45,918 research outputs found

    Infinitary Combinatory Reduction Systems: Confluence

    Get PDF
    We study confluence in the setting of higher-order infinitary rewriting, in particular for infinitary Combinatory Reduction Systems (iCRSs). We prove that fully-extended, orthogonal iCRSs are confluent modulo identification of hypercollapsing subterms. As a corollary, we obtain that fully-extended, orthogonal iCRSs have the normal form property and the unique normal form property (with respect to reduction). We also show that, unlike the case in first-order infinitary rewriting, almost non-collapsing iCRSs are not necessarily confluent

    Rewriting in higher dimensional linear categories and application to the affine oriented Brauer category

    Full text link
    In this paper, we introduce a rewriting theory of linear monoidal categories. Those categories are a particular case of what we will define as linear (n, p)-categories. We will also define linear (n, p)-polygraphs, a linear adapation of n-polygraphs, to present linear (n -- 1, p)-categories. We focus then on linear (3, 2)-polygraphs to give presentations of linear monoidal categories. We finally give an application of this theory in linear (3, 2)-polygraphs to prove a basis theorem on the category AOB with a new method using a rewriting property defined by van Ostroom: decreasingness

    Infinitary Combinatory Reduction Systems: Normalising Reduction Strategies

    Get PDF
    We study normalising reduction strategies for infinitary Combinatory Reduction Systems (iCRSs). We prove that all fair, outermost-fair, and needed-fair strategies are normalising for orthogonal, fully-extended iCRSs. These facts properly generalise a number of results on normalising strategies in first-order infinitary rewriting and provide the first examples of normalising strategies for infinitary lambda calculus

    Higher-dimensional normalisation strategies for acyclicity

    Get PDF
    We introduce acyclic polygraphs, a notion of complete categorical cellular model for (small) categories, containing generators, relations and higher-dimensional globular syzygies. We give a rewriting method to construct explicit acyclic polygraphs from convergent presentations. For that, we introduce higher-dimensional normalisation strategies, defined as homotopically coherent ways to relate each cell of a polygraph to its normal form, then we prove that acyclicity is equivalent to the existence of a normalisation strategy. Using acyclic polygraphs, we define a higher-dimensional homotopical finiteness condition for higher categories which extends Squier's finite derivation type for monoids. We relate this homotopical property to a new homological finiteness condition that we introduce here.Comment: Final versio

    Decreasing Diagrams for Confluence and Commutation

    Full text link
    Like termination, confluence is a central property of rewrite systems. Unlike for termination, however, there exists no known complexity hierarchy for confluence. In this paper we investigate whether the decreasing diagrams technique can be used to obtain such a hierarchy. The decreasing diagrams technique is one of the strongest and most versatile methods for proving confluence of abstract rewrite systems. It is complete for countable systems, and it has many well-known confluence criteria as corollaries. So what makes decreasing diagrams so powerful? In contrast to other confluence techniques, decreasing diagrams employ a labelling of the steps with labels from a well-founded order in order to conclude confluence of the underlying unlabelled relation. Hence it is natural to ask how the size of the label set influences the strength of the technique. In particular, what class of abstract rewrite systems can be proven confluent using decreasing diagrams restricted to 1 label, 2 labels, 3 labels, and so on? Surprisingly, we find that two labels suffice for proving confluence for every abstract rewrite system having the cofinality property, thus in particular for every confluent, countable system. Secondly, we show that this result stands in sharp contrast to the situation for commutation of rewrite relations, where the hierarchy does not collapse. Thirdly, investigating the possibility of a confluence hierarchy, we determine the first-order (non-)definability of the notion of confluence and related properties, using techniques from finite model theory. We find that in particular Hanf's theorem is fruitful for elegant proofs of undefinability of properties of abstract rewrite systems

    On the confluence of lambda-calculus with conditional rewriting

    Get PDF
    The confluence of untyped \lambda-calculus with unconditional rewriting is now well un- derstood. In this paper, we investigate the confluence of \lambda-calculus with conditional rewriting and provide general results in two directions. First, when conditional rules are algebraic. This extends results of M\"uller and Dougherty for unconditional rewriting. Two cases are considered, whether \beta-reduction is allowed or not in the evaluation of conditions. Moreover, Dougherty's result is improved from the assumption of strongly normalizing \beta-reduction to weakly normalizing \beta-reduction. We also provide examples showing that outside these conditions, modularity of confluence is difficult to achieve. Second, we go beyond the algebraic framework and get new confluence results using a restricted notion of orthogonality that takes advantage of the conditional part of rewrite rules

    Termination orders for 3-dimensional rewriting

    Get PDF
    This paper studies 3-polygraphs as a framework for rewriting on two-dimensional words. A translation of term rewriting systems into 3-polygraphs with explicit resource management is given, and the respective computational properties of each system are studied. Finally, a convergent 3-polygraph for the (commutative) theory of Z/2Z-vector spaces is given. In order to prove these results, it is explained how to craft a class of termination orders for 3-polygraphs.Comment: 30 pages, 35 figure

    Coherent Presentations of Monoidal Categories

    Get PDF
    Presentations of categories are a well-known algebraic tool to provide descriptions of categories by means of generators, for objects and morphisms, and relations on morphisms. We generalize here this notion, in order to consider situations where the objects are considered modulo an equivalence relation, which is described by equational generators. When those form a convergent (abstract) rewriting system on objects, there are three very natural constructions that can be used to define the category which is described by the presentation: one consists in turning equational generators into identities (i.e. considering a quotient category), one consists in formally adding inverses to equational generators (i.e. localizing the category), and one consists in restricting to objects which are normal forms. We show that, under suitable coherence conditions on the presentation, the three constructions coincide, thus generalizing celebrated results on presentations of groups, and we extend those conditions to presentations of monoidal categories
    corecore