41 research outputs found

    A parallel algorithm for solving linear parabolic evolution equations

    Full text link
    We present an algorithm for the solution of a simultaneous space-time discretization of linear parabolic evolution equations with a symmetric differential operator in space. Building on earlier work, we recast this discretization into a Schur-complement equation whose solution is a quasi-optimal approximation to the weak solution of the equation at hand. Choosing a tensor-product discretization, we arrive at a remarkably simple linear system. Using wavelets in time and standard finite elements in space, we solve the resulting system in linear complexity on a single processor, and in polylogarithmic complexity when parallelized in both space and time. We complement these theoretical findings with large-scale parallel computations showing the effectiveness of the method

    Doctor of Philosophy

    Get PDF
    dissertationShape analysis is a well-established tool for processing surfaces. It is often a first step in performing tasks such as segmentation, symmetry detection, and finding correspondences between shapes. Shape analysis is traditionally employed on well-sampled surfaces where the geometry and topology is precisely known. When the form of the surface is that of a point cloud containing nonuniform sampling, noise, and incomplete measurements, traditional shape analysis methods perform poorly. Although one may first perform reconstruction on such a point cloud prior to performing shape analysis, if the geometry and topology is far from the true surface, then this can have an adverse impact on the subsequent analysis. Furthermore, for triangulated surfaces containing noise, thin sheets, and poorly shaped triangles, existing shape analysis methods can be highly unstable. This thesis explores methods of shape analysis applied directly to such defect-laden shapes. We first study the problem of surface reconstruction, in order to obtain a better understanding of the types of point clouds for which reconstruction methods contain difficulties. To this end, we have devised a benchmark for surface reconstruction, establishing a standard for measuring error in reconstruction. We then develop a new method for consistently orienting normals of such challenging point clouds by using a collection of harmonic functions, intrinsically defined on the point cloud. Next, we develop a new shape analysis tool which is tolerant to imperfections, by constructing distances directly on the point cloud defined as the likelihood of two points belonging to a mutually common medial ball, and apply this for segmentation and reconstruction. We extend this distance measure to define a diffusion process on the point cloud, tolerant to missing data, which is used for the purposes of matching incomplete shapes undergoing a nonrigid deformation. Lastly, we have developed an intrinsic method for multiresolution remeshing of a poor-quality triangulated surface via spectral bisection

    Wavelet-based multiresolution data representations for scalable distributed GIS services

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2002.Includes bibliographical references (p. 155-160).Demand for providing scalable distributed GIS services has been growing greatly as the Internet continues to boom. However, currently available data representations for these services are limited by a deficiency of scalability in data formats. In this research, four types of multiresolution data representations based on wavelet theories have been put forward. The designed Wavelet Image (WImg) data format helps us to achieve dynamic zooming and panning of compressed image maps in a prototype GIS viewer. The Wavelet Digital Elevation Model (WDEM) format is developed to deal with cell-based surface data. A WDEM is better than a raster pyramid in that a WDEM provides a non-redundant multiresolution representation. The Wavelet Arc (WArc) format is developed for decomposing curves into a multiresolution format through the lifting scheme. The Wavelet Triangulated Irregular Network (WTIN) format is developed to process general terrain surfaces based on the second generation wavelet theory. By designing a strategy to resample a terrain surface at subdivision points through the modified Butterfly scheme, we achieve the result: only one wavelet coefficient needs to be stored for each point in the final representation. In contrast to this result, three wavelet coefficients need to be stored for each point in a general 3D object wavelet-based representation. Our scheme is an interpolation scheme and has much better performance than the Hat wavelet filter on a surface. Boundary filters are designed to make the representation consistent with the rectangular boundary constraint.(cont.) We use a multi-linked list and a quadtree array as the data structures for computing. A method to convert a high resolution DEM to a WTIN is also provided. These four wavelet-based representations provide consistent and efficient multiresolution formats for online GIS. This makes scalable distributed GIS services more efficient and implementable.by Jingsong Wu.Ph.D

    A multiscale method for the double layer potential equation on a polyhedron

    Get PDF
    This paper is concerned with the numerical solution of the double layer potential equation on polyhedra. Specifically, we consider collocation schemes based on multiscale decompositions of piecewise linear finite element spaces defined on polyhedra. An essential difficulty is that the resulting linear systems are not sparse. However, for uniform grids and periodic problems one can show that the use of multiscale bases gives rise to matrices that can be well approximated by sparse matrices in such a way that the solutions to the perturbed equations exhibits still sufficient accuracy. Our objective is to explore to what extent the presence of corners and edges in the domain as well as the lack of uniform discretizations affects the performance of such schemes. Here we propose a concrete algorithm, describe its ingredients, discuss some consequences, future perspectives, and open questions, and present the results of numerical experiments for several test domains including non-convex domains

    The Sixth Copper Mountain Conference on Multigrid Methods, part 1

    Get PDF
    The Sixth Copper Mountain Conference on Multigrid Methods was held on 4-9 Apr. 1993, at Copper Mountain, CO. This book is a collection of many of the papers presented at the conference and as such represents the conference proceedings. NASA LaRC graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The multigrid discipline continues to expand and mature, as is evident from these proceedings. The vibrancy in this field is amply expressed in these important papers, and the collection clearly shows its rapid trend to further diversity and depth

    Multilevel preconditioning on the refined interface and optimal boundary solvers for the Laplace equation

    Get PDF
    In this paper we propose and analyze some strategies to construct asymptotically optimal algorithms for solving boundary reductions of the Laplace equation in the interior and exterior of a polygon. The interior Dirichlet or Neumann problems are, in fact equivalent to a direct treatment of the Dirichlet-Neumann mapping or its inverse i.e. the Poincaré-Steklov (PS) operator. To construct a fast algorithm for the treatment of the discrete PS operator in the case of polygons composed of rectangles and regular right triangles, we apply the Bramble-Pasciak-Xu (BPX) multilevel preconditioner to the equivalent interface problem in the H1/2-setting. Furthermore, a fast matrix-vector multiplication algorithm is based on the frequency cutting techniques applied to the local Schur complements associated with the rectangular substructures specifying the nonmatching decomposition of a given polygon. The proposed compression scheme to compute the action of the discrete interior PS operator is shown to have a complexity of the order O(N logq N), q ∈ [2,3] with memory needs of O(N log2 N) where N is the number of degrees of freedom on the polygonal boundary under consideration. In the case of exterior problems we propose a modification of the standard direct BEM whose implementation is reduced to the wavelet approximation applied to either single layer or hypersingular harmonic potentials and, in addition, to the matrix-vector multiplication for the discrete interior PS operator

    Adaptive Scattered Data Fitting with Tensor Product Spline-Wavelets

    Get PDF
    The core of the work we present here is an algorithm that constructs a least squares approximation to a given set of unorganized points. The approximation is expressed as a linear combination of particular B-spline wavelets. It implies a multiresolution setting which constructs a hierarchy of approximations to the data with increasing level of detail, proceeding from coarsest to finest scales. It allows for an efficient selection of the degrees of freedom of the problem and avoids the introduction of an artificial uniform grid. In fact, an analysis of the data can be done at each of the scales of the hierarchy, which can be used to select adaptively a set of wavelets that can represent economically the characteristics of the cloud of points in the next level of detail. The data adaption of our method is twofold, as it takes into account both horizontal distribution and vertical irregularities of data. This strategy can lead to a striking reduction of the problem complexity. Furthermore, among the possible ways to achieve a multiscale formulation, the wavelet approach shows additional advantages, based on good conditioning properties and level-wise orthogonality. We exploit these features to enhance the efficiency of iterative solution methods for the system of normal equations of the problem. The combination of multiresolution adaptivity with the numerical properties of the wavelet basis gives rise to an algorithm well suited to cope with problems requiring fast solution methods. We illustrate this by means of numerical experiments that compare the performance of the method on various data sets working with different multi-resolution bases. Afterwards, we use the equivalence relation between wavelets and Besov spaces to formulate the problem of data fitting with regularization. We find that the multiscale formulation allows for a flexible and efficient treatment of some aspects of this problem. Moreover, we study the problem known as robust fitting, in which the data is assumed to be corrupted by wrong measurements or outliers. We compare classical methods based on re-weighting of residuals to our setting in which the wavelet representation of the data computed by our algorithm is used to locate the outliers. As a final application that couples two of the main applications of wavelets (data analysis and operator equations), we propose the use of this least squares data fitting method to evaluate the non-linear term in the wavelet-Galerkin formulation of non-linear PDE problems. At the end of this thesis we discuss efficient implementation issues, with a special interest in the interplay between solution methods and data structures

    Computational Multiscale Methods

    Get PDF
    Many physical processes in material sciences or geophysics are characterized by inherently complex interactions across a large range of non-separable scales in space and time. The resolution of all features on all scales in a computer simulation easily exceeds today's computing resources by multiple orders of magnitude. The observation and prediction of physical phenomena from multiscale models, hence, requires insightful numerical multiscale techniques to adaptively select relevant scales and effectively represent unresolved scales. This workshop enhanced the development of such methods and the mathematics behind them so that the reliable and efficient numerical simulation of some challenging multiscale problems eventually becomes feasible in high performance computing environments
    corecore