14 research outputs found

    Design and Implementation of an Innovative Internet of Things (IOT) based Smart Energy Meter

    Get PDF
    Energy meter is very essential measuring instrument for measuring the power in domestic, industrial etc. environment. Correct and appropriate measuring of power without any error is important in order to calculate the total power consumption and then for tariff calculation. In view of this, in this paper design and implementation on an innovative smart energy meter is proposed. The proposed smart energy meter is based on Internet of Things (IoT) applications. The paper describes its design along with its working

    Internet of Things (IoT): Research, Architectures and Applications

    Get PDF
    Internet of Things is the concept of connecting any device (so long as it has an on/off switch) to the Internet and to other connected devices. The IoT is a giant network of connected things and people, all of which collect and share data about the way they are used and about the environment around them. Experts estimate that the IoT will consist of about 30 billion objects by 2020. This paper presents a study based on IoT and its applications in different field of science and technology. Along with the introduction of the IoT literature review is also provided. The paper also discusses the architecture and elements of the IoT along with its different applications

    Internet of Things - Enabled visual analytics for linked maintenance and product lifecycle management

    Get PDF
    When closed loop product lifecycle management was first introduced, much effort focused on establishing ways to communicate data between different lifecycle phase activities. The concept of a smart product, able to communicate its own identity and status, had a key role to play to this end. Such a concept has further matured, benefiting from internet things-enabled product lifecycle management advancements. Product data exchanges can now be brought closer to the point of end use consumption, enabling users to become more proactive actors within the product lifecycle management process. This paper presents a conceptual approach and a pilot implementation of how this can be achieved by superimposing middle of life relevant product information to beginning of life product views, such as a 3D product CAD model. In this way, linked maintenance data and knowledge become visual features of a product design representation, facilitating a user’s understanding of middle-of life concepts, such as occurrence of failure modes. The proposed approach can be particularly useful when dealing with product data streams as a natural visual analytics add-in to closed loop product lifecycle management

    Lifecycle Management in the Smart City Context: Smart Parking Use-Case

    Get PDF
    Lifecycle management enables enterprises to manage their products, services and product-service bundles. IoT and CPS have made products and services smarter by closing the loop of data across different phases of lifecycle. Similarly, CPS and IoT empower cities with real-time data streams from heterogeneous objects. Yet, cities are smarter and more powerful when relevant data can be exchanged between different systems across different domains. From engineering perspective, smart city can be seen as a System of Systems composed of interrelated/ interdependent smart systems and objects. To better integrate people, processes, and systems in the smart city ecosystem, this paper discusses the use of Lifecycle Management in the smart city context. Considering the differences between ordinary and smart service systems, this paper seeks better understanding of lifecycle aspects in the smart city context. For better understanding, some of the discussed lifecycle aspects are demonstrated in a smart parking use-case

    EU H2020 MSCA RISE Project FIRST - “virtual Factories: Interoperation suppoRting buSiness innovation”

    Get PDF
    FIRST – “virtual Factories: Interoperation suppoRting buSiness innovation”, is a European H2020 project, founded by the RESEARCH AND INNOVATION STAFF EXCHANGE (RISE) Work Programme as part of the Marie Skłodowska-Curie actions. The project concerns with Manufacturing 2.0 and aims at providing the new technology and methodology to describe manufacturing assets; to compose and integrate the existing services into collaborative virtual manufacturing processes; and to deal with evolution of changes. This Chapter provides an overview of the state of the art for the research topics related to the project research objectives, and then it presents the progresses the project achieved up to now towards the implementation of the proposed innovations

    Micro-billing framework for IoT: Research & Technological foundations

    Get PDF
    In traditional product companies, creating value meant identifying enduring customer needs and manufacturing well-engineered solutions. Two hundred and fifty years after the start of the Industrial Revolution, this pattern of activity plays out every day in a connected world where products are no longer one-and-done. Making money is not anymore limited to physical product sales; other downstream revenue streams become possible (e.g., service-based information, Apps). Nonetheless, it is still challenging to stimulate the IoT market by enabling IoT stakeholders (from organizations to an individual persons) to make money out of the information that surrounds them. Generally speaking, there is a lack of micro-billing frameworks and platforms that enable IoT stakeholders to publish/discover, and potentially sell/buy relevant and useful IoT information items. This paper discusses important aspects that need to be considered when investigating and developing such a framework/platform. A high-level requirement analysis is then carried out to identify key technological and scientific building blocks for laying the foundation of an innovative micro-billing framework named IoTBnB (IoT puBlication aNd Billing)

    A Comprehensive Security Architecture for Information Management throughout the Lifecycle of IoT Products

    Get PDF
    The Internet of things (IoT) is expected to have an impact on business and the world at large in a way comparable to the Internet itself. An IoT product is a physical product with an associated virtual counterpart connected to the internet with computational as well as communication capabilities. The possibility to collect information from internet-connected products and sensors gives unprecedented possibilities to improve and optimize product use and maintenance. Virtual counterpart and digital twin (DT) concepts have been proposed as a solution for providing the necessary information management throughout the whole product lifecycle, which we here call product lifecycle information management (PLIM). Security in these systems is imperative due to the multiple ways in which opponents can attack the system during the whole lifecycle of an IoT product. To address this need, the current study proposes a security architecture for the IoT, taking into particular consideration the requirements of PLIM. The security architecture has been designed for the Open Messaging Interface (O-MI) and Open Data Format (O-DF) standards for the IoT and product lifecycle management (PLM) but it is also applicable to other IoT and PLIM architectures. The proposed security architecture is capable of hindering unauthorized access to information and restricts access levels based on user roles and permissions. Based on our findings, the proposed security architecture is the first security model for PLIM to integrate and coordinate the IoT ecosystem, by dividing the security approaches into two domains: user client and product domain. The security architecture has been deployed in smart city use cases in three different European cities, Helsinki, Lyon, and Brussels, to validate the security metrics in the proposed approach. Our analysis shows that the proposed security architecture can easily integrate the security requirements of both clients and products providing solutions for them as demonstrated in the implemented use cases

    Towards an Interoperable Approach for Modelling and Managing Smart Building Data: The Case of the CESI Smart Building Demonstrator

    Get PDF
    Buildings have a significant impact on energy consumption and carbon emissions. Smart buildings are deemed to play a crucial role in improving the energy performance of buildings and cities. Managing a smart building requires the modelling of data concerning smart systems and components. While there is a significant amount of research on optimising building energy using the smart building concept, there is a dearth of studies investigating the modelling and management of smart systems’ data, which is the starting point for establishing the necessary digital environment for representing a smart building. This study aimed to develop and test a solution for modelling and managing smart building information using an industry foundation classes (IFCs)-based BIM process. A conceptual model expressed in the SysML language was proposed to define a smart building. Five BIM approaches were identified as potential ‘prototypes’ for representing and exchanging smart building information. The fidelity of each approach is checked through a BIM-based validation process using an open-source visualisation platform. The different prototypes were also assessed using a multi-criteria comparison method to identify the preferred approach for modelling and managing smart building information. The preferred approach was prototyped and tested in a use case focused on building energy consumption monitoring to evaluate its ability to manage and visualise the smart building data. The use case was applied in a real case study using a full-scale demonstrator, namely, the ‘Nanterre 3’ (N3) smart building located at the CESI campus in Paris-Nanterre. The findings demonstrated that an open BIM format in the form of IFCs could achieve adequate modelling of smart building data without information loss. Future extensions of the proposed approach were finally outlined

    Advancing IoT Platforms Interoperability

    Get PDF
    The IoT European Platforms Initiative (IoT-EPI) projects are addressing the topic of Internet of Things and Platforms for Connected Smart Objects and aim to deliver an IoT extended into a web of platforms for connected devices and objects that supports smart environments, businesses, services and persons with dynamic and adaptive configuration capabilities. The specific areas of focus of the research activities are architectures and semantic interoperability, which reliably cover multiple use cases. The goal is to deliver dynamically-configured infrastructure and integration platforms for connected smart objects covering multiple technologies and multiple intelligent artefacts. The IoT-EPI ecosystem has been created with the objective of increasing the impact of the IoT-related European research and innovation, including seven European promising projects on IoT platforms: AGILE, BIG IoT, INTER-IoT, VICINITY, SymbIoTe, bIoTope, and TagItSmart.This white paper provides an insight regarding interoperability in the IoT platforms and ecosystems created and used by IoT-EPI. The scope of this document covers the interoperability aspects, challenges and approaches that cope with interoperability in the current existing IoT platforms and presents some insights regarding the future of interoperability in this context. It presents possible solutions, and a possible IoT interoperability platform architecture
    corecore