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2.2.3.3 BIOFEEDBACK STRATEGIES 

Table II summarizes the identified manuscripts regarding the adopted biofeedback strategies. 

Studies were grouped regarding the type of biofeedback strategy, sensory acquired response, 

sensory cueing provided and implemented algorithm. Regarding, the biofeedback strategy it was 

used a categorization described in [12] which subdivide biofeedback strategies in three types:  1) 

rescue strategies; 2) phase-dependent; 3) on-going;.  

When applied rescue biofeedback strategies, technological devices delivered sensory 

cueing after a gait-associated disability occur (e.g., when FOG is detected, or patient sway 

overcomes a pre-defined threshold) as verified on [30]–[33], [35]–[38], [41], [42]. Phase-

dependent strategies deliver sensory cueing concerning a identified sensory state (e.g., during the 

gait stance phase) as applied by [29], [34]. On-going biofeedback strategies provided sensory 

cueing during the time that a certain exercise is done as employed in [39], [40]. Preferably, the 

identified studies provided rescue strategies [30], [31], [42], [32]–[38], [41], while [29] adopted a 

phase-dependent biofeedback strategy and [39], [40] provided going biofeedback. [9] combined 

rescue and on-going strategy. 

Eleven studies used real time algorithms based on heuristic rules [10], [29], [42], [34]–

[41]. [30] used a machine learning algorithm to detect FOG. Discrete Transformed Wavelet and 

Fast Fourier Transform with heuristic rules were also applied by [33] and [32], respectively, to 

process sensory Information and delivery cues.  

WBD requires a central processing unit responsible to read the sensory information, filter, 

interpret and process the acquired information and send the commands to the actuation systems, 

when required. Six studies used computers [10], [32], [37]–[40], while [42] used a Personal digital 

assistant Other electronic boards were applied, as a FPGA on [30] and ATmegas’ on [29], [34], 

[41]. Further, a smartphone was also used by [33] and combined with an ATmega board in [31] 
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Table II. Information about the different biofeedback strategies, sensory acquired response, sensory cueing provided and algorithm used. 

Study Gait-associated 
disabilities 

Biofeedback 
strategy type 

Sensory acquired response Sensory cueing provided Algorithm 

Approach Processor 

[35] Balance 

 
Rescue  Angular displacements and velocities in the A/P and M/L 

directions 
Vibrotactile HR NI 

[36] Balance 

 
Rescue  Trunk sway (angular velocity) Vibrotactile HR NI 

[37] Balance Rescue  Center of pressure path length, velocity, and sway area Vibrotactile HR Computer 

[10] Balance Rescue and on-going Angular displacements and velocities in the A/P and M/L 
directions 

Vibrotactile or visual, or 
both 

HR Computer 

[29] FOG Phase-dependent 3-D linear accelerations and 3-D angular velocities Open-loop cueing 
(auditory), close-loop 

(vibrotactile) 

HR ATmega328 

[42] Posture Rescue  Trunk inclination and local accelerations Auditory HR Personal digital assistant 
(PDA) 

[40] Falls On-going Angular measures, angular velocity and acceleration Visual HR Computer 

[30] FOG Rescue  Accelerations and angular velocities Auditory and Vibrotactile ML FPGA 

[38] Balance Rescue  Acceleration, angular velocities, 3-d magnetometer measures and 
the sensor’s orientation in space (Euler angles) 

visual and auditory HR Computer 

[39] Balance On-going Acceleration and rotation of the upper body; center-of-pressure 
displacements (COP) 

Visual HR Computer 

[31] FOG Rescue  Acceleration data of the lower extremity Vibrotactile wavelet 
transform-

based 
algorithm 

ATmega328/smartphone 

[32] FOG Rescue  Acceleration (vertical linear acceleration) and gyroscope 
information; Pression on the left sole 

Vibrotactile FFT + HR Computer 

[33] FOG Rescue  Acceleration Vibrotactile DWT Smartphone 

[34] FOG Phase-dependent 3D accelerations and 3D angular velocities Vibrotactile HR ATmega328 



 

 34 

 

[41] Falls Rescue  Body sway analysis, gyroscopic information Vibrotactile HR ATMega168 

 HR – Heuristic rules; ML – Machine Learning; FFT – Fast Fourier Transform; DWT – Discrete Transformed Wavelet; NI – Not Identified; 
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The adopted biofeedback strategies were analysed on the following sub-chapters, considering the type of 

biofeedback.  

▪ Rescue biofeedback strategies: 

Beom-Chan Lee et al. [35] explored the effects of two coding schemes (binary versus continuous) for 

vibrotactile biofeedback during dynamic weight-shifting exercises that are common physical therapists’ 

recommended balance exercises used in clinical settings. The proposed biofeedback system consisted 

on the acquisition of the angular and velocity displacement to adopt a heuristic rule algorithm to identify 

the motion error and, when detected, supply a vibrotactile cueing. It was used a custom software to 

generate a target motion based on 90% of the patients’ measured limits of stability (LOS) in each four 

movement directions (i.e., anterior-posterior (A/P) and medial-latera (M/L) direction). LOS in each A/P 

and M/L direction were obtained from body sway in degrees which corresponded to the furthest deviations 

of body sway from a neutral starting point with respect to the ankle joint. A proportional plus derivative 

control scheme based on differences in both body sway angle and angular velocity between the target 

and participant’s motions was used to determine the motion error. The custom software activated the 

vibrotactile motor with the maximum peak-to-peak amplitude when the absolute motion error exceeded 1 

degree, while all motors were deactivated when the absolute motion error dropped below 1 degree. 

Another control scheme was used based on a continuous coding scheme, where the intensity of the 

vibrations was continuously modulated as a function of the magnitude of the absolute motion error 

between 0 and 1 degree.  

 

Figure 5.Illustration of the dynamic weight-shifting balance exercises in the A/P (a) and M/L (b) direction. 
Based on REF. Taken from [35]. 
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In [36], it was investigated whether balance in PD can improve by offering patients feedback about 

their own trunk sway as a supplement to natural sensory inputs. The system consisted of: two angular 

velocity sensors worn on the back which measured A/P and M/L movements of the trunk; and a 

headband with eight vibrotactile motors equally spaced, which delivered 250Hz vibratory cueing.  When 

the trunk sway exceeded the A/P or M/L sway threshold, the headband provided vibrotactile cueing 

activating the motors in the corresponding direction of the movement, aiming to help patients to correct 

their posture. Once the patient body sway crossed the trunk sway threshold, the vibrotactile at the 

corresponding site remained active as long as the threshold was exceeded.  

Carleigh et al. [37] investigated the postural control response to vibrotactile feedback provided at 

the trunk during challenging stance conditions. The system used a force plate to provide the sensory 

information, namely the patient centre of pressure (CoP). Vibrotactile feedback was provided when 

patients’ CoP overcomes 10% of the CoP estimated on the baseline session. To provide the vibrotactile 

information, it was used a belt with eight embedded sensors around the participant’s waist at the level of 

the umbilicus. 

Figure 6. Schematic illustration of the biofeedback system. 
Taken from [36]. 
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Figure 7. Participant wearing vibrotactile belt at the waist level and standing on the force platform. Taken from [37]. 

 Anat Mirelman et al. [42], tested the feasibility and effects of training with auditory biofeedback in 

patients with vestibular dysfunction. This audio-biofeedback system uses the information of trunk 

inclination and local accelerations, measured by Sensaction-AAL, to provide auditory biofeedback via 

headphones. This auditory feedback was modulated in frequency and amplitude by the participants 

movement and change of body orientation in both the M/L and A/P directions. The modulation of the 

sound was tied to one or more target zones which were adaptively estimated during a short initial 

calibration phase in the beginning of each training session. Two different types of feedback were used: 

negative feedback, a sound outside of the target zone, for example, posture correction during standing; 

in the form of a higher pitch sound was provided if the subject returned to a mal aligned posture from the 

desired erect position; positive feedback, a sound inside the target zone, in which the device was silent 

when the movement was correct. 

Figure 8. The ABF device 
used in this study. Taken from 
[42]. 
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 Val Mikos et al. [30] studied a biofeedback system that provided vibrotactile cueing in the ankle, 

when an episode of FOG was detected. FOG episodes were detected by processing the acceleration and 

angular velocities acquired by an IMU placed on the patient’s right ankle. The algorithm used Neural 

Networks, for FOG-detection in real-time and adaptability.  

Ilaria Carpinella et al. [38] aimed to analyse the feasibility and efficacy of a novel system (Gamepad) 

for balance and gait biofeedback rehabilitation in PD. The Gamepad consisted of 6 wearable inertial 

sensors (TMA), a personal computer with a display screen and customized software, for real-time data 

acquisition/processing and feedback generation, as depicted in Figure 10. The monitor displayed an 

avatar that replicates the motion of the subject and if the avatar exceeded the target area (within the black 

bars) its head become red and an alarm sound is provided.  

 

Figure 10. (A) Schematic representation of the Gamepad system. (B) Example of a subject controlling the AP inclination of his 
trunk while placing a foot on a step (left panel). The patient performs the task by looking at an avatar replicating the motion of 
his trunk on the PC screen (right panels). If the avatar is not maintained within the black bar (tailored reference target area), 
its head becomes red and an alarm sound is provided. Taken from [38]. 

Catalina Punin et al. [31] described a low-cost wearable system for non-invasive gait monitoring and 

external delivery of superficial vibratory stimulation to the lower extremities triggered by FOG episodes. 

The proposed device, acquired inertial data from right and executes vibratory feedback on the left leg, as 

Figure 9. Biofeedback system. Taken from [30]. 
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depicted in Figure 11. A discrete wavelet transformation was used to proceed acquired acceleration data 

to detect FOG, which had a specificity of 86.66% and a sensitivity of 60.61% in the FOG detection.  

 

Figure 11. Device placed in patient. Taken from [31]. 

 Alvarado Cando et al. [32] presented a low-cost stimulus system to support patient response to 

a FOG episode by using a vibratory cueing. Freezing episodes were automatically detected by using a FFT 

analysis on inertial data from an IMU placed patients’ right ankle. A pressure sensor embedded into a 

shoe insole is also used to reduce false-positive episodes, as depicted in Figure 12. This data is 

transmitted using Bluetooth technology to a PC and once a freezing event is detected, vibratory feedback 

was produced on the left insole by triggering a micromotor at 275 Hz, when a FOG event was identified. 

In research [33], it was developed a hardware-based wireless system to detect FOG and deliver 

sensory cues to stimulate walking progression, prevent falls, and improve patients' lifestyles. The 

actuation system was placed near the posterior tibial nerve of the lower extremities and patients' gait was 

Figure 12. Right shoe insole: design (left) and construction (right). Taken from 
[32]. 

Figure 13. Vibratory stimulus embedded system. Taken from [32]. 
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automatically detected by a three-axis accelerometer coupled to an IMU. A smartphone was used to 

process the acquired inertial, by applying the DWT and detect the FOG episodes. When FOG was detected, 

the vibrotactile actuation system was activated on both legs. 

 

Figure 14. Device and biofeedback system. Taken from [33]. 

[41] aimed to assess the effectiveness of a balance training with a vibrotactile neurofeedback system, 

named Vertiguard-RT. Vertiguard-RT is a commercial body-worn device fixed on a belt, which records body 

sway in the roll (lateral) and pitch (antero-posterior) planes at the centre of body mass as depicted in 

Figure 15. Trunk sway was measured by built-in gyroscopes at the hip while the subjects were asked to 

carry out the standard balance deficit test (SBDT). Pitch and roll angles were continuously measured and 

compared with individual predefined thresholds to provide vibrotactile sensory cueing in specific 

directions. If patients’ trunk pitch/roll angles exceeded the threshold, the vibrations started and were 

stronger when sway increased. If the patients sway was below the thresholds, no vibrotactile cueing was 

applied. 

 

Figure 15. Vertiguard1-RT vibrotactile neurofeedback system with a main unit (1) and vibration pads (2). Taken from [41]. 
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▪ Phase-dependent biofeedback strategies: 

Martina Mancini et al. [29] investigated the immediate effectiveness of open- and closed-loop cueing 

in improving walking turning characteristics, given turning can be a trigger-factor for freezing events. 

Vibrotactile biofeedback was applied during the gait stance phase and an open-loop feedback strategy 

was also explored by delivering a metronome beat. For the closed-loop vibrotactile biofeedback strategy, 

data provided by IMUs, placed on both shins, feet, wrists, sternum and posterior trunk, where used to 

detect patients gait stance phase and, during this gait phase-dependent, vibrotactile was provided. 

 Will Harrington et al. [33] also designed and tested a phase-dependent vibrotactile biofeedback 

system. The system used accelerometers and gyroscopes on both foots, as depicted in Figure 16, to 

detect when the users were in the stance phase of gait and delivers vibrotactile cueing. 

▪ On-going biofeedback strategies: 

The study [40] aimed to evaluate if a visual biofeedback was able to improve patients’ postural control 

in response to a postural disturbance, by providing a visualization of a self-avatar through a head-mounted 

display.  

In order to evaluate the effect of the visualization in real time of the body’s geometry on postural 

orientation and stabilization, a visual biofeedback device was developed. The investigators used IMU 

sensors. Two sensors were placed in the cranial and at the level of the spine processes of the 7th—8th 

Figure 16. Experimental 
Setup. Taken from [33]. 
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thoracic vertebras. The visual feedback was provided by a semi-immersive binocular head-mounted 

display which simulated the viewing of the image (a graphic representation of the body’s geometry of the 

participant) at a distance of 1 meter.  

Maarten RC van den Heuvel et al. [39] aimed to investigate whether a training program 

capitalizing on virtual-reality-based visual feedback is more effective than an equally-dosed conventional 

training in improving standing balance performance. Movement registration was accomplished using 

inertial sensors (Xsens) and a force plate, while visual feedback was given using three workstations set 

up in a gym. A computer was used to map body motion to move an object (avatar) on the monitor, by 

interactions with balance games that were running on the workstations. Figure 18 illustrates the key 

features of these workstations. 

Figure 17. Architecture of the visual biofeedback device used in 
this study. Taken from [40]. 

Figure 18. Illustration of the intervention of the experimental group. A: Setup of mobile workstation with force 
plate and/or inertial sensor. B: Screenshots of examples of balance games. See text for further details. 
Taken from [39]. 
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▪ Combination of rescue and on-going biofeedback strategies: 

Research described in [10] purposed to evaluate the effects of guidance modalities during common 

dynamic weight-shifting exercises used in clinical settings. A motion guidance system providing visual 

biofeedback, vibrotactile biofeedback, or both, was used during weight-shifting exercises. An IMU was 

used to measured angular displacements and velocities of body tilt in A/P and M/L directions. A custom 

software was used to generate target movement trajectories in degrees by measuring the participant’s 

90 % of LOS in A/P and M/L directions. This software provided command signals to activate tactors when 

the absolute value of the error signal exceeded the tactor activation threshold set at 1.0°. Vibrotactile 

biofeedback was deactivated when the error signal dropped below 1.0°, and thus the tactor activation 

was binary in nature. Similar to a computerized visual display of body sway, two virtual objects were 

displayed in a virtual environment in order to indicate target and participant’s movements, as illustrated 

in the Figure 19. 

2.2.3.4 CLINICAL HIGHLIGHTS: PARTICIPANTS, CRITERIA STUDY, METRICS AND WBS EFFECTS 

Table 3 summarizes the clinical highlights of the studies. It shows the study design, the number 

of PD patients used, the control group, the criteria of the study (inclusion and exclusion) to select the 

patients, the protocol and metrics followed in the trials and the effects of the WBS. 

In [35], there were used three metrics: LOS, PE and XCOR. The participants LOS in each A/P 

and M/L direction were obtained from body sway in degrees that corresponded to the furthest deviations 

of their body sway from a neutral starting point with respect to the ankle joint. Also, to characterize 

participants’ ability to perform dynamic weight-shifting balance exercises as a function of the coding 

scheme and movement direction, two metrics were computed for each trial: cross-correlation (XCOR) and 

position error (PE). XCOR quantitatively measures similarities of two time-series signals as a function of 

Figure 19. Visual biofeedback. A white and light blue 
object depicts the target and participant’s movements in 
A/P and M/L directions. Taken from [10]. 
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the angular displacement of the participant relative to the angular displacement of the target. PE is 

computed as an average absolute difference between the target and participant’s movements in degrees. 

This study shows that both groups had greater XCOR and less PE with the continuous coding scheme 

than with the binary coding scheme. This study also revealed that both groups of participants significantly 

improved LOS in both A/P and M/L directions. 

In [36], the outcome measures included duration until completion of the task (only for the walking 

tasks), the 90% range of pitch and roll sway angle and the 90% range of pitch and roll sway angular 

velocity. Since roll sway angle, roll sway angular velocity, and pitch sway angular velocity were decreased 

in the biofeedback group compared to controls, it is believed that WBS can improve balance in PD. 

In [37], it was used the CoP raw data to find the total path length, mean velocity and 95% elliptical 

sway area. The investigators proved the effectiveness of the vibrotactile biofeedback during challenging 

stance conditions. They measured a decrease on the distance travelled by CoP, a decrease on the mean 

velocity, an increase on the sway area and an increase on the α value (sway fluctuations occur in few 

time scales). 
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Table III. Information about the clinical highlights of the studies. 

Study Study 
Design 

Participants Criteria study Randomized Protocol Metrics WBD Effect 

PD Control Inclusion Exclusion 
[35] Case-control 

Study 
9 NI Bilateral symptoms with 

impaired postural stability; 
1) cognitive score less than 
24; 2) were not ready for 

physical activity; 3) 
dyskinesia; 4) severe distal 

sensory loss; 5) were 
medically unstable; and 6) 

any peripheral, 
neurological or 
musculoskeletal 

conditions. 

No Dynamic weight-shifting 
balance exercises 

LOS; 
Position error; 

XCOR; 

Better LOS and 
less position 

error; 
Improvement of 

XCOR; 

[36] Case-control 
Study 

20 10 PD All participants were tested 
while on medication; 

Causes of balance 
impairment other than PD; 

inability to walk without 
walking aids; cognitive or 
psychiatric disturbances; 

severe co-morbidity; 

Yes Pre-training: two sets of six 
gait and six stance tasks; 

Training: six balance 
exercises five times; 

Pos-training: repeated all 
twelve tasks; 

Sway angle and 
sway angular 

velocity in the roll 
and pitch plane; 
task duration; 

Decrease: sway 
angle and sway 
angular velocity 
in the roll and 
pitch plane; 

[37] Case-control 
Study 

9 10 healthy 
older adults 

High fall risk; NI No 30 seconds standing 
barefoot in different 

conditions :  feet together, 
eyes open on firm surface, 

feet together, eyes closed on 
firm surface,3) feet together, 
eyes open on foam surface, 
4) feet together, eyes closed 
on foam surface, 5) tandem 
stance with eyes open on 

firm surface. 

COP (Path length 
and velocity); 
Sway area; 

Decrease: COP 
Path length and 

velocity; 
Increase: Sway 

area; 

[10] Case-control 
Study 

11 9 healthy 
elderly 

Bilateral symptoms with 
impaired postural stability (a 
score of 3 or 4 on the Hoehn 

and Yahr scale); 
taking medication to alleviate 

tremor, bradykinesia, and 
muscle rigidity; 

1) not read and 
comprehend English;  

2) difficulty standing for 
prolonged periods; 

 3) unable to stand for 1 
min with their eyes open 

and closed; 4) severe distal 
sensory loss as 

No -12 familiarization trials; 
-5 min seated rest; 
-weight-shifting balance 
exercises as a function of the 
modality and direction with 5 
repetitions for a total of 30 
trials, 

SOT; 
LOS; 

Position error; 

Improve LOS; 
Decrease 

position errors; 
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demonstrated by a 5.07 g 
monofilament test; 5) 
limited ankle range of 

motion; 6) reported lower 
extremity fracture/ sprain 
in the past six months or 
previous lower extremity 

total joint replacement; 7) 
medically unstable; 8) 
active motionprovoked 
vertigo or a diagnosed 
vestibular deficit; 9) 

cognitive level less than 24 
determined by MMSE. 

the order of trials was 
randomized for each 
participant; 

[29] Case-
control 
Study 

43 NI Diagnosis of idiopathic 
Parkinson’s disease with 

sensitivity to levodopa and of-
medication; Hoehn & Yahr 

scores of II-IV; 

Other factors afecting gait; 
inability to stand; inability 
to walk for 2 minutes at a 

time; 
Inability to safely walk 20 
feet without walking aids; 
any musculoskeletal or 

vestibular disorder; 
dementia; 

No One minute under single- and 
dual-task for 3 randomized 
conditions: (i) Baseline; (ii) 

Turning to the beat of a 
metronome (open-loop); and 

(iii) Turning with phase-
dependent tactile 

biofeedback (closed-loop). 

FOG ratio; 
%freezing time; 

Nº of turns; 
Average of 
velocity; 

Average of 
jerkiness of 
turnings; 

Decrease: 
FOG ratio; 

%freezing time; 
Nº of turns; 
Average of 
velocity; 

Average of 
jerkiness of 
turnings; 

[42] Longitudinal 
Case Report 

7 NI Idiopathic PD (at least 2 
years); 

ability to walk independently 
without a walking aid; 

e absence of serious co-
morbidities that could impact 

gait or balance; 

Suffered from major 
depression; 

score <24 on MMSE; 
clinically significant hearing 

problems which may 
hinder their ability to hear 

the feedback sound 
provided; 

medically unstable; 

No 1 week of baseline training; 
6 weeks of individualized 
training (3 per week) with 
posture control, transfer 

training, sway, reaching and 
stepping; 1 week of post 
training testing; 1 mouth 

later the follow up; 

BBS; 
TUG; 
5CR; 

PDQ-39; 
UPDRS; 

ABC; 
GDS-15; 

Improve 
posture, static 
and dynamic 
balance and 

activities of daily 
living (ADLs); 

[40] Cross-
sectional 

study 

17 NI ON-state of dopamine 
treatment; 

NI No Sequences of pull-tests, 
either with eyes open, eyes 

closed or visual biofeedback, 
crossed with the verbal 

instruction to focus either on 
the stabilization or on the 
vertical body orientation. 

Nº of falls; 
the stability 

performance; 
trunk orientation; 
trunk inclination; 

Improved 
postural control 

(stabilization 
and 

orientation); 
less falls; 
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[30] NA 63 NI NI NI NI 7-meter timed up-and-go 
exercises and random walks 

Specificity and 
sensitivity in the 
detection FOG 

NI 

[38] Randomized 
controlled 

trial 

42 Physiotherapy 
group N=20 

Hoehn and Yahr stage 2 to 4; 
ability to stand up >10 

seconds; inability to stand on 1 
foot >10 seconds; ability to 
walk for at least 6m; stable 

drug usage; 

Implanted deep brain 
stimulator; MMSE score 

<24; 

Yes Both groups underwent 20 
sessions of training for 
balance and gait. The 
experimental group 

performed tailored functional 
tasks using Gamepad and 
the physiotherapy group 
underwent individually 

structured physiotherapy 
without feedback. 

BBS; 
10MWT; 
UPDRS; 

TUG; 
Freezing of Gait 
Questionnaire; 

PDQ-39; 
Prokin-PK252; 

CoP; 

Improving 
Balance 

performances; 
Decrease 

sway/COP; 
Increase BBS; 

 

[39] Randomized 
controlled 

trial 

36 Yes ON-phase of levodopa 
medication; idiopathic PD, mild 
to moderate stage (i.e. Hoehn 
& Yahr stages II and III); able 
to participate in either of the 
training programs and written 
and verbal informed consent;  

Presence of neurological, 
orthopedic, or 

cardiopulmonary problems 
that can impair 

participation; insufficient 
cognitive function (MMSE < 

24); 
 an unstable medication 

regime; 
any condition that renders 

the patient unable to 
understand or adhere to 

the protocol such as 
cognitive, visual, and/or 

language problems. 

Yes Patients are allocated to 
either a five-week training 

program with balance 
exercises containing 

augmented VF (experimental 
group), or a five-week 

balance training program 
that follows existing 

guidelines (control group) 

COP;  
FRT; 
 BBS; 

 10 MWT; 
UPDRS; 

Falls Efficacy 
Scale; 

PDQ-39; 
EEG-related 
outcomes; 

Improvements 
in standing 
balance; 

[31] Cross-
sectional 

study 

7 1 healthy for 
control 

Between 60 and 84 years of 
age; 

NI No During testing, patients made 
some activities to 

stimulate FOG occurrence: 
• Walk in straight line, 

• 180 degree turns on the 
walk, 

• Climb steps 

Specificity and 
sensitivity in the 
detection FOG;  

Acceleration and 
energy levels; 

Decrease of 
FOG duration; 

[32] Case Report 5 1 healthy 
patient 

NI NI No Starting from a stand position 
(1); the participant will walk 
in a straight line (2); turn to 
left side (3); walk along a 

carpet of 2 meters (4); turn 
to left side again (5); and 

Performance 
time; 

freezing duration; 
Nº of FOG 
episodes; 

Decrease: 
Performance 

time; 
freezing 
duration; 
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finally walk around a chair 
and sit on it (6). 

Nº of FOG 
episodes; 

[33] NA 7 PD 1 healthy 
patient 

NI NI No Walk in a straight line, turns 
180 degrees in the walk and 

climb stairs 

Specificity and 
sensitivity in the 
detection FOG 

NI 

[34] Cross-
sectional 

study 

8 NI Idiopathic PD with FOG; 
be able to walk independently; 
tested OFF their antiparkinson 

medication in the morning; 

Neurological disorders 
other than PD; orthopedic 

disorders; 
other impairments that 
could interfere with gait; 

No Turning was compared 
across 3 randomized 

conditions: i) turning without 
any external cue (baseline 
condition), ii) turning to the 

beat of a metronome (control 
condition), and iii) turning 

with phase-dependent tactile 
biofeedback via light vibration 
to the wrists every time the 
ipsilateral foot was in stance 

phase (biofeedback 
condition). 

% time spent 
freezing; 

average turn 
peak velocity and 

jerkiness; 
FOG ratio; 

 
 
 
 
 
 
 
 
 

Decrease: 
% time spent 

freezing; 
average turn 
peak velocity 
and jerkiness; 

FOG ratio; 

[41] 
 
 
 
 
 

Cross-
sectional 

study 

10 NI Had suffered at least one fall 
over the past three months; 
using the usual medication; 

Used a wheelchair; 
additional neurological 

deficits; a history of 
peripheral vestibular 

disease; otoneurological 
examination was normal; 
dementia and the score in 
the Mini-mental test was 

25 points or greater; 

No Computer-controlled platform 
training: 

-Baseline condition: no cue; -
Randomized 

backward/forward 
translations: w/ feedback; 

SBDT tasks: -Baseline 
condition: no cue; -W/ 

biofeedback; 

SBDT; 
SOT; 
DHI; 
ABC; 

Nº of falls in the 
last three 
months; 

Average body 
sway; 

Decrease: 
DHI; 

Nº of falls; 
Body sway; 

NI- not identifiable 
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Study [10] used the SOT, which is commonly used to quantitatively assess the sensory and voluntary 

motor control of balance during standing, the LOS in both A/P and M/L direction and position error. The 

investigators concluded that both groups had the smallest position error between the target and 

participant movements when performing weight-shifting balance exercises accompanied by simultaneous 

delivery of visual and vibrotactile biofeedback regardless of A/P and M/L directions. They also find a LOS 

increase and no significant differences of the SOT scores between the two groups were observed in the 

evaluation of baseline balance performance. 

In [29] it was estimated the FOG ratio as an index of freezing severity, the percentage of freezing time 

(time for which FOG ratio was higher than 1), the number of turns and the average turns peak velocity. It 

was also estimated the average jerkiness of the turns, quantifying the fluidity of turning. This study showed 

a marked improvement in certain measures of turning quality, freezing and smoothness, and decreased 

speed of turning while using either open-loop (metronome) or closed-loop (tactile biofeedback) cueing in 

people with PD. The investigators demonstrated a marked reduction of FOG severity and percentage time 

spent freezing during turning on objective measures of FOG indicating that both open-loop and closed-

loop cues were similarly effective in reducing freezing. They also proved that cueing reduced the number 

of turns, and the average velocity of turning, but it significantly improved turning smoothness. 

In [42], it was used: the Berg-Balance Scale (BBS), which consists of 14 different balance tasks such 

as standing, reaching, bending, and transferring abilities; The Timed Up-and-Go (TUG) test was used to 

assess the ability to perform sequence movements of functional mobility; the 5 chair rise (5CR) test was 

used to assess the ability to perform sit-to-stand and stand-to-sit transfers; The scores of the sub items 

and the total score of the Parkinson’s disease questionnaire (PDQ-39) were used to determine health-

related quality of life. To quantify extra-pyramidal signs and disease severity, the Unified Parkinson’s 

Disease Rating Scale (UPDRS) was used and to assess the confidence in daily activities and the level of 

fear of falling, it was used the Activities-specific Balance Confidence (ABC) scale. Finally, the Geriatric 

Depression Scale short form (GDS-15) was used for the assessment of emotional wellbeing and 

depressive mood. 

This study demonstrated some potential therapeutic effects on postural control and psychosocial aspects 

of the disease. Small, but positive changes were observed in the BBS, 5 chair rise test, TUG and the pull 

test of the UPDRS rating scale.  

In [40], it was used as results metrics, the percentage of falls and instability during the trials, 

trunk orientation and trunk inclination. The investigators conclude that both components of postural 

control, i.e., stabilization and orientation, improved with the visual biofeedback, in comparison with the 
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eyes open and eyes closed conditions. Also, improving postural orientation, by extracting the body 

geometry information from the biofeedback to orient accurately the axial segments in the space, could 

have improved consecutively balance control. They observed that the occurrence of falls was significantly 

reduced by the visual biofeedback. 

 The paper [30] concluded that the proposed FOG detection system was successfully integrated 

into a sensor node that allows for patient adaptivity in real-time. The classification accuracy is comparable 

to recent software implemented ML based FOG classifiers and exceeds other FOG detection systems 

when evaluated on an unseen test set. Specifically, the system achieves 92.9% in average of sensitivity 

and specificity when exploiting its patient adaptive learning capability. 

 [38] measured balance and self-selected gait speed from BBS and 10-m walk test, respectively. 

Secondary outcomes included the following: disease-specific impairments (UPDRS-III), basic mobility 

function (timed Up and Go test), perceived confidence during activities of daily living (ABC), freezing 

severity (Freezing of Gait Questionnaire), perceived quality of life (PDQ-39), and a stabilometric 

assessment using a force platform (Prokin-PK252). Cop sway in AP and ML was also used. The 

investigators concluded that the experimental group had significant higher scores on the BBS than the 

physiotherapy without biofeedback group. Also, the findings about the BBS and ML body sway seemed 

to support the hypothesis that Gamepad-based training is superior to physiotherapy without feedback in 

improving balance in PD and increasing retention of some beneficial effects in the short term. The 

amplitude of CoP ML sway at post training was lower in the experimental group than the physiotherapy 

without biofeedback group, with a statistically significant large effect size favouring the experimental 

group. This finding is particularly notable because ML sway amplitude was found to be the best 

stabilometric parameter predicting future falls. 

 The study [39], used as primary outcomes the Functional Reach Test (FRT). The secondary 

outcomes included BBS and gait metrics, UPDRS, Falls Efficacy Scale, PDQ-39, COP as a postural 

outcome and, finally, EEG-related outcomes. The results indicated that balance therapy that incorporates 

some computer-based exercises can be at least as effective as conventional therapy. Such visual 

feedback-assisted balance training could be a cheap alternative to supervised one-on-one therapy, feasible 

to carry out at home and offering patients extra incentives for training as the exercises incorporate 

elements of gaming and competition by means of scores. 

 [31] obtained results of acceleration and energy. The acceleration data provided characteristics 

of the walk and allow for differentiating and extracting characteristics of the episodes of FOG, while the 

energy levels establish the beginning, duration and end of the episodes, permitting the activation of the 
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vibratory stimulation until the resumption of the gait. The technique used in this paper had a specificity 

of 86.66% and a sensitivity of 60.61% in the FOG detection. Also, highlights an improvement in the time 

reduction of the FOG episodes of each patient using vibrational stimulation versus measurements without 

any stimulation, approximately 27% reduction in the duration of FOG episodes. 

 In [32], time of the performance, duration of FOG and the number of FOG events are recorded. 

The results obtained from the participants shows that a vibratory stimulus generates a reduction on the 

freezing duration of 50.94%, also the time to complete the trial reduces showing an improvement of 

34.25%. 

 [33] used DWT energy to obtain a WBD with a specificity of 86.66% and a sensitivity of 60.61% 

in the detection FOG, while the effectiveness for the resumption of the march after being detected a FOG 

is of 80%. 

 [34] extracted the FOG ratio as index of freezing severity, the percentage of time spent freezing 

during the task, average turn peak velocity and average turn jerkiness. It was obtained a reduction of FOG 

ratio from 2.5 to 1, a reduction of the % time freezing from 48% to 19%, a reduction of the peak velocity 

in turning from 95.2°/s to 84.2°/s and a reduction of the average of jerkiness on turnings from 0.54 m2 

/s5 to 0.41 m2 /s5. 

 [41] used as outcomes the mean value of body sway in roll and pitch plane of SBDT/gSBDT, the 

SBDT composite score (Risk-of-Falling indicator), the SOT, the dizziness handicap inventory (DHI), the 

ABC and the number of falls in the last three months. The investigators conclude that there was a 

statistically significant improvement in body sway, number of falls, scores of SOT and ABC. 

Regarding the study design, according to [45]:the articles [10], [29], [35], [37], [42] were Case-

Control Studies; [31], [34], [40], [41] used a Cross-Sectional Study; the articles [38], [39] were 

Randomized-Controlled Trials; [42] was a Longitudinal Case Report; and  [32] presented Case Report.  

The study inclusion criteria for the participants selection was diagnosis of PD [29], [34], [35], 

[39], [42], having bilateral symptoms with impaired postural stability [10], [35], on medication [10], [36], 

[38]–[41], high risk of fall [37], [41], a Hoehn & Yahr scores of II-IV [10], [29], [38], [39], off-medication 

[29], [34], age between 60 and 84 years [31], ability to walk independently (ability to do the training) and 

do not present serious co-morbidities that could impact gait or balance [34], [38], [39], [42]. Regarding 

the study exclusion criteria, the participants were excluded if they had cognitive level less than 24 

determined by MMSE [10], [35], [38], [39], [41], [42], were physically disabled for some reason [10], 

[29], [34]–[36], [41], they had severe distal sensory lost [10], [35], sensory loss [39], [42], dementia 

[29], [41], orthopaedic problems [34], [39], medically instable [10], [35], musculoskeletal or vestibular 
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disorder [29], [35], implanted deep brain stimulator [38] and neurological disorders other than PD [34]–

[36], [41]. The participants selection had a clinical, cognitive and motor/sensory assessment. Further, 

factors that can influence the tests or the results must be eliminated. 

Regarding scales used the Hoehn and Yahr (H&Y) scale and Unified Parkinson’s Disease Rating 

Scale (UPDRS) were the most common scales, and they were used in [10], [29], [34], [36], [38]–[42]. 

Other scale, PDQ-39, was used to evaluate the patient’s quality of life in the studies [38], [39], [42]. The 

Activities-specific Balance Confidence (ABC) was used in the studies [40], [41] to assess the balance 

sheet comprehensively. For having information about patients cognitive and mental stage was used the 

Mini Mental State Examination (MMSE) in the studies [10], [35], [38], [39], [41], [42] and the Montreal 

Cognitive Assessment (MoCA) [29], [42]. It was also used a FOG-questionnaire in the studies [38]. This 

scales approached can be distinguish in three groups: used for clinical assessment (UPDRS; H&Y); used 

for cognitive assessment (MoCA; MMSE); and motor/sensory assessment (ABC);. 

In term of metrics used for evaluating patients using biofeedback strategies, they depend of the 

gait-associated disability of the paper. When the paper pretended to ameliorate FOG, metrics like FOG 

ratio [29], [34], %freezing time/freezing duration [29], [32], [34] and Nº of FOG episodes [32] are used 

to evaluate the WBD. For balance proposes the metrics used were LOS [10], [35], position error [10], 

[35], path length [37], center of position (COP) [37], [39], sway area [37], roll/pitch [36], sway angle 

and angular velocity [36] XCOR [35] and SOT [10]. If the WBD was used to reduce falls the metrics used 

were the Nº of falls [40], [41], body sway [41], ABC [41] and SBDT [41]. Other metrics were used when 

the studies had specific goals: validate the FOG detection system (Specificity and sensitivity) [30], [31], 

[33]; the TUG was used to posture purposes[42]; the 10MWT [38], [39]; time to perform a circuit [32]; 

metrics related to cognitive assessments and sensory perception like DHI [41] and SOT [10], [41]; studies 

that the tests involved turning had velocity during turns, number of turns, average turn peak velocity and 

jerkiness [29], [34]. 

 

2.2.4 DISCUSSION 

▪ RQ1 “Which technologies were integrated in the WBD, what are their setting parameters and 

where were they placed?”  

WBD make use of technology to provide the user additional sensory information, beyond the one 

naturally available to him. This review showed how these devices provide sensory information to patients 

with PD. To do this, WBDs integrate sensors to measure motor information from patients and through an 
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actuation system provide sensory cues. Central processing system is responsible to process the acquired 

data and provide the commands to activate the actuation system. 

The actuation systems included vibrotactile, visual and auditory sensory cueing. Vibrotactile 

cueing were delivered using miniaturized vibratory motors, which advantageously are small, being easily 

integrated on wearable devices  

 Concerning the vibratory frequencies adopted,  it was observed that varied between a range of 

200 to 300 Hz, which belongs to the human range of vibratory perception [25], so for the WBS the best 

is to use these frequencies. 

 Head, waist, torso ankles, legs, insole and wrist were the body zones selected to place the 

actuators. Even so, it was observed that the location and number of actuators could be related with the 

specific purpose of the device. For FOG purposes, it was typically used one actuator in one leg [29], [30], 

[32], [34] or one in each leg/foot [31], [33]. This could be explained since FOG are described as the 

feeling of have the feet glued to the ground, being suggestive to provide the sensory information also on 

the lower limbs, required only one motor. For fall/balance purposes, actuators were mainly placed on the 

trunk, being used frequently four actuators to cover A/P and M/L planes.   

For the visual cueing, the information was provided using monitors [10], [38], [39] or semi-

immersive binocular head-mounted displays [40]. The monitors were used to display figures or images 

giving to the patient visual information usually about is body position or about the task he must do. These 

monitors have the advantage of being common in our daily lives (e.g., monitor of the pc, television, etc.) 

and portable, but in other hand they are no wearable. Indeed, this is the higher disadvantage of this WBD 

based on visual cueing, since limits the use on rehabilitation sessions with more complex configurations, 

not being used during daily routine of patients. The semi-immersive binocular head-mounted display is a 

small display or projection technology integrated into eyeglasses. This device does not block the user's 

vision but superimposes the image on the user's view of the real world. So, this device can display the 

same information that monitors can and much more, being able to immerse the patient in an augmented 

reality. This device is fully wearable but has the disadvantage of being expensive. Also, when applied on 

daily basis scenarios could require some patients' cognitive efforts to focus on visual cueing. 

 For the auditory cueing, the information was provided using headphones and earphones. These 

two devices are totally wearable and economic. The headphones present some advantages when 

compared to earphones, since they can provide more comfort to the patient and they have better noise 

cancellation, giving the patient the ability to be more focused and immersed. However, this immersive 
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ability could be a disadvantage for WBD applied on home scenarios, since patients could not listen the 

other sounds.  

 To acquire inertial information, it was used two types of devices: IMUs and FSRs.  

IMUSs acquire inertial data about the part of the body where is placed, being the most frequently 

sensors integrated on the sensory systems of the WBD. IMUs presents low-power consumption, are 

portable and easily integrated on wearable devices once they make use of front-end miniaturized 

technology [45]. In addition to these advantages, IMUs can be used for all purposes, balance, falls, 

posture and FOG.IMUs location usually depends on the WBD purpose. For FOG purposes, information 

about patients' gait is usually needed, so the sensor was usually placed on leg areas (ankle, foot and 

shins). For balance, posture and falls, sensors were usually placed on the lower back [10], [35], [36], 

[38], [41], [42], but also on chest, head and upper torso [38]–[40]. This body placement allows to obtain 

information about patients' sway, trunk inclination and changes in their posture.  

  The number of IMUs used also changes by means of the objective. When the WBD was applied 

to overcome FOG, one IMU was placed on the leg to obtain user gait information [31]–[33]. However, if 

it was required an analysis about the gait cycle of both legs, one IMU was placed on each leg [29], [30], 

[34] which difficult the wearability and the comfort issues. For balance, posture and falls, it can be used 

only one in the lower back [10], [35], [36], [38], [41], [42], since this alone, can give us a lot of 

information about sway, inclination and variations in the patient's posture. But, some studies, apply more 

than one, so they can have more information, normally, information about all upper body of the patient 

[38]–[40].  

 Besides IMUs, FSRs were also employed, which were placed on shoe insoles providing 

information about user foot contact  [32], [37], [39]. Advantageously, these devices based on 

instrumented shoes integrates the actuation and sensory system on an unique device. However, this 

could limit the user footwear.   

 Regarding wearability issues, although most of the identified studies used fully wearable devices 

[30]–[36], [40]–[42], while 30% of the studies sacrifice wearability to get additional information (use of 

force plates) or provide additional cueing (auditory/visual cueing without wearable devices) or even have 

more computational power [10], [29], [37]–[39]. 

 

▪ RQ 2 “How have the biofeedback loops been applied in PD to mitigate gait-associated 

impairments?”; 
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Most of the studies implemented biofeedback loops that provide rescue strategies to help patients 

overcome some gait-associated disability: "when body sway exceeds a pre-defined threshold" [10], [35], 

[36], [41], “when participants swayed > 10% over the center of their base of support” [37],  "when the 

patients where outside or inside of the target zone/area" [38], [42] and when the FOG occur [30]–[33]. 

In other words, if one of these events occur the biofeedback was activated. This type of biofeedback loop 

was used for all the four purposes: FOG, balance, posture and falls. 

Typically, when WBD were applied to help patients with their balance or prevent falls, on-going 

biofeedback strategies were adopted, being usually used visual cues. Sensory cueing delivers information 

about users' position/orientation and target position/orientation during weight-shifting exercises; about 

users' orientation using virtual objects and avatars [10], [39], [40].  

Another type of biofeedback strategy can be considered. In [29] and [34] it was applied phase-

dependent biofeedback. This biofeedback is always provided in determinate event (e.g., during 

appropriate phases of gait cycle). This strategy was only used for FOG purposes. 

Despite a wide spectrum of biofeedback strategies, all strategies presented positive results in 

help PD patients to overcome their gait-associated impairments. However, no one of the identified studies 

personalized the biofeedback strategy to the disease degree. 

 

RQ.3 “How the WBD have been clinically validated?”;  

To clinically validate this biofeedback systems the identified studies, usually included a baseline 

session, without providing biofeedback, and another session with biofeedback, providing the cue.  

Particularly, [29], [34] used closed-loop cueing and open-loop cueing session to compare both 

approaches. For the open-loop condition they used a metronome and for the close-loop condition the 

investigators provided a phase-dependent vibrotactile biofeedback. 

Most of the studies linked the protocol used with the target WBD application regarding the PD 

gait-associated disabilities. For example, the studies which addressed FOG mitigation, the clinical protocol 

included gait tasks  like walking in straight line [30]–[33], turning [29], [31]–[33], [41] and climbing stairs 

[31], [33]. Balance, posture and falls problematics, clinical protocol included balance exercises can be 

distinguished by the tasks that the patients performed. Concerning the WBD developed to address 

balance, posture and falls, the validation trials included balance exercises [10], [35]–[42].  Further, 

multitasking condition were also evaluated by [29], [36], [38], [39] where participants performed the 

same gait tasks with and without concurrent cognitive tasks (dual-task condition). This dual-task condition 

revealed whether performing more than one task can affect the perception of the provided cues and 
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addresses everyday multitasking situations, situations than can produce FOG occurrences, trigger 

unbalance moments and consequently falls.  

Only one of the identified studies [40] was validated on home-based condition to explore the 

possibility for future independent home training with the biofeedback system. The study verified that 

home-environment can influence patients' motor performance, being required more validation on home 

or near-home scenarios. Also, only this study performed a follow-up assessment to compare the results 

with the baseline, which enabled to evaluate the retaining effects of biofeedback training. It is required to 

standardize a protocol to achieve an objective and common procedure able to validate the biofeedback 

strategies regarding the clinical purpose, device acceptability, retaining effect, multitasking condition and 

include daily motor tasks and home/near-home scenarios. 

Regarding the study design, according to [45]:the articles [10], [29], [35], [37], [42] were Case-

Control Studies; [31], [34], [40], [41] used a Cross-Sectional Study; the articles [38], [39] were 

Randomized-Controlled Trials; [42] was a Longitudinal Case Report; and  [32] presented Case Report. 

The inclusion of randomized groups brings bias and variability to the clinical study, which can be important 

to address different patients’ symptomatology. However, when comparing a strategy, it could be benefit 

include a well-known case control group study.  

Evaluating the control groups, it can be observed that some of them are not enough to obtain the 

best results, they can introduce bias to the study. Some of these groups are too small to reach the best 

conclusion, for example the control group of the article [31], [32], [34] is only one healthy subject. 

Regarding scales to evaluate the patients, they were a means of assessing the symptoms of the 

condition. They provided information on the course of the condition and/or assess quality of life. They 

may also helped to evaluate treatment and management strategies, which can be useful to researchers 

as well as to people with Parkinson’s, their carers and medical team.   

The use of WBD had led to an overall improvement in the patients' performance. In terms of 

balance, the patients had better LOS, less PE and improved in terms of sway. For posture, the patients 

had improved posture, static and dynamic balance. In the field of falls, the patients decrease the number 

of falls, decreased the body sway and improved postural control. In FOG domain, there were a decrease 

in the number of FOG episodes, in the FOG duration and a general decrease of overall jerkiness. 

2.2.5 CONCLUSIONS AND FUTURE DIRECTIONS 

All in all, the presented WBD showed innovative and confident results. They have been successfully 

used to improve patients' balance and posture, as well as reduce the number of falls, the number of FOG 

episodes and the time PD patients are in FOG.  
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In general, all systems tend to choose their sensors and actuators so that they are easy to use. 

However, there is still a great difficulty in creating small, easy-to-wear and fully wearable devices. 

There are several biofeedback strategies, rescue, phase-dependent and on-going. To provide these 

sensory cues the most common method has been the use of heuristic methods. Despite all this 

information, evidence is still lacking as to which is the best strategy. 

For system validation, several different protocols and several different metrics were used to 

understand the effect of the system. However, to improve this validation, activities such as walking should 

be considered more, since it is the most common and functional human activity. Also, to understand the 

effect of the WBDs a larger number of metrics should be used. 

Table IV. Limitations identified in the review, end users' requirements and guidelines. 

Limitations End-users’ requirements Guidelines 

Sensors and actuators with 

different configurations, in terms 

of body location and number 

Small, fully wearable and 

comfortable 

Decrease the number of 

actuators and sensors, so that 

they can be integrated into a 

single, fully wearable and 

comfortable system. 

Lack of evidence on how best to 

provide biofeedback 

Optimize patients’ performance Conduct studies comparing 

improvements of different 

biofeedback strategies in 

patients 

Need to know the spectrum of 

effects of WBD on patients 

Improve patients’ gait-

associated disabilities 

Conduct studies where more 

patient metrics are used to 

validate WBDs 

 

2.3 HOW WEARABLE SENSORS CAN SUPPORT PARKINSON’S DISEASE 

MONITORING USING ARTIFICIAL INTELLIGENCE & STATISTICAL 

ANALYSIS: A REVIEW 

2.3.1 INTRODUCTORY INSIGHTS 

Technological developments have allowed the creation and development of small devices, which, 

being wearable, when used on patients, allow data to be obtained, e.g., IMUs’. This data provides 

important and unique information about the patient, whether this data is raw or processed to obtain 
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metrics. This date obtained, can be used for continuous and objective monitoring of patients, and in turn 

serve as a biomarker for PD disease. Statistical [9-15][17][18] and artificial intelligence [19][21-26][28] 

methods have now been developed that can use this patient information to provide insight into the 

patient's health status. This creates enormous potential, and the evaluation of PD patients could become 

less subjective. 

 Recent papers [9-28] have proven that through the use of both statistical methods and artificial 

intelligence it is possible to distinguish healthy individuals from sick ones [9-14][17-19][22-26][28], and 

to distinguish the various degrees of progressive diseases among patients [14-15][18][21]. 

The studies searched proved that these methods are relevant and appealing. However, for future 

research in statistical and AI algorithms, it is important to understand what has already been achieved 

and what limitations are yet to overcome.  

The purpose of this review is to find out how the data obtained from the wearable devices was 

applied and with what purpose; what type of data was used in the AI and statistical methods; and 

which AI and statistical methods were used for PD diagnostic and management. 

This review objective is to determine what type of AI and statistical methods have been used in 

PD diagnostic and management, in the last ten years, and with which goals and effectiveness. The 

following questions were investigated and answered: 

▪ RQ1 “For what purpose have the wearable sensors data combined with AI-based and statistical 

methods been applied to PD monitoring?” 

▪ RQ 2 “Which type of data was acquired and supplied AI-based and statistical methods for PD 

monitoring? “ 

▪ RQ.3 “Which AI-based and statistical methods models and how they have been implemented 

for PD monitoring?” 

 

2.3.2 METHODS 

An electronic systematically search was carried out on databases as Google Scholar, PubMed and 

Web of Science, looking for research papers that based on artificial intelligence & statistical analysis 

helped to improve PD monitoring and classification. The literature search was performed according to the 

guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), as depicted 

on Figure 20. The keywords used on the databases were: [“Statistical Analysis AND Parkinson's 

Disease”]; [“Statistical Differences AND Parkinson's Disease”]; [“Statistical Differences AND UPDRS”]; 

[“Statistical Differences AND PDQ-39”]; [“Statistical Analysis AND Motor Metrics AND Parkinson's 
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Disease”]; [“Statistical Analysis AND Wearable Device AND Parkinson's Disease”]; [“Statistical Analysis 

AND Clinical Scales AND Parkinson's Disease”]; [“Artificial Intelligence AND Parkinson’s Disease”]; 

[“Machine Learning AND Parkinson’s Disease”]; [“Machine Learning AND UPDRS”]; [“Machine Learning 

AND PDQ-39”]; [“Deep Learning AND Parkinson's Disease”]; and [“Artificial Intelligence AND Motor 

Metrics AND Parkinson's Disease”]; [“Artificial Intelligence AND Wearable Devices AND Parkinson's 

Disease”]; [“Artificial Intelligence AND Clinical Scales AND Parkinson's Disease”];. 

Studies were included in the review if they fulfilled the following inclusion criteria: (i) studies of 

idiopathic PD; (ii) artificial intelligence & statistical analysis were used to PD management/monitoring 

and/or classification; (iii) wearable technology was integrated; and (iv) results were published in the 

English language and within the past 10 years. The exclusion criteria were: (i) studies not validated with 

patients with PD; (ii) studies that do not present technological resources. 

2.3.3 RESULTS 

2.3.3.1 GENERAL RESULTS 

A total of 150 articles were identified: Google Scholar (n=43), PubMed (n=87), and Web of Science 

(n=20) databases. Duplicates were removed (n=73). Articles were excluded if the titles (n=26) and 

abstracts (n=16) did not correspond to the inclusion and exclusion criteria. If the abstract of an article did 

not provide enough information to determine its eligibility, the full article was reviewed. After the full-text 

papers were reviewed, seventeen articles met the eligibility criteria and were included in this scoping 

review. Figure 20 depicts this approach. Seventeen original studies were identified [13], [15], [54]–[60], 

[46]–[53] and were grouped and discussed according to their application goal, if they were used to 

distinguish PD from the control or to stage the progression of the disease.  
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Figure 20. PRISMA Flow Chart. 

 

2.3.3.2 PURPOSE 

The Table V highlights the purpose of the articles reviewed. These studies were grouped in three 

different categories, (i) those that distinguished PD from healthy subjects (Disease classification) [53], 

[55], [56], [58]–[60], (ii) those that distinguished different stages among PD patients (Disease level 

classification) [50] and (iii) those that purpose to do both [15], [46]–[49], [51], [54], [57]. This table also 

illustrates the scales used to make the division between the levels of PD and their stratification into groups. 

Table V. Purpose and scales used. 

Paper Method Stratification (Purpose) Clinical Scale 

[46] Statistical 

Method 

PD vs Healthy 

MDS-UPDRS part II-III 

PIGD subscore 

UPDRS, PIGD, PDQ-39 

and H&Y 
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PDQ-39 mobility subscale 

H&Y stage 

[47] Statistical 

Method 

PD vs Healthy, H&Y stage, UPDRS-III 

and WOQ-19 score 

H&Y, UPDRS-III and WOQ-

19 

[48] Statistical 

Method 

PD vs Healthy, UPDRS and PIGD scores UPDRS and PIGD 

[13] Statistical 

Method 

PD vs Healthy, UPDRS and H&Y score H&Y and UPDRS 

[15] Statistical 

Method 

PD vs Healthy, UPDRS, H&Y, SF-12 and 

Short Fes-I scores 

UPDRS, H&Y, SF-12 and 

Short FES-I 

[49] Statistical 

Method 

PD vs Healthy, PD UPDRS item 30 = 0 

vs PD UPDRS item 30 ≥ 1 vs Healthy 

and UPDRS score 

UPDRS 

[50] Statistical 

Method 

UPDRS-III, ABC and PDQ-39 scores UPDRS-III, ABC and PDQ-

39 

[51] Statistical 

Method 

PD vs Healthy, UPDRS-III, Berg Balance 

scale, TUG and H&Y scores 

 

UPDRS-III, Berg Balance 

scale, TUG and H&Y 

[52] Statistical 

Method 

Mild PD vs Severe PD vs Healthy H&Y 

[53] AI PD vs Healthy - 

[54] AI PD Mild vs PD Moderate vs PD Severe vs 

Healthy 

UPDRS and H&Y 

[55] AI PD vs Healthy - 

[56] Statistical 

Method AI 

PD vs Healthy - 

[57] AI PD stage I vs PD stage II vs PD stage III 

vs Healthy 

H&Y 

[58] AI PD vs Healthy - 

[59] AI Mild PD vs Geriatrics vs Healthy - 

[60] AI PD vs Healthy - 

 

D. Campbell et al. [46] purposed to assess the suitability of an gait and balance device for 

diagnosis and estimation of PD severity. Statistical methods were used to compare the PD patients with 

the control group and, in addition, to group the patients into different groups depending on the 
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performance of each patient. PD subjects were stratified by MDS-UPDRS part II score, MDS-UPDRS part 

III scores, PIGD subscore, PDQ-39 mobility subscale and H&Y stage. 

 Michele Pistacchi et al. [47] aimed to quantify and identify spatiotemporal and kinematic gait 

parameters in order to investigate whether early PD patients could present an abnormal gait pattern when 

compared to healthy controls. Statistical methods were used to compare the PD with the control group, 

but also to investigate a relationship between the parameters obtained from the PD with the H&Y, UPDRS-

III and WOQ-19 scales. 

 Florian Lipsmeier et al. [48] assessed the feasibility, reliability and validity of smartphone-based 

digital biomarkers of PD in a clinical trial setting. It was proved statistically significant differences between 

PD and the control group but, also, a relation of the PD features with UPDRS and PIGD scales 

demonstrating the feasibility of a digital biomarker for this disease. 

 Johannes C. M. Schlachetzk et al. [13] developed a wearable sensor-based gait analysis system 

as diagnostic tool that objectively assesses gait parameter in Parkinson’s disease without the need of 

having a specialized gait laboratory. This study showed that PD and the healthy control group had 

significant differences in the almost all gait parameters. It has also been proven that there are statistically 

significant differences in gait parameters between different stages of PD disease, as indicated by the H&Y 

and UPDRS scales. 

 Nima Toosizadeh et al. [15] aimed to assess statistical differences between in-clinic and in-home 

gait speed, and sit-to-stand and stand-to-sit duration in PD patients, in comparison with healthy controls, 

and determine the objective physical activity measures, including gait, postural balance, instrumented 

Timed-up-and-go (iTUG), and in-home spontaneous physical activity (SPA), with the highest correlation 

with subjective/semi-objective measures, including health survey (SF-12), short FES-I, UPDRS scale and 

H&Y stage. 

 Gilad Yahalom et al. [49] aimed to test the feasibility of smartphones to detect PD during the 

Timed Up and Go (TUG) test. This work made a statistical analysis that permitted to distinguish PD 

patients from healthy controls and distinguish between two PD levels too, within the PD patients a division 

was made according to the score of item 30 of the UPDRS, the patients with the score=0 and the patients 

with a score≥1. Also was found a significant correlation between the gait parameters and the 4-axial motor 

UPDRS item score in all PD patients. 

 Carolin Curtze et al. [50] purpose a study where the main goal was to determine which objective 

measures of balance and gait are most related to patient perception of mobility disability and disease 

severity in people with PD and to examine the effect of levodopa therapy on these correlates. Patient 
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perception of mobility disability was assessed with the Activities-specific Balance Confidence (ABC) scale 

and the mobility subscale of the Parkinson’s Disease Questionnaire (PDQ-39). Disease severity was 

assessed with the Unified Parkinson’s Disease Rating Scale, part III. 

 Roberta de Melo Roiz et al. [51] compared the spatiotemporal and kinematic parameters of 

Parkinsonian gait with the healthy elder subjects’ group and measure the relation between these 

parameters and clinical instruments: UPDRS-III, Berg Balance scale, TUG and H&Y. So, in this study is 

done a comparison between PD and healthy and a correlation between PD parameters with different 

levels of disease progress, different scores on the referred scales. 

 Laurie A. King et al. [52] purposed to determine whether the common clinical assessment 

instruments reflect turning deficits in persons with PD compared with an instrumented measure. In this 

study, the PD participants were divided into a mild group and a severe group, as determined by the H&Y, 

with mild defined as scores of 1 to 2 and severe defined as scores of 3 to 4. So, there were a comparation 

of instrumented turning measures (e.g., turning duration, number of steps and peak speed) and clinical 

measures (e.g., ABC, Berg Balance Scale and Tinetti) between the three groups (Healthy vs PD Milde vs 

PD Severe), that is, for disease classification and disease level classification. 

 Satyabrata Aich et al. [53] proposed a method for measuring gait parameters using wearable 

sensors and identified PD patients automatically based on machine learning techniques. So, this study 

can distinguish PD patients from healthy controls through machine learning algorithms. 

 Qi Wei Oung et al. [54] proposed a multiclass classification with three classes of PD severity level 

(mild, moderate and severe) and healthy control. Each subject was rated by a neurologist based on the 

UPDRS scale together with H&Y severity scale. The scales ranged from 0 to 4 where ‘0’ represents 

healthy, ‘1’ represents mild stage, ‘2’ represents moderate stage, ‘3’ represents severe stage and ‘4’ 

represent bedridden/wheelchair stage. So, using AI was achieved a way to distinguish between PD and 

healthy and between PD in different stages of the disease progression.  

Hany Hazfiza Manap et al. [55] aimed to investigate the parameters that could be used to identify 

abnormal gait pattern in Parkinson’s disease subjects during normal walking. With Artificial Neural 

Network and with these parameters they found a way to distinguish PD form healthy subjects. 

Ferdous Wahid et al. [56] aimed firstly, to use a multiple regression normalization strategy that 

accounts for subject age, height, body mass, gender, and self-selected walking speed to identify 

differences in spatiotemporal gait features between PD patients and controls; and secondly, to evaluate 

the effectiveness of machine learning strategies in classifying PD gait after gait normalization. This study, 

distinguished PD and controls through statistical analysis and machine learning techniques.  
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Carlotta Caramia et al. [57] aimed to use machine learning to distinguish different levels of PD 

symptoms severity and an equal number of age-matched health. For this purpose, the PD patients were 

ranked using stage I, II or III of the H&Y motor scale. In this way, a distinction was achieved between 

different levels of disease and between the PD and the healthy. 

Enas Abdulhay et al. [58] proposed to diagnose PD using the gait analysis, that consists of the 

gait cycle, which can be broken down into various phases and periods to determine normative and 

abnormal gait, distinguishing PD from healthy. 

 Elham Rastegari et al. [59] aimed to investigate the potential benefit of accelerometers as an 

objective tool for diagnostic purposes in PD. For this purpose, the study used patients with mild PD, 

healthy individuals and geriatrics who present similar gait deficiencies. 

 Lina Tong et al. [60] proposed a convolutional neural network (CNN)-based PD hand tremor 

detection method, using the acceleration information of both PD patients with hand tremor and healthy 

subjects. 

 

2.3.3.3 DATA INPUT 

Table VI presents the characterization of the wearable sensors-based systems according to the 

technology used, regarding the type, number and location of devices included. Also, it is highlighted the 

data acquisition process regarding the participants, the protocols used and the information about the 

dataset obtained. 
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Table VI. Characterization of the wearable sensors-based systems 

Paper Sensors Data acquisition Dataset 

Type Number Location Participants Protocol Public (P) 

/Authors (A) 

Preparation 

[46] PDM®Mobility 

Lab (Opals) 

6 One on each ankle, wrist, 

the lower back, and the 

upper chest 

135 PD subjects and 

66 age-matched 

controls 

Each subject performed the 

instrumented Timed-Up-and-Go (iTUG) 

and the instrumented Sway (iSway) 

tests 

A Gait parameter estimation 

[47] Infrared 

cameras/ 

dynamometric 

platform 

6/1 C7 apophysis, acromion-

clavicular joint, S2 

apophysis, anterior superior 

iliac spine, greater femoral 

trochanter, femoral lateral 

epicondyle, peroneal head, 

medial malleolus and heel 

(only for standing), fifth 

metatarsal head, middle 

third of the thigh (bar shaped 

marker), middle third of the 

calf (bar shaped marker). 

44 PD and 44 age 

and sex-matched 

controls 

Stand up and walk back and forth 10 

meters, reversing direction 6 times 

A Gait parameter estimation 

[48] Smartphone 1 Depending on the exercise 44 PD and 35 age-

matched controls 

45 days doing six daily motor active 

tests (sustained pho-nation, rest 

tremor, postural tremor, finger-tapping, 

balance, and gait), then carried the 

A Gait parameter estimation, 

feature extraction and use of 

AI to gait event detection 
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smartphone during the day  (passive  

monitoring) 

[13] Tri-axial 

accelerometer/

gyroscope 

2 Lateral side of each shoe 190 PD and 101 age-

matched controls 

4x10 meter walk A Gait events detection and gait 

parameters estimation 

[15] Tri-axial 

accelerometer/

gyroscope 

5 Shanks, thighs and the trunk 15 PD and 35 age-

matched controls 

Participants performed two tests of 

normal gait (<25 steps), four 30-

second trials of balance assessment, 

iTUG and SPA 

A Gait and other parameters 

estimation 

[49] Smartphone 1 Chest 44 PD (21 PD with 

UPDRS item 30 =0 

and 22 with item 30 

>1) 

2 trials, 3- and 10-meters TUG A Gait and other parameters 

estimation 

[50] Xsens 6 Ankles, wrists, sternum, and 

lumbar region 

104 PD Participants performed 3 trials of the 

ISAW, consisting of standing quietly for 

30 seconds, initiating gait with the 

most affected leg (participant 

specified), walking 7 m, turning 180 

degrees, and walking back 7 m. 

A Gait and Balance parameters 

estimation 

[51] Infrared 

cameras and 

reflective 

markers 

6/18 Acromion on shoulder, 

thoracic vertebra 12th, 

anterior superior iliac spine, 

sacrum, central line of 

patella, the knee lateral joint 

line, tuberosity of tibia, 3 cm 

of lateral malleolus, posterior 

12 PD and 15 healthy 

elders 

Instructed to walk naturally on a 

walkway, with bare feet. The walkway 

was 10 meters long. 

A Gait parameters estimation 
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to the calcaneus, between 

the 2nd and 3rd metatarsal, 

1.0-1.5 cm proximal to the 

upper metatarsals head. 

[52] Xsens 6 The posterior trunk, one on 

the anterior shank of each 

leg, one on the dorsum side 

of each arm and the 

sternum 

46 PD (23 with mild 

PD and 23 with severe 

PD) and 40 healthy 

controls 

Calculation of the scores of several 

scales and 3 trials of iTUG 

A Gait parameters estimation 

[53] Tri-axial 

accelerometer/

gyroscope 

4 Knees and ankles 40 PD and 40 healthy 

controls 

NI A Gait parameters estimation 

[54] IMU 4 Both wrist and limbs 15 Healthy, 20 PD 

Mild, 20 PD Moderate 

and 15 PD Severe 

Standardized series of activities, for 

instance arising from chair, supination 

and pronation hand movements, hand 

movements, finger tapping, toe tapping 

and leg movements. Enquired to 

sustain vowels “Bah” phonations for as 

long as possible 

A Raw data for feature 

extraction 

[55] Reflective 

markers /and 

infrared 

cameras / 

embedded  

force  plate 

32/6/2 NI 12 PD and 20 Healthy Walk freely at their comfortable speed A Gait event detection and gait 

parameters estimation 
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[56] Reflective 

markers/instru

mented force 

platforms 

15/2 Helen Hayes marker set 23 PD patients and 

26 aged-matched 

healthy 

Subjects walked at their preferred 

walking speed ten times across an 8 m 

walkway. 

A  

Gait parameters estimation 

[57] IMUs 8 One sensor was placed on 

each foot dorsum, one on 

each shank, one on each 

thigh, one on the chest and 

one in the back side on the 

lumbar zone 

25 patients with 

idiopathic PD at 

different stages of the 

H&Y motor scale and 

25 healthy. 8 subjects 

belonging to stage I, 9 

to stage II, and 8 to 

stage III of H&Y 

NI A Gait event detection and gait 

parameters estimation 

[58] Force sensors 16 8 each foot 93 PD and 73 Healthy Walked at their usual, self-selected 

pace for approximately 2 min on level 

ground 

P Raw data, Gait event 

detection and gait 

parameters estimation 

[59] SHIMMER 2 Right and left ankle 10 PD, 10 geriatrics 

and 10 Healthy 

40-meter walk protocol P  Raw data and Gait 

parameters estimation 

[60] MEMS inertial 

sensor 

1 Wrist 5 PD and 5 Healthy Walking 10 m forward, standing still for 

2 s, turn back, standing still for 2 s, 

walking backward for 10 m, standing 

still for 2 s, and turn back. The process 

was repeated four times. 

A Raw data 
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For the sensory acquisition systems, tri-axial accelerometer and gyroscope [13], [15], [53] were 

commonly integrated. They can be found as IMU’s [54], [57] or by other names as Opals [46], Xsens 

[50], [52], MEMS inertial sensor [60] and SHIMMER [59]. It is also possible to acquire tri-axial data using 

smartphones [48], [49].  

Other studies [47], [51], [55], [56], to obtain data from patients’ gait, used reflective markers and 

infrared cameras. These infrared cameras were able to detect signals reflected by the passive markers 

positioned in the patient’s body, obtaining the information of each body part. To complement this 

information, some studies [47], [55], [56] used at same time platforms, that enable to analyze force 

components, pressure coordinates and twisting movements. 

In the study [58] wearable force sensors were used under each foot, obtaining the vertical ground 

reaction force. 

 Regarding the number of sensors, it depends on the location of the body that you want inertial 

information from. It is common, that the number of sensors used in studies with reflective markers or 

force sensors, being larger. Michele Pistacchi et al. [47] used six reflective markers and one 

dynamometric platform, Roberta de Melo Roiz et al. [51] used eighteen reflective markers, Hany Hazfiza 

Manap et al. [55] used thirty-two reflective markers and two force plates, Ferdous Wahid et al. [56] used 

fifteen reflective markers and two force platforms and Enas Abdulhay et al. [58] used 16 force sensors, 

8 on each foot. The location of the reflective markers it is very specific, normally following the Helen 

Hayes marker set [56], and including positions such as C7 apophysis, acromion-clavicular joint, S2 

apophysis, anterior superior iliac spine, greater femoral trochanter, femoral lateral epicondyle, peroneal 

head, medial malleolus and heel, fifth metatarsal head, middle third of the thigh and middle third of the 

calf [47], acromion on shoulder, thoracic vertebra 12th, sacrum, central line of patella, the knee lateral 

joint line, tuberosity of tibia, 3 cm of lateral malleolus, posterior to the calcaneus, between the 2nd and 

3rd metatarsal and 1.0-1.5 cm proximal to the upper metatarsals head [51]. 

 For the tri-axial inertial sensors, D. Campbell Deweya et al. [46] used six sensors, one on each 

ankle and wrist, one on the lower back and one on the upper chest. Florian Lipsmeie et al. [48] one 

smartphone and his location was mainly in the pocket or in the hands of the subjects. Johannes C. M et 

al. [13] two sensors, one on the lateral side of each shoe. Nima Toosizadeh et al. [15] five sensors, one 

on each shank, one on each thigh and one on the trunk. Gilad Yahalom et al. [49] one smartphone 

strapped to the chest. Carolin Curtze et al, [50] six sensors, one on both ankles and wrists, one on 

sternum and one on the lumbar region. Roberta de Melo Roiz et al. [51] six sensors, one on the posterior 

trunk, one on the anterior shank of each leg, one on the dorsum side of each arm and one on the sternum. 
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Satyabrata Aich et al. [53] four sensors, one on each knee and each ankle. Qi Wei Oung et al. [54] four 

IMU’s one on each wrist and each limb. Carlotta Caramia et al. [57] eight IMU’s, one on each foot, one 

on each shank, one on each thigh, one on the chest and one in the back side on the lumbar zone. Elham 

Rastegari et al. [59] two sensors, one on each ankle. And Lina Tong et al. [60] one inertial sensor on the 

wrist. 

 When it comes to the dataset, most articles collect their own subjects information [13], [15], 

[54]–[57], [60], [46]–[53], except for two studies. Enas Abdulhay et al. [58] used a public dataset 

maintained by Physionet and Elham Rastegari et al. [59] used data from a publicly available data set 

collected by Barth and colleagues. 

With the information collected by the sensors, some articles used the raw data [54], [58]–[60], 

some estimated gait parameters or other parameters (e.g Balance, tremor parameters, etc.) from the 

patients [15], [46], [57]–[59], [47]–[49], [51]–[53], [55], [56] and some processed the data to obtain 

gait event detection [13], [48], [55], [57], [58]. 

 Regarding the data acquisition, the articles differ in the number and type of patients used and in 

the protocol adopted. D. Campbell Deweya et al. recruited 135 PD subjects and 66 age-matched controls, 

and they performed the iTUG and the iSway tests. Michele Pistacchi et al. [47] made 44 PD and 44 age 

and sex-matched controls stand up and walk back and forth 10 meters, reversing direction 6 times. 

Florian Lipsmeie et al. [48] made 44 PD and 35 age-matched controls doing six daily motor active tests 

for 45 days (sustained phonation, rest tremor, postural tremor, finger-tapping, balance, and gait), carrying 

the smartphone during the day. Johannes C. M. Schlachetzk et al. [13] made 190 PD and 101 age-

matched controls do a 4x10 meter walk task. Nima Toosizadeh et al. [15] used 15 PD and 35 age-

matched controls to perform two tests of normal gait, four 30-second trials of balance assessment, iTUG 

and SPA. Gilad Yahalom et al. [49] made 44 PD, 21 PD with UPDRS item 30 =0 and 22 with item 30 

>1, do two trials, one 3- and one 10-meters TUG. Carolin Curtze et al. [50] used 104 PD to perform 3 

trials of the ISAW, consisting of standing quietly for 30 seconds, initiating gait with the most affected leg, 

walking 7 m, turning 180 degrees, and walking back 7 m. Roberta de Melo Roiz et al. [51] made 12 PD 

and 15 healthy elders walk naturally 10 meters on a walkway. Laurie A. King et al. [52] made 46 PD, 23 

with mild PD and 23 with severe PD, and 40 healthy controls do three trials of iTUG. Satyabrata Aich et 

al. [53] used 40 PD and 40 healthy controls but there is no information about the protocol used. Qi Wei 

Oung et al. [54] made 15 Healthy, 20 PD Mild, 20 PD Moderate and 15 PD Severe perform a standardized 

series of activities, arising from a chair, supination and pronation hand movements, hand movements, 

finger tapping, toe tapping and leg movements. They were also enquired to sustain vowels “Bah” 
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phonations for as long as possible. Hany Hazfiza Manap et al. [55] used 12 PD and 20 Healthy to walk 

freely at their comfortable speed. Ferdous Wahid et al [56] made, 23 PD patients and 26 aged-matched 

healthy, walk at their preferred walking speed ten times across an 8 m walkway. Carlotta Caramia et al. 

[57] used 25 PD at different stages of the H&Y motor scale and 25 healthy, 8 subjects belonging to stage 

I, 9 to stage II, and 8 to stage III of H&Y, but there is no information about the protocol used. Enas 

Abdulhay et al. [58] used a dataset were 93 PD and 73 healthy walked at their usual self-selected pace 

for approximately 2 min on level ground. Elham Rastegari et al. [59] made 10 PD, 10 geriatrics and 10 

healthy perform a 40-meter walk. Lina Tong et al. [60] used 5 PD and 5 Healthy to walk 10 m forward, 

stand still for 2 s, turn back, stand still for 2 s, walk backward for 10 m, stand still for 2 s, and turn back. 

The process was repeated four times. 

2.3.3.4 METHODS & PERFORMANCE 

Table VII highlights the methods used and their performance. [13], [15], [46]–[52] applied 

statistical methodologies, while [53], [57]–[60] implemented AI algorithms.  In [54]–[56], it was firstly 

performed a statical analysis following AI-based procedures.  
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Table VII. Methods used and their performance. 

  Statistical  AI  

Paper Sample Method Performance Model Features Features 

selection/extraction 

Programming 

Language 

Performance 

[46]  Multiple linear and logistic 

regressions, ROC analyses, 

and t-tests 

TUG and iSway variables 

correlate highly with 

diagnosis and disease 

severity 

     

[47]  T-test All spatial and temporal 

parameters were significantly 

different between PD and 

healthy. 

The motor impairment 

scales (H&Y and UPDRS-III) 

and 

non-motor impairment scale 

(WOQ-19) were statistically 

correlated directly with age, 

disease duration, mean 

speed, cadence, and 

levodopa therapy 

     

[48]  Intraclass correlation   

coefficient (ICC) and Mann–

Whitney U tests 

All active test and passive 

monitoring features 

significantly discriminated 

PD from   controls, all active 

test features, with the 
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exception of sustained 

phonation, were significantly 

related to their 

corresponding MDS-UDPRS 

scores and for the passive 

monitoring features, only 

turn speed was significantly 

related to average PIGD 

scores 

[13]  T-test, one-way ANOVA 

followed by Bonferroni’s post-

hoc test 

Significant differences 

between both groups in all 

sensor-measured 

spatiotemporal gait 

parameters, As the disease 

progresses, gait impairment 

become more prevalent 

     

[15]  Linear regression-analysis of 

variance models and Pearson 

correlations, ANOVA, t-test and 

Cohen’s Effect size 

Better correlation between 

supervised and unsupervised 

motor function assessments 

in healthy controls compared 

to PD group. In the PD 

group, parameters related to 

velocity and range-of-motion 

of lower extremity within gait 

assessment, and turning 

duration and velocity within 

iTUG test demonstrated 
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strong correlations with PD 

stage 

[49]  One-way ANOVA, post-hoc 

Tukey analysis, Chi-square and 

Pearson correlation 

It was found statistically 

differences between the 3 

groups (PD with UPDRS item 

30=0, PD with UPDRS item 

30 >1 and Healthy controls) 

     

[50]  Spearman correlations Off-medication state is more 

related to disease severity 

and patient perception of 

mobility disability. turning, 

gait speed and stride length 

are the measurements that 

best reflect patients’ quality 

of life and balance 

confidence. 

     

[51]  Mann-Whitney nonparametric 

test and Spearman correlation 

Clinical instruments used did 

not present proper 

psychometric parameters to 

measure the PD patient’s 

gait, while the 3D system 

characterized it better. 

     

[52]  Kruskal-Wallis test and 

Spearman correlation 

Turning is impaired, even in 

mildly impaired participants 

with PD and that this deficit 

is not obviously reflected in 

common clinical scales of 
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balance such as the Berg or 

Tinetti. It may be more 

useful for a clinician to 

examine particular items 

within the Berg or the 

turning component of the 

TUG if turning difficulty is 

suspected 

[53]    Recursive 

partitioning and 

regression trees 

(RPART), C4.5, 

pruning rule-

based 

classification tree 

(PART), bagging 

classification and 

regression tree, 

Random Forest 

and Boosted 

C5.0with the 

Naïve Bayes 

method as the 

probabilistic 

classifier, and 

LDA with the SVM 

and radial basis 

12 spatiotemporal 

parameters such as 

cadence, stride time, 

opposite foot off, 

opposite foot contact, 

step time, single 

support, double support,  

foot off,   stride length,   

step length,   walking 

speed,   step width 

Random feature elimination 

and PCA 

NI Maximum accuracy of 88.89% 

using a support vector machine 

with a radial basis function 

combined with a random feature 

elimination set 
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function (RBF) as 

linear classifiers 

[54]  ANOVA These features show low p-

value (p<0.0001), implying 

that these features are 

clinically significant 

K-nearest 

neighbor (KNN), 

probabilistic 

neural network 

(PNN) and 

extreme learning 

machine (ELM) 

Wavelet Energy, 

Shannon Wavelet 

Entropy, Renyi Wavelet 

Entropy, Tsallis Wavelet 

Entropy, Permutation 

Entropy and Fuzzy 

Entropy 

Signal Decomposition using 

EWPT. Instantaneous 

amplitudes and frequencies 

from Hilbert Transform. 

Wavelet Energy and Entropy 

Based Feature Extraction. 

NI Classification accuracies of more 

than 90% using EWT/EWPT-ELM 

based on signals from motion and 

audio sensors respectively. 

Additionally, classification 

accuracy of more than 95% was 

achieved when EWT/EWPT-ELM 

is applied to signals from 

integration of both signal’s 

information. 

[55]  t-test   and   Pearson   

correlation 

Based on the statistical 

analysis results, it was found 

that step length, walking 

speed, knee angle as well as 

vertical parameter of ground 

reaction force are the four   

significant features   as   

indicators for   classification 

of subject with Parkinson’s 

disease  

Artificial neural 

network (ANN) 

with multilayer 

perceptron (MLP) 

algorithm 

Basic 

•Time cycle (s) 

•Cadence (steps per 

minutes) 

 •Step length (m) 

•Walking speed 

(m/sec) 

Kinetic: 

•Maximum    vertical    

heel contact •Vertical    

minimum    mid-stance 

force •Maximum    

vertical    push off force 

•Maximum horizontal 

Different sets of features were 

used: Basic; Kinetic; 

Kinematic; 

Basic & kinetic; 

Basic & kinematic; 

Kinetic &  kinematic; Basic,  

kinetic  & kinematic; Four 

significant features selection 

via Statistical Analysis; 

- Best performance was obtained 

using the dataset with only the 

Four significant features selection 

via Statistical Analysis =95.63% 

accuracy 
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heel strike force during 

braking phase  

•Maximum horizontal 

push-off force  

Kinematic: 

•Ankle angle at heel 

strike and toe off •Knee 

angle at heel strike and 

toe off •Hip angle at 

heel   strike and toe off 

•Maximum extension 

and flexion of ankle 

angle  

•Maximum   extension   

and flexion of knee angle 

•Maximum   extension   

and flexion of hip angle 

[56]  Coefficient of variation (CV) 

and Spearman’s rank order 

correlation coefficient (ρ) 

Using raw data (i.e., before 

normalization), the only 

significant differences in 

spatiotemporal gait features 

between the PD patients and 

controls were stride length 

and double support time. 

When the raw data were 

normalized using the DS 

equations, significant 

Five machine 

learning strategies 

were employed to 

classify PD gait: 

kernel Fisher 

discriminant 

(KFD), naıve 

Bayesian 

approach (BA),k-

nearest neighbor 

Spatiotemporal gait 

features including stride 

length, step length, step 

width, cadence, double 

support time, stance 

time, swing time, step 

time, and stride time 

A multiple regression 

normalization strategy that 

accounts for subject age, 

height, body mass, gender, 

and self-selected walking 

speed. Use of dimension 

equations or use of multiple 

regression (MR) normalization 

strategy 

- Accuracy of 92.6%after 

normalizing gait data using the 

multiple regression approach, 

compared to 80.4% (support 

vector machine) and 86.2% 

(kernel Fisher discriminant) using 

raw data and data normalized 

using dimensionless equations, 

respectively 
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differences between the PD 

patients and controls were 

observed in stride length, 

step length and double 

support time. After 

normalizing using the MR 

approach, stride length, 

stance time, cadence and 

double support time 

(kNN), SVM ,and 

Random Forest 

(RF) 

[57]    Naive Bayes (NB), 

LDA, k-NN, 

Decision Tree 

(DT), and SVM 

with both linear 

and non-linear 

kernel (rbf) bases. 

Two categories of 

parameters were 

extracted from raw data: 

range of motions (RoMs) 

and spatiotemporal 

parameters. RoMs are 

calculated for ankle, 

knee, hip and chest. The 

spatiotemporal 

parameters are the step 

length, step time, stride 

time and stride speed 

Different sets of features. PCA. Machine Learning toolbox 

of Matlab R2017a to 

define and cross-validate 

all the classifiers 

Average classification accuracy 

ranged between 63% and 80% 

among classifiers and increased 

up to 96% for one meta-classifier 

configuration 

[58]    The Medium 

Gaussian SVM 

and Medium Tree 

Stance time, swing time, 

stride time, foot strike 

profile, Frequency 

domain analysis, Power 

spectral density, Tremor 

analysis, Fast Fourier 

FFT and power spectral density NI An average accuracy of 92.7% is 

achieved for the diagnosis of PD 

from gait analysis and tremor 

analysis is used for knowing the 

severity of PD 



 

 79 

Transform and Power 

Spectral Density 

[59]    Support Vector 

Machine, Random 

Forest, AdaBoost, 

Bagging, Naïve 

Bayes and 

Similarity 

Network. 

Average stride time, 

RMS of 

Acceleration/Body 

Oscillation, Maximum 

and Minimum 

Acceleration, Variability 

of Signal per Stride, 

Signal Vector Magnitude, 

Symmetry, Stride to 

stride variability, velocity 

and Signal Smoothness 

Maximum Information Gain 

Minimum Correlation to select 

an appropriate feature se 

(MIGMC).  

NI Some methods had 100% of 

accuracy 

[60]    CNN, support 

vector machine 

and back 

propagation 

neural network. 

Root mean square, 

Variance, Absolute 

Mean, Mean power 

frequency and peak 

power 

- NI It is proved that this method 

(CNN) can detect PD hand tremor 

symptoms effectively and has 

better performance than typical 

machine learning methods. 
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▪ Statistical analysis:  Statistical procedures included unpaired and paired significance tests, 

variables correlation and application of regressions models.  

[46] used multiple linear and logistic regressions, ROC analyses and significance test to show 

that TUG and iSway variables correlate highly with PD diagnosis and PD severity.  

Michele Pistacchi et al. [47] used significance tests to prove that all spatial and temporal 

parameters were significantly different between PD and healthy subjects and, also, the H&Y, UPDRS-III 

and WOQ-19 were statistically correlated directly with age, disease duration, mean speed, cadence, and 

levodopa therapy..  

[48] used intraclass correlation coefficient (ICC) and Mann–Whitney U tests (unpaired 

significance tests) and showed that all active test and passive monitoring features significantly 

discriminated PD from controls, all active test features, except for sustained phonation, were significantly 

related to their corresponding MDS-UDPRS scores and for the passive monitoring features, only turn 

speed was significantly related to average PIGD scores.  

Johannes C. M. Schlachetzk et al. [13] performed a significance tests and a one-way ANOVA 

followed by Bonferroni’s post-hoc test to prove that exists significant differences between PD and healthy 

in all sensor-measured spatiotemporal gait parameters and, as the disease progresses, gait impairment 

become more prevalent.  

[15] accomplished Pearson correlations, ANOVA, t-test and Cohen’s Effect size to show that exists 

better correlation between supervised and unsupervised motor function assessments in healthy controls 

compared to PD group. Also, in the PD group, parameters related to velocity and range-of-motion of lower 

extremity within gait assessment and turning duration and velocity within iTUG test demonstrated strong 

correlations with PD stage.  

Gilad Yahalom et al. [49] used one-way ANOVA, post-hoc Tukey analysis, Chi-square and Pearson 

correlation and found statistically differences between the 3 groups (PD with UPDRS item 30=0, PD with 

UPDRS item 30 >1 and Healthy controls).  

[50] with Spearman correlations proved that the off-medication state is more related to disease 

severity and patient perception of mobility disability. Also, turning, gait speed, and stride length are the 

measurements that best reflect patients’ quality of life and balance confidence.  

Roberta de Melo Roiz et al. [51] used Mann-Whitney test and Spearman correlation to show that 

clinical instruments used did not present proper psychometric parameters to measure the PD patient’s 

gait, while the 3D system used characterized it better.  
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Laurie A. King et al. [52] proved with Kruskal-Wallis test and Spearman correlation that turning 

is impaired, even in mildly impaired participants with PD and that this deficit is not obviously reflected in 

common clinical scales of balance such as the Berg or Tinetti. It may be more useful for a clinician to 

examine particular items within the Berg or the turning component of the TUG if turning difficulty is 

suspected. 

▪ AI-based analysis: For the AI methods it was identified the models, features, features 

selection/extraction methods and programming language used, as well as the 

performance recorded. 

axz 

Satyabrata Aich et al. [53] used twelve spatiotemporal parameters such as cadence, stride time, 

opposite foot off, opposite foot contact, step time, single support, double support, foot off, stride length, 

step length, walking speed, step width and applied two feature selection methods Random feature 

elimination (RFE) and PCA. Then it was used several ML methods to obtain the classification performance, 

recursive partitioning, and regression trees, C4.5, pruning rule-based classification tree, bagging 

classification and regression tree, Random Forest and Boosted C5.0 with the Naïve Bayes method as the 

probabilistic classifier, and LDA with the SVM and radial basis function (RBF) as linear classifiers. The 

best performance was an accuracy of 88.89% using a support vector machine with a radial basis function 

combined with a random feature elimination set.  

Qi Wei Oung et al. [54] showed using the ANOVA that all the features, Wavelet Energy, Shannon 

Wavelet Entropy, Renyi Wavelet Entropy, Tsallis Wavelet Entropy, Permutation Entropy and Fuzzy Entropy, 

were clinically significant and were suitable for the classification of PD severity. For the feature extraction 

process, signal decomposition using EWPT, instantaneous amplitudes and frequencies from Hilbert 

Transform and wavelet energy and entropy based feature extraction were used. The methods applied 

were K-nearest neighbor, probabilistic neural network and extreme learning machine and the best 

performance achieved was an accuracy of more than 95%.  

Hany Hazfiza Manap et al. [55] calculated different sets of features (Basic, Kinetic and Kinmatic). 

T-test and Pearson correlation were used to prove that step length, walking speed, knee angle as well as 

vertical parameter of ground reaction force are the four significant features as indicators for classification 

of subject with Parkinson’s disease. Applying an Artificial neural network (ANN) with multilayer perceptron 

(MLP) algorithm, the best performance was obtained using the dataset with only the four significant 

features selection via Statistical Analysis, 95.63% accuracy.  
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Ferdous Wahid et al. [56] calculated spatiotemporal gait features including stride length, step 

length, step width, cadence, double support time, stance time, swing time, step time and stride time. 

Ferdous used two strategies, a multiple regression normalization strategy that accounts for subject age, 

height, body mass, gender, and self-selected walking speed and dimension (DS) equations or use of 

multiple regression (MR) normalization strategy. It was used a coefficient of variation and Spearman’s 

rank order correlation coefficient to prove that using raw data, the only significant differences in 

spatiotemporal gait features between the PD patients and controls were stride length and double support 

time. When the raw data were normalized using the DS equations, significant differences between the PD 

patients and controls were observed in stride length, step length and double support time. After 

normalizing using the MR approach significant difference were found in stride length, stance time, 

cadence and double support time. With the use of five machine learning, kernel Fisher discriminant, naïve 

Bayesian approach, k-nearest neighbor, SVM and Random Forest, the best performance found was an 

accuracy of 92.6% after normalizing gait data using the multiple regression approach.  

Carlotta Caramia et al. [57] used two categories of parameters, extracted from raw data, range 

of motions and spatiotemporal parameters. Range of motions were calculated for ankle, knee, hip and 

chest. The spatiotemporal parameters calculated were the step length, step time, stride time and stride 

speed. It was used different sets of features and PCA for feature selection. Applying naive bayes, LDA, K-

nearest neighbor, Decision Tree, and SVM with both linear and non-linear kernel base, an average 

classification accuracy ranged between 63% and 80% among classifiers and increased up to 96% for one 

meta-classifier configuration.  

Enas Abdulhay et al. [58] utilized these features, stance time, swing time, stride time, foot strike 

profile, frequency domain analysis, power spectral density, tremor analysis, FFT and Power Spectral 

Density. With Medium Gaussian SVM and Medium Tree it was obtained an average accuracy of 92.7% for 

the diagnosis of PD from gait analysis.  

Elham Rastegari et al. [59] used average stride time, RMS of Acceleration/Body Oscillation, 

Maximum and Minimum Acceleration, Variability of Signal per Stride, Signal Vector Magnitude, Symmetry, 

Stride to stride variability, velocity and Signal Smoothness as features. A Maximum Information Gain 

Minimum Correlation was applied to select appropriate features. Support Vector Machine, Random 

Forest, AdaBoost, Bagging, Naïve Bayes and Similarity Network were applied and some methods had 

100% of accuracy.  

Lina Tong et al. [60] extracted the root mean square, variance, absolute mean, mean power 

frequency and peak power from the raw data and using CNN, support vector machine and back 
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propagation neural network proved that CNN can detect PD hand tremor symptoms effectively and has 

better performance than typical machine learning methods. 

2.3.4 DISCUSSION 

• RQ1:  For what purpose have the wearable sensors data combined with AI-based and statistical 

methods been applied to PD monitoring?  

 

Most of the identified studies used statistical and AI-based methods to stratify and classify the PD 

[13], [15], [46]–[49], [51], [52], [54], [57]. For that, the studies compared PD vs healthy groups and 

then use clinical scales to distinguished the different levels of PD [13], [15], [46]–[48], [51]. Further, 

H&Y and UPDRS were the most common scales used to distinguish between disease level [13], [15], 

[57], [46]–[52], [54], since are the two scales clinically most accepted for PD evaluation and evolution 

through the time. In addition, these are the scales usually easily examined by the clinicians during 

consultations. 

For the studies that used statistical methods the most common purpose was disease level 

stratification and disease classification  [13], [15], [46]–[52]. 

Concerning the studies that applied AI-based methods [53]–[60], the most common purpose was 

disease classification, being observed on all studies of AI. Usually, the algorithm classified two labels, PD 

or healthy, although  in [59] the method stratified into three labels (a mild PD group, a geriatrics healthy 

group and a healthy group without geriatrics). AI-based studies that done disease level classification used 

the H&Y and/or UPDRS to group the PD in different severity groups [54], [57]. 

Aiming to achieve a complete assessment, on the literature, it remains the challenge of extend 

these analyses to different domains of health and well-being. PD causes motor and non-motor symptoms, 

and their clinical examination benefit from a complementary examination based in these technological 

methods. For example, wearable sensors measure patients' motion that could translate poor mobility 

which can affect daily motor tasks performance, well-being emotional, physical discomfort and 

consequently less quality of life. Thus, the sensory information when applied to statistical and AI-based 

methodologies and correlated with other scales responsible for this type of assessments (as, PDQ39) will 

provide a complementary stratification of patients for different and complementary domains. 

 

• RQ2: Which type of data was acquired and supplied AI-based and statistical methods for PD 

monitoring?  
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Along the last years, with the growing technological evolution, wearable sensors have proven their 

high potential for motion monitoring. 

The majority of the studies used gait or other related parameters (gait cycle events/phases) to 

apply statistical or AI methodologies. [13], [15], [55]–[59], [46]–[53], [15], [49], [50]. 

In terms of data acquisition, most studies collected their own data [13], [15], [54]–[57], [60], 

[46]–[53]. Two studies of AI-based methods used data previously collected and present in public 

databases [58], [59]. 

For the sensory acquisition systems, the most common sensors were tri-axial accelerometer and 

gyroscope integrated on IMUs boards [13], [15], [53], as Xsens [50], [52] and SHIMMER [59]. This 

inertial data was also acquired using smartphones [48], [49]. IMUs have the advantage of being totally 

wearable and easy to be worn, given its small dimensions. Also, inertial sensors can collect a lot of 

kinematic-driven information about the part of the body where were placed, being easily used in home-

settings and with the user performing varied activities (e.g walking, sitting, getting up, climbing stairs, 

etc).   

By other side [47], [51], [55], [56], used input data from reflective markers and infrared cameras. 

When comparing these systems with IMUs, these systems presents disadvantages, they are more 

complex, expensive, require carefully placement of markers on specific body segments, being required 

more sensors and more computational time/power-consuming.  

 Particularly,  [47], [55], [56] used force platforms, that enable to analyze force components, 

pressure coordinates and twisting movements. They have the advantage of collecting different and more 

specific type of data than the previous sensors, however, these sensors are not wearable, and their 

portability and installation can be more time consuming and complex. By other side,  [58] used force 

sensors under each foot, obtaining the vertical ground reaction force, thus presenting the advantage of 

being wearable when compared to platforms. 

 From the literature review, it is observed the potential of wearable sensors to record meaningful 

information to be applied on statistical and AI-based analysis, but it is still not clear the best configuration 

to place the body sensors. Given the potential of applicability of these sensors on home scenarios, the 

monitoring device should integrate a number of sensors that represents a trade-off between the required 

sensory information and the computational requirements and patients' comfort. For example, since most 

of the metrics are related with patients' gait, lower trunk inertial data has the potential to measure a 

complete gait cycle, while when placing the sensors on lower limbs, it is required one sensor for each 

limb to obtain the same information.  
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 Although the most recent studies already included data inputs recorded from higher numbers of 

participants, it Is observed a need for inclusion of more participants, specifically assessed different scales.   

Further, regarding the protocol for data acquisition, most studies subjects performed simple activities, 

such as walking [13], [15], [56], [58]–[60], [46]–[52], [55], turning [46], [47], [49], [50], [60], standing 

up [46], [49], [52], [54], and standing up [46], [48], [50], [54], [60]. These simple walking activities 

allowed the acquisition of several information about patients' gait and balance. Some articles applied pre-

defined protocols, such as iTUG [15], [46], [49], [52], iSway [46], iSAW [50] and SPA [15], presenting 

the advantage of using already pre-defined and validated methods. However, besides walking conditions, 

the data input should include sensory data from routine motor tasks on home scenarios, allowing to 

achieve more feasible data about the patients' real motor state. This will enable to monitor the patients 

in real life situations.  

 

• RQ3: Which AI-based and statistical methods models and how they have been implemented for 

PD monitoring? 

Statistical methos were frequently applied to distinguish PD from control groups or stratify disease 

level. To distinguish between PD subjects from healthy subjects , typically significance tests were used to 

compare two groups, such as unpaired t-test [13], [15], [46], [47], [55], Mann-Whitney test [48], [51], 

one-way ANOVA [13], [15], [49], [54] and Kruskal-Wallis [52]. By other side, when the goal is to relate 

the measurements from wearable sensors with disease severity/clinical scales, it is most common use 

correlations (Pearson[15], [49], [55] and Spearman factor [50]–[52], [56]).  

In terms of AI, the most common features calculated using raw data [54], [58]–[60] were root mean 

square, variance and absolute mean of the signal, RMS of acceleration/body oscillation, maximum and 

minimum acceleration, variability of signal per stride, signal vector magnitude, signal smoothness, 

frequency domain analysis, power spectral density, tremor analysis, fast Fourier transform, power 

spectral density, wavelet energy, Shannon wavelet entropy, Renyi wavelet entropy, Tsallis wavelet entropy, 

permutation entropy and fuzzy entropy. These features were obtained through simple operations 

performed on the raw data.  

Further, gait spatiotemporal parameters or kinematic metrics were also estimated when considering 

features related with user walking, such as stride length, step length, step width, cadence, double support 

time, stance time, swing time, step time, stride time, stride and step speed, time cycle, range of motion 

of the ankle, knee, hip and chest, ankle angle at heel strike and toe off, knee angle at heel strike and toe 

off, hip angle at heel strike and toe off, maximum extension and flexion of ankle angle, maximum extension 
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and flexion of knee angle and maximum extension and flexion of hip angle [53], [55]–[58].  

Advantageously, these features can be easily estimated using signals from wearable tri-axial 

accelerometers and gyroscopes. 

To select the best features for the AI models, the studies, usually, used different sets of features 

combinations [55], [57] and PCA [53], [57]. 

 The AI-based methods depend on whether machine learning or deep learning was used. The 

most common machine learning techniques implemented were Random Forest [53], [56], [59], LDA 

[53], [57], SVM [53], [56]–[59], K-nearest neighbor [54], [56], [57] and naïve Bayesian approach  [53], 

[56], [57], [59]. For deep learning methods, the most commons were MLP [55] and CNN’s [60]. 

Normally, machine learning is powered with gait and other parameters, and, deep learning most relevant 

method, CNN, is powered with raw data/raw data features. 

 In terms of performance, statistical methods were used to find significant differences in mobility 

between the groups (e.g PD vs control) or provide information about the correlation between some motion 

feature with the disease progression/severity, while AI-based methods were used to show with what 

accuracy the groups from each scale can be classified. 

 Regarding programming language, it was only identified the use of the Machine Learning toolbox 

of Matlab R2017a [57]. 

2.3.5 CONCLUSIONS AND FUTURE DIRECTIONS 

All identified studies presented promising results in the use of AI and statistics methods in PD. 

It was observed that by combining the outcomes form wearable sensors with AI and statistically 

methods, a very useful tool can be obtained to help in diagnosis and stratification of disease degree, 

either by assigning different grades on the scales associated with PD, or by distinguishing between healthy 

and patients. 

As for the type of data used, the most common is information about the subjects' gait, either 

through gait metrics or raw data from inertial sensors, which are the most practical and lower-cost 

sensors. However, most of the studies used more than one sensor, making the system more intrusive 

and difficult to wear. So, there is a need to get the data from a simpler device that is able to get the 

patient information from a single sensor. 

Raw data tended to be used more in AI, while statistic methods used more estimation of gait parameters. 

To acquire the data input, subjects typically performed simple motor tasks, such as walking and turning. 

However, there is a lack of data from activities performed in other environments, such as day-to-day 

activities in a comfortable setting for the patient, such as at home. 
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 In terms of statistics, the methods used depend on the type of data and its normality. For 

establishing correlations between metrics and between metrics and scales the Pearson correlation is 

most often used. As for AI the most used machine learning methods are RF and KNN, and for deep 

learning CNN. Since PD is a disease that also affects patients psychologically, it is necessary to further 

apply these methods to clinical scales that translate patients' quality of life. 

 

 

 

Table VIII. Limitations identified in the review, end users' requirements and guidelines. 

 

 

 

 

 

 

Limitations End-users’ requirements Guidelines 

Sensors with different 

configurations, in terms of body 

location and number 

Small, fully wearable and 

comfortable 

Decrease the number of 

sensors, so that they can be 

integrated into a single, fully 

wearable and comfortable 

system. 

Lack of data from activities 

performed in other 

environments 

Optimize the date obtained Conduct studies in home-based 

scenarios 

Little use of quality-of-life scales Full knowledge of the patient's 

condition 

Conducting studies, which use 

these AI and statistical methods 

in quality-of-life scales, such as 

the PDQ-39 
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3.1  INTRODUCTION 

This chapter is about demonstrating what problems still exist in terms of WBD, and how they are 

intended to be solved. First, it is demonstrated how the problem of biofeedback validation will be solved 

and how best to provide biofeedback, through +sBiofeedback. Second, the problem of technological 

complexity is solved by introducing the +sMotion device. Third, the problem of the small number of 

metrics used in studies is solved, by calculating increasingly varied metrics from different fields. Fourth, 

an application is shown that illustrates how the misclassification of gait events is solved. And lastly, +sC-

support is shown, which aims to use AI to classify PD or even stratify its levels, solving the problem of 

lack of devices capable of complementing doctors in assessing patients. 

3.2 +SENSE 

This thesis is integrated into the +sense project. +sense presents front-end high-tech solutions 

based on wearable biofeedback devices which rely on acquisition, interpretation and feedback of patients’ 

sensorimotor information. The project envisions to improve patients’ quality of lite, being less dependent 

on third parties by promoting their motor autonomy.  There are four +sense modules, as shown in the 

next image: (1) +sBiofeedback; (2) +sMotion; (3) +sC-support and (4) +sImmersive. This dissertation 

contributed and used the first three modules. 

 

 

Figure 21. +sense modules. 
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3.3 +SBIOFEEDBACK: A WEARABLE BIOFEEDBACK DEVICE 

+sBiofeedback module was the first sub-system developed in this project.  It comprises an 

instrumented waistband, adaptable to different users’ physiognomies, which integrates a sensory, an 

actuation and central-processing system, as described in Figure 22. These hardware components were 

fully integrated on a 3D printing box, which is attached to a waistband. An IMU is integrated to provide 

lower trunk inertial data (advantageously, one sensor can measure a complete gait cycle and postural 

metrics). From a real-time processing of the acquired sensory data, it is delivered vibrotactile information 

through actuators (vibratory motor) integrated in the waistband. An OTG USB driver was used to storage 

the inertial data captured during the device utilization. Further, the system contains a mobile APP to, via 

Bluetooth, access the device.  

 

Figure 22. +sBiofeedback module. 

The WBD integrates a closed-loop vibrotactile cueing strategy (biofeedback) and an open-loop 

vibrotactile cueing strategy (feedback). On closed-loop strategy, the vibrotactile cueing are delivered in a 

specific event of gait cycle, the final contact (toe-off). Since patients typically felt their foot glued to the 

ground in freezing episodes or cannot maintain a regular cadence, this gait event can be neurological 

correlated to overcome PD gait impairments. It is expected that patients reintegrate the pattern of walking 

into their neural motor system, aiming to bypass the nervous messages which could be in fault during 

gait disabilities. The open-loop strategy provides vibrotactile cueing 2 in 2 seconds according to [61]. The 

assistive and rehabilitative medical device was developed to help patients to maintain a regular, fluid gait 

cadence, avoiding episodes of freezing and promoting the management of balance. This dissertation aims 

to validate this device with end-users with a well-delineated protocol. 



 

 91 

3.4 +SMOTION: A WEARABLE GAIT ANALYSIS LAB 

 +sMotion module is responsible to acquire and monitor lower trunk inertial signal, provide real-time gait 

segmentation, post-processing gait analysis and gait-associated metrics estimation.  This module is linked 

with +sBiofeedback, since also comprises the same instrumented waistband, the WBD. Thus, +sMotion 

includes a wearable gait analysis LAB which is a part of a WBD, comprising the 1) Sensory Acquisition 

Unit; 2) Processing Unit; 3) Data Storage Unit; 4) Mobile APP; and 5) +S Desktop GUI, as depicted in 

Figure 23. 

 

 

 

Figure 23. +sMotion overview. 

Sensory acquisition relies on the use of the MPU-6050 Inertial Measurement Unit to acquire 

acceleration and angular velocity data. The Processing unit comprises a STM32F4-Discovery to receive the 

acquired data from the sensory acquisition unit and run in real-time a gait event detection algorithm based 

on heuristic rules with adaptive thresholds and ranges to segment a gait cycle from both legs into: initial 

contact (IC)/Heel-strike (HS), foot-flat (FF), mid-stance (MSt), final contact (FC)/toe-off (TO) and heel-off 

(HO). Acquired inertial data and identified events are saved in the Data Storage Unit, a OTG USB driver. 

The Mobile APP is an Android APP that wirelessly communicates with the processing unit, via Bluetooth, 

enabling to start/stop data acquisition, control operability settings and plotting the acquired data. +S 

Desktop GUI is an interface developed in MATLAB® able to read the data saved on the USB driver and 

estimate the gait-associated metrics. This dissertation addressed the development of the +S Desktop GUI 

able to load, reprocess data and estimate several gait-associated metrics. 
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3.4.1 GAIT SEGMENTATION 

The proposed gait segmentation algorithm detects events HS (IC), FF, MSt, TO (FC) and HO for each 

leg. The method consists of seven stages: (1) calibration, (2) motion compensation, (3) filtering, (4) 1st 

derivative computation, (5) finite state machine, (6) event-to-leg assigning and (7) thresholds and events 

range duration calculation. The algorithm used is based on the study [62], and can be seen in Figure 24. 

For this dissection, only the calculation of the ICs' and FCs' is required. 

 

Figure 24. Computational method for the real-time gait segmentation adapted to patients with PD: flowchart of the proposed 
gait monitoring system adapted to patients with PD. 

3.4.2 GAIT-ASSOCIATED FEATURES ESTIMATION 

ICs (HS) and FCs (TO) detection enable the estimation of several gait-associated metrics, from 

different fields, such as pace, rhythm, variability and asymmetry.  

For the rhythm, it was calculated the step time, which is the time spend doing a step, the 

stride time, which is the time of a patients stride, the stance time, which is the time that the foot is in 

contact with the ground, the swing time, follows the stance time and is the time during which the 

same foot is in the air, the double support time, which is the time that both feet are in contact with the 

ground, the stance phase, which is the percentage of time during a stride that is spent with the foot in 

contact with the ground, the swing phase, which is the percentage of time during a stride that is spent 

with the same foot in the air and the double support phase, which is the percentage of time during a 

stride that is spent with both feet in contact with the ground. 

For the pace, it was calculated the step length, which is the distance between the point of initial 

contact of one foot and the point of initial contact of the opposite foot, the stride length, which is the 
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distance between two consecutive steps, the step velocity, which is the velocity of the step and 

cadence, which is the number of steps per minute. 

For the variability, it was calculated the standard deviation of all metrics in the pace and 

rhythm domain. 

For the asymmetry, it was calculated the difference of some metrics, step length, step time, 

step velocity, swing time and stance time, between the right and the left leg.  

The equations for calculating the metrics of the above-mentioned domains are illustrated in Table 

IX. 

Table IX. Metrics used and the method of obtaining them. 

Domain Metric Method 

Pace 

Step Length* 2√(2Lh-h^2 ) 
Stride Length 〖Step Length〗_i +〖Step Length〗_(i+1) 

Velocity 〖Step Length〗_i/〖Step Time〗_i 
Cadence 〖Velocity〗_i·60/〖Step Length〗_i 

Rhythm 

Step Time 〖IC〗_(i+1)-〖IC〗_i 
Stride Time 〖IC〗_(i+2)- 〖IC〗_i 
Stance Time 〖FC〗_(i+1)- 〖IC〗_i 
Swing Time 〖StanceTime〗_i  +〖StrideTime〗_(i+1) 

Double Support Time 〖IC〗_(i+1)-〖FC〗_i 
Stance Phase Stance Time·100/Stride Time 
Swing Phase Swing Time ·100/Stride Time 

Double Support Phase Double S.  Time·100/Stride Time 

Variability 

Step length SD Standard deviaton of Step Length 
Step Time SD Standard deviaton of Step Time 
Velocity SD Standard deviaton of Velocity 

Swing Time SD Standard deviaton of Swing Time 
Swing Phase SD Standard deviaton of Swing Phase 
Stance Time SD Standard deviaton of Stance Time 
Stance Phase SD Standard deviaton of Stance Phase 

Double Support Time SD Standard deviaton of Double Support Time 
Double Support Phase SD Standard deviaton of Double Support Phase 

Stride Time SD Standard deviaton of Stride Time 
Stride Length SD Standard deviaton of Stride Length 

Cadence SD Standard deviaton of Cadence 

Asymmetry 

Step Length AS 〖Step Length〗_i-〖Step Length〗_(i+1) 
Step Time AS 〖Step Time〗_i-〖Step Time〗_(i+1) 
Velocity AS 〖Velocity〗_i-〖Velocity〗_(i+1) 

Swing Time AS 〖Swing Time〗_i-〖Swing Time〗_(i+1) 
Stance Time AS 〖Stance Time〗_i-〖Stance Time〗_(i+1) 

*Based on Inverted Pendulum method: where L corresponds to the pendulum height, experimentally measured from the 
floor to the place where the sensor is placed in user body and 𝒉 refers to the double integration of vertical acceleration 
between two consecutive steps (from 𝑰𝑪𝒊 to the following 𝑰𝑪𝒊+𝟏); 𝒊: current moment from sequential users’ steps.  

 

3.4.3 +S APP DESKTOP GUI 

The gait event detection algorithm is not 100% effective; it has some miss detection. To calculate 

fully correct and reliable metrics/features through well-estimated gait events, an application was 

developed to reprocess the miscalculations in the heel strike and toe off events, IC and FC events. This 

application was implemented in MATLAB® Graphical user interfaces (GUIs), using the Matlab2021a, 

being presented in Figure 25. 
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Figure 25. +Sense APP 

+S APP is divided into three sections: personal information, gait segmentation and gait 

parameters estimation. The gait segmentation section includes a post-processing area. The first section 

includes a field, Personal Information, where is inserted patient data, an example of its completion is 

showed in Figure 26. This data consists of ID, trial type, gender, study group, age, height, weight, UPDRS, 

PDQ-39 and H&Y values and the session number. This field also has a "Load" button, this is for reading 

the data files acquired through patient trials. 

 Next, a section dedicated to gait segmentation. In this section, it is possible to plot the read data 

using the "Plot" button, the plot will come with the IC and FC events calculated. Sometimes the data 

comes with errors in the classification of the ICs or FCs, as can be seen in Figure 26. To correct these 

errors, the post-processing area was created. 
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Figure 26. Personal Information and a plot with event detection error. 

In the post-processing area, it is possible to eliminate the points, IC or FC, that are placed in the wrong 

position, and add these same points in the correct position using the “Reload” button. Figure 27 shows 

the correction made in the point miscalculated showed in Figure 26. 

 

Figure 27. Correction of the Plot. 

The last area of the application is called Gait Parameters Estimation. In this area, if the "Estimate" 

button is pressed, the metrics/features associated with the gait will be calculated, and the ones, shown 

in the Figure 28, will be displayed in the APP.  
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Figure 28. Calculation and display of the metrics. 

In this last area there is also the "Save" button. This is for saving the metrics and patient 

information in an excel file. 

 

3.4.4 +SC-SUPPORT 

+sC-support uses the outcomes measured with +sMotion to apply AI models able to accomplish 

PD management.  

In this way, through a single sensor, on the patient's waist, it is possible to estimate a set of 

metrics, which when applied in AI are able to diagnose PD disease or even stratify its levels. In this way, 

+sC-support is able to complement physicians in the evaluation of patients. 

This dissertation has an impact contribution to this module. An extensive statistical study was 

conducted to verify if gait metrics vary between patients and non-patients, and between different levels of 

UPDRS-III and PDQ-39. Next, various AI methods were applied in order to be able to obtain good results 

in distinguishing healthy from sick and the various levels of the UPDRS-III. 

3.4.5 CONCLUSION 

This thesis was developed aiming to contribute to the +sense project. Specifically, it contributed to 

+sBiofeedback, +sMotion and to +sC-support. 

For the +sBiofeedback module, a validation was performed with end-users and with a well-defined 

protocol. The objective was to verify the best way to apply biofeedback to patients and its effects on them. 
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For the +sMotion module, this dissertation contributed with an APP capable of correcting miss 

detections in the gait segmentation, and also with the calculation of metrics capable of describing the 

end-users' gait characteristics. 

For the +sC-support module, this dissertation contributed an extensive statistical and IA study to 

stratify and diagnose PD, using clinical scales such as UPDRS-III and PDQ-39. 
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4.1 INTRODUCTION 

This chapter describes how +sBiofeedback module, which includes the WBD, can be used to improve 

motor symptoms in PD patients. It is presented the design study, protocol and metrics of evaluation. An 

extensive statistical study was conducted to verify and show the improvements of PD symptoms in 

patients who received biofeedback. 

 

4.1.1 HYPOTHESIS, RESEARCH QUESTIONS &STUDY DESIGN 

The research question that was intended to be answered with the WBD validations was “Does the 

vibrotactile biofeedback succeed in improving gait performance of patients with Parkinson’s disease?”. It 

was also intended to test the hypothesis that the vibrotactile sensory cueing associated to a particular 

gait event (toe-off/final foot contact/FC) can help patients with PD to reorganize their natural motor 

patterns and overcome gait impairments. So, it was accomplished a randomized controlled trial. 

 

4.2 METHODOLOGY 

4.2.1 EXPERIMENTAL SETUP & PARTICIPANTS 

Forty patients diagnosed with PD were recruited during their regular visit in Neurology Service in 

Hospital of Braga (PD-Group). Demographic data, such as gender, age, height, and weight were recorded 

for all subjects. All patients gave informed consent and the study granted ethical approval by the Hospital 

of Braga Ethical Commission 36/2018, following the principles of the Declaration of Helsinki and the 

Oviedo Convention. Patients were recruited if they present H&Y≤3, age between 50-85 years old, did not 

have cognitive impairment, presented autonomous gait, and were evaluated by the same neurologist. All 

patients when performed the experimental protocols were in the ON phase. Clinically, they were evaluated 

regarding Hoen and Yahr scale (H&Y), UPDRS-III and New Freezing of Gait Questionnaire (nFOGQ). 

Further, all patients answered to the PDQ-39. 

Table X. Patients’ characteristics. 

Characteristics Participants (N=40) 

Age [years] (mean±SD)  
66.83±9.52 

Height [cm] (mean±SD) 163.92±7.89 
Weight [Kg] (mean±SD) 71.53±14.04 

Gender  female N=19 
male N=21 

H&Y (mean±SD) 1.83±0.87 
1 N=16 
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2 N=15 
3 N=9 

UPDRS-III (mean±SD) 22.08±11.40 
Low (1-12) N=11 

Middle (13-22) N=15 
High (≥23) N=14 

NFOG-Q            (mean±SD) 11.03±10.46 
PDQ-39 (mean ± SD) 37.34±22.55 

High (1-33) N=16 
Middle (34 -66) N=14 
Low (67-100) N=10 

 

These forty patients were randomly assigned to four groups, each with 10 participants. The four 

groups were: 

• Control group (CG): Participants did not receive vibrotactile sensory cueing. They executed three 

trials without biofeedback (N); 

• Mixed group (MG): Participants received gait event-driven and continuous vibrotactile sensory 

cueing (closed-loop and open-loop cueing, respectively). They executed three trials, one trial with 

gait-event driven biofeedback (B), one trial with continuous biofeedback (C) and one trial without 

biofeedback (N); 

• Biofeedback event-driven group (BEG): Participants received gait event-driven vibrotactile sensory 

cueing (closed-loop cueing). They executed two trials with gait-event driven biofeedback (B) and 

one trial without biofeedback (N); 

• Biofeedback continuous group (BCG): Participants received continuous vibrotactile sensory 

cueing (open-loop cueing). They executed two trials with continuous biofeedback (C) and one trial 

without biofeedback (N). 

The continuous biofeedback trial consists of a vibrotactile stimulus activated every two seconds, 

while the gait-event driven biofeedback consists of the same stimulus but was only provided when the 

patient is in right leg FC gait event.  

Regarding the protocol, a complex circuit was used, and in this circuit the patients received the 

vibrotactile sensory cues considering their study group and dedicated trials. This circuit follows the 

following task pattern: walking forward thirty meters, turning right when they reach the corner, walking 

forward two meters, turning around when they reach a cone, walking forward two meters, turning left 

when they reach the other corner, walking forward thirty-two meters, reversing the walk when they reach 

another cone, walking forward two meters, and stopping when they reach the starting point. This circuit 

was performed at 2CA Braga, Academic Clinical Center of Braga Hospital, the path is illustrated in Figure 

29.  
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Figure 29. Second part of the protocol, a more complex circuit. 

4.2.2 DATA COLLECTION METHODS AND STUDY VARIABLES 

Data will be collected using the methods described in the following table. +sMotion was used to calculate 

the gait parameters of the patients. 

Table XI. Variables to be measured and collection method for the present study. 

Variables Method 

Motor 

UPDRS Scale UPDRS 

H&Y Scale H&Y 

NFOG-Q NFGOQ 

Spatiotemporal gait parameters 
+sMotion 

Gait Cycle Segmentation 

QoL 
Daily Living Activities Questionnaire ADL Checklist 

PDQ-39 Questionnaire PDQ39 

Sociodemographic Data Interview 

Usability Questionnaire System Usability Questionnaire 

 

4.2.3 DATA ANALYSIS 

All processes subject to statistical analysis will be depicted. These were performed using 

SPSS2019 and the metrics used were those most commonly used in the literature described in Chapter 

2. 
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To verify if vibrotactile biofeedback can help the gait of PD patients and to note which strategy is 

best, first these three groups gait metrics were compared: control group (CG), biofeedback event-driven 

group (BEG) and biofeedback continuous group (BCG). At the beginning of this process, all descriptive 

statistics were calculated for the metrics of the respective groups, to obtain mainly information about their 

mean, maximum, minimum and standard deviation (inter-subject assessment). Afterwards, two normality 

tests, Kolmogorov-Smirnov and Shapiro-Wilk, were performed on the metrics of each group. Verifying that 

the data distributions were non-parametric, the Kruskal-Walli’s test was performed in order to observe the 

significant differences between the groups. The null hypothesis (HO) used in this study was “There are 

not statically differences between variables means of CG, BEG and BCG”. Finally, to draw conclusions 

about the relationships between the metrics and the group type, a Spearman correlation was performed. 

Later, a similar process was performed to study the mixed group (MG). Was started by separating 

the three tests performed on the patients in this group, the control test (N), the test using event-driven 

biofeedback (B), and the test using continuous biofeedback (C) (intra-subject assessment). For each of 

the metrics of each test mentioned, normality was studied using the Kolmogorov-Smirnov and Shapiro-

Wilk tests. Since the data distributions were normal, a one-way ANOVA was performed to compare the 

three tests in this group. The null hypothesis used in this study was “There are not statically differences 

between variables means of N, B and C”.  To draw conclusions about the relationships between the 

metrics and the trial type, a Spearman correlation was performed. 

A study of the system's acceptability was also performed, in order to verify whether the system is 

comfortable and easy to use. 

 

4.3 RESULTS 

The Table XII shows the comparison between the gait performance of the various groups, inter-

subject assessment. Furthermore, were quantified variables of gait performance with strategy. 

Table XIII. Inter-subject assessment. ρ: significance level at 10% with H0=“There are not statically differences between 

variables means of CG, BEG and BCG”; significant correlation at 5% n * and at 1% in **; (+)(-): prototypical parkinsonian motor 
signals. 

Inter-subject assessment 

Domain Variables CG (N) BEG (B) BCG (C) ρ 

(Kruskal 

Wallis 

test) 

Pearson rho 
(ρ-value) 

Mean ± SD Mean ± SD Mean ± SD 
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There was an improvement in the rhythm, pace and variability domains in the BEG when 

compared to the control group. For the BCG group, an improvement in the rhythm and pace domains 

was found. 

Table XIII shows the same study, inter-subject assessment, but only comparing the control group 

with the event-driven biofeedback group. 

Table XIV. Inter-subject assessment. ρ: significance level at 10% with H0=“There are not statically differences between 

variables means of CG and BEG ”; significant correlation at 5% n * and at 1% in **; (+)(-): prototypical parkinsonian motor 
signals. 

Inter-subject assessment 

Domain Variables CG (N) BEG (B) ρ 
(Kruskal 

Wallis test) 

Pearson rho 
(ρ-value) 

Mean ± SD Mean ± SD 

Rhythm (+) Step time (s) 0,580±0,014 0,550±0,010 0,332 -0.139 (0,337) 

(+) Stance phase (%) 65,903±0,826 62,394±1,415 0,009* -3,71** (0,008) 

Rhythm (+) Step time (s) 0,580±0,014 0,550±0,010 0,566±,0215 0,526 -0,124 (0,307) 

(+) Stance phase (%) 65,903±0,826 62,394±1,415 63,8546±1,931 0,035* -0,181 (0,134) 

(-) Swing phase (%) 33,461±0,813 37,545±1,481 37,321±1,946 0,039* 0,254* (0,034) 

Pace (-) Step length (m) 0,547±0,017 0,587±0,033 0,515±0,0176 0,126 -0,098 (0,419) 

(-) Velocity (m/s) 0,967±0,034 1,079±0,034 0,955±0,038 0,114 0,030 (0805) 

(-) 

Cadence (steps/min) 

107,050±2,35

1 

112,480±2,313 111,591±2,896 0,467 0,138 (0,256) 

Variabilit

y 

(+) SD Step time 0,085±0,005 0,083±0,011 0,127±0,030 0,402 -0,057 (0,641) 

(+) SD Step length 0,123±0,005 0,110±0,004 0,13436±0,010 0,080* 0,046 (0,704) 

(+) SD Velocity 0,226±0,010 0,233±0,007 0,282±0,0165 0,015* 0,327** (0,006

) 

Asymmet

ry 

(+) AS Step time 0,025±0,005 0,059±0,015 0,036±0,006 0,043 0,273* (0,022) 

(+) AS Step length 0,113±0,015 0,113±0,013 0,136±0,022 0,640 0,111 (0360) 

(+) AS Velocity 0,209±0,027 0,232±0,026 0,309±0,045 0,168 0,227 (0,058) 
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(-) Swing phase (%) 33,461±0,813 37,545±1,481 0,021* 0,331* (0,019) 

Pace (-) Step length (m) 0,547±0,017 0,587±0,033 0,205 0,181 (0,208) 

(-) Velocity (m/s) 0,967±0,034 1,079±0,034 0,063* 0,266 (0,062) 

(-) 
Cadence (steps/min) 

107,050±2,351 112,480±2,313 0,294 0,150 (0,299) 

Variability (+) SD Step time 0,085±0,005 0,083±0,011 0,227 -0,173 (0,231) 

(+) SD Step length 0,123±0,005 0,110±0,004 0,066* -0,263 (0,065) 

(+) SD Velocity 0,226±0,010 0,233±0,007 0,417 0,116 (0,422) 

Asymmetry (+) AS Step time 0,025±0,005 0,059±0,015 0,513 0,294* (0,038) 

(+) AS Step length 0,113±0,015 0,113±0,013 0,039* 0,96 (0,519) 

(+) AS Velocity 0,209±0,027 0,232±0,026 0,276 0,156 (0,281) 

 

Next, an intra-subject assessment is presented, showing a comparison between trials in the mixed 

group. 

Table XV. Intra-subject assessment. ρ: significance level at 10% with H0=“There are not statically differences between 

variables means of N, B and C”; (+)(-): prototypical parkinsonian motor signals. 

Intra-subject assessment 

Domain Variables MG (N) MG (B) MG (C) ρ 
(Repeated measures 

ANOVA ) Mean ± SD Mean ± SD Mean ± SD 

Rhythm (+) Step 
time (s) 

0,580±0,014 0,535±0,061 0,546±,080 0,374 

(+) Stance 
phase (%) 

63,539±2,179 65,027±5,202 63,576±2,989 0,285 

(-) Swing 
phase (%) 

35,980±2,483 34,714±5,389 36,991±3,360 0,176 

Pace (-) Step 
length (m) 

0,552±0,110 0,543±0,112 0,540±0,102 0,559 

(-) Velocity 
(m/s) 

1,036±0,198 1,031±0,206 1,00±0,171 0,279 

(-) Cadence 
(steps/min

) 

113,121±9,92
5 

114,202±11,388 112,824±14,757 0,471 
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Variabilit
y 

(+) SD Step 
time 

0,056±0,021 0,054±0,023 0,064±0,022 0,242 

(+) SD Step 
length 

0,115±0,047 0,117±0,035 0,120±0,035 0,235 

(+) SD 
Velocity 

0, 213±0,071 0,238±0,072 0,219±0,069 0,376 

Asymmet
ry 

(+) AS Step 
time 

0,019±0,016 0,038±0,041 0,023±0,013 0,728 

(+) AS Step 
length 

0,102±0,065 0,106±0,086 0,119±0,098 0,194 

(+) AS 
Velocity 

0,172±0,127 0,226±0,151 0,219±0,168 0,531 

 

The next tables show the results of the system acceptability, that is, the results of the system 

usability questionnaire. In this questionnaire there are several statements and each one of the forty 

patients select from 1 to 5 how much they agree with these statements. In the table, it is represented the 

number of patients who answered the question with the number 1, 2, 3, 4, and 5. 

Table XVI. System Usability Questionnaire 

 1 2 3 4 5 Mean 

1 - I think I would like to use this 

system frequently. 

3 1 10 11 15 3,85 

2 - I found the system unnecessarily 

complex. 

27 8 4 1  1,48 

3 - I found this system easy to use.   1 13 26 4,63 

4 - I think I would need the support 

of a technical person to be able to 

use this system. 

20 9 3 4 4 2,08 

5 - I think the various functions of 

the system are very well integrated. 

1  7 16 16 4,15 

6 - I think the system is very 

inconsistent. 

25 7 6  2 1,68 

7 - I imagine that most people 

would learn to use this system very 

quickly. 

3 3 2 11 21 4,10 

8 - I found the system very 

complicated to use. 

27 10 1 1 1 1,48 
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9 - I feel confident using the 

system. 

 1 7 17 15 4,15 

10 - I needed to learn many things 

before starting this system 

24 7 6 2 1 1,73 

11- I found the system comfortable.   2 6 32 4,75 

 

4.4 DISCUSSION 

For the inter-subject assessment, Table XII and XIII, can be seen an improvement in the rhythm 

variables. In step time, there was a decrease in the average time in the BEG and BCG when compared 

to the CG, thus improving the parkinsonian gait, which is characterized by steps that take longer. As for 

the stance phase, there is a decrease in this variable in BEG and BCG when compared to CG, approaching 

60%. This decrease shows an improvement in the parkinsonian characteristics of the patients since a 

healthy gait tends to have a stance phase close to 60%. For the swing phase, there is an increase in the 

mean values in the BEG and BCG groups when compared to the CG, approaching 40%. These results 

show an improvement in the parkinsonian gait, since healthy gait has swing phase values close to 40%. 

In these rhythm variables, only the stance phase (ρ=0,035) and the swing phase (ρ=0,039) showed 

statistically significant differences between the groups. 

In the Pace variables, there were no statistically significant changes between the groups, but there 

were conclusive differences in the means of these variables. In step length, there was an improvement in 

this characteristic in the BEG group when compared to the control group, since there was an increase in 

the average step length, and parkinsonian gait is characterized by shorter steps. In the BCG group, the 

opposite was observed, a decrease in the average when compared to the CG group. In terms of velocity, 

it was found that there is an improvement in the mean value of the BEG group compared to the CG, 

because parkinsonian gait is characterized by being slower. The opposite was verified for the BCG group, 

since there was a decrease in the average when compared to the CG. As for cadence, there was an 

improvement in this characteristic in the BEG and BCG groups when compared to the CG. Both presented 

an increase in this characteristic, thus translating into an improvement of the parkinsonian characteristics 

of the patients, since the parkinsonian gait tends to have a decrease in cadence. 

In the variability characteristics, the goal would be to decrease the mean values of the BEG and BCG 

groups when compared to the CG, since parkinsonian gait presents more variability than healthy gait. 

This was only verified for the metrics SD step time and SD step length in the BEG group. All others 
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increased when compared to the CG. There were statistically significant differences for the variables SD 

step length (ρ=0,080) and SD velocity (ρ=0,015). 

In terms of the Asymmetry metrics, it would be expected that in the BEG and BCG groups there would 

be a decrease in the mean values of the metrics when compared to the CG, since parkinsonian gait 

presents more asymmetries than healthy gait. This did not happen for any of the metrics, there was only 

an equality between the mean AS step length in the BEG group, with a decrease in its standard deviation, 

when compared to the CG, which may mean a lower dispersion of values, meaning an improvement in 

the asymmetry of this variable. There were statistically significant differences for the variable AS step time 

(ρ=0,043). 

Overall, it is concluded that BEG has achieved many improvements in metrics when compared to CG, 

some of them quite significant. While BCG, obtained only a few of these improvements, few compared to 

BEG. Thus, it can be concluded that the best method for improving Parkinsonian gait is event-

driven biofeedback, biofeedback provided at the specific event, FC of the right leg. This 

evidence proves that vibrotactile biofeedback can improve the gait performance of patients 

with Parkinson's disease, and that the vibrotactile sensory cue associated with a given gait 

event can help patients with PD reorganize their natural motor patterns and overcome gait 

impairments. 

Comparing only BEG with CG, new statistically significant differences were found. 

There were significant differences in stance phase (ρ=0,009), swing phase (ρ=0,021), 

velocity (ρ=0,063), SD step length (ρ=0,066)  and AS step length (ρ=0,039), translating into a 

more significant improvement of these variables in the BEG. 

As for the Pearson correlation, it was found that the metrics that correlated best with the groups, CG, 

BEG and BCG, were stance phase, swing phase, SD step length, SD velocity, and AS step time, when 

comparing the three trial types. When only comparing CG to BEG the metrics that best related to the 

group were stance phase, swing phase, velocity, SD step length and AS step length. 

For the mixed group, one would expect the metrics resulting from event-driven biofeedback to have 

an improvement over the metrics resulting from the trial without biofeedback. The same should be true 

for the metrics from the continuous biofeedback, these should improve over the trial without biofeedback 

but should improve less than those from the event-driven biofeedback. However, this only happens for 

step time. This may be due to the execution of the trials all in a row in a short period of time and to the 

small sample size. As for the ANOVA results, there were no statistically significant differences between 

the trials in the mixed group. 
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In terms of usability, positive responses were obtained. Most patients found the system comfortable, 

easy to use, and would not mind using it independently. 

4.5 CONCLUSION 

With this study, it was possible to conclude which method of providing vibrotactile biofeedback to 

patients was best. Closed-loop cueing, i.e. BEG, had the best results, since most of the gait metrics 

improved in the patients with PD, and this improvement was very significant. BEG showed better results 

when compared to open-loop cueing, i.e. BCG, and was therefore the better of the two methods. This 

evidence proves that vibrotactile biofeedback can improve the gait performance of patients 

with Parkinson's disease, and that the vibrotactile sensory cue associated with a given gait 

event can help patients with PD reorganize their natural motor patterns and overcome gait 

impairments. 

The study of the mixed group did not allow to conclude anything about the aforementioned 

hypothesis, the best results were not obtained. In the future it is intended to repeat this study with more 

patients and with a more spaced trial repetition. 

As for the acceptability of the system, it can be concluded that it is quite easy and intuitive to use. 

Most patients accepted the use of the system and would not mind using it more often.
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5.1 INTRODUCTION 

This chapter describes the whole process of making +sMotion a tool to support the diagnosis of 

motor phases of PD, through the implementation of artificial intelligence. (+sC-support). The hypotheses, 

research questions, study design, and the entire elaboration of the developed study will be discussed. 

5.1.1 STUDY PURPOSE 

The first goal of this chapter, was to develop a statistical study aiming to verify if +sMotion has the 

ability to distinguish healthy from PD patients and to distinguish PD patients from each other according 

to their stage of progression and evolution of their disease, using the scales normally used for this, PDQ-

39 and UPDRS-III. 

Secondly, it was intended to develop several AI models and verify which ones are best suited for 

diagnosing motor disability in PD (given by the UPDRS-III scale), distinguish between patient and non-

patient impaired gait and biomark/stratify motor disabilities levels. To do this, we acquired data from the 

patients, either healthy or with different levels of disability given by the UPDRS-III scale. These data was 

then used in different methods until it was reached the best results, according to the specified metrics. It 

was used two different datasets, several machine learning and deep learning methods, several functions 

for data preprocessing and several feature selection methods. These previous processes were studied to 

finally obtain the model with the best combinations and best results. 

 

5.2 METHODOLOGY 

5.2.1 HYPOTHESIS, RESEARCH QUESTIONS & STUDY DESIGN 

In this chapter, we intend to answer to the research questions “Can the +sMotion be a biomarker of 

motor impairments in Parkinson’s disease?” and ”Can  the +sMotion be a biomarker of quality of life in 

Parkinson’s disease measured by patients’ motor impairments?”, through a statistical analysis. The 

research questions "Is +sMotion able to distinguish between patient and non-patient impaired gait?" and 

“Is +sMotion able to biomark/stratify motor disabilities levels?” are answered through an AI-based 

analysis. The underlying hypothesis was that the +sMotion can be a biomarker of motor impairments in 

PD and a biomarker of quality of life in PD measured by patients’ motor impairments. In order to verify 

the hypothesis, it was conducted a cross-sectional study. 
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5.2.1.1 EXPERIMENTAL SETUP & PARTICIPANTS 

For the study, forty patients were assigned to three groups, according to the scale used. To verify that 

+sMotion can be a biomarker of motor impairments in PD, three groups of PD, plus a control group of 

healthy, were used: 

• UPDRS III Low (L): 11 participants who had a score of UPDRS-III between 1 and 12; 

• UPDRS III Middle (M): 15 participants who had a score of UPDRS-III between 13 and 23; 

• UPDRS III High (H): 14 participants who had a score of UPDRS-III higher than 23; 

• Control Group: 10 age-matched healthy subjects; 

The sociodemographic characteristics of the PD patients are described in Table X in Chapter 4. 

In Table XVII are the socio-demographic characteristics of the healthy people used in the control group, 

values presented as mean(standard deviation). 

Table XVII. Control group characteristics. 

Characteris

tics 

H-Group 

Gender Female: N=6 

Male: N=7 

Age [years] 52.92(10.47) 

Height [cm] 166.69(8.41) 

Weight [Kg] 72.92(15.41) 

 

Table XVIII. Groups used for statistical and AI methods. 

Group Number of patients 

UPDRS III Low 11 

UPDRS III Middle 15 

UPDRS III High 14 

Healthy Control Group 10 

 

To verify that +sMotion can be a biomarker of quality of life in PD, three groups were used: 
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• PDQ39 Never have (ND) difficulties in performing daily activities: 16 participants who had a 

score of PDQ-39 between 0 and 33; 

• PDQ39 Sometimes have (SD) difficulties in performing daily activities: 14 participants who 

had a score of PDQ-39 between 34 and 66; 

• PDQ39 Always have (AD) difficulties in performing daily activities (66-100): 10 participants 

who had a score of PDQ-39 between 66 and 100; 

The sociodemographic characteristics of the PD patients are described in Table X in Chapter 4. 

Regarding the trials protocol, all patients walked forward in a straight line over 10 meters (two/three 

times) without biofeedback. The circuit used is at 2CA Braga, Academic Clinical Center of Braga Hospital, 

and the path is illustrated in Figure 30. 

Table XIX. Groups used for statistical methods. 

 

 

 

Figure 30. Protocol, walking forward in a straight line over 10 meters. 

This circuit was made using +sMotion in order to obtain metrics from the domains of rhythm, pace, 

variability and asymmetry. 

Group Number of patietns 

PDQ39 ND 16 

PDQ39 SD 14 

PDQ39 AD 10 
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5.2.2 METHOD 1: HOW STATISTICAL ANALYSIS SUPPORTS DIAGNOSTIC ASSESSMENT OF 

MOTOR PHASES OF PARKINSON'S DISEASE AND QUALITY OF LIFE MONITORING 

5.2.2.1 DATA ANALYSIS 

To test whether +sMotion can be a biomarker of motor impairments and quality of life in PD, 

several statistical studies were conducted to compare the metrics of rhythm, pace, variability and 

asymmetry domains with the evolution on the respective scales, PDQ-39 and UPDRS-III. To this end, a 

comparison was first made between the healthy group and the group of patients with PD. It was performed 

a descriptive statistical analysis of the metrics of both groups to verify, mainly, the differences between 

the means and the standard deviations. Then, normality tests were performed for each of the metrics in 

each group, and, since they were essentially non-normally distributed, a Mann-Whitney test was 

performed to check for significant differences between the metrics in the healthy group and the group 

with PD.  

Subsequently, a comparison was made between the metrics of the different UPDRS-III groups, 

Low, Middle and High group. A descriptive statistic was performed to check the differences between the 

metrics of both groups, mainly differences in the means. The study of the normality of the metrics for 

each group was applied, and, finding that most show a non-normal distribution, a Kruskal-Walli’s test was 

performed to find the significant differences in the metrics of the different UPDRS-III groups. A Spearman 

correlation was performed to quantify the associations between the metrics and between the metrics and 

the scales used in the study, as shown in Appendix’s. 

For the PDQ-39 scale, the process performed was the same as for the UPDRS-III, only there was 

a difference in the groups that were distributed by the ND, SD, and AD groups. 

5.2.2.2 RESULTS 

The next tables refer to the difference of the metrics between PD and healthy people and between 

the different levels of motor impairment of Parkinson's, UPDRS-III Low, Middle and High. Table XXI shows 

the comparison between PD and healthy people. 

Table XXI. Significance test between PD vs Healthy. ρ: significance level at 5% with H0=“There are not statically differences 

between variables means of PD and Healthy"; (+)(-): prototypical parkinsonian motor signals. 

Significance test between PD vs Healthy 

Domain Variables PD HEALTHY ρ 
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Mean ±SD Mean ±SD (Mann-
Whitney test) 

Rhythm (+) Step time (s) 0,562 0,085 0,542 0,030 0,776 

(+) Stance phase 
(%) 

64,458 3,008 61,444 2,616 0,000 

(-) Swing 
phase (%) 

33,974 4,640 36,455 3,052 0,003 

Pace (-) Step length 
(m) 

0,547 0,116 0,549 0,098 0,864 

(-) Velocity (m/s) 0,991 0,205 1,012 0,153 0,816 

(-) Cadence 
(steps/min) 

110,528 16,495 111,902 7,143 0,831 

Variability (+) SD Step time 0,104 0,044 0,063 0,019 0,000 

(+) SD Step 
length 

0,064 0,029 0,043 0,022 0,000 

(+) SD Velocity 0,186 0,071 0,117 0,036 0,000 

Asymmetry (+) AS Step time 0,117 0,093 0,050 0,033 0,000 

(+) AS Step 
length 

0,051 0,039 0,028 0,034 0,000 

(+) AS Velocity 0,196 0,160 0,080 0,058 0,000 

 

Table XXIII shows the relationship between the metrics in the different degrees of disease disability. 

Table XXIII. Significance test between UPDRS-III groups. ρ: significance level at 5% with H0=“There are not statically 

differences between variables means of UPDRS-III Low (L), Middle (M) and High (H)”; (+)(-): prototypical parkinsonian motor 
signals. 

Domain Variable UPDR
S 

Mean ±std ρ   ρ Group combinati
on 

Rhythm  Step time (s) L 0,529 0,051 0,011 0,06 L – M 

M 0,573 0,087 0,010 L – H 

H 0,581 0,090 0,747 M – H 

Stance phase (%)  L 63,365 2,931 0,438 0,549 L – M 

M 64,406 2,853 0,448 L – H 

H 65,148 2,786 0,979 M – H 

Swing phase (%) 
  

L 36,329 3,386 0,041
1 

0,303 L – M 

M 34,872 3,128 0,031 L – H 

H 31,979 4,629 0,474 M – H 

Pace 

  

Step length (m) 
   

L 0,588 0,082 0,012
8 

0,247 L – M 

M 0,559 0,119 0,008 L – H 

H 0,516 0,109 0,280 M – H 

Velocity (m/s) 
   

L 1,119 0,113 0,000 0,005 L – M 

M 0,992 0,211 0,000 L – H 
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H 0,911 0,201 0,295 M - H 

Cadence(steps/mi
n) 
   

L 115,41
9 

9,807 0,013
5 

0,055 L – M 

M 107,66
2 

15,25
9 

0,014 L – H 

H 107,65
0 

17,47
1 

0,835 M – H 

Variability 

  

SD step length 

   
L 0,0926 0,041 0,220 0,594 L – M 

M 0,102 0,041 0,191 L – H 

H 0,111 0,047 0,674 M – H 

SD step time 

   
L 0,055 0,026 0,032 0,665 L – M 

M 0,059 0,024 0,030 L – H 

H 0,0730 0,029 0,161 M – H 

SD velocity 

   
L 0,183 0,073 0,192 0,896 L – M 

M 0,169 0,055 0,456 L – H 

H 0,201 0,076
8 

0,178 M – H 

Asymmetr
y 

  

AS step length 

   
L 0,105 0,072 0,555 0,687 L – M 

M 0,115 0,085 0,5460 L – H 

H 0,134 0,112 0,965 M – H 

AS step time 

   
L 0,047 0,036 0,036 0,806 L – M 

M 0,047 0,046 0,206 L – H 

H 0,056 0,030 0,032
5 

M – H 

AS velocity 

   
L 0,187 0,160 0,170 0,933 L – M 

M 0,171 0,134 0,384 L – H 

H 0,239 0,178
7 

0,166 M – H 

 

 

To better verify the evolution of the averages of the metrics with the progression of disability, 

portrayed by the UPDRS-III scale, polar plots were produced. 
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Figure 31. UPDRS-III Polar Plots. 

To quantify the association between gait-related metrics and the UPDRS, the correlation matrix 

resulting from a Spearman’s correlation, is presented in Appendix I.  

Table XXIV depicts the differences of the metrics with the evolution of the PDQ-39 scale, that is, 

the relationship between the metrics and the level of quality of life. 

Table XXIV. Significance test between PDQ-39 groups. ρ: significance level at 5% with H0=“There are not statically 

differences between variables means of PDQ-39 ND, SD and AD”; (+)(-): prototypical parkinsonian motor signals. 

Domain Variable PDQ39 Mean ±std p  p Group combination 

Rhythm Step time (s) ND 0,528 0,045 0,001 0,003 ND– SD 

SD 0,580 0,070 0,013 ND – AD 

AD 0,596 0,115 0,991 SD – AD 

Stance phase (%) ND 1,055 0,090 0,002 0,003 ND– SD 

SD 1,160 0,141 0,016 ND – AD 

AD 1,188 0,231 0,981 SD – AD 

Swing phase (%) 
  

ND 63,192 2,804 0,080 0,073 ND– SD 

SD 64,856 1,934 0,347 ND – AD 

AD 65,612 2,531 0,830 SD – AD 

Pace Step length (m) 
   

ND 36,258 2,885 0,000 0,003 ND– SD 

SD 34,677 2,554 0,000 ND – AD 

AD 30,480 4,178 0,658 SD – AD 

Velocity (m/s) 
   

ND 0,571 0,088 0,064 0,919 ND– SD 

SD 0,565 0,121 0,061 ND – AD 

AD 0,504 0,104 0,151 SD – AD 

Cadence(steps/min) 
   

ND 1,138 0,177 0,065 0,938 ND– SD 

SD 1,130 0,241 0,064 ND – AD 

AD 1,008 0,206 0,144 SD – AD 
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Variability  SD step length ND 1,079 0,103 0,000 0,250 ND– SD 

SD 0,998 0,243 0,000 ND – AD 

AD 0,872 0,191 0,011 SD – AD 

SD step time ND 114,968 9,025 0,004 0,008 ND– SD 

SD 106,019 12,945 0,028 ND – AD 

AD 106,790 21,734 0,990 SD – AD 

SD velocity ND 0,087 0,041 0,000 0,071 ND– SD 

SD 0,105 0,041 0,000 ND – AD 

AD 0,126 0,046 0,114 SD – AD 

Asymmetry  AS step length  ND 0,049 0,024 0,000 0,008 ND– SD 

SD 0,066 0,020 0,000 ND – AD 

AD 0,080 0,030 0,190 SD – AD 

AS step time ND 0,155 0,060 0,000 0,010 ND– SD 

SD 0,194 0,063 0,000 ND – AD 

AD 0,218 0,074 0,382 SD – AD 

AS velocity ND 0,112 0,094 0,656 0,629 ND– SD 

SD 0,200 0,175 0,303 ND – AD 

AD 0,239 0,181 0,460 SD – AD 

 

To better verify the evolution of the averages of the metrics with the progression of the quality of 

life, portrayed by the PDQ-39 scale, polar plots were produced. 

 

Figure 32. PDQ-39 Polar Plots. 

To quantify the association between gait-related metrics, the PDQ-39 and UPDRS-III, the correlation 

matrix resulting from a Spearman’s correlation, is presented in Appendix II.  
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5.2.2.3 DISCUSSION 

To verify whether +sMotion can be a biomarker of motor impairments, first were checked the 

differences obtained between the PD patients and the healthy control group. All the variables, in all the 

domains (rhythm, pace, variability and asymmetry), obtained average values similar to those found in the 

literature [13], [15], [46], [47], [50], [51]. For rhythm, step time is lower in healthy patients than in PD 

patients, stance phase is closer to 60% in healthy patients than in PD patients, and swing phase is closer 

to 40% in healthy patients than in PD patients. For the Pace, the step length of PD patients is slightly 

lower than that of healthy patients, the speed of PD patients is lower than that of healthy patients, and 

the average cadence value is also lower when compared to healthy patients. Considering variability, the 

expected results were also verified. All metrics presented a mean higher in PD patients compared to the 

healthy control group, since they tend to have a gait with higher variability. The same was verified for the 

asymmetry, since the patients with PD present average asymmetry values higher than the values of the 

healthy group. These results prove that +sMotion can distinguish between patients with PD and healthy 

individuals. 

Statistically significant differences between groups were obtained in the metrics stance phase (p=0.000), 

swing phase (p=0.003), SD step time (p=0.000), SD step length (p=0.000), SD Velocity (p=0.000), AS 

step time (p=0.000), AS step length (p=0.000) and AS velocity (p=0.000). This proves that +sMotion 

can distinguish PD patients from healthy ones. 

Comparing only PD patients, with different levels of disability given by the UPDRS-III 

scale, it was found that the metrics have a pattern of evolution with the progression of disease disability, 

as in the literature [13]. Step time increases as the respective scale increases, which is as expected, 

since patients with more difficulty tend to take longer to perform the gait. As for the stance phase, there 

is an increase with the progression of the scale, this is to be expected since the worse the ability to 

perform the gait, the further away from the normal 60%. The swing phase tends to decrease as expected, 

since the worse the degree of disability, the further away from the normal 40% will be. For step length, 

there is a decrease with disease progression, as expected, since with increasing PD characteristics the 

shorter the steps will be. The speed tends to decrease with the progression of the disease, the more 

advanced the disability caused by PD, the slower the patients tend to become. For cadence, a decrease 

was observed as the scale increased, which is expected, since the larger the scale, the greater the 

disability, and therefore the slower the movements of the patients, steps that take longer, leading to fewer 

steps per minute. For the variability and asymmetry metrics, there is a general increase with disease 

progression, that is, the higher the scale, the greater the asymmetry and variability of the patients' metrics. 
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This was not true only for SD velocity and AS velocity, which decreased from L to M and then increased 

from M to H, which could be related to the small sample size, giving some randomness in the results.  

All the evolutions of the metrics described can be better observed with the help of the polar plots, which 

allow us to verify these patterns of increase or decrease as the UPDRS-III scale progresses. There are 

statistically significant differences in step time (p=0.011), swing phase (p=0.041), step length (p=0.013), 

velocity (p=0.000), cadence (p=0.014), SD step time (p=0.032) and AS step time (p=0.036). Proving 

that +sMotion can be a biomarker of motor impairments. 

To verify if the +sMotion can be a biomarker of quality of life in PD, it was done the same 

study but for the PDQ-39 scale. It was found that the metrics show a pattern according to the progression 

of the scale. For step time, there is an increase, which was expected since when this metric tends to 

worsen according to the typical evolution of Parkinson’s, quality of life tends to decrease. For the stance 

phase, there was an increase with the progression of the scale, that is, a departure from the normal 60% 

with the degradation of quality of life, which was expected since the more aggravated the parkinsonism, 

the farther the stance phase will be from normal and consequently the worse the quality of life of the 

patient. As for the swing phase, there is a decrease, a departure from the normal 40%, with the 

progression of the scale, which was expected, since the more aggravated the parkinsonism, the worse 

the swing phase and consequently the worse the patient's quality of life. For step length, a decrease was 

observed with the evolution of the scale, since the more aggravated the parkinsonism is, the smaller the 

step length will be, making the quality of life of the patients more and more difficult. The same is true for 

speed and cadence, these have a decrease with increasing scale, noting that the slower the steps are 

and the fewer steps patients take per minute, the worse their quality of life. For variability and asymmetry, 

an increase is generally observed with the progression of the scale, because with the progression of 

Parkinson's, patients tend to have a more variable and asymmetric gait, causing their quality of life to 

worsen.  

All the metric patterns described above can be best observed in the polar plots. 

In this PDQ-39 scale, some metrics were found to have statistically significant differences in relation to 

the progression of the scale, these were step time (p=0.001), stance phase (p=0.002), step length 

(p=0.000), all the metrics in the variability domain (p=0.000), AS step time (p=0.000) and AS step length 

(p=0.000). Proving that +sMotion can be a biomarker of quality of life in PD. 

 This evidence points to the possibility of using these metrics in AI, since statistically significant 

differences were found. These patterns in the evolution of metrics depending on whether you are sick or 

not, or the degradation of metrics as the scales increase, allow to use AI to distinguish patients. 
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5.2.3 METHOD 2: ARTIFICIAL INTELLIGENCE-BASED APPROACH TO SUPPORT 

DIAGNOSTIC ASSESSMENT OF MOTOR PHASES OF PARKINSON'S DISEASE 

5.2.3.1 DATASET PREPARATION, PRE-PROCESSING AND FEATURE SELECTION 

Two different types of datasets were prepared, one with the calculated metrics associated with 

the subjects' gait (non-sequential features), mainly for machine learning, and another for deep learning 

methods, the latter's data being extracted directly from the patients' inertial signals (sequential features). 

In order to support diagnostic assessment of motor phases of PD, the UPDRS-III scale was used 

for this purpose, making the output labels of the AI methods the respective value of this scale, Low, 

Middle, High or zero in case it is healthy.   

For this purpose, a script was made, whose flowchart is shown in Figure 33, whose final result 

gives rise to two types of datasets, the one for the simpler methods, the dataset with non-sequential 

features, and the dataset for the more complex methods, the dataset with sequential features. 
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Figure 33. Flowchart of the script for creating datasets. 

This script starts by creating the variables that will store the datasets and insert the directories 

for the inertial data and the corresponding patient ICs and FCs. This code will then load the date of the 

first patient, their ICs and FCs and their disease information, UPDRS-III and PDQ-39 scales. If the dataset 

wanted is sequential, it calculates the sequential features and puts them into temporal windows with the 

desired size and overlap and then add them to the dataset storage variable. If sequential features were 

not wanted, the code calculates the non-sequential metrics that depend on the gait of the patients and 

add them to the dataset storage variable. Finally, it repeats this process for all patients, until the data for 

all patients is part of the final dataset. 

This script was performed in Matlab2020a and examples of the outputs can be seen in Figure 

34 and 35. 
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Figure 34. Example of the non-sequential dataset. 

 

Figure 35.Example of the sequential dataset. 

As can be seen, in the non-sequential dataset each row corresponds to a trial, and each column 

corresponds to the non-sequential metric/feature. Thus, each value is the average of that metric obtained 

in that trial. The last column corresponds to the label, each patient's UPDRS-III value, being zero for the 

healthy ones, 1 for Low, 2 for Middle and 3 for High. This type of dataset was used in the SVM, KNN and 

RF models and the non-sequential features used are displayed in Figure 36. 

 

Figure 36. Non-sequential features. 

For the sequential dataset, the first column corresponds to the values depending on the size of 

the time window and the overlap, and the second column corresponds to the patients’ label, UPDRS-III 

value of the patient in question, being zero for the healthy ones, 1 for Low, 2 for Middle and 3 for High. 

For each time window, is obtained a matrix where the number of rows corresponds to the size of the time 

window and the number of columns is the number of calculated sequenced features. The calculated 
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sequential features are shown in Figure 37. This type of dataset will be used for the LSTM and CNN 

models. 

 

Figure 37. Sequential features. 

For preprocessing it was done data normalization using two methods. The first is min-max, for 

every feature, the minimum value of that feature gets transformed into a 0, the maximum value gets 

transformed into a 1, and every other value gets transformed into a decimal between 0 and 1. The second 

method used was the z-score, process of normalizing every value in a dataset such that the mean of all 

of the values is 0 and the standard deviation is 1. 

For feature selection, either all features were used or two different feature selection methods were 

used. The first method used was PCA [63], that is a popular linear feature extractor used for unsupervised 

feature selection based on eigenvectors analysis to identify critical original features for principal 

component. In a nutshell, PCA aims to find the directions of maximum variance in high-dimensional data 

and projects it onto a new subspace with equal or fewer dimensions than the original one. The second 

method used was mRMR, that is a feature selection approach that tends to select features with a high 

correlation with the class (output) and a low correlation between themselves [64]. 

 

5.2.3.2 TRAINING MODELS PIPELINE CONFIGURATION 

Next, the pipeline of the model training/testing process will be schematized. Figure 38 shows a 

flowchart with this schematization. 
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Figure 38.Schematic of the code created for training and testing the models. 

The code used belongs to a framework that was created by the BiRD Lab. In this framework the 

necessary changes were made for the implementation of this work. The grid-search function was 
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improved, the methods were changed in order to work for four labels and the whole process of testing 

the models was created. 

The code used, implemented in Matlab 2020a, allows to initially select the parameters to create 

the models, that is, it allows to choose which normalization method, feature selection and evaluation 

method are wanted. Next it can be chosen the AI method: LSTM, CNN, SVM, KNN and RF. With the model 

chosen, it can be selected its parameters or choose to grid search them. With all this information, the 

code can then perform the task of training the model. Initially, the dataset is loaded, which can be 

sequential or non-sequential, depending on the method chosen. This dataset undergoes the selected 

changes in terms of normalization and feature selection or not, and, finally, it undergoes a datasplit that 

separates the dataset in two, 70% for training and 30% for testing [65]. The training dataset will then be 

used for cross-validation, which in the case of this study is a 10 k-folds division with 10 repetitions [66]. 

During this process, if grid search was selected, tuning of the model's hyperparameters will occur, to 

obtain the best possible accuracy results for the model. The 10 models were then created and their 

average performance is calculated, thus giving the CV-model performance. At the end of this process, a 

final model is created with the complete training dataset and consecutively tested, to get the total 

performance of this final model. 

 

5.2.3.3 PERFORMANCE EVALUATION 

To compare the models and find out which are the best, several performance metrics were 

calculated, the Matthews Correlation Coefficient (MCC), accuracy (ACC), sensitivity (SENS), and F1 score. 

All of these were calculated using the confusion matrices, both the one resulting from training and testing. 

All these metrics can be calculated through True Positives (TP), True Negatives (TN), False Positives (FP) 

and False Negatives (FN), obtained from the confusion matrices. Next, it is demonstrated the formulas 

used for this calculation. Note that our confusion matrix will be a 4x4 matrix, since it was used four labels, 

0 in case of being healthy, 1 for the mildest stage of PD disability given by the UPDRS-III scale, 2 for the 

intermediate state and 3 for the highest state.  

For the MCC, F1 score, ACC and SENS the formulas used were: 

 

Figure 39. Formula for calculating the MCC. 
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Figure 40. Formula for calculating the MCC. PPV-precision TPR- sensitivity. 

 

Figure 41. Formula for calculating the Acc. 

 

Figure 42. Formula for calculating the Sens. 

 

5.2.3.4 RESULTS: TRAINING PERFORMANCE AND TESTING RESULTS 

This section shows the performance, both training and testing, of the various models and possible 

combinations of preprocessing and feature selection. Due to the large number of combinations, only the 

best results of hyperparameters tunning of each model are shown in the next table. All results are 

displayed in the Appendices.
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Table XXV. AI results, training and test. 

Model Dataset Norm. 
Feature 

selection 
Model parameters 

Cross-

validation 

Results 

Train Test 

MCC SENS F1 ACC MCC SENS F1 ACC 

SVM 
No 

sequential 

Min-

Max 
PCA Polynomial 3 

10 k-fold 

0.88 91.50% 0.91 95.24% 0.83 87.26% 0.86 92.88% 

KNN 
No 

sequential 

Min-

Max 
All Weighted 0.92 93.85% 0.94 96.77% 0.88 91.40% 0.91 95.42% 

RF 
No 

sequential 
Z-score mRMR Linear 0.51 63.79% 0.63 77.57% 0.68 75.59% 0.76 86.20% 

LSTM Sequential - - 

step time; hidden layers=150; batch 

size=64; optimizer=adam; layers=3: lstm + 

layers 1 input + 1 fullyconected softmax; 

0.97 98.03% 0.98 98.22% 0.99 99.34% 0.99 99.42% 

CNN Sequential - - 

stride time; hidden layers= 150; batch 

size=64; optimizer=adam; layers=3: conv+ 

layers 1 input + 1 fullyconected softmax; 

0.97 97.90% 0.98 98.13% 0.98 98.77% 0.99 98.93% 



 

 128 

5.2.3.5 DISCUSSION 

With this study of AI, it can be proven through the best results, that deep learning methods show 

better results, both in training and testing. This may be due to the fact that deep learning uses the 

sequential datasets that comprise the raw data. In the non-sequential datasets, were used non-sequential 

data that present parameters calculated through the patient's gait, sometimes these metrics can be more 

similar between patients of different states in the PD scales. Also, the healthy and the PD patients in the 

first state tend to show more subtle differences in these parameters. When it comes to raw data, you can 

detect more differences in the patients' signals, hence deep learning shows better results.  

As for the non-sequential methods, the best method appears to be KNN (ACC=96.77%), followed by 

SVM (ACC=95,24%) and lastly RF (ACC=77.57%). For the SVM method, one notices a marked 

improvement using polynomial and Gaussian functions, this is due to the fact that four different label 

types were being classified, making a linear function not sufficient. 

Classification was always better using normalization and tended to be better using min-max, only in 

RF was z-score noted to be more effective than min-max. As for the feature selection methods, it is not 

possible to say which is the best, since this depends on the machine learning method used. 

As for the deep learning methods, both CNN (ACC=98.13%) and LSTM (ACC=98.22%) show similar 

results, however CNN required much more computational effort in training. 

In order to improve performance, relative to the datasets, more data would be needed from both PD 

and healthy patients. Another factor that could influence performance would be to use more balanced 

data, that is, to use the same number of subjects and the same amount of data for each label, thus 

having a more balanced representativeness. 

Another important factor to improve performance would be to test more architectures in the models, 

test more parameter combinations, vary the number and type of layers or even test new IA models. 

5.3 CONCLUSIONS 

Through the statistical study, it was proven that +sMotion was able to distinguish PD from healthy 

people. Furthermore, it was verified that the metrics of the patients suffer a specific evolution with the 

evolution of the UPDRS-III and PDQ-39 scales, that is, with the progression of the disease, the metrics 

have a specific evolution that can be detected by +sMotion. Thus, +sMotion can biomark the motor 

impairments and the quality of life of patients, thus proving that the metrics obtained can be used in AI 

methods to classify and stratify patients in the scales. In the AI methods obtained, it has been proven 

that it is possible for these to be used to classify patients. Better results were obtained for deep learning 
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methods when compared to machine learning methods, and the best method can be considered LSTM, 

since it has less computational effort. 



 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 CONCLUSIONS AND 

FUTURE DIRECTIONS 



 
 

 
 

In this thesis the intended and planned objectives were achieved.   

RQ.1 “How have the WBD been implemented, applied and clinically validated in PD to 

mitigate gait associated impairments?” 

An extensive literature review was conducted to understand how WBDs were being implemented, 

applied, and clinically validated. In this review, several limitations were identified and how they could be 

addressed. Firstly, it was found that the arrangement of sensors and actuators is very elaborate and 

needs to be simplified by using only one sensor and actuators in the area where the sensor is placed, so 

that the system is comfortable and fully wearable. It was found that there is still little scientific evidence 

on which is the best strategy to provide biofeedback, so a study is needed to analyze the performance of 

patients using different biofeedback strategies to verify the best way to provide it. There is also a need to 

verify the extent that biofeedback has on patient performance, that is, we need to increase the study of 

the effects of biofeedback to see the effect it has on more metrics. 

RQ.2 “How have the AI-based and statistical methods been used for PD monitoring?” 

An extensive literature review was conducted to understand how statistical and IA methods have 

been used to monitor PD. In this review, several limitations and ways to improve them were identified. It 

was found that in data collection, multiple sensors are used and their configurations are elaborate. This 

can cause discomfort to the patient and make the data collection less than ideal, so data collection 

systems need to be optimized so that it features only one sensor and is comfortable and fully wearable. 

In addition, data collection protocols tend not to contemplate day-to-day activities in home settings. This 

would be improved by having studies performed by patients at home in their comfort space, thus 

improving the quality of the data obtained. Another limitation of the studies conducted is the lack of the 

use of statisticians and IA with QoL scales. As we know, PD has profound effects on the quality of life of 

patients, so it is necessary to develop further studies to verify the consequences of the evolution of PD on 

the QoL of patients, using specific scales for this purpose (PDQ-39). 

RQ.3 “Can gait event-driven biofeedback loop integrated on a WBD help PD patients to 

mitigate gait-associated disabilities?” 

In order to further improve +sMotion to assist people with PD, statistical studies have been done in 

order to understand what effects biofeedback has on patients. Good results were obtained, since it was 

concluded that feedback can improve the gait parameters of patients, with event-driven biofeedback being 

better than continued biofeedback. However, there were no positive conclusions to be drawn from the 

study of the statistic in the mixed group. 
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RQ.4 “Can the wearable motion LAB outcomes contribute as a biomarker of motor 

stage and quality of life in PD supported by a statistical analysis?” 

A validation of +sMotion was performed with end users, i.e. by using it on healthy patients and on 

patients with different levels of PD scales, it was obtained several metrics of their gait. Through the 

statistical study of these same metrics, it was proven that +sMotion can be used as a tool for gait 

monitoring. The results were very positive, since statistically, the metrics calculated by +sMotion were 

sufficient to distinguish PD from healthy individuals, and, in addition, to distinguish patients at different 

levels of the UPDRS-III and PDQ-39 scales, and thus be able to serve as a biomarker of motor stage and 

quality of life in PD. 

RQ.5 “Which AI model based on wearable motion LAB produces best results as a 

biomarker of motor stages (UPDRS-III score) in PD?” 

For the AI application, +sMotion was able to serve as a tool to classify the level of PD based on the 

patients' gait, aiming to contribute to +sC-support module. The +sMotion was able to use machine 

learning and deep learning methods to classify the patients' disease level based on the parameters 

measured. In this context it can be concluded that the deep learning methods worked better than the 

machine learning methods, this factor may be due to the method itself but also the features used in both. 

In terms of methods LSTM would be the best due to its reduced computational effort compared to CNN. 

Future work 

In future work, the mixed group, on the vibrotactile biofeedback study, must be improved, by 

reducing outliers, using more parameters, and through a re-testing and follow-up.  

For the IA, it is planned to use more feature selection and normalization methods, introduce MLP 

and LDA, and try to use AI to detect gait events. Furthermore, a more exhaustive DL study needs to be 

introduced, using more combinations of architectures and parameters, in order to improve the results. 

Overall, the use of more data from both PD and healthy patients will be necessary in order to improve 

the results and draw better conclusions. 
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Figure 43. Appendix I. Spearmans correlation – UPDRS-III. 

 

Figure 44. Appendix II. Spearmans correlation - UPDRS-III and PDQ-39. 

 

 

 

 

 

 

 



 
 

 
 

Table XXVI. SVM results. 

Model Normalization 
Feature 

Selection 

Model 

Parameters 

Cross-

Validation 

Grid 

Search 

Train Test 

ACC SENS MCC ACC SENS MCC 

SVM 

Min-Max 

All 

Linear 

10 k-fold with 10 

repetitions 
ON 

86.86% 76.93% 0.69 93.05% 88.27% 0.84 

Polynomial 2 93.58% 88.83% 0.84 92.88% 87.60% 0.83 

Polynomial 3 94.13% 89.83% 0.85 94.26% 90.93% 0.87 

Gaussian 94.61% 90.61% 0.86 96.62% 94.40% 0.92 

Z-score 

Linear 84.88% 74.28% 0.65 93.05% 88.27% 0.84 

Polynomial 2 92.64% 87.37% 0.82 94.24% 90.38% 0.87 

Polynomial 3 92.82% 87.94% 0.83 93.05% 88.88% 0.84 

Gaussian 93.33% 88.52% 0.83 96.62% 94.39% 0,92 

Min-Max 

PCA 

Linear 84.57% 74.16% 0.64 82.62% 71.63% 0.61 

Polynomial 2 94.42% 89.96% 0.86 90.38% 84.58% 0.78 

Polynomial 3 95.24% 91.50% 0.88 92.88% 87.26% 0.83 

Gaussian 94.20% 89.56% 0.85 95.40% 93.04% 0.89 

Z-score 

Linear 84.04% 74.20% 0.64 85.46% 77.50% 0.68 

Polynomial 2 92.10% 86.41% 0.81 94.26% 90.83% 0.87 

Polynomial 3 94.19% 89.91% 0.86 94.26% 90.83% 0.87 

Gaussian 93.66% 88.93% 0.84 94.26% 90.83% 0.87 

Min-Max 
mRMR 

Linear 78.47% 65.49% 0. 53 89.36% 82.11% 0.75 

Polynomial 2 72.71% 61.92% 0.43 93.04% 88.49% 0,84 

Polynomial 3 76.72% 64.90% 0.50 91.85% 85.96% 0.81 

Gaussian 94.91% 91.31% 0.87 94.34% 91.84% 0.87 

Z-score Linear 81.05% 68.73% 0.58 89.23% 83.97% 0.76 
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Polynomial 2 86.76% 79.43% 0.70 86.42% 82.81% 0.71 

Polynomial 3 79.15% 70.71% 0.55 80.39% 79.17% 0.60 

Gaussian 89.43% 81.21% 0.74 87.75% 80.87% 0.72 

 

Table XXVII. KNN results. 

Model Normalization 
Feature 

Selection 

Model 

Parameters 

Cross-

Validation 

Grid 

Search 

Train Test 

ACC SENS MCC ACC SENS MCC 

KNN 

Min-Max 

All 

Weighted 

10 k-fold with 10 

repetitions 
ON 

96.77% 93.85% 0.92 95.42% 91.40% 0.88 

Equal 96.77% 93.85% 0.92 95.42% 91.40% 0.88 

Z-score 
Weighted 94.58% 90.18% 0.87 97.78% 95.45% 0.94 

Equal 94.68% 90.40% 0.87 97.80% 95.50% 0.94 

Min-Max 

PCA 

Weighted 96.45% 93.04% 0.91 96.62% 93.21% 0.91 

Equal 96.45% 93.04% 0.91 96.62% 93.21% 0.91 

Z-score 
Weighted 93.37% 87.87% 0.83 96.67% 95.31% 0,92 

Equal 93.81% 88.47% 0.85 96.62% 93.67% 0,92 

Min-Max 

mRMR 

Weighted 94.28% 89.01% 0.86 94.29% 90.77% 0.87 

Equal 94.50% 89.44% 0.86 94.29% 90.77% 0.87 

Z-score 
Weighted 93.53% 87.80% 0.84 95.45% 92.12% 0.89 

Equal 93.71% 88.01% 0.84 95.45% 92.12% 0.89 

 

 

Table XXVIII. RF results. 

Model Normalization Train Test 
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Feature 

Selection 

Model 

Parameters 

Cross-

Validation 

Grid 

Search 
ACC SENS MCC ACC SENS MCC 

RF 

Min-Max 

All 

Linear 

10 k-fold with 10 

repetitions 
ON 

72.89% 58.24% 0.43 69.99% 54.78% 0.38 

Quadratic 73.27% 59.40% 0.44 71.46% 54.27% 0.39 

Z-score 
Linear 72.77% 58.05% 0.43 73.25% 57.36% 0.42 

Quadratic 74.15% 59.72% 0.45 77.46% 64.76% 0.50 

Min-Max 

PCA 

Linear 73.15% 58.24% 0.43 70.47% 58.08% 0.40 

Quadratic 72.30% 57.11% 0.42 79.38% 68.75% 0.55 

Z-score 
Linear 76.04% 61.68% 0.48 79.57% 67.51% 0.55 

Quadratic 76.06% 61.96% 0.48 80.26% 68.44% 0.56 

Min-Max 

mRMR 

Linear 75.88% 61.03% 0.46 70.16% 55.00% 0.38 

Quadratic 74.72% 59.89% 0.46 78.67% 68.72% 0.55 

Z-score 
Linear 77.57% 63.79% 0.51 86.20% 75.59% 0.68 

Quadratic 74.78% 59.88% 0.46 87.58% 79.74% 0.72 

 

 

 

 

 

 

Table XXIX. LSTM results. 

Model 
Size 

Window 

Hidden 

Layers 
Layers 

Batch 

Size 

Cross-

Validation 
Optimizer 

Train Test 

ACC SENS MCC ACC SENS MCC 



 

 146 

LSTM 

Mean 

step 

time 

150 

 

sequenceInputLayer 

lstmLayer 

lstmLayer 

lstmLayer 

fullyConnectedLayer 

softmaxLayer 

classificationLayer 

 64 

 

10 k-fold 

with 10 

repetitions 

adam 

98.22% 98.03% 
0. 

97 
99.42% 99.34% 0.99 

Mean 

stride 

time 

sequenceInputLayer 

lstmLayer 

lstmLayer 

lstmLayer 

fullyConnectedLayer 

softmaxLayer 

classificationLayer 

 

98.25% 97.99% 0.97 98.53% 98.51% 0.98 

 

 

 

Table XXX. CNN results. 
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CNN 
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convolution2dLayer 

reluLayer 
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convolution2dLayer 

reluLayer 

maxPooling2dLayer 
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reluLayer 
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fullyConnectedLayer 

softmaxLayer 

classificationLayer 

 

64 

 

10 k-fold 

with 10 

repetitions 

adam 

98.11% 97.85% 
0. 

97 
98.79% 99.60% 0.98 

Mean 

stride 

time 

imageInputLayer 

convolution2dLayer 

reluLayer 

maxPooling2dLayer 

convolution2dLayer 

reluLayer 

maxPooling2dLayer 

convolution2dLayer 

reluLayer 

maxPooling2dLayer 

fullyConnectedLayer 

98.13% 97.90% 0.97 98.93% 98.77% 0.98 
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