
Journal of Pure and Applied Algebra 207 (2006) 341–371
www.elsevier.com/locate/jpaa

Termination orders for three-dimensional rewriting

Yves Guiraud

Institut de mathématiques de Luminy, Marseille, France

Received 17 November 2004; received in revised form 17 May 2005
Available online 28 November 2005

Communicated by I. Moerdȳk

Abstract

This paper studies 3-polygraphs as a framework for rewriting on two-dimensional words. A
translation of term rewriting systems into 3-polygraphs with explicit resource management is given,
and the respective computational properties of each system are studied. Finally, a convergent
3-polygraph for the (commutative) theory of Z/2Z-vector spaces is given. In order to prove these
results, it is explained how to craft a class of termination orders for 3-polygraphs.
c© 2005 Elsevier B.V. All rights reserved.

MSC: 08A50; 08A70; 16S15; 18C10; 18D05; 68Q70

0. Outline

This paper starts with the introductory Section 1 on equational theories and term
rewriting systems. It gives notations and graphical representations that are used in the
following. Then, it focuses on one major restriction of term rewriting, namely the fact that
it cannot provide convergent presentations for commutative equational theories: equational
theories that contain a commutative binary operator.

Section 2 studies the resource management operations of permutation, erasure and
duplication: they are implicit and global in term rewriting and it is sketched there how
to make them explicit. However, the framework for rewriting in algebraic structures needs
to be extended to include this change; Section 3 proposes 3-polygraphs to fulfil this role.

E-mail address: guiraud@iml.univ-mrs.fr.

0022-4049/$ - see front matter c© 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.jpaa.2005.10.011

http://www.elsevier.com/locate/jpaa
mailto:guiraud@iml.univ-mrs.fr
http://dx.doi.org/10.1016/j.jpaa.2005.10.011

342 Y. Guiraud / Journal of Pure and Applied Algebra 207 (2006) 341–371

Here, these objects, introduced in [3], are used as equational presentations of a special case
of 2-categories: MacLane’s product categories, called PROs, for short, in [11].

These first three sections do not introduce new material, but focus on the notations,
representations, terminology and philosophy of this paper. Then Section 4 gives some
relations between term rewriting systems and 3-polygraphs: a translation from the former
to the latter is built and some properties are given. The main result of the section is the
proof of a conjecture from [10]: any left-linear convergent term rewriting system can be
translated into a convergent 3-polygraph.

To prove some of these results, one needs new tools, adequate with the more
complicated structure of polygraphs. In particular, Section 5 introduces a recipe to build
termination orders for them. Section 6 consists in the application of this technique to prove
some termination results of Section 4. Finally, Section 7 applies the same technique to
prove the termination of the 3-polygraph L(Z2) which was introduced in [10] and, since
then, was already known to be a confluent presentation of the equational theory of Z/2Z-
vector spaces. It is therefore the first known convergent presentation of a commutative
equational theory.

1. Equational theories and term rewriting systems

Universal algebra provides different types of objects in order to modelize algebraic
structures. Among them are equational theories: these are presentations by generators (or
operators) and relations (or equations, equalities). As an example, the equational theory
of monoids is a pair (Σ , E0) consisting of the signature Σ (a set of operators) and the
family E0 of equations given by:

Σ = {µ : 2 → 1, η : 0 → 1},

E0 =
(
µ(µ(x, y), z) = µ(x, µ(y, z)), µ(η, x) = x, µ(x, η) = x

)
.

Each operator has a finite number of inputs and of outputs. When each one has exactly one
output, which is the case here, the signature is said to be algebraic. The given equational
theory (Σ , E0) is said to be the theory of monoids since monoids are exactly sets endowed
with a binary operation and a constant, such that the operation is associative and admits
the constant as a left and right unit.

The formal operations one can form on any set with a binary operation and a constant
are called the terms built from the signature Σ . There exist numerous ways to build the
set TΣ of such terms, and each one gives a different representation for them. Two are used
here, a syntactic one and a diagrammatic one. For each one, a fixed countable set V is
needed; its elements are called variables.

The classical representation of terms define them inductively with the following con-
struction rules: the first one states that each variable is a term; furthermore, the constant η

is a term; then, for any two terms u and v, the formal expression µ(u, v) is a term.
The diagrammatic representation starts with the assignment, for each operator with n

inputs, of an arbitrarily chosen tree of height one with n leaves. For example, one can fix
the following trees:

Y. Guiraud / Journal of Pure and Applied Algebra 207 (2006) 341–371 343

Then, the terms are all the trees one can build from these two generating trees and which
leaves are labelled with variables. As an example, the following figure pictures terms built
from the signature Σ , with the two representations for each one:

The equations from the theory of monoids generate equalities between terms that represent
the same operation, through a rewriting process. Let us sketch how this works. For
example, the following term contains the tree-part of the associativity rule left-member,
which has been greyed out:

Hence, the associativity equation generates an equality between the chosen term and
another. To determine which one, let us follow the following method, which consists of
three steps: at first, the remaining (black) part of the term is copied; then, in the space left
empty, the other member of the rule is placed; finally, the two parts obtained are joined (by
dotted lines), according to the respective position of the variables in each member of the
equation. Concerning our example, this process is pictured as follows:

Note that each variable appears once and in the same position in each member of the
associativity rule, so that the links are direct. When the second term is compacted, the
following equality holds and is said to be generated by the associativity equation:

In order to study the computational properties of these rewriting processes, term rewriting
systems are useful; they can be defined as oriented equational theories. Indeed, such a
rewriting system is defined from an equational theory by keeping the same operators

344 Y. Guiraud / Journal of Pure and Applied Algebra 207 (2006) 341–371

and replacing each equation by a rewrite rule: it is an oriented version of the equation,
which can only be used in one way. As an example, starting from the equational theory
of monoids, one can form the term rewriting system (Σ , R0), where Σ is still the same
algebraic signature made of a product µ and a unit η and R0 is the following set of three
rules:

µ(µ(x, y), z) → µ(x, µ(y, z)), µ(η, x) → x, µ(x, η) → x .

Rewrite rules generate reductions instead of equalities, and a graph containing terms
as vertices and reductions as edges is called a reduction graph. Some geometrical
properties of reduction graphs are of particular interest since they have consequences on
computational properties of the rewriting process. Among these geometrical properties,
three are particularly studied: termination, confluence and convergence.

A rewriting system terminates if it contains no infinite length reduction paths such as:

u0 → u1 → u2 → · · · → un → un+1 → · · ·

Intuitively, this means that the rewriting calculus must end after a finite time, whatever
the input is. This is formalized by the following consequence of termination: every term u
has at least one normal form û; this means that û is a term such that there exists a finite
reduction path from u to û (denoted by u � û) and û is irreducible (no rule can apply on
it).

A rewriting system is confluent if, whenever there exist three terms u, v and w such
that u � v and u � w, then there exists a fourth term t such that v � t and w � t .
Intuitively, this means that choices made between two rules that can transform the same
term do not have any consequence on a potential final result; equivalently, this means that
any term has at most one normal form.

Thus, one defines the last property: a rewriting system is convergent when it is both
terminating and confluent. One immediate consequence is that any term has exactly one
normal form. This property is very useful for several purposes.

One of the most well known is the following usage: let us assume that (Σ , E) is
an equational theory and that (Σ , R) is a rewriting system that is a finite convergent
presentation of (Σ , R), which means that it is a convergent rewriting system with a finite
number of rules and such that two terms are equal in the equational theory if and only if
there exists a non-oriented reduction path between these two terms in the rewriting system.
Then there exists a decision procedure to check if two terms u and v are equal or not.

Indeed, one computes their unique normal forms û and v̂. Note that this is where the
finiteness condition is useful: it allows one to check if a term is a normal form. Then the
two normal forms û and v̂ are compared: u and v are equal in the equational theory if and
only if û and v̂ are (syntactically) equal.

However, term rewriting systems have a major restriction in this field: there is a large
class of equational theories for which they cannot provide a convergent presentation. These
are the commutative theories, fairly frequent in algebra, which are equational theories with
a commutative binary operator. As an example, let us take a look at one of the simplest,
namely the equational theory of commutative monoids. Its signature is still Σ ; its set E1
of equations is made of the same three as the ones for monoids (associativity and left and

Y. Guiraud / Journal of Pure and Applied Algebra 207 (2006) 341–371 345

right units) plus the following one expressing the commutativity of the product:

µ(x, y) = µ(y, x).

From this theory, one can form a number of term rewriting systems, such as the one with Σ
as signature and with the following choice R1 of orientations for equations:

µ(µ(x, y), z) → µ(x, µ(y, z)), µ(η, x) → x,

µ(x, η) → x, µ(x, y) → µ(y, x).

Note that the last rule could have been chosen in the reverse direction, but it would not
change the following fact: this rule generates infinite reduction paths. Indeed, for any two
terms u and v, the commutativity rules generate:

µ(u, v) → µ(v, u) → µ(u, v) → µ(v, u) → · · · .

The purpose of this paper is to provide a framework where some commutative equational
theories admit convergent presentations: 3-polygraphs. Links between term rewriting
systems and 3-polygraphs are studied and a new tool to prove termination is given and
applied on some examples.

The equational theory that provides the main example here is the one of Z/2Z-vector
spaces: it has the same operators as the previous ones (the binary product embodies the
sum and the unit is the zero) and a set E2 of five equations made of the four from E1
(associativity, left and right units and commutativity) plus the following fifth equation:

µ(x, x) = η.

It expresses the fact that, in a Z/2Z-vector space, any element is its own opposite. This
theory is preferred to the theory of commutative monoids for two reasons. The first one
is theoretical: any boolean algebra has an underlying Z/2Z-vector space, so that any
convergent presentation for Z/2Z-vector spaces is a first step towards one for boolean
circuits. The second one concerns the application range of the tools developed here: this
fifth equation has some nasty computational effects and is thus important to encompass in
the new framework, so that it can be used for other applications.

From the theory of Z/2Z-vector spaces, the term rewriting system (Σ , R2) is built,
where R2 is the following choice of orientations:

µ(µ(x, y), z) → µ(x, µ(y, z)), µ(η, x) → x,

µ(x, η) → x, µ(x, y) → µ(y, x), µ(x, x) → η.

Note that this rewriting system is neither terminating nor confluent but will serve as a
starting point to build a convergent presentation. This transformation will start with the
study of the so-called resource management operations. For further information on (term)
rewriting systems, one can refer to [2].

2. Resource management operations

Let us recall the last step of the term rewriting process: one has to draw links between
two parts of a term, according to the variables occurring in the corresponding rule. As

346 Y. Guiraud / Journal of Pure and Applied Algebra 207 (2006) 341–371

mentioned earlier, the rewriting example in Section 1 is the simplest case: indeed, the
variables occur once each and in the same order in each member of the associativity rule.
However, if this is not the case, one has to use additional operations before links are drawn:
these operations are called the resource management operations and there are three of their
kind, permutation, erasure and duplication.

Permutation is used, for example, when the commutativity rule is applied. Indeed,
when in this case, one has to use a permutation operation that will exchange the two grey
subterms in any term such as the following generic one:

The second operation, erasure, is used in the following case, for example: let us consider a
theory containing a binary operator and a constant which is a right absorbing element. The
following figure displays a rule which expresses this property (on the right) together with
a generic application of this rule (on the left); this requires an intermediate operation that
erases the grey subterm:

Finally, the last operation, called duplication, can occur in the following case: let us
consider a theory containing two binary operators, one of which is left-distributive with
respect to the other. Then, when applied, a rule that expresses this property (such as the
one pictured on the right) requires the use of an operation that can duplicate the greymost
subterm (and exchange one of its copies with another subterm, but this is the already-
encountered permutation):

Thus, in term rewriting, these three operations are both implicit (they are not specified
by rules) and global (they act immediately on subterms of any size). We are now going
to sketch how one can make them explicit and local: only the idea is given here, the full
translation is postponed to Section 4.

Let us start with the following observation: the use of the three resource management
operations is specified both by the number of occurrences and the order of appearance of
each variable in each member of a rewrite rule. Thus, in order to make these operations
explicit, variables will be replaced by some additional operators that will represent
local permutations, erasers and duplicators; furthermore, rules will guarantee the global
behaviour of these local operators.

Y. Guiraud / Journal of Pure and Applied Algebra 207 (2006) 341–371 347

In order to give an idea of how the translation works, let us start with the study of this
term, which represents the operation (x, y, z) 7→ µ(µ(x, z), x):

Seen as an operation, it is the composite of (x, y, z) 7→ (x, z, x) followed by (x, y, z) 7→

µ(µ(x, y), z). The first operation can be pictured as the following diagram (a shunter),
since its action is to tell where each of the three arguments goes in the term:

This diagram will be formalized as a composite of new operators and the term will be
translated this way (with some explanations below):

Variables in the term have been replaced by ordinals; indeed, we have seen that variables
are just labels corresponding to the first, second, third, etc. arguments taken by the
corresponding operation. Hence, they will be replaced by ordinals whenever it makes the
translation clearer. The second remark is also about variables, but in the translated diagram:
they will always appear, after translation, in order: 1, 2, 3, etc. Thus, they have no purpose
anymore; they will therefore vanish, as in the diagram.

Finally, let us see what operators will be added to the signature and sketch how to
translate terms and rules. One operator is added for each resource management operation:
indeed, in order to formalize our previous diagram, one must be able to exchange two
arguments, erase one or duplicate another one. Thus, we fix a (non-algebraic) signature ∆
made of the following three resource management operators:

Each one has a representation that makes explicit the operation one wishes it to embody.
Some rules will be added to ensure their global behaviour, but they will be given in
Section 4. For the moment, the only thing we need to know is that these rules give the
following interpretations to these three operators:

τ(x, y) = (y, x), ε(x) = (nothing), δ(x) = (x, x).

Now, let us sketch how terms are translated: first, the tree-part is copied; then and
progressively, resource management operators are added on the top of the copy, according
to the variables that appear in the term.

348 Y. Guiraud / Journal of Pure and Applied Algebra 207 (2006) 341–371

The following figure gives four sample translations (the translating map is denoted by Φ
thereafter):

Then, let us see how to translate the five rules of our term rewriting system derived from the
theory of Z/2Z-vector spaces. Each rule is pictured in order (associativity, left and right
units, commutativity and self-inverse), has been given a name (A, L , R, C and S) and has
its translation written just below:

Note that several cases may occur. For the first three rules, no resource management
operator is added during translation: these three rules are linear (or left- and right-linear).
When translated, the commutativity rule has one operator added on its right side and none
on its left side: it is a left-linear but not right-linear rule. Finally, the self-inverse rule has
one operator added on each of its members during translation: it is neither left- nor right-
linear.

Some issues have now arisen. The first one concerns the rules to be added in order both
to describe the behaviour of our local permutation, eraser and duplicator and to ensure the
global coherence of these local rules.

The next issue is about the respective computational properties of the starting term
rewriting system and of the rewriting system one gets as a result of making the resource
management operations explicit. These first two issues are addressed in Section 4.

For the moment, we are concerned with a third issue: where does rewriting takes place
now? Indeed, starting from a term rewriting system, we have crafted another rewriting
system which is not a term one, and for two reasons. The first one is that its signature
contains non-algebraic operators, that is operators that do not have exactly one output
(the resource management operators have zero or two outputs). The second reason is that
variables have been dropped to be replaced by these new operators: this is also a step
outside term rewriting. Hence, our new object is not a term rewriting system and Section 3
recalls a notion from [3] used to describe it.

Y. Guiraud / Journal of Pure and Applied Algebra 207 (2006) 341–371 349

3. Three-dimensional polygraphs

Like equational theories, 3-polygraphs are useful objects in universal algebra, in
the sense that they allow one to present algebraic structures by generators and
relations. However, they are far more general than equational theories, and this has two
consequences: on the one hand, they can handle more general objects, like the rewriting
system sketched in Section 2, or the structure of quantum groups; but, on the other hand,
their generality comes with an increase in the structural complexity: the development of
new tools is mandatory to prove termination, for example.

Polygraphs are genuine categorical objects but we prefer a diagrammatic definition here.
For this paper, a 3-polygraph is made of a signature, that is a set of operators with a finite
number of inputs and a finite number of outputs, together with a family of rules: in fact,
this is just a special case of 3-polygraph, one with only one 0-cell and one 1-cell. For the
complete theory of n-polygraphs, the interested reader should check [3].

The operators are once again represented by fixed diagrams of size one, with as many
free edges at the top as the operator inputs and as many free edges at the bottom as the
operator outputs. For example, some usual diagram shapes are pictured here:

Some of them have already been encountered, some of the others are less algebraic: one
has zero input and output — it is useful to describe Petri nets, see [5] — while one has two
inputs and zero output — it is used together with its dual with zero input and two outputs
to represent knots and tangles.

Here, the “terms” one considers are all the circuits one can build with all these
elementary diagrams: these are the Penrose diagrams (or circuits) one can build with the
size one diagrams representing the operators, such as:

Each of these circuits has a finite number of inputs (on the top) and of outputs (on the
bottom) but has no variable. Furthermore, they need not be connected, as the three-inputs
and three-outputs wire only one.

These circuits, which are also called diagrams or arrows, have an algebraic structure.
To explain it, let us use the notation f : m → n to express that f is a circuit with m
inputs and n outputs. For any circuit f , s(f) is its number of inputs and t (f) its number
of outputs. The following constructions and properties are valid for circuits:

– Let f : m → n and g : n → p. Then, one can connect each output of f with the
corresponding input of g, in the same order, to form a new circuit with m inputs and p
outputs denoted by g ◦ f .

– This composition operation admits local units: a circuit f : m → n satisfies f ◦ m = f
and n ◦ f = f , where p is the wire-only circuit with p inputs and p outputs.

– Let f : m → n and g : p → q . Then, one can put f and g side by side to form a new
circuit with m + p inputs and n + q outputs, denoted by f ⊗ g.

350 Y. Guiraud / Journal of Pure and Applied Algebra 207 (2006) 341–371

– This product operation admits a bilateral neutral element: the empty circuit 0 with no
input nor output, represented by an empty diagram.

– Finally, the composition and product are related by the exchange relations. They are
given by the following equality, that is required to hold for any two circuits f : m → n
and g : p → q:

(t (f) ⊗ g) ◦ (f ⊗ s(g)) = f ⊗ g = (f ⊗ t (g)) ◦ (s(f) ⊗ g).

Definition 3.1. A family C of circuits endowed with this structure ⊗ and ◦, satisfying the
aforementioned unit and exchange relations, is called a product category; the subset of
circuits with m inputs and n outputs is denoted by C(m, n). When the circuits of C are
freely built from a signature Σ , this object is the free product category generated by Σ ,
denoted by 〈Σ 〉.

Remark 3.2. Product categories, or PROs, were defined in [11]. An alternative definition
is: a product category is a strict monoidal category whose underlying monoid of objects is
(N, +, 0), the one of natural numbers with addition and zero. In [5], such a category was
called a (monochromatic) operad, for this structure is a common generalization of many
universal algebra objects: May’s operads, Lawvere’s algebraic theories and MacLane’s
PROs and PROPs.

Product categories are also a special case of 2-monoids or 2-categories with only one 0-
cell. A generalization of this paper’s results should be possible, since circuit-like diagrams
extend to general 2-cells. For this paper, we stick to MacLane’s product categories, but all
this terminology will be made clear in subsequent work.

A rewrite rule on a product category C is a pair f → g of parallel arrows (they have the
same number of inputs and the same number of outputs). Such a rule generates reductions
on circuits: whenever an arrow h contains f , the rule generates a reduction from h to k,
where k is the same as h, except that f has been replaced by g. The fact that f and g have
the same number of inputs and the same number of outputs ensures that one can connect
the unchanged part of the circuit with the changed part, without using implicit operations
before.

Definition 3.3. A 3-polygraph is a pair (Σ , R) where Σ is a signature and R is a family of
rewrite rules on 〈Σ 〉.

One way to formalize the reduction relation generated by rules on a free product
category 〈Σ 〉 is to define contexts. We just explain here what they are, avoiding digging
further into the technical aspects, developed in [5]. Let Σ be a signature. Then, a context
on 〈Σ 〉 is a circuit c with a “hole” inside: this hole has a finite number of inputs and
outputs where one can paste a circuit f with corresponding numbers of inputs and outputs;
this pasting operation results in a circuit denoted by c[f]. Then, a rule f → g generates a
reduction from each circuit c[f], with c any context, to the circuit c[g].

Finally, given two product categories C and D, a product category functor from C to D

is a map which sends each circuit of C onto a circuit of D with the same number of inputs
and outputs, and which preserves identities, products and compositions. When C is the
free product category 〈Σ 〉, then a classical categorical argument tells us that any product

Y. Guiraud / Journal of Pure and Applied Algebra 207 (2006) 341–371 351

category functor F : 〈Σ 〉 → D is entirely and uniquely given by the circuits F(ϕ) in D,
for every operator ϕ in Σ .

4. From term rewriting to 3-polygraphs

This section uses results from [3], presented in a slightly different way, in order to prove
a conjecture from [10]: this is Theorem 4.6. This is the result that allows the Definition 4.8
of a translation Φ from any term rewriting system into a 3-polygraph. Proposition 4.11 and
Theorem 4.12 give the respective computational properties of the term rewriting system
and the 3-polygraph.

In Section 2, a 3-polygraph has been built from the term rewriting system (Σ , R2),
which presents the equational theory of Z/2Z-vector spaces. Its signature, denoted by Σ c,
is the one built from Σ by addition of the three resource management operators τ , δ and
ε from ∆. Its family of rules, denoted by Φ(R2), consists of the translations Φ(A), Φ(L),
Φ(R), Φ(C) and Φ(S) of the five rules from the original term rewriting system. This
construction can be generalized to any term rewriting system but is still incomplete for
the moment. It lacks two families of rules and this section starts with their description.

Let us fix an algebraic signature Σ . The set of terms built on the signature Σ and on
some fixed countable set V of variables is denoted by TΣ . Let us assume that the set V is
endowed with a total order (given by a bijection with N), so that the variables can be written
x1, x2, x3, etc. For any term u, the notation]u is used for the greatest natural number i such
that xi appears in u. Then, we define TΣ (m, n) to be the set of families (u1, . . . , un) of n
terms such that]ui ≤ m for every i . Note that the set TΣ (m, 0) has only one element,
denoted by ∗(m). The following operations provide the set TΣ with a product category
structure:
– If u = (u1, . . . , un) is in TΣ (m, n) and v = (v1, . . . , vp) is in TΣ (n, p), then their

composite v ◦ u is the family (w1, . . . , wp) where each wi is built from vi by replacing
each x j with u j .

– The identity of n, for any natural number n, is the family (x1, . . . , xn).
– The product u ⊗ v of u = (u1, . . . , un) in TΣ (m, n) and of v = (v1, . . . , vq) in

TΣ (p, q) is the family (w1, . . . , wn+q) built that way: if i lies between 1 and n, then
wi is ui ; otherwise, wi+n is vi where each x j has been replaced by x j+m .

Furthermore, this product category satisfies some additional properties. The first one is
that TΣ is a cartesian category: seen as a strict monoidal category, the monoidal product ⊗

is the functorial part of a cartesian product. In our case and informally, this means that every
circuit f : m → n is entirely and uniquely determined by n circuits m → 1, in the same
way that any function f : Xm

→ Xn , where X is a set, is entirely and uniquely determined
by n functions Xm

→ X : its components. To check that TΣ is indeed cartesian, one uses
a result from [3], restricted to our setting:

Theorem 4.1 (Burroni). A product category C is cartesian if and only if it contains three
arrows:

such that the two following families of equations hold:

352 Y. Guiraud / Journal of Pure and Applied Algebra 207 (2006) 341–371

1. The family E∆, made of the following seven equations:

2. The family EΣ , made of three equations for each integer n and each arrow f : n → 1
in C:

The following recursively defined arrow families (δn)n∈N and (τn,1)n∈N have been used:

with the initial values δ0 = 0 and τ0,1 = 1.

Note that the following convention is now used in diagrams: generating operators
are drawn with black diagrams, while composite arrows are grey. The union of the two
families E∆ and EΣ is denoted by E∆Σ . Theorem 4.1 is not mandatory to get the
following proposition but yields an easy proof of it:

Proposition 4.2. The product category TΣ is cartesian.

Proof. Let us start with the definition of the three arrows from Theorem 4.1: the arrow
τ is the pair (x2, x1) of terms; the arrow δ is (x1, x1); finally, the arrow ε is the empty
family ∗(1). Computations to check the equations of Theorem 4.1 are straightforward. �

The next step consists in the proof that TΣ is the free cartesian category generated
by the algebraic signature Σ . In order to prove this fact, one starts with another use of
Theorem 4.1:

Corollary 4.3 (of Theorem 4.1). For every algebraic signature Σ , the category 〈Σ c
〉/E∆Σ

is the free cartesian category generated by Σ .

Hence, in order to prove that TΣ is another version of the free cartesian category
generated by Σ , it is sufficient to prove that there exists an isomorphism Φ̂ : TΣ →

〈Σ c
〉/E∆Σ .

Y. Guiraud / Journal of Pure and Applied Algebra 207 (2006) 341–371 353

The signature Σ is contained in TΣ : one defines an inclusion i which sends each
ϕ : n → 1 from Σ onto the term ϕ(x1, . . . , xn). Hence, Corollary 4.3 extends i into a
cartesian functor F from 〈Σ c

〉/E∆Σ to TΣ : this functor sends each ϕ from Σ onto i(ϕ)

and τ , δ and ε respectively onto (x2, x1), (x1, x1) and ∗(1).
Conversely, let us consider an arrow f = (u1, . . . , un) in TΣ (m, n). Each term ui can

be written ui = fi (yi
1, . . . , yi

ki
), with ki an integer, fi an arrow in 〈Σ 〉(ki , 1) and each yi

j a
variable from {x1, . . . , xm}. Furthermore, this decomposition of terms is unique. Thus, the
arrow f uniquely decomposes into:

f = (f1 ⊗ . . . ⊗ fn) ◦ (y1
1 , . . . , yn

kn
).

There remains to prove that every family (y1, . . . , yk) of variables in {x1, . . . , xm} can be
uniquely written (modulo E∆) with the three arrows i(τ), i(δ) and i(ε). This can be done
in two steps.

Let us define the sub-product category V of TΣ by restricting ourselves to families of
variables: this is T∅, where ∅ denotes the signature with no operator. One also defines the
cartesian category Fo of finite sets: the arrows of Fo(m, n) are in bijective correspondence
with the functions from the finite set [n] = {1, . . . , n} to [m]. Then:

Lemma 4.4. The cartesian categories V and Fo are isomorphic.

Proof. Let (y1, . . . , yn) be a family of variables taken in {x1, . . . , xm}. Then, there exists
an unique function f ∗ from [n] to [m] such that yi = x f ∗(i) for each i . Let us fix
θ(y1, . . . , yn) as the arrow f in Fo that corresponds to f ∗. Conversely, if f is an arrow in
Fo(m, n): let us denote by f ∗ the corresponding function from [n] to [m]. Then one defines
ω(f) = (x f ∗(1), . . . , x f ∗(n)). There remains to check that θ and ω are cartesian functors
which are inverse one another, which is straightforward. �

The second step uses another result from [3]:

Theorem 4.5 (Burroni). The cartesian categories Fo and 〈∆〉/E∆ are isomorphic.

Hence, the cartesian categories V and 〈∆〉/E∆ are isomorphic. Consequently, each
family (y1, . . . , yk) of variables taken in {x1, . . . , xn} corresponds to a unique arrow
in 〈∆〉/E∆. Furthermore, each arrow f in TΣ (m, n) admits a unique decomposition
f = fΣ ◦ f∆ with fΣ in 〈Σ 〉 and f∆ in V.

Finally, one gets that the cartesian functor F from 〈Σ c
〉/E∆Σ to TΣ is an isomorphism.

However, we want a map from TΣ to 〈Σ c
〉: let us find a convergent 3-polygraph

(Σ c, R∆Σ) such that 〈Σ c
〉/R∆Σ is isomorphic to 〈Σ c

〉/E∆Σ and use the unique normal
form property.

A conjecture from [10] is proved:

Theorem 4.6. For any algebraic signature Σ , the 3-polygraph (Σ c, R∆Σ) is convergent
and 〈Σ c

〉/R∆Σ is isomorphic to the free cartesian category 〈Σ c
〉/E∆Σ generated by Σ ,

where the family of rules R∆Σ is made of the following two subfamilies:

354 Y. Guiraud / Journal of Pure and Applied Algebra 207 (2006) 341–371

1. The family R∆:

2. The family RΣ given, for each integer n and each operator ϕ in Σ (n, 1), by:

Remark 4.7. Three families of verifications need to be done. The first one consists in
checking that the new rules are derivable from E∆Σ , which is straightforward.

The second one is much more complicated: one needs to check that the 3-polygraph
terminates. However, the structural complexity of polygraphs requires new techniques
since the usual ones used in rewriting do not work. One way to craft reduction orders
for 3-polygraphs is made explicit in Section 5 and used in Section 6 in order to prove the
termination of (Σ c, R∆Σ).

Finally, one needs to check that this 3-polygraph is confluent. Here, this is equivalent
to computing all of its critical pairs and check that each one is confluent. Once again,
the structural complexity of polygraphs generates problems unknown with other kinds
of rewriting theories. For example, a finite 3-polygraph can produce an infinite number
of critical pairs; this is the case here. However, among these critical pairs, some have
properties that allow us to finally have only a finite number of computations to do. Critical
pairs of 3-polygraphs need to be further studied and classified according to properties of
this kind; this will be addressed in subsequent work.

The present case is discussed in Section 6 and fully studied in [5].

From Theorem 4.6, one concludes the existence of a map Φ from TΣ to 〈Σ c
〉. Indeed, if f

is an arrow in the cartesian category TΣ , then Φ(f) will be the R∆Σ -normal form of any
representant in 〈Σ c

〉 of the arrow F(f) in the product category 〈Σ c
〉/E∆Σ . This map Φ,

which could not be proved to exist until Theorem 4.6, allows the formal definition of the
translation of terms into circuits.

Y. Guiraud / Journal of Pure and Applied Algebra 207 (2006) 341–371 355

Definition 4.8. For every term u in TΣ and for every integer n ≥]u, the term u can
be seen as an arrow un in TΣ (n, 1). One denotes by Φn(u) the arrow Φ(un) of 〈Σ c

〉 and
by Φ(u) the particular case Φ]u(u). If α = (u, v) is a rewrite rule on TΣ , the notation Φ(α)

is used for the rewrite rule (Φ(u),Φ]u(v)) on 〈Σ c
〉.

As an immediate consequence of the definition, one gets:

Lemma 4.9. For any algebraic signature Σ , any term u in TΣ and any integer n ≥]u,
the arrow Φn(u) is a normal form for the resource management rules R∆Σ .

The rest of this section is devoted to the comparison of a term rewriting system (Σ , R)

with the 3-polygraph (Σ c, Rc), where Rc is the union of the family R∆Σ of resource
management rules and of the family Φ(R) made of the translations by Φ of the rules R.

Remark 4.10. Before stating the result, let us qualify by uniformized a rule (u, v) on TΣ
such that u = f (y1, . . . , yk) with f an arrow in 〈Σ 〉 and (y1, . . . , yk) a family of variables
with the following property: y1 is x1; then, for each i in {1, . . . , k − 1}, the variable yi+1
is either in {y1, . . . , yi }, or yi+1 is x p+1 if {y1, . . . , yi } = {x1, . . . , x p}.

Note that any rule on TΣ can be replaced by a uniquely defined uniformized rule that
generates the same reduction relation. Furthermore, if a left-linear rule is replaced by its
uniformized rule, this one is also left-linear.

Hence, for what follows, (left-linear) term rewriting systems can always be considered
uniformized: if they are not, they are replaced by their uniformized equivalent version, with
no consequence on the results.

This choice simplifies the translations: a rule (u, v) that is both left-linear and
uniformized satisfies u = f (x1, . . . , x]u), with f an arrow in 〈Σ 〉, uniquely defined; hence,
the translation by Φ of such a u is f and thus is an arrow of 〈Σ 〉.

Proposition 4.11. If (Σ , R) is a term rewriting system, then:

1. If the term rewriting system (Σ , R) terminates, so does the 3-polygraph (Σ c, Rc).
2. The translation Φ preserves the reduction steps generated by any left-linear rule α, that

is: for any pair (u, v) of terms such that u →α v and any integer n ≥]u, there exists an
arrow f in 〈Σ c

〉 such that

Φn(u) →Φ(α) f �R∆Σ Φn(v).

Proof. Point 1 uses the technique to be introduced in Section 5. Its proof is thus postponed
until Section 6. Point 2 requires lengthy and cumbersome though intuitively simple
computations that can be found in [5]. �

Theorem 4.12. A left-linear term rewriting system (Σ , R) terminates (resp. is confluent)
if and only if its associated 3-polygraph (Σ c, Rc) terminates (resp. is confluent).

Proof. Let us assume that the 3-polygraph (Σ c, Rc) terminates while the term rewriting
system (Σ , R) does not. Consequently, there exists some sequence (un)n∈N of terms in TΣ
such that un →R un+1 for every n. From 4.11, since every rule in R is left-linear, one
concludes that, for every k ≥]u0:

Φk(u0) �+

Rc Φk(u1) �+

Rc · · · �+

Rc Φk(un) �+

Rc Φk(un+1) �+

Rc · · ·

356 Y. Guiraud / Journal of Pure and Applied Algebra 207 (2006) 341–371

where the notation �+

Rc stands for a non-empty Rc-reduction path. Such an infinite
reduction path existence is denied by the termination of the 3-polygraph (Σ c, Rc), thus
giving this property for (Σ , R). The converse, which is true even if the term rewriting
system is not left-linear, is still postponed to Section 6.

Now, let us assume that the term rewriting system (Σ , R) is confluent. Let us consider
a branching (f, g, h) of (Σ c, Rc): the arrows f , g and h have the same finite number
of inputs, say m, and the same finite number of outputs, say n, and satisfy f �Rc g
and f �Rc h. Let us denote by π the canonical projection of 〈Σ c

〉 onto TΣ . Then, π

sends each of f , g and h on families (f1, . . . , fn), (g1, . . . , gn) and (h1, . . . , hn) of terms
such that each one has variables in {x1, . . . , xm}. Moreover, for each i , one gets that the
triple (fi , gi , hi) is a branching of (Σ , R). From confluence of this rewriting system, one
concludes the existence of a arrow ki that closes this branching. Let us define k as the
translation, by Φm , in 〈Σ c

〉(m, n), of the family (k1, . . . , kn) of terms. Since (Σ , R) is
left-linear, Proposition 4.11 ensures that this arrow k closes the branching (f, g, h).

Conversely, let us assume that the 3-polygraph (Σ c, Rc) is confluent. Let us consider
a branching (u, v, w) in (Σ , R); since this rewriting system is left-linear, this branching
translates to a branching (Φn(u),Φn(v),Φn(w)) in (Σ c, Rc) for any n ≥]u. Since the
3-polygraph is confluent, there exists some arrow f in 〈Σ c

〉(n, 1) closing this branching.
The projection π(f) is an arrow in TΣ (n, 1) and thus corresponds to a term that closes the
initial branching (u, v, w). �

Before considering what this result allows (or rather does not allow) us to conclude
about our term rewriting system (Σ , R2) presenting the theory of Z/2Z-vector spaces,
there remain some termination results to prove in the next section. However, the intrinsic
complexity of the polygraph structure prevents the use of classical techniques; rather, the
incoming section presents an adaptation to the particular case of 3-polygraph we consider
of classical interpretation techniques used to craft termination orders for terms.

5. Termination orders for 3-polygraphs

In rewriting, one of the most used technique to prove termination is the following one:
build a reduction order, which is a terminating strict order that is compatible with the term
structure; then prove that this order contains the rules. Hence any reduction path in the
corresponding rewriting system yields a strictly decreasing family for the reduction order:
the fact that such families cannot be infinite ensures that there cannot exist any infinite
reduction path or, equivalently, that the rewriting system terminates.

In term rewriting, one easy way to build reduction orders is by means of an
interpretation. The simplest ones are: each term u such that]u = n is sent to a function u∗

from Nn to N (or any set equipped with a terminating strict order). Then, one says that
u > v if each n-uple of integers is sent to a strictly greater integer by u∗ than by v∗. One
easy way to compute u∗ for each term u is to fix ϕ∗ for each operator ϕ in the considered
signature and to extend these values functorially. If one can prove that each ϕ∗ is a strictly
monotone map and that f > g for each rule f → g, then u > v whenever there is a
reduction from u to v. Since the order on N is terminating, so is the order on functions:
hence, the considered term rewriting system terminates.

Y. Guiraud / Journal of Pure and Applied Algebra 207 (2006) 341–371 357

However, in the case of 3-polygraphs, this classical interpretation technique does not
yield reduction orders in general. Indeed, it is not always possible to send each operator ϕ

of the signature onto a strictly monotone map: for example, the erasure operator ε will be
sent to an function from N to N0, that is to a single-element set: this function is unique
and monotone, but not strictly. Consequently: even if a rule f → g satisfies f∗ > g∗, then
(εn

◦ f)∗ = (εn
◦ g)∗, with n the number of outputs of both f and g.

One could also consider contravariant interpretations: hence, ε would be sent to a
constant natural number ε∗. But, in the most interesting 3-polygraphs, such as the ones
we are concerned with, there is a constant operator η which cannot be contravariantly sent
to a strictly monotone map. The interpretation technique must be adapted to the polygraph
structure in order to yield termination orders.

Here we are in front of a choice between two possible directions: the first one consists
in interpreting arrows into functions between objects equipped with a monoidal product,
rather than a cartesian one, such as vector spaces. But, when examined, this has led to
horrendous computations that did not produce any reduction order. Nonetheless, this trail
is not to be forgotten and shall be reexamined when there is a computational tool, adapted
to polygraphs.

The other path consists in using classical interpretations, both covariant and
contravariant, as tools to build a third interpretation: this one will give the desired reduction
orders. Let us present images that describe the intuition beneath the formalism. Each
arrow in the considered product category is seen as an electrical circuit whose elementary
components are the operators it is built from, such as suggested by the diagrammatic
representation used. Then, a heat production value is associated to each circuit: each of
its inputs and outputs receives a current with a fixed intensity; hence there are two types of
currents: some are descending (they come from the inputs and propagate downwards to the
outputs) and some are ascending (they propagate upwards, from the outputs to the inputs).

The heat produced by a fixed circuit is calculated this way: an operator is arbitrarily
chosen. Then, currents are propagated through the other operators to the chosen one. This
requires that choices have been made for each operator: for each one, one must be able to
compute the intensities of descending currents transmitted when one knows the intensities
of incoming descending current, and similarly with ascending currents. When one knows
the intensities of each current coming into the chosen operator, one computes the heat it
produces, according to values fixed in advance. Then, one repeats the same procedure for
each operator, and sums the results to get the heat produced by the considered circuit, for
the chosen current intensities.

Two circuits with the same number of inputs and the same number of outputs are
compared this way: if, for each family of (ascending and descending) current intensities,
one produces more heat than the other one, then the first one is said to be greater. The
goal of this section is twofold: firstly, to formalize the objects required to compute such an
order; secondly, to obtain sufficient conditions for this order to be a reduction order.

Let us describe the required materials. The first one is the object where the
interpretations take their values: this will be a product category equipped with a strict
order. In order to build it, one considers (non-empty) ordered sets X and Y to express the
current intensities, one for descending currents, one for ascending currents (for one of the
applications to be described, two different sets of values are needed). Then, a commutative

358 Y. Guiraud / Journal of Pure and Applied Algebra 207 (2006) 341–371

monoid M will contain the possible values of heats; moreover, it is supposed to be equipped
with an order such that the addition is strictly monotone in both variables.

From the data X , Y and M , one builds a somewhat weird product category O(X, Y, M)

this way: an arrow from m to n in O(X, Y, M) is a triple f = (f∗, f ∗, [f]) consisting of
three monotone functions

f∗ : Xm
→ Xn, f ∗

: Y n
→ Y m, [f] : Xm

× Y n
→ M.

The identity of n is the triple n = (Xn, Y n, 0) made from the identities of Xn and Y n and
the constant zero-function from Xn

× Y n to M . Two arrows f : m → n and g : n → p
compose this way: (g◦ f)∗ and (g◦ f)∗ are respectively the composites g∗◦ f∗ and f ∗

◦g∗;
for elements Ex in Xm and Ey in Y p, the function [g ◦ f] is given by:

[g ◦ f](Ex, Ey) = [f](Ex, g∗(Ey)) + [g](f∗(Ex), Ey).

If f : m → n and g : p → q are two arrows in O(X, Y, M), then their product is given
by: (f ⊗ g)∗ and (f ⊗ g)∗ are respectively f∗ ⊗ g∗ and f ∗

⊗ g∗; if Ex , Ey, Ex ′ and Ey′ are
respectively elements of Xm , Y n , X p and Y q , then [f ⊗ g] is given by:

[f ⊗ g](Ex, Ex ′, Ey, Ey′) = [f](Ex, Ey) + [g](Ex ′, Ey′).

Then one checks that these operations return monotone functions and that they satisfy the
required equations, in order to get:

Lemma 5.1. The aforementioned object O(X, Y, M) is a product category.

On top of this product category structure, a strict order relation � is defined on parallel
arrows of O(X, Y, M). If f and g are two arrows from m to n, then f � g if, for any Ex
in Xm and Ey in Y n , the following three inequalities hold:

f∗(Ex) ≥ g∗(Ex), f ∗(Ey) ≥ g∗(Ey), [f](Ex, Ey) > [g](Ex, Ey).

Now, let us consider a signature Σ . Let us assume that each operator ϕ : m → n in Σ is
associated with an arrow (ϕ∗, ϕ

∗, [ϕ]) : m → n in O(X, Y, M): this is the interpretation.
For any ϕ, the monotone functions ϕ∗, ϕ∗ and [ϕ] respectively express how the operator
transmits descending and ascending currents and how much heat it produces, according to
the current intensities it receives.

Since 〈Σ 〉 is the free product category generated by the signature Σ , the map sending
each ϕ in Σ to the triple (ϕ∗, ϕ

∗, [ϕ]) uniquely extends to a product category functor F
from 〈Σ 〉 to O(X, Y, M). This means that one can compute f∗, f ∗ and [f] for any circuit f
in 〈Σ 〉, from the values ϕ∗, ϕ∗ and [ϕ] given for each operator ϕ in Σ and using the
formulas for composition and product in O(X, Y, M).

The last step consists in using F to get the order � back from O(X, Y, M) on 〈Σ 〉: for
any two parallel arrows f and g in 〈Σ 〉, then f � g is F(f) � F(g).

Theorem 5.2. With the aforementioned notations and if the strict part of the order on M
is terminating, then the strict order � constructed on 〈Σ 〉 is a reduction order.

Proof. One must check that the binary relation � built on 〈Σ 〉 is antireflexive, transitive,
terminating and compatible with the product category structure. Let us assume that f is an

Y. Guiraud / Journal of Pure and Applied Algebra 207 (2006) 341–371 359

arrow in 〈Σ 〉(m, n) such that f � f ; let us fix any elements Ex and Ey respectively in the
non-empty sets Xm and Y n ; then, by definition of �, one gets the following strict inequality
in M :

[F(f)](Ex, Ey) > [F(f)](Ex, Ey).

However, this inequality cannot hold in M since > is the strict part of an order relation. The
termination is proved by a similar argument: any infinite and strictly decreasing sequence
in 〈Σ 〉 yields, through the non-emptiness of X and Y , at least one infinite strictly decreasing
sequence in M , which existence is denied by the assumed termination of the strict part of
its order. The transitivity comes from the ones of the orders on X , Y and M . Finally,
compatibility with the product category structure is checked through computations which
use the monotone quality of each f∗, f ∗ and [f] in O(X, Y, M), together with the facts
that M is a commutative monoid and F is an product category functor. �

For concrete applications, presented in the next two sections, the following corollary
will be used instead of Theorem 5.2:

Corollary 5.3. Let us consider a 3-polygraph (Σ , R). Let us assume that there exist:

1. Two non-empty ordered sets X and Y .
2. A commutative monoid M equipped with an order such that its strict part

is terminating and such that the sum is strictly monotone in both variables.
3. For each operator ϕ in Σ (m, n), three monotone functions:

ϕ∗ : Xm
→ Xn, ϕ∗

: Y n
→ Y m, [ϕ] : Xm

× Y n
→ M.

If the strict order � on arrows of 〈Σ 〉 built from these data, in the aforementioned
manner, satisfies f � g for every rule f → g in R, then the 3-polygraph (Σ , R)

terminates.

6. Application 1: Explicit resource management polygraphs

This section is devoted to the remaining unproved results from Section 4. Let us fix a
term rewriting system (Σ , R) for the whole section.

6.1. Convergence of the 3-polygraph of explicit resource management

The first result to prove is Theorem 4.6: the 3-polygraph (Σ c, R∆Σ) is convergent,
where we recall from Section 4 that Σ c is the signature made of the algebraic signature Σ
and the resource management signature ∆, while R∆Σ is the family of resource
management rules.

The proof is divided in three steps: the first one consists in proving its termination; then,
we recall from [5] that this 3-polygraph is locally confluent; finally, Newman’s lemma
is applied to get its convergence. Let us start with termination: we use the technique
developed in Section 5. However, the considered polygraph is rather complex and needs
two applications of the technique. For the rest of this paragraph, let us fix some notations.

360 Y. Guiraud / Journal of Pure and Applied Algebra 207 (2006) 341–371

Let us denote by α the following rule:

We denote by N∗ the set of non-zero natural numbers with its natural order relation.
The commutative monoid freely generated by N∗ is denoted by [N∗

] and is considered
equipped by the multiset order generated by the usual order relation on natural numbers.
The elements of [N∗

] are all the finite formal sums of non-zero natural numbers; a natural
number n, seen as a generator of [N∗

], is denoted by n.
The multiset order is defined in two steps: for the first one, one says that any sum

a =
∑

i ki .ni satisfies the inequality n > a if n > ni for each i ; then, the multiset order is
taken as the reflexive and structure-compatible closure of this relation.

This implies that the addition is strictly monotone in both variables; furthermore, since
the strict order > on N∗ terminates, so does the strict part of the multiset order. Here is an
example of some strict inequalities that hold in [N∗

]:

0 < 127.1 < 2 < 4.1 + 2.3 < 4.

Lemma 6.1.1. The 3-polygraph (Σ c, R∆Σ) terminates if and only if the 3-polygraph
(Σ c, {α}) terminates.

Proof. Let us consider the product category O(N∗, N∗, [N∗
]) together with the termination

order � as defined in Section 5. Let us denote by F the product category functor from 〈Σ c
〉

into O(N∗, N∗, [N∗
]) defined by the following values on the operators of Σ c:

Three diagrams are given for each operator ϕ: two represent the functions ϕ∗ and ϕ∗ (how ϕ

transmits the current intensities) and one represents [ϕ] (the heat ϕ produces). Now, it is
checked that, for every rule f → g in R∆Σ , the inequality F(f) � F(g) holds, except for
the rule α : sα → tα, for which F(sα) = F(tα). Let us check the (in)equalities for three
sample rules. The complete computations are in [5]. Let us start with the coassociativity
rule for δ:

Y. Guiraud / Journal of Pure and Applied Algebra 207 (2006) 341–371 361

One checks that the first two non-strict inequalities are satisfied:{
((1 ⊗ δ) ◦ δ)∗(i) = (i, i, i) = ((δ ⊗ 1) ◦ δ)∗(i)
((1 ⊗ δ) ◦ δ)∗(i, j, k) = i + j + k + 2 = ((δ ⊗ 1) ◦ δ)∗(i, j, k).

Moreover:{
[(1 ⊗ δ) ◦ δ](i, j, k, l) = 2.i + l + k + l + 2
[(δ ⊗ 1) ◦ δ](i, j, k, l) = 2.i + l + k.

Since l+2 > 0, one gets k + l + 2 > k and the required strict inequality. Then, consider
the rule α for which the chosen values do not work. One gets the two following equalities:

((1 ⊗ τ) ◦ (τ ⊗ 1) ◦ (1 ⊗ τ))∗(i, j, k) = (k, j, i)
= ((τ ⊗ 1) ◦ (1 ⊗ τ) ◦ (τ ⊗ 1))∗(i, j, k)

((1 ⊗ τ) ◦ (τ ⊗ 1) ◦ (1 ⊗ τ))∗(i, j, k) = (k, j, i)
= ((τ ⊗ 1) ◦ (1 ⊗ τ) ◦ (τ ⊗ 1))∗(i, j, k).

And also this equality:

[(1 ⊗ τ) ◦ (τ ⊗ 1) ◦ (1 ⊗ τ)](i, j, k, l, m, n)

= jk.m + m. j + k + i.(j + k).n + n.(i + j + j + k)

= [(τ ⊗ 1) ◦ (1 ⊗ τ) ◦ (τ ⊗ 1)](i, j, k, l, m, n).

To finish with our examples, let us consider the most complicated rule of this presentation,
namely the local duplication rule:

This is this rule that motivates the use of the rather complicated product category
O(N∗, N∗, [N∗

]) to interpret 〈Σ c
〉. In order to make the computations for this rule, one

must start by proving the following equations, which is done by iteration on the integer n:
(δn)∗(i1, . . . , in) = (i1, . . . , in, i1, . . . , in)

δ∗
n(i1, . . . , in, j1, . . . , jn) = (i1 + j1 + 1, . . . , in + jn + 1)

[δn](i1, . . . , in, j1, . . . , jn, k1, . . . , kn)

=

∑
1≤u≤n

(iu + ku) +

∑
1≤u<v≤n

(iuiv.ku + ku .iu + iv).

Then one gets these two equalities:{
(δ ◦ ϕ)∗(i1, . . . , in) = (i1 + · · · + in + 1, i1 + · · · + in + 1) = ((ϕ ⊗ ϕ) ◦ δn)∗
(δ ◦ ϕ)∗(i, j) = (i + j + 1, . . . , i + j + 1) = ((ϕ ⊗ ϕ) ◦ δn)∗.

For the strict inequality to be checked:
[δ ◦ ϕ](i1, . . . , in, j, k) = j + k + 1 + i1 + · · · + in + 1 + k
[(ϕ ⊗ ϕ) ◦ δn](i1, . . . , in, j, k)

= j +

(
n + 1 +

∑
1≤u<v≤n

iuiv

)
.k +

∑
1≤u<v≤n

iu + k.
∑

1≤u<v≤n

iu + iv.

362 Y. Guiraud / Journal of Pure and Applied Algebra 207 (2006) 341–371

The multiset order properties allow the conclusion: the left member of this rule is strictly
greater than its right member. Indeed, it is a consequence from the following strict
inequalities that hold in [N∗

]:
j + k + 1 > j
j + k + 1 > k
i1 + · · · + in + 1 > iu for every u
i1 + · · · + in + 1 > iu + iv for every u and v.

The computations for the other rules are handled similarly, albeit more easily. Now, let us
check the equivalence between termination of the 3-polygraphs (Σ c, R∆Σ) and (Σ c, {α}).
Since α is a rule of R∆Σ , one concludes immediately that the termination of (Σ c, R∆Σ)

implies the termination of (Σ c, {α}): any infinite reduction path generated by the latter
would also be an infinite reduction path in the former.

Conversely, let us assume that (Σ c, {α}) terminates and that there exists an infinite
reduction path (fn)n∈N in (Σ c, R∆Σ). This path yields an infinite decreasing sequence
(F(fn))n in O(N∗, N∗, [N∗

]), equipped with the order �. Since this order terminates, the
sequence is stationary, which means that there exists some natural number n0 such that
F(fn) = F(fn+1) whenever n ≥ n0. However, as proved earlier, one can have both
f →R∆Σ g and F(f) = F(g) only if f →α g. This implies that the sequence (fn)n≥n0 is
an infinite reduction path in (Σ c, {α}). However, the existence of such an infinite reduction
path is prevented by the termination of (Σ c, {α}). �

Now, there remains to prove that:

Lemma 6.1.2. The 3-polygraph (Σ c, {α}) terminates.

Proof. This is done using the technique from Section 5. The product category considered
for the interpretations is O(N, N, N), where N is the set (or commutative monoid) of natural
numbers, equipped with its natural order. We denote by G the product category functor
from 〈Σ c

〉 to O(N, N, N) defined by the following values on the operators of Σ c:

Y. Guiraud / Journal of Pure and Applied Algebra 207 (2006) 341–371 363

We must check that α : sα → tα satisfies F(sα) � F(tα). The computations give, on the
one hand, the two equalities:

((1 ⊗ τ) ◦ (τ ⊗ 1) ◦ (1 ⊗ τ))∗(i, j, k) = (k, j + 1, i + 2)

= ((τ ⊗ 1) ◦ (1 ⊗ τ) ◦ (τ ⊗ 1))∗(i, j, k)

((1 ⊗ τ) ◦ (τ ⊗ 1) ◦ (1 ⊗ τ))∗(i, j, k) = (k, j, i)
= ((τ ⊗ 1) ◦ (1 ⊗ τ) ◦ (τ ⊗ 1))∗(i, j, k).

On the other hand, one gets:{
[(1 ⊗ τ) ◦ (τ ⊗ 1) ◦ (1 ⊗ τ)](i, j, k, l, m, n) = 2i + 2 j + 2k + 2
[(τ ⊗ 1) ◦ (1 ⊗ τ) ◦ (τ ⊗ 1)](i, j, k, l, m, n) = 2i + 2 j + 2k + 1.

By Corollary 5.3, this gives the result. �

Thus, one gets, as a corollary of Lemmas 6.1.1 and 6.1.2:

Proposition 6.1.3. The 3-polygraph (Σ c, R∆Σ) terminates.

We recall the following result from [5, Proposition 5.31]:

Proposition 6.1.4. The 3-polygraph (Σ c, R∆Σ) is locally confluent.

Finally, Newman’s lemma [2] is applied to get Theorem 4.6.

6.2. Termination of 3-polygraph built from a terminating rewriting system

This paragraph contains the proof of Proposition 4.11, point 1: if a term rewriting system
(Σ , R) terminates, then so does its associated 3-polygraph (Σ c, Rc). The proof once again
uses a termination order obtained with Theorem 5.2. However, integer values cannot be
used here, since rules in R are unknown. To handle this issue, the following classical result
— see [2] — is used:

Theorem 6.2.1. A term rewriting system terminates if and only if there exists some
mapping | · | from the set of terms TΣ to N such that |u| > |v| whenever u is a term
that reduces into another term v. Moreover, in that case, the mapping | · | can be chosen
such that |u| ≥ |u′

| whenever u′ is a subterm of u; the mapping can also be chosen so that
it takes its values in any countable set.

Proof. If (Σ , R) terminates, one can choose the mapping | · | to send each term u onto the
length of the longest reduction path starting from u; this mapping satisfies |u| ≥ |u′

| if u′

is a subterm of u, since every reduction path from u′ yields a reduction path of the same
length from u. Conversely, if such a mapping exists, an infinite reduction path (un)n∈N in
(Σ , R) would generate a strictly decreasing infinite sequence (|un|)n∈N in N, which cannot
exist; hence the term rewriting system (Σ , R) terminates. If this is the case, the mapping
| · | can be composed with any bijection σ : N → E , where E is any countable set. �

Hence, from our terminating term rewriting system (Σ , R), a mapping | · | : TΣ → N∗

is assumed to be chosen such that |u| > |v| whenever u reduces in v and |u| ≥ |u′
|

whenever u′ is a subterm of u. From this mapping, one defines a binary relation > on TΣ

364 Y. Guiraud / Journal of Pure and Applied Algebra 207 (2006) 341–371

by u > v if, for every term context c, the inequality |c[u]| > |c[v]| holds. From the fact
that the usual order > on N∗ is a terminating strict order, this binary relation is proved to
satisfy:

Lemma 6.2.2. The aforementioned binary relation > on TΣ is a terminating strict order.

Then, one builds the lexicographical order ≥ on TΣ ×N∗: for this order, (u, i) ≥ (v, j)
if u > v or if u = v and i ≥ j . This order satisfies:

Lemma 6.2.3. This relation ≥ is an order on TΣ × N∗. Moreover, its strict part > is a
terminating strict order on TΣ × N∗.

The set TΣ × N∗, together with the aforementioned order, is taken as the first set used
in the interpretation. The second one is a one-element set {∗} with the only possible order.
Finally, the commutative monoid is once again [N∗

] with its already-used multiset order.
The product category O(TΣ × N∗, {∗}, [N∗

]) is denoted by O.
Sometimes, the two elements ((u1, i1), . . . , (un, in)) of (TΣ×N∗)n and (u1, . . . , un; i1,

. . . , in) of T n
× (N∗)n are identified.

The considered product category functor F from 〈Σ c
〉 to O is given by the following

values (only two are given for each operator since the contravariant interpretation is trivial):

There are two steps to check the conditions given in Corollary 5.3: the first one consists
in ensuring that each given operation is monotone; the second part is about computing if
F(f) > F(g) holds for every rule f → g in Rc.

For the first part, consider, for example, the functions ϕ∗ and [ϕ] for some fixed
operator ϕ in Σ (n, 1), n ≥ 1. Let us consider terms u1, . . . , un , v1, . . . , vn and non-zero
integers i1, . . . , in , j1, . . . , jn . Let us assume that (uk, ik) ≥ (vk, jk) for every k. In order
to prove that ϕ∗ is monotone, one must check that either ϕ(u1, . . . , un) > ϕ(v1, . . . , vn) or
both are equal and i1+· · ·+in ≥ j1+· · ·+ jn . Let c be a context. Since, for every k, uk ≥ vk
and c ◦ ϕ(v1, . . . , vk−1, �, uk+1, . . . , un) is a context, one gets the following inequality:

|c[ϕ(v1, . . . , vk−1, uk, . . . , un)]| ≥ |c[ϕ(v1, . . . , vk, uk+1, . . . , un)]|.

Y. Guiraud / Journal of Pure and Applied Algebra 207 (2006) 341–371 365

Furthermore, if uk > vk for some k, then this inequality is strict for the same k; in this
case:

|c[ϕ(u1, . . . , un)]| > |c[ϕ(v1, . . . , vn)]|.

Consequently, ϕ(u1, . . . , un) > ϕ(v1, . . . , vn). Otherwise, if uk = vk and ik ≥ jk for
every k, then:{

|c[ϕ(u1, . . . , un)]| = |c[ϕ(v1, . . . , vn)]|

i1 + · · · + in ≥ j1 + · · · + jn .

Thus, in both cases:

(ϕ(u1, . . . , un), 2.(i1 + · · · + in)) ≥ (ϕ(v1, . . . , vn), 2.(j1 + · · · + jn)).

In order to prove that [ϕ] is monotone, let us fix some k in [n]. Then, either uk > vk or
uk = vk and ik ≥ jk . In the first case:

|ϕ(v1, . . . , vk−1, uk, . . . , un)| > |ϕ(v1, . . . , vk, uk+1, . . . , un)|.

Thus, by definition of the multiset order on [N∗
]:

(j1 + · · · + jk−1 + ik + · · · + in).|ϕ(v1, . . . , vk−1, uk, . . . , un)|

> (j1 + · · · + jk + ik+1 + · · · + in).|ϕ(v1, . . . , vk, uk+1, . . . , un)|.

In the second case, where uk = vk and ik ≥ jk :

(j1 + · · · + jk−1 + ik + · · · + in).|ϕ(v1, . . . , vk−1, uk, . . . , un)|

≥ (j1 + · · · + jk + ik+1 + · · · + in).|ϕ(v1, . . . , vk, uk+1, . . . , un)|.

Finally:

(i1 + · · · + in).|ϕ(u1, . . . , un)| ≥ (j1 + · · · + jn).|ϕ(v1, . . . , vn)|.

If γ is a constant in Σ (0, 1) or for operators in ∆, proofs are direct. Furthermore, for each
operator ϕ in either Σ or ∆, the operation ϕ∗ is the only map from {∗} to itself, and it is
monotone, so that:

Lemma 6.2.4. For every operator ϕ in Σ c, the aforementioned functions ϕ∗, ϕ∗ and [ϕ]

are monotone.

Then, we must check if F(f) � F(g) for every rule f → g in Rc. Let us recall that
this family of rules consists of three subfamilies: R∆, RΣ and Φ(R). For any rule f → g
in the first family R∆, one gets F(f) = F(g), except for left and right counit rules, where
F(f) � F(g). Computations for rules in RΣ are more complicated; let us examine, for
example, the rule for local duplication and one of the rules for local permutation:

366 Y. Guiraud / Journal of Pure and Applied Algebra 207 (2006) 341–371

Let us fix some natural number n ≥ 1 and some ϕ in Σ (n, 1); for constants in Σ (0, 1),
computations are direct. By iteration on n, the following equalities are proved:

(δn)∗(Eu,Eι) = (Eu, Eu;Eι,Eι) and [δn](Eu;Eι) = i1.u1 + · · · + in .un .

This gives, at first:

(δ ◦ ϕ)∗(Eu,Eι) = (ϕ(Eu), ϕ(Eu); 2.(i1 + · · · + in), 2.(i1 + · · · + in))

= ((ϕ ⊗ ϕ) ◦ δn)∗(Eu,Eι).

Then: [δ ◦ ϕ](Eu,Eι) = 3.(i1 + · · · + in).|ϕ(Eu)|. To be compared with:

[(ϕ ⊗ ϕ) ◦ δn](Eu,Eι) = 2.(i1 + · · · + in).|ϕ(Eu)| + i1.u1 + · · · + in .un .

Since uk is a subterm of ϕ(Eu) for every k, and by assumption on | · |, the inequality
|ϕ(Eu)| ≥ |uk | holds. Hence, for every k:

ik .|ϕ(Eu)| ≥ ik .uk .

Finally: (i1 + · · · + in).|ϕ(Eu)| ≥ i1.u1 + · · · + in .un . This gives the inequality [δ ◦ ϕ] ≥

[(ϕ ⊗ ϕ) ◦ δn]. Now, let us consider the first rule for local permutation; the first step is to
prove, by iteration on n:

(τn,1)∗(Eu, v;Eι, j) = (v, Eu; j,Eι) and [τn,1](Eu, v;Eι, j) = 0.

Then: (τ◦(ϕ⊗1))∗(Eu, v; Ei, j) = (v, ϕ(Eu); j, 2.(i1+· · ·+in)) = ((1⊗ϕ)◦τn,1)∗(Eu, v; Ei, j).
And: [τ ◦ (ϕ ⊗ 1)](Eu, v; Ei, j) = (i1 + · · · + in).|ϕ(Eu)| = [(1 ⊗ ϕ) ◦ τn,1](Eu, v; Ei, j).
The other rules in RΣ are similarly handled and give similar results: for every rule

f → g in RΣ , the inequality F(f) � F(g) holds in O. The final part concerns the family
Φ(R) of rules. Let us assume that α : f → g is a rule in R; its translation by Φ is the rule
Φ(α) : Φ(f) → Φ] f (g). Let us prove that F ◦ Φ(f) � F ◦ Φ] f (g). The first step is to
prove, by iteration on the degree of terms in TΣ , the following lemma:

Lemma 6.2.5. Let u be a term in TΣ , n be an integer such that n ≥]u, Ev a family of
n terms in TΣ and Eι a family of n non-zero natural numbers. Let us denote by σEv the
substitution defined by xk · σv = vk if k ≤ n and xk otherwise. Then:

1. There exists some non-zero integer k such that (Φn(u))∗(u · σEv, k).
2. The inequality [Φn(u)](Ev,Eι) < |u · σEv + 1| holds in [N∗

].
3. If u is not a variable, then the inequality [Φn(u)](Ev,Eι) ≥ |u · σEv| also holds in [N∗

].

Point 1 gives, when applied to f and g with n =] f , the existence of non-zero natural
numbers k and k′ such that Φ(f)∗(Eu,Eι) = (f · σEu, k) and Φn(g)∗(Eu,Eι) = (g · σEu, k′).
Let us consider some context c. By definition of the reduction relation →α generated
by the rule α, one gets c[f · σEu] →α c[g · σEu]. Consequently, the properties of | · | give
|c[f · σEu]| > |c[g · σEu]|. This holds for any context; thus, by definition of > on TΣ , one
gets f · σEu > g · σEu . Finally, using the definition of > on TΣ × N∗:

Φ∗(f) > Φ∗(g).

Let us prove now that [Φ(f)] > [Φn(g)]. Since α is a term rewrite rule, its source f
is a non-variable term. Hence, point 3 of the previous lemma gives the inequality

Y. Guiraud / Journal of Pure and Applied Algebra 207 (2006) 341–371 367

[Φ(f)](Eu,Eι) ≥ | f · σEu |. Moreover, point 2 gives [Φn(g)](Eu,Eι) < |g · σEu + 1|. Finally,
since the reduction f ·σEu →α g·σEu holds in (Σ , R) and by properties of |·|: | f ·σEu | > |g·σEv|.
There remains to concatenate these three inequalities to get [Φ(f)] > [Φn(g)] and, as a
consequence F ◦Φ(f) � F ◦Φn(g). The product category functor F from 〈Σ c

〉 to O gives
us F(f) � F(g) for every rule f → g in Φ(R) and F(f) � F(g) for every rule f → g
in R∆Σ . This yields the following result:

Proposition 6.2.6. If the term rewriting system (Σ , R) terminates, then termination of
the 3-polygraph (Σ c, Rc) is equivalent to termination of (Σ c, R∆Σ).

Since we already know that (Σ c, R∆Σ) always terminates, this concludes the proof of
Theorem 4.12.

7. Application 2: A convergent 3-polygraph for a commutative equational theory

This final section is devoted to give a convergent presentation of the equational theory
of Z/2Z-vector spaces, which is, as mentioned before, a commutative equational theory
and thus does not have any convergent presentation by a term rewriting system.

In Section 1, we have considered three term rewriting systems (Σ , R0), (Σ , R1) and
(Σ , R2) that respectively present the equational theories of monoids, of commutative
monoids and of Z/2Z-vector spaces. All three have two operators, a product and a unit,
and they have respectively three, four and five rules. Thus, their associated 3-polygraphs
have five operators together with twenty-three rules for (Σ c, Rc

0), twenty-four for (Σ c, Rc
1)

and twenty-five for (Σ c, Rc
2).

Since (Σ , R0) is a left-linear convergent term rewriting system, Theorem 4.12 ensures,
in particular, that (Σ c, Rc

0) is a convergent presentation of the theory of monoids,
with explicit resource management. The term rewriting system (Σ , R1) is left-linear,
non-terminating (due to the commutativity rule) and non-confluent (though it could
be completed to get a confluent rewriting system), hence Theorem 4.12 gives us that
(Σ c, Rc

1) is a non-terminating and non-confluent presentation of the equational theory
of commutative monoids, with explicit resource management. Finally, the term rewriting
system (Σ , R2) is a non-left-linear, non-terminating and non-confluent term rewriting
system: non-left-linearity denies us any information coming from Theorem 4.12 about this
presentation.

However, there is, in [10], an equivalent 3-polygraph called L(Z2). Its signature contains
a sixth operator, called κ and pictured this way:

This new operator is said to be superfluous since it represents, in a Z/2Z-vector space, the
concrete operation κ(x, y) = (µ(x, y), x) that can be expressed in terms of µ, δ and τ . In
the presentation, this relation is enforced by means of the following extra rule:

368 Y. Guiraud / Journal of Pure and Applied Algebra 207 (2006) 341–371

The main objective of this new operator and rule is to make proof of termination easier (if
not just possible). Then, one has to add a certain amount of rules in order to complete the
presentation, to finally obtain the 3-polygraph L(Z2), discovered and baptized in [10].

This polygraph has six operators:

and sixty-seven rules:

From [10], we already know that this presentation is confluent but termination was
still a conjecture. The technique presented in Section 5 now allows us to prove that
it is also terminating, hence convergent. The interpretation product category we use is
O(N∗, N∗, [N∗

]), once again denoted by O. The interpretation functor F is given by the
following values on generating operators:

Y. Guiraud / Journal of Pure and Applied Algebra 207 (2006) 341–371 369

The chosen values simplify the computations greatly. Indeed, normally, there are three
inequalities to check for each rule: hence, there should be 201 inequalities to check here.
The first reduction comes from the fact that F identifies τ and κ: there are 24 rules that can
be dropped since, for each one, there is another rule that is sent to the same image. Thus
there remain 43 rules and 129 inequalities to check.

Moreover, the rules of L(Z2) have some interesting symmetries that one can exploit:
indeed, whenever f → g is a rule of L(Z2), then f o

→ go is also a rule of L(Z2), where
the duality (·)o is the involution defined by:

µo
= δ, ηo

= ε, τ o
= τ, κo

= κ, no
= n,

(g ◦ f)o
= f o

◦ go, (f ⊗ g)o
= f o

⊗ go.

Another way to define this duality is by its action on diagrams: there, it is the top-down
symmetry. Furthermore, the functor F is compatible with this symmetry, in the sense that,
for every arrow f , the functor F sends f o onto F(f)o, where the duality on O is defined
that way: (f∗, f ∗, [f])o

= (f ∗, f∗, [f]
o), with [f]

o(Ex, Ex ′) = [f](Ex ′, Ex). Note that this
only has a meaning because the two sets X and Y are the same here (both equal to N∗).

Thus, if some rule f → g in L(Z2) satisfies F(f) > F(g), then so does f o
→ go.

As a consequence, this reduces the number of rules to study: 18 of the remaining rules
have a distinct dual, hence only 25 rules need to be studied (75 inequalities). Furthermore,
when a rule f → g is self-dual, the inequality F(f)∗ ≥ F(g)∗ holds if and only if
F(f)∗ ≥ F(g)∗ holds: 8 of the remaining rules are in that case, which means there still
are 67 inequalities from the former 201 to check. Computations do not raise any difficulty.
For example, let us study the following (self-dual) rule:

One computes{
(κ ◦ κ)∗(i, j) = (2i + j, i + j)
((1 ⊗ µ) ◦ (τ ⊗ 1) ◦ (1 ⊗ δ))∗(i, j) = (i + j, i + j).

370 Y. Guiraud / Journal of Pure and Applied Algebra 207 (2006) 341–371

Since i and j are non-zero natural numbers, the following inequality holds:

(κ ◦ κ)∗ > ((1 ⊗ µ) ◦ (τ ⊗ 1) ◦ (1 ⊗ δ))∗.

Then{
[κ ◦ κ](i, j, k, l) = i + i + j + k + k + l
[(1 ⊗ µ) ◦ (τ ⊗ 1) ◦ (1 ⊗ δ)](i, j, k, l) = 2i + j + 2k + l.

Since i and j are non-zero natural numbers, the inequalities i + j > i and i + j > j
always hold. Thus, by property of the multiset order on [N∗

], the inequality i + j > i + j
always holds. Similarly, so does k + l > k + l. Finally, the multiset order on [N∗

] is
compatible with addition, yielding:

[κ ◦ κ] > [(1 ⊗ µ) ◦ (τ ⊗ 1) ◦ (1 ⊗ δ)].

The other rules are studied in a similar way [5], which leads to the following result, proving
that commutative equational theories can admit polygraphic convergent presentations:

Theorem 7.1. The 3-polygraph L(Z2) is a convergent presentation of the equational
theory of Z/2Z-vector spaces, with explicit resource management.

8. Comments and future directions

The study of (3-)polygraphs had been started by Albert Burroni and Yves Lafont, as an
algebraic model for three-dimensional calculus on two-dimensional objects. Foundations
were laid in [8,3,9]. In [10], rewriting systems generated by 3-polygraphs were considered
and many known equational presentations are studied in order to be completed into
convergent rewriting systems (or, at least, rewriting systems with the unique normal form
property). Discussions with Albert Burroni, Yves Lafont and Philippe Malbos have been
essential in order to achieve the results presented here. Comments from the referee were of
great help to make this paper clearer.

There exist many research paths concerning polygraph. The first one is about
confluence: as mentioned earlier, there exist theoretical issues with critical pairs of
3-polygraphs; exploration and classification are mandatory in order to achieve some
automated completion procedure for these objects. Such a tool (which implementation in
Caml has already started) would be very useful since, starting from an equational theory,
one could use the constructions described in Section 4 in order to obtain a 3-polygraph;
then a completion procedure could be applied to correct termination and confluence issues.
Suggested by Pierre Lescanne, other usual techniques for building reduction orders in
term rewriting could also be examined, in order to see if they could also be adapted to
polygraphs. Among the most useful results to be studied are the ones concerning path
orders, see [2], and dependency pairs, see [1].

A second theme to be explored is the study of higher-dimensional polygraphs. For
an example of application, 4-polygraphs provide a categorical framework for proof
transformations in the calculus of structures [4]. Such an approach could yield results such
as proof decompositions or normal forms, given by a convergent 4-polygraph. At least,
it suggests that formulas are two-dimensional objects, proofs are three-dimensional and

Y. Guiraud / Journal of Pure and Applied Algebra 207 (2006) 341–371 371

computation on them (such as cut elimination) lives in dimension 4. This point of view
is conjectured to yield a new class of objects describing formal proofs, giving a different,
categorical and geometrical way to approach proof theory.

Theoretical studies can also be directed at pursuing the synthesis started in [5] on rewrit-
ing systems: one of the main goals is to have a framework where one can compare two
rewriting systems, regardless of the algebraic structure of their terms. The reduction space
associated to each rewriting system is an algebraico-geometric object (a cubical object in
some category of algebras) and one could use the underlying cubical sets of these objects
to compare rewriting systems, geometrically. Notions of (co)fibrations from Quillen model
categories — see [6] — theory could be useful for a better understanding of results such as
the ones of Section 4; since many rewriting systems are special cases of polygraphs, this
study will start with the construction of homotopical tools for these objects.

Still another question is the following: is there some n for which there exists a finite
n-polygraph yielding a calculus with both explicit substitutions and explicit resource
management for the λ-calculus? When n = 3, the answer seems to be negative, since
theoretical results deny the existence of any non-trivial product category that is both
cartesian (for resource management) and sovereign (for substitutions). An equational
description of the structure of closed category (such as the one Albert Burroni has given
for cartesian categories) should be the first step of this work. Another possibility is to use
a three-dimensional interpretation of proofs, together with the links between λ-terms and
proofs.

Finally, 3-polygraphs have the interesting property to modelize computational circuits.
Indeed, both classical and quantum algorithms accept representations as circuits which
are, albeit not in their usual presentation, genuine operators of a 3-polygraph. Furthermore,
equational presentations are known for both kinds of circuits. Questions that can be studied
with this point of view concern the existence of convergent 3-polygraphs for classical or
quantum circuits, thus leading to canonical representations of programs. One can take a
look at [7] for more information on circuits and [10] for their links with polygraphs.

References

[1] T. Arts, J. Giesl, Termination of term rewriting using dependency pairs, Theoretical Computer Science 236
(2000) 133–178.

[2] F. Baader, T. Nipkow, Term Rewriting and All That, Cambridge University Press, 1998.
[3] A. Burroni, Higher-dimensional word problems with applications to equational logic, Theoretical Computer

Science 115 (1) (1993) 46–62.
[4] A. Guglielmi, L. Straßburger, Non-commutativity and MELL in the Calculus of Structures, in: Lecture

Notes in Computer Science, vol. 2142, 2001, pp. 54–68.
[5] Y. Guiraud, Présentations d’opérades et systèmes de réécriture, Thèse de doctorat, Montpellier, 2004.
[6] M. Hovey, Model categories, Mathematical Surveys and Monographs 63 (1999).
[7] A. Kitaev, A. Shen, M. Vyalyi, Classical and quantum computation, Graduate Studies in Mathematics 47

(2002).
[8] Y. Lafont, Penrose Diagrams and 2-dimensional Rewriting, in: London Mathematical Society Lecture Notes

Series, vol. 177, 1992, pp. 191–201.
[9] Y. Lafont, Equational Reasoning with 2-dimensional Diagrams, in: Lecture Notes in Computer Science, vol.

909, 1995, pp. 170–195.
[10] Y. Lafont, Towards an algebraic theory of boolean circuits, Journal of Pure and Applied Algebra 184 (2003)

257–310.
[11] S. MacLane, Categorical algebra, Bulletin of the American Mathematical Society 71 (1965) 40–106.

	Termination orders for three-dimensional rewriting
	Outline
	Equational theories and term rewriting systems
	Resource management operations
	Three-dimensional polygraphs
	From term rewriting to 3-polygraphs
	Termination orders for 3-polygraphs
	Application 1: Explicit resource management polygraphs
	Convergence of the 3-polygraph of explicit resource management
	Termination of 3-polygraph built from a terminating rewriting system

	Application 2: A convergent 3-polygraph for a commutative equational theory
	Comments and future directions
	References

