175 research outputs found

    Enforcing the non-negativity constraint and maximum principles for diffusion with decay on general computational grids

    Full text link
    In this paper, we consider anisotropic diffusion with decay, and the diffusivity coefficient to be a second-order symmetric and positive definite tensor. It is well-known that this particular equation is a second-order elliptic equation, and satisfies a maximum principle under certain regularity assumptions. However, the finite element implementation of the classical Galerkin formulation for both anisotropic and isotropic diffusion with decay does not respect the maximum principle. We first show that the numerical accuracy of the classical Galerkin formulation deteriorates dramatically with increase in the decay coefficient for isotropic medium and violates the discrete maximum principle. However, in the case of isotropic medium, the extent of violation decreases with mesh refinement. We then show that, in the case of anisotropic medium, the classical Galerkin formulation for anisotropic diffusion with decay violates the discrete maximum principle even at lower values of decay coefficient and does not vanish with mesh refinement. We then present a methodology for enforcing maximum principles under the classical Galerkin formulation for anisotropic diffusion with decay on general computational grids using optimization techniques. Representative numerical results (which take into account anisotropy and heterogeneity) are presented to illustrate the performance of the proposed formulation

    An anisotropic mesh adaptation method for the finite element solution of heterogeneous anisotropic diffusion problems

    Full text link
    Heterogeneous anisotropic diffusion problems arise in the various areas of science and engineering including plasma physics, petroleum engineering, and image processing. Standard numerical methods can produce spurious oscillations when they are used to solve those problems. A common approach to avoid this difficulty is to design a proper numerical scheme and/or a proper mesh so that the numerical solution validates the discrete counterpart (DMP) of the maximum principle satisfied by the continuous solution. A well known mesh condition for the DMP satisfaction by the linear finite element solution of isotropic diffusion problems is the non-obtuse angle condition that requires the dihedral angles of mesh elements to be non-obtuse. In this paper, a generalization of the condition, the so-called anisotropic non-obtuse angle condition, is developed for the finite element solution of heterogeneous anisotropic diffusion problems. The new condition is essentially the same as the existing one except that the dihedral angles are now measured in a metric depending on the diffusion matrix of the underlying problem. Several variants of the new condition are obtained. Based on one of them, two metric tensors for use in anisotropic mesh generation are developed to account for DMP satisfaction and the combination of DMP satisfaction and mesh adaptivity. Numerical examples are given to demonstrate the features of the linear finite element method for anisotropic meshes generated with the metric tensors.Comment: 34 page

    The cutoff method for the numerical computation of nonnegative solutions of parabolic PDEs with application to anisotropic diffusion and lubrication-type equations

    Full text link
    The cutoff method, which cuts off the values of a function less than a given number, is studied for the numerical computation of nonnegative solutions of parabolic partial differential equations. A convergence analysis is given for a broad class of finite difference methods combined with cutoff for linear parabolic equations. Two applications are investigated, linear anisotropic diffusion problems satisfying the setting of the convergence analysis and nonlinear lubrication-type equations for which it is unclear if the convergence analysis applies. The numerical results are shown to be consistent with the theory and in good agreement with existing results in the literature. The convergence analysis and applications demonstrate that the cutoff method is an effective tool for use in the computation of nonnegative solutions. Cutoff can also be used with other discretization methods such as collocation, finite volume, finite element, and spectral methods and for the computation of positive solutions.Comment: 19 pages, 41 figure

    Non-negative mixed finite element formulations for a tensorial diffusion equation

    Full text link
    We consider the tensorial diffusion equation, and address the discrete maximum-minimum principle of mixed finite element formulations. In particular, we address non-negative solutions (which is a special case of the maximum-minimum principle) of mixed finite element formulations. The discrete maximum-minimum principle is the discrete version of the maximum-minimum principle. In this paper we present two non-negative mixed finite element formulations for tensorial diffusion equations based on constrained optimization techniques (in particular, quadratic programming). These proposed mixed formulations produce non-negative numerical solutions on arbitrary meshes for low-order (i.e., linear, bilinear and trilinear) finite elements. The first formulation is based on the Raviart-Thomas spaces, and is obtained by adding a non-negative constraint to the variational statement of the Raviart-Thomas formulation. The second non-negative formulation based on the variational multiscale formulation. For the former formulation we comment on the affect of adding the non-negative constraint on the local mass balance property of the Raviart-Thomas formulation. We also study the performance of the active set strategy for solving the resulting constrained optimization problems. The overall performance of the proposed formulation is illustrated on three canonical test problems.Comment: 40 pages using amsart style file, and 15 figure

    A monotone Q1Q^1 finite element method for anisotropic elliptic equations

    Full text link
    We construct a monotone continuous Q1Q^1 finite element method on the uniform mesh for the anisotropic diffusion problem with a diagonally dominant diffusion coefficient matrix. The monotonicity implies the discrete maximum principle. Convergence of the new scheme is rigorously proven. On quadrilateral meshes, the matrix coefficient conditions translate into specific a mesh constraint
    corecore