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Abstract. This paper is concerned with the numerical solution of the double 
layer potential equation on polyhedra. Specifically, we consider collocation sche-
mes based on multiscale decompositions of piecewise linear finite element spaces 
defined on polyhedra. An essential difficulty is that the resulting linear systems 
are not sparse. However, for uniform grids and periodic problems one can show 
that the use of multiscale bases gives rise to matrices that can be well appro-
ximated by sparse matrices in such a way that the solutions to the perturbed 
equations exhibits still sufficient accuracy. Our objective is to explore to what 
extent the presence of corners and edges in the domain as well as the lack of 
uniform discretizations affects the performance of such sch~mes. Here we pro-
pose a concrete algorithm, describe its ingredients, discuss some consequences, 
future perspectives, and open questions, and present the results of numerical 
experiments for several test domains including non-convex domains'. 

§1 Introduction 

When dealing with constant coefficient elliptic partial differential equations an al-
ternative to the classical finite element approach is offered by the boundary element 
method which consists in the reduction to boundary integral equations via Green's 
identities. For instance, the Dirichlet problem for Laplace's equation on a bounded 
and simply connected polyhedron 'P ~ 1R3 or the Neumann problem for the same 
equation on 1R3 

\ 'P can be reduced to the second kind integral equation 

Au=f (1.1) 

·over the boundary n := 8'P (cf. e.g., [29]), where A = I+ 2W and Wis the double 
layer potential operator (cf. (2.2)). In particular, this exterior domain problem is an 
example for potential advantages of the boundary element method since it avoids 
discretizing unbounded domains. 

The most popular and frequently used schemes for the numerical solution of 
Au= f are based on Galerkin, collocation, and quadrature ( = Nystrom) methods. 
However, all these schemes share one common drawback. They require solving li-
near systems A~ ui = fi. with matrices A~ that are dense, i.e., whose entries are 
essentially all different from zero. Resulting storage requirements as well as the fact 
that this kind of problem doesn't fit the usual type of solvers for large scale problems 
therefore restrict the allowable number of unknowns, say N = 0( 4i), drastically, 
since the computational complexity for generating the matrix A~ and computing 
the solution ui is at least O(N2 ). Since one still expects iterative schemes to be best 
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suited the bulk of computations lies in matrix generation and matrix vector mul-
tiplication. Rokhlin [36] and independently Hackbusch and Nowak [22] proposed a 
way for significantly reducing the computational complexity of these tasks. Their 
algorithms are based on explicit multipole expansions of the underlying potential. 
In particular, the algorithm in [22] concerns boundary element methods. An intri-
guing alternative to this approach was recently proposed by Beylkin, Coifman and 
Rokhlin [5] based on multiscale decompositions of appropriate trial spaces spanned 
by compactly supported wavelets. A multigrid algorithm for fast matrix vector 
multiplication which was developed independently by Brandt /Lubrecht and Har-
ten [6,23] is actually closely related to the wavelet method. The crucial point here 
is that the particular structure of the wavelet basis makes the entries of the corre-
sponding stiffness matrices decay away from the diagonal so that the computational 
complexity can be reduced by discarding entries that stay below a given threshold. 
This is quite similar in spirit to the classical field of applications for wavelets, na-
mely image compression, in that wavelets provide here sparse approximations to 
the underlying Schwartz kernel. 

,. These facts as well as recent results on preconditioning (see e.g., [11]) have 
encouraged studying wavelet methods not only for signal and image analysis but 
also for the numerical treatment of operator equations. Without trying to be exhau-
stive we briefly mention a few corresponding attempts in this direction. Alpert [1] 
proposed a multiscale approach dealing with discontinuous piecewise polynomials 
(p-method) and their orthogonalization. This approach looks quite attractive. But 
its practical realization is rather complicated since higher order polynomials must 
be implemented. Moreover these functions are not appropriate for the discretiza-
tion of the normal derivative of the double layer potential. Another idea is based 
on Cliffords analysis [2]. We had already mentioned the starting work [5] dealing 
with Galerkin approximations. Motivated by these results a systematic study of 
a wide class of generalized Petrov-Galerkin schemes, for a similarly wide class of 
pseudo-differential equations was undertaken in [12,13,14]. This covers collocation 
as well as classical Galerkin and Petrov-Galerkin methods. The class of opera-
tors contains all classical pseudo-differential operators, e.g., those contained in the 
Hormander class a:s well as those arising in connection with the boundary element 
method. Here one main objective was to develop a general stability analysis that 
could be applied to convergence and compression issues. In fact, in this framework 
the general interplay between ingredients like regularity and degree of exactness of 
trial spaces, as well as of certain dual spaces can be clarified to a large extent. In 
particular, this suggests some advantages of biorthogonal wavelets over orthonormal 
ones. However, rigorous results could be only obtained at the expense of confining 
the discussion to periodic problems. 

The objective of this paper is therefore to study the performance of analogous 
multiscale versions of the boundary element method for closed polyhedral surfaces. 
However, instead of treating Galerkin schemes as in [5] we focus here essentially 
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on collocation which is used quite frequently in applications. In principle, this is 
covered by the general analysis in [13] which, however, as mentioned above, is con-
fined to periodic problems, i.e., smooth domains, and uniform grids. The present 
setting is essentially different. Firstly, we have to deal with domains that are not 
smooth but have corners and edges causing strong singularities of the kernel func-
tions. Secondly, the topology of the domain excludes the use of uniform grids and · 
forces us to consider functions on closed surfaces. Consequently, we have to dispense 
with employing classical wavelets and most parts of the corresponding classical ma-
chinary, but have to work with suitable more flexible multiscale decompositions 
of sequences of nested trial spaces on closed surfaces. Our primary goal is to get 
a better idea to what extent the above mentioned adverse facts affect the perfor-
mance of multiscale techniques similar to those studied in [13]. Moreover, we wish 
to see whether possibly simple and robust ingredients suffice in practice to provide 
sufficiently accurate results. Therefore we confine the discussion here to piecewise 
linear finite elements although higher order elements could be handled analogously. 
Our procedure can roughly be described as follows. As mentioned before, the initial 
matrix A~ is not sparse. And neither is Ai ~ At which is merely an approximation 
of the exact collocation matrix At obtained by evaluating the involved integrals by 
means of a suitable quadrature formula. As a next step we construct a multiscale 
decomposition of our finite element spaces. This gives rise to a certain pyramid-type 
algorithm which transforms Ai into a matrix A~ corresponding to the respective 
multiscale basis. Most of the entries of this matrix will be seen to decay more ra-
pidly away from the diagonal than those in At (and in Ai). The idea is then to 
replace all entries whose modulus stays below a given threshold by zero ending up 
with a sparse approximation A~ of A~. This step is called matrix compression or 
sparsification. It significantly reduces storage requirements and facilitates applica-
tion of efficient sparse matrix solvers. For the setting considered in [13] it could 
be shown that a proper balance of compression and consistency errors gives rise 
to solutions of the compressed scheme which meet prescribed error tolerances and 
in some cases even exhibit optimal asymptotical convergence rates. Lacking most 
of the analytic tools from the setting in [13] we are therefore mostly interested at 
this stage in the interplay between compression and accuracy of the final numerical 
solution. Therefore we have not tried to optimize all parts of the algorithm yet. 
For instance, we presently still compute initially the full matrix Ai which is an 
order N 2 procedure. Ultimately one would want to compute only essentially those 
entries that are needed to obtain the compressed matrix A~. Also the use of graded 
grids near the edges would be appropriate. For the sake of simplicity we have kept 
the discretization uniform on each facet of the polyhedron but are very pleased to 
observe that this simple version already produces surprisingly good results. In that 
sense this paper is to be understood mainly as a progress report on studying as 
we believe very promising concepts. To our knowledge this is the first application 
of multiscale decomposition techniques in connection with the boundary element 
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method for 3D-problems. Therefore we focus here on describing and discussing 
the ingredients of the algorithm and the numerical tests conducted so far. A more 
detailed theoretical treatment will be postponed to a f~rthcoming paper. 

The paper is organized as follows. In §2 we pose the analytical problem and 
describe the discretized collocation method. In §3 we develop the ingredients of a 
corresponding multiscale decomposition of the trial spaces and the associated trans-
formations. §4 is devoted to matrix compression while some results on numerical 
tests are reported on in §5. We conclude with some discussion of the results and of 
future perspectives in §6. 

§2 Discretization of the double layer potential equation 

2.1 The double layer potential operator 

It is well known that the Dirichlet problem for Laplace's equation on some domain 
P C JR3 can be reduced to solving the double layer potential equation 

Au=f (2.1) 

over the boundary n = 8P (cf. e.g., [29)) where we will assume in the following 
that P is a polyhedron. Here A = I+ 2W and W is given by 

1 Jn ·(x-y) Wu(x) := [1/2 - Bn(x)]u(x) + - j l3 u(y)dyO, 47r y - x (2.2) 
n 

where Bn ( x) is the inner solid angle of n at x E n and ny denotes the unit vector of 
the interior normal to P at y. The fact that the boundary n is not smooth entails 
certain theoretical and practical complications. One needs nonuniform meshes and 
the operator Wis not compact. The kernel function k(x, y) := 4

17t'ny ·(x-y)ly-xl-3 

vanishes if x and y are located on the same face of n. However, if y and x tend 
to a point on some edge of n but remain on different faces, then k(x, y) is of order 
Ix - Yl-2 • Thus the kernel function of W has fixed strong singularities along the 
edges. 

The result of [31] about the boundedness of Cauchy singular integral opera-
tors on Lipschitz curves implies the L2-boundedness of the double layer potential 
operator on Lipschitz domains. Indeed the double layer potential operator is a 
Calder6n-Zygmund operator. In order to make use of the available theory for dou-
ble layer potential operators on Lipschitz-surfaces, we will assume throughout this 
paper that the polyhedron is a Lipschitz-domain with boundary n c 1R3 (cf. [32)). 

All examples of polyhedra which are treated in our numerical experiments fulfil 
this conditio~. Figure 1 shows such an example. 

We conclude this subsection with a brief overview over the various existing 
numerical schemes for the approximate solution of Au = f. Probably the first 
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Figure 1. Bench ( = L-block), in a cube of edge length 1 with initial triangulation. 

method was the so called panel method, based on piecewise constant collocation 
(cf.[43,26,44,3]). This method was proved to converge in supremum norm provided 
that P satisfies a certain condition introduced by Wendland in [43]. Moreover, Kral 
and Wendland [28] show~d that the panel method is stable for the case of certain 
rectangular domains P including those used in our tests. The proof of the stability-
for the piecewise linear collocation is completely analogous. However, the proof of. 
stability for the discretized collocation is still open. We only remark that stability 
can be enforced· also for discretized collocation by means of certain modifications of 
the discretization near the edges which was shown in [25] for a second order method. 
Furthermore, collocation with piecewise quadratic trial functions was considered in 
[4]. Elschner [19] analysed the Galer kin method with piecewise polynomial trial 
functions over arbitrary polyhedra, and the Galerkin method combined with .an 
approximation of the Lipschitz boundary by smooth surfaces was investigated by 
Dahlberg and Verchota [10]. 

2.2 Mesh generation 

To keep the implementation as simple as possible we consider here only regular 
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XK1e-~~~~---~~~~~- XK2 
XKf 

Figure 2. Triangle [xKuXK2 ,XK3 ] and its refinement. {K1, K2, KJ} C \Ji=> 
{K1,K2,K3,Kf,K~,KD c vi+1

, {Ki,KLKD c ~i. 

triangulations of the domain, i.e., through the process of mesh refinement all tri-
angles remain geometrically similar to a finite number of initial triangles so that, 
in particular' the ratios of the radius of circumscribed and inscribed circles remain 
bounded for all the triangles involved. Nevertheless this will be seen to yield al-
ready sufficiently accurate results. Here, of course, a collection of triangles is called 
a triangulation of n if the intersection of any two of the triangles is either a common 
edge or vertex or empty and if the union of all triangles is n. The ·corresponding 
simplicial complex consisting of triangles, edges and corners will be referred to as 
mesh. 

All meshes to be considered in the sequel are built through successive regular 
refinements of an initial mesh n° which corresponds to some initial triangulation of 
n. Such a triangulation typically has only the extreme points of P as vertices. An 
example for the L-block is depicted in Figure 1. Subdividing each triangle in n° 
into four congruent subtriangles generates n1 and iterating this process gives rise 
to a sequence of nested mes~es ni of depth or level j E 1N0 (see Figure 2). Clearly 
the meshsize hon the level j is proportional to 2-i. Of course, this construction is 
frequently used in finite element and boundary element schemes. 

The vertices XK of the triangles are called the knots or knot points of the 
mesh. Their indices K will be collected in a corresponding grid Vi == { K : 
XK is a knot in ni}. It is convenient to introduce a distance between K, K' E Vi 
as the rescaled distance between the corresponding knots · 

(2.3) 

By construction the grids are nested as well 

v0 c v1 c ... c vi-1 c vi, (2.4) 
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and the set of additional knots obtained when passing from level j - 1 to level j is 
denoted by 

(2.5) 

By 
(2.6) 

we will always denote the number of knots on the j-th level and therefore the 
number of unknowns of the linear systems studied below. Nj is proportional to 22i 
with constants depending only on the initial triangulation n°. 
2.3 Finite element spaces 

A little care has to be taken when talking about fo.nctions defined on n since n is not 
topologically equivalent to a planar domain. Thus whenever explicit representations 
of a function are needed it seems most convenient to express its restriction to any 
triangle in n° (or in fact to any subtriangle of some triangle in n°) in terms of the 
respective barycentric coordinates. In particular, this readily allows us to define for 
each triangle T of n° the canonical Courant hat functions 'Pk on T relative to ni nT, 
i.e., each such function restricted to any T E ni is piecewise linear and continuous 
on T satisfying the nodal conditions 

(2.7) 

for all K, K' E Vilr· When XK is a knot in the relative interior of a common edge 
e of two neighboring triangles T, T 1 E n° the two corresponding hat functions on 
these two triangles assemble automatically to a single nodal function 'Pk which is 
now defined on TU T 1 and is continuous on all of n. Analogously, when XK is an 
extreme point of P, i.e., a vertex in n° the function 'Pk is composed of several 
pieces coming from the adjacent triangles. This uniquely defines 'Pk on all of n as 
a piecewise linear continuous function satisfying (2. 7) for all K, K' E Vi and 

(2.8) 

Likewise integration on n is reduced to integration on the planar faces of P and 
hence on 1R2

• Thus the norm 11 · llL 2 (n) may be defined by reduction to norms on 
planar domains via 

llullLcn) := L llullLcr)· (2.9) 
rE0° 

The normalization in (2. 7) then ensures the existence of positive constants c1 , c2 
independent of j such that 

(2.10) 
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Moreover, with this normalization one has stability (Riesz-basis), i.e., there exist 
positive constants 0 1, 02 such that 

01( L lukl 2 )~ :::; II L ukcpkllL2(n) :::; 02( L lukl 2 )~ (2.11) 
KE\li KE\li KE\li 

holds uniformly in j E IN 0 and any coefficient vector ui = ( uk : K E Vi). Since 
obviously, by (2. 7), 

the spaces 

i - 2-i-l cpK -

of piecewise linear continuous functions on n are nested 

v0 c v1 c ... c vi-1 c vi. 

(2.12) 

(2.13) 

(2.14) 

Finally, restriction to the planar faces of P as above readily yields second order 
accuracy of the trial spaces 

(2.15) 

where h is the meshsize of Oi, provided that the restrictions of u E 0(0) to any 
T E n° has second order weak derivatives in L2 ( T ). 

So far we have confirmed the validity of the basic properties of what would be 
called multiresolution analysis in a classical wavelet context for the present setting 
of nested trial spaces on a polyhedral manifold. Of course 1 piecewise polynomial 
trial functions of higher degree could be defined along similar lines. As in the case 
of B-splines one would not have to insist on interpolatory basis functions as above. 

2·.4 Discretization 

The knot collocation method on the finest grid Vi consists in finding a piecewise 
linear and continuous function ui E Vi such that 

(2.16) 

which requires solving a linear system with coefficient matrix whose entries have 
the form 

supp cp~, 

ny. (xk-y) i (. )d f2 K,K' E Vi,K-'- K'. 
I i 13 cp K' y y ' I y-xK 

. . 1 J (Acpk, )(xk) = 27f 

(2.17) 
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To avoid analytic integration, when computing these entries, we approximate the 
involved integrals with the aid of a quadrature formula which is known to be 
exact for polynomials p of degree at most two (e.g., [4]). To describe this, let 
T = [xK17 XK2 , XK3 ) E f},i and let XK~, XK~, XK~ denote the midpoints of its ed-
ges [xK17 XK2 ], [xK2 ,XK3 ],[xK3 ,XK1 ], respectively (cf. Figure 2). The formula then 
reads 

(2.18) 

Moreover, to ensure a proper treatment of the singularities we employ a regulariza-
tion technique, which is sometimes called singularity subtraction (cf. [25]). In fact, 
taking into account that the constant function is an eigenfunction of W correspon-
ding to the eigenvalue 1/2 (cf. [29], Sect. 1.3), the equation Au = f may be written 
as 

2u(x) + __!__ j nj. (x jay) [u(y) - u(x)]dyO = f(x), 
. 27r y - x 

x E 0. (2.19) 
n 

The subtraction technique for discretizing the collocation method consists now in 
applying the above quadrature rule to (2.19) for x = XK, K E Vi and u replaced 
by a piecewise linear trial function ui E Vi. Now it is not hard to see that this 
procedure leads to approximations ak K' for the entries ( Acpk, )( xk) of the exact 
collocation matrix, which are the usual

1

quadrature approximations of the quantities 
in (2.17) when K -::f. K', while the diagonal entries are given by 

ak K = 2-, (2.20) 
K' E"Vi ,K' :f:.K 

The quadrature method described above is relatively easy to implement and the 
computation of entries for the corresponding stiffness matrix is quite fast. It leads 
to the linear system 

(2.21) 

Remark. In view of (2.15), the overall convergence of the scheme is expected to be 
at most quadratic i.e., O(h2 ). In fact, due to the lack of regularity of the solution 
and the presence of corners and edges in the domain n, the order of convergence 
should actually be lower in practice. However, in spite of these adverse facts we 
observe surprisingly good accuracy and convergence rates (see Table 1). 

Remark. Former excerpts from our numerical experiments mentioned in [14,39] 
were obtained without singularity subtraction. These results were observed to be 
sufficiently accurate when P is a cube. But the results turned out to be visibly 
worse for nonconvex domains. Therefore we have incorporated the above singularity 
subtraction in all of the present examples. 
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§3 M ultiscale decomposition 

The concept of multiresolution analysis, mainly due to Mallat and Meyer, plays 
a fundamental role for the construction, analysis, as well as for applications of 
wavelets. While initially orthogonal decompositions of shift invariant spaces were 
considered, more general multiscale decomposition techniques have emerged from 
this concept (see e.g., [7,23]). Similar techniques such as the frequency decompo-
sition multigrid method [20,21] came up in different contexts. In this section we 
describe the type of general multiscale decomposition techniques which will be used 
in our algorithm. Some theoretical background can be found in [7 ,23]. 

3.1 Decomposition of function spaces 

The basic philosophy of multiscale techniques is to view objects on a high discretiza-
tion level as successive updates of coarser versions. This is usually realized through 
corresponding decompositions of underlying function spaces serving as continuous 
models of the data under consideration. Such decompositions typically rest on cer-
tain two scale relations which we describe now for the present setting. First we 
recall from (2.12) the refinement equation 

'P i -K- (3.1) 

where the so called mask or filter coefficients mk, K are, in view of (2.12),. given by 
I 

i 2-i-l i ( ) m K' K = cp K X K' ' 
' 

KE vi, K' E vi+1 . (3.2) 

The Nj+1 x Nj matrix Mi = ( mk, ,K )K' E'Vi+l ,KE'Vi is therefore sparse. It is often 
called subdivision matrix. In the context of multigrid methods its adjoint usually 
serves as a canonical restriction. Clearly on those grid points located in the interior 
of the triangles T E n° it can be represented by the following 7 point stencil 

(3.3) 

Here the bold value indicates a position K in the coarse grid Vi. In addition one 
needs now a relation which complements the basis in Vi to one for vJ+1 , i.e., one 
needs additional functions 

such that 

,,t.i ·-'f'K .-
~ i i+l . 
L__; c K' ,K'P K' ' K E t:,_J' 

K'E'Vi+ 1 

cp~ 1 = L dk,K1'Pk1 + L gkK1'l/;k1· 
K'E'Vi K'E~i 

(3.4) 

(3.5) 
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- More precisely, the ob.jective is to find for a given Mi additional matrices Ci = 
(ck,,K)K'EVi+1 ,KEa;, Di= (dk,,K)K'EV1i,KE\7i+ 1 , and Gi = (g:J<',K)K1 Eai,KE\7i+1 

such that the relations (3.4) and (3.5) hold. Of course, (3.5) means that 

(3.6) 

where 
Wi := span{'t/Jk: KE ~i}. (3.7) 

It is easy to see that this decomposition is equivalent to the matrix relation 

(3.8) 

which is the pivotal ingredient of the subsequent discrete decomposition schemes. 
Relation (3.8) means that the composed Ni+1 x Ni+l matrices (Mi, Ci) and (Di, 
Gi)* are inverses of each other ' 

(3.9) 

Consequently one derives the identities 

(3.10) 

Remark. The stability of the cpk combined with the relation (3.8) or (3.9) implies 
the . stability of the functions 1/J~, K E ~i (cf. [7]), for fixed j E JN. A familiar 
possible choice for the matrices Ci, Di, Gi is 

i c K' ni+l K A j" CK,,K=oK',K,. Ev, Eu, 

dk',K = 28K,K', KE vi+i,K' E vi, (3.11) 
i _ {-2-icpi(xK') if KE Vi 

9K',K - 8K',K if KE ~i, . 

which corresponds to so called hierarchical bases for the spaces Vi (cf. [45]). Unfor-
tunately, due to the lack of moment conditions (see (3.28) below), this very handy 
decomposition is not quite appropriate for our purposes. However, it can be used 
to derive from it other decompositions which are better suited. More information 
about this issue can be found in [7] where these questions are discussed in much 
more generality. 

We postpone the actual specification of the matrices Ci and assume at this 
point that they are given and that they are sparse, i.e.' are defined through stencils 
with finite support. We remark that according to (3.9) an appropriate choice of Mi 
together with Ci determines the matrices Di and Gi. 
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3.2 Discrete transformations 

The reason for considering the above space decompositions is to facilitate a multis-
cale decomposition of vectors of the form 

(3.12) 

Interpreting these coefficients u'k as coefficients of an expansion of some function 

ui = :E ukcpk E Vi, 
KEV'i 

(3.13) 

we conclude from (3.5) 

ui = :E. ukcpk = :E. uk (· ~ d£~,cp1(; 1 + ~ gti,'r/Jk-;1
) 

KEV'' KEV'J K' EV'J - 1 K' Efl.J - 1 

:E ((Di-l )*ui)K''P~ 1 + :E ((Gi-l )*ui)K1'r/Jk-;1 (3.14) 
K' EV'i- 1 K' Ell.;-1 

"'""' i-1 i-l "'""' i-l,,1,i-l L...J UK, 'PK1 + LJ WK' 'f'K1 
K' EV';-1 K' Ell.i-1 

i.e., 

( 
ui.-1 ) _ ( (D~-1 )*) i 
w1-1 - (G1-1 )* u . (3.15) 

Thµs, the change of b~ses taking ui E Vi from a nodal basis representation relative 
to the basis B~ := { cpk : K E Vi} into a representation in terms of the multiscale 
basis B~ := {cp'.k : K E V 0 } U {'r/Jk : K E _6.l, l = 0, ... ,j - 1} can be performed 
with the aid of a pyramid type scheme: 

(Di-1 )* (Di-2 )* 
ui ---+ ui-1 ---+ ui-2 

~ (Gi-1 )* ~ (Gi-2)* 
wi wi-1 

Conversely, since b'y (3.1) and (3.4), 

K'EV'i-1 

i-1 i-1 UK, 'PK1 + "'""' i-l,,1,i-l LJ WK.I 'f'K1 

(Do)* 
---+ uo 
~ (Go)* 

WO. 

= :E ((Mi-lui-1)K + (ci-lwi-l)K) cpk, 
KEV'i 

(3.16) 

(3.17) 
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one has 
i - (Mj-1 c1-1) ( uj.-1 ) u - ' w1-1 . (3.18) 

Thus, given the representation 

i-1 
ui = L u'kcp'k + L L wk1/Jk, (3.19) 

KE"v 0 l=O KED..' 

the coefficient vector u1 of ui relative to the .nodal basis B~ is obtained by the 
following reverse process 

WO wl w2 wj-1 

~ co ~ ci ~ ci-1 
(3.20) uo -+ ul -+ u2 ui-1 -+ ui 

Mo Mi Mi-1 

which involves now the matrices M 1, C 1 (see also [7]). Only those matrices will be 
needed in the present context. 

One has to keep in mind that our primary task is to generate from the matrix 
A~ the matrix A~ relative to the multiscale basis B~ and this procedure requires 
only the matrices M 1, C 1• To see this denote by <I? 1, '11 1 the row vectors consisting 
of the functions cpk,, K' E '\7 1 and 1/Jk,, K' E ~ 1, respectively. In these terms (3.1) 
and (3.4) can be rewritten as 

(3.21) 

so that 
(3.22) 

Since (A<I?i)(xK) is the Kth row of the matrix A~, iterating the above transforma-
tion yields 

(3.23) 

where 

L 1 := (-(_c_'~_M_z_) ____ ~-), l = o, ... ,j -1. (3.24) 

Thus whenever also the matrices C 1 are sparse the transformation (3.23) requires 
only O(N) nontrivial operations where as before N = #V'i. 

We will see below (cf. ( 4.5)) that the entries of A~ Ti decay more rapidly away 
from the diagonal than those of A~. Our experiments show that this remains true 
for AiTj where AJ is the approximation of Ai obtained by the quadrature (2.18). 
This suggests approximating A j Ti by a sparse matrix. However, our numerical 
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tests have revealed that such a sparsification works ev~n better on the equivalent 
system 

(3.25) 

where fK = f(xK ), KE \Ji, and u~ is given by 

(3.26) 

Remark. Note that the transformation yielding 

(3.27) 

corresponds to a change of bases arising in connection with Galer kin schemes. In [13] 
it is referred to as wavelet representation. There the decay of the entries was studied 
systematically for periodic problems. Below in §4 we will therefore be content with 
briefly indicating the basic idea. 

We now turn to specify the complementary matrices C 1• To this end, recall 
from [5,13] that the compression rate for the matrices A~ is expected to depend on. 
the order d of vanishing moments of the functions 'iflk. By this we mean that 

J 1/Jk(:c)p(:c)d:c = 0, KE .6.1lri l = 0, ... ,j -1, (3.28) 
T 

holds for each T E n° and every polynomial p of degree less than d. Since the 
exactness of the quadrature (2.18) limits the overall convergence rate to ·two we 
expect vanishing moments of order d = 2 to be sufficient. It is shown in [7] how 
to construct from (3.11) matrices C 1, D 1, G 1 which are all sparse such that the 
corresponding spaces W 1 in (3.6) have the form W 1 = ( Q1+1 - Q1 )v1+1 where the 
Q1 are local projectors onto the spaces V 1 possessing uniformly bounded L2-norms. 
However, here our objective is to explore the efficiency of possibly simple schemes, 
i.e., masks with possibly small support. Therefore for the present numerical studies 
we have chosen C 1 to be of the following form. 

Each knot point x L, L E fl.i, is on a line connecting two neighboring points on 
the coarse grid xK1 and XKr, K 1, Kr E \Ji. In general we define for a:= lxL - xK1 I 
and b := lxL - XKr I the entries of Ci by 

{ 2 
when XK =XL, 

-2b when XK = XK1, ci ·- (a+b) (3.29) K,L .- -2a when XK = XKr, (a+b) 
0 else. 
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Since in our construction XL = t(xK" + xK1) we have a= b so that in the interior 
of each T E n° the matrix Ci corresponds to the following 3 point stencils 

( ~1 ~ ~1) ~Cb , ( ~ ~ ~1) 
-1 0 0 

Cb= 1 . 

1 
-Cb 
2 ' (3.30) 

Again the boldface values correspond to indices L E ;:li. In our numerical tests 
we have varied the normalizing constant Cb. Its choice affects the normalization of 
the matrix Gi which is not specified here (and which may not be sparse but have 
entries that decay exponentially away from the diagonal). The above choice of Ci 
ensures that (3.28) holds ford= 2 whenever 7/Jk corresponds to a knot XK, KE Jli 
located in the interior of some triangle T E n°. When K corresponds to a point on 
an edge of P (3.28) holds only ford= 1. However, since these points correspond to 
a lower dimensional set one should not expect this to affect the overall accuracy in 
?'ny significant way. 

Remark. One should mention that the univariate counterpart of the matrix 
Ci already appears in [6,23]. There it is used for a different purpose, namely to 
complement the refinement matrix corresponding to the relation (3.1) for the delta-
distribution to an invertible matrix analogous to (3.9). In the same way it arises 
also in [45] in a bivariate setup when converting the hierarchical basis representation 
into the nodal basis representation. 

Of course, one could use other masks from [6,23] to increased in (3.28) but we 
dispense here with this option for the reasons mentioned before. 

3.3 Stability, biorthogonality 

If the matrices (Mi, Ci) and (Di, Gi) have uniformly bounded Lrnorms, which 
means that the matrices (Mi, Ci) have uniformly bounded condition numbers, for 

. i i . any u 3 = L:KEV"i u K'P K the estimates 

(3.31) 

as well as 

(3.32) 

hold uniformly in j E JN. For the above choice of Mi and Ci this is indeed the 
case as is already suggested by the following simple observation. By the above 
remarks concerning its role in [6,23,45] Ci must have full rank. Since its columns 
are orthogonal to those in Mi which is also known to have full rank the matrix 
(Mi, Ci) must be invertible. However, this stability between two levels is not quite 
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sufficient. In addition the transformation Ti in (3.23) should be stable which means 
that the estimate 

(3.33) 

holds uniformly in j E JN, or equivalently that 

cond2 Ti= 0(1), J ~ oo . (3.34) 

In this case the basis { 'lfJi : L E £li : j E JN o} U { cp<Jc : K E V 0 } is an unconditional 
Schauder basis in L2 (f2). As mentioned before the transformation defined by (3.11), 
which is also used in [6], is not stable. 

There are several strategies for establishing st?-bility. Of course, the two-level 
. stability implies global stability if the functions 'l/Ji, L E £li are orthogonal to the 
<pk, K E Vi. Moreover, it has been observed in [39] that the boundedness of a 
·certain integral operator with Calder6n-Zygmund kernel is a ne~essary condition 
for the stability. After completing this paper we learned that [33,24] have found an 
equivalent result phrased in terms of a Carleson condition. In the classical setting of 
multiresolution analysis for uniform grids on lRn stability can be guaranteed, even 
when dealing with non-orthogonal complements Wi, by constructing biorthogonal 
systems of wavelets [9]. A resulting necessary and sufficient condition for stability 
is, however, not easy to verify in practice. 

In the present context this approach amounts to the following task. Given the 
matrix Mi find a completion Ci, Di, Gi satisfying (3.8) such that the compounded 
matrices (Mi, Ci) and (Di, Gi) have uniformly bounded L2-norms. Moreover, 
the dual m~trices Di have to be chosen so that there exists stable system~ of L2-
functions 1Jk, K E Vi, which are refinable relative to Di, i.e., 

ni -·1K-

If this is the case the functions 

l"i ·-
~L .-

~ i j+l 
~ 9K1 ,L1JK1 

' 

K' E'1;+1 

satisfy the biorthogonality relations 

LE £li, 

(cpk,11k1) = OK,K', K,K' E Vi, 

('l/l{, (l,) = oL,L', L, L' E £li, 

( cpk, Ci) = ( 'l/JL 11k) = o, K E vi, L E £li, 

(3.35) 

(3.36) 

(3.37) 
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where the 1/Ji are given by (3.4) and (!, g) := J Jg. 
n 

Remark. One should emphasize that the transformation Ti and hence the whole 
algorithm requires only the matrices Mi, Ci while the dual pair Di, Gi is only 
needed to construct a complete biorthogonal system of functions as in (3.37), which 
in turn can be used to establish stability of Ti (cf. [9]). 

§4 Matrix compression 

Wavelet approximations to operators have gained considerable importance because 
of several reasons. They support efficient preconditioning for non zero order ope-
rators (cf. [11,13]), regularization of linear ill-posed problems [18), and matrix 
compression [5,13]. The latter issue is closely relat.ed to atomic decompositions of 
Calder6n-Zygmund operators. These properties· are based on the fact, that wave-
lets provide unconditional schauder bases for a wide scale of Sobolev, Besov and 
Triebel-Lizorkin spaces. 

One expects these features to remain valid also in a more general multiscale 
setting of the present type. In particular, the results in [13] for the periodic case 
suggest that, not only when dealing with Galerkin approximations but also for 
collocation schemes, the entries in the corresponding matrices decay away from 
block diagonals (cf. e.g., [5]). 

This should facilitate an efficient compression, i.e., an approximation of At Ti 
or A~ by a sparse matrix, so that the solution to the perturbed system is still 
sufficiently accurate. For periodic boundary conditions this could be rigorously 
confirmed in [13] for a wide class of operators as well as numerical schemes based 
on uniform grids. Following the lines of [13] the entries of At Ti may be estimated 
(similarly as in the case of Galerkin schemes [5]) as follows. First assume that XL 

is some vertex such that the support of 1/Jf is contained in some triangle T E n0 : 

Exploiting the fact that 1/Jf has compact support, we obtain, on account of (3.28), 

l(Ar/{)(:i:K )I = I j k(xK, y).,P{(y)dyl 
n 

= I j (k(xK, y) - p(y)).,P{(y)dyl, 
( 4.1) 

n 

where pis _any polynomial of degree at most one. Thus, using Schwarz' inequality, 
taking 111/Ji llL2(n) rv 1 into account, and choosing p as the Taylor polynomial of 
k(xK, ·)at XIn one obtains 

l(A1f;f}(xK )I::; llk(xK, ·) - PllL 2 (supp,p~) ll1/JillL2(n) 
:::; c 2-3i max . ID;k(xK, y)I . 

jcxi=2,yESUpp,p~ 

(4.2) 
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The well known estimates for the double layer potential kernel 

lk(x,y)I::; clx -yl-2 (4.3) 
ID~k(x,y)I + ID;k(x,y)I :=; clx -y1-2 -lal , !al:=; 2, (4.4) 

therefore yield 
(4.5) 

In particular, when XL and XK are knots in the same mesh one obtains 

(4.6) 

Taking the slightly different normalization in [13] into account, this is in full agree-
ment with the results in [13] for the periodic case. Figures 4,5, and 6 exhibit the 
pattern of those nonzero entries in the matrix A~ whose modulus is greater than 
some constant threshold independent of the level j. The figures illustrate the decay 
of matrix entries away from some block diagonals and the increasing sparsity produ-
ced by higher levels. Those nondiagonal blocks which are still visible correspond to 
edges and corners of the underlying polyhedral domain. (see the following remark). 

Remark. When 1/J{ is not supported on only one triang~e T E 110 the order of 
moment conditions (3.28) drops down from two to one so that the decay is also 
lowered by one order. Since this affects only 0( N 3 / 2 ) elements the overall accuracy 
should not deteriorate significantly. On account of the order of exactness of our 
quadrature rule (2.18), we expect the entries of the corresponding approximations 
to behave similarly. One should note that the entries ( Acpk, )( x K) of At instead 
can only be expected to decay like 2i(l + IK - Ll)-2 • 

Let us turn next to the matrix A~ == (Ti)* AiTi (3.27). To clarify the basic 
idea it is helpful to consider again for a moment the exact collocation matrix At 
instead of Ai. The first step of the analogous formation (3.27) is then given by 

where 

.- (Mi-1 )* AtMi-1, 
·- (ci-1 )* AtMi-1, 

More generally, defining 

.- (Mi- 1 )*At ci-1 

.- (ci- 1 )* Atci-,1 . 

(4.7) 

(4.8) 

(4.9) 
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and compounding these matrices yields the so called atomic decomposition of A~ 
[5,13,23]. The estimation of the entries of the atomic decomposition can be used 
for ultimately estimating the entries of (Ti)* A~ Ti. A typical entry in the atomic 
decomposition is 

ai,K' = 2-l-l :E cpk1(XK )(A,,Pi,)(xK ). ( 4.10) 
KE'Vi 

Exploiting that cpk,, ,,P_h have compact support and assuming first that suppcpk, n 
supp,,P_i = 0, supp,,P_h C T for some T E n°, we obtain, on account of (3.28) 

lai,K' I ~ 0 sup j k( x, y ),,P_h (y )dy . 
:r:ESUppcpk n 

The right hand side may now be estimated as above yielding 

( 4.11) 

( 4.12) 

Similar remarks as before apply when ,,P_h is not supported on a single T E n°. 
The essential steps of our algorithm may now be described as follows: 

• The discretized collocation method gives rise to a linear system (2.21) 

( 4.13) 

where Ai is the approximation to A~ described in §2. 
• The transformation Ti from (3.23) gives the matrix 

( 4.14) 

so that the system (2.21) is equivalent to 

A~ u~ = (Ti)*fi, ( 4.15) 

where ui =Tiu~. 
• In view of the order of our quadrature n~le, the above estimates ( 4.5) .predict a 

corresponding decay of the entries in A~. Replacing all entries in A~ by zero 
whose modulus stays below a given threshold th yields .the compressed system 

( 4.16) 

• This latter system is solved with the aid of a sparse iterative solver. 
The decay estimates ( 4.5) allow us to estimate the deviation of the solution of 

(4.16) from the-solution to the full system (2.21) and, in some cases, also from the 
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exact solution of Au = f. For periodic problems and generalized Petrov-Galer kin 
schemes on uniform grids this has been done in [1?]. In fact, it is shown there 
that for every € > 0 there exists a sparse matrix A~ which differs in the spectral 
norm from A~ only by €. A similar result can be shown also for the so called 
atomic decomposition [13]. Furthermore, compression rate and consistency error 
can be balanced in a way that the solutions to the compressed systems exhibit 
under certain circumstances still asymptotically optimal convergence rates relative 
to the exact solutions of Au = f. An analogous analysis for the present setting 
would go beyond the scope of this paper and is deferred to a forthcoming paper. 

We refer to Figure 3 for a pseudocode of the whole transformation ( 4.14) and 
of the decomposition (3.16). 

§5 Results 

For our numerical experiments we consider a Dirichlet problem for Laplace's equa-
tion LlU(x) = 0 , x E P, and choose here smooth Dirichlet data, U(x)ln = f(x), 
x = (1x, 2x, 3X) E n. In spite of the smoothness of the Dirichlet data the solution 
will generally not be smooth because the boundary is not smooth. 

We have tested the method described above for three different polyhedra, a 
cube, a tetrahedron and an L-block (bench). The last example deals with a non-
convex domain (see Picture 1). 

If U is the solution of the Dirichlet problem in P with the boundary value 
f ( x ), x E !1 then U admits the representation 

1 J ny · (x -y) 
U(x) = 47r . Ix -yl3 u(y)dyO, x E P, (5.1) 

n 

where u is the solution of the double layer potential equation Au = f. In particular 
we choose the harmonic function U(x) .- {¥-((1 x + 1)2 + 2 x2 + 3 x2 )-!, x E P, 
f(x) := U(x)ln-

5.1 The uncompressed collocation scheme 

In order to have a control for our compression error, we have to monitor the error 
between the exact solution u, and the approximate solution ui obtained by the 
given (uncompressed) discretized collocation method on a grid Vi with N = Nj 
knots. Since we are often interested in the potential U, or in some functionals of 
the boundary data u, rather than in the values of u, we directly go ahead and de-
termine first an approximation of U as follows. Inserting ui into the representation 
formula above and computing the integral via the same quadrature rule used for the 
computation of the entries of the stiffness matrix, we derive the following formula 



Multi.scale Method on Polyhedra 21 

for the approximate solution of the boundary value problem (cf. Figure 2): 

(5.2) 

where for T = [YKu YK2 , YK3 ] the points yl(~ are defined by yl(~ = i(YK, + YK,J E 
' ' ~i, i = 1, 2, 3 with k = i + 1, for i = 1, 2 and with k = 1 if i = 3, are the midpoints 

of the edges of the triangle T and ui(yl(~) := t(ui(yk) + ui(yl(
111

)). 

The error ERRx' := IU(xi) - Ui(~i)I at the points x1 = (0.5, 0.5, 0.5), x2 = 
(0.6, 0.4, 0.3), x3 = (0.3, 0.3, 0.25) is displayed in Table 1. As a further control we 
replace the exact solution u of (2.19) by the numerical solution uJ on a very fine 
grid and compute ERR~ = llu1~:Jj1~llo where here llullo := (l:KEVi lu( XK )1 2)112. 
This error is equivalent to the relative L2-error and is also displayed in Table 1.' 
The three values of ERR~ standing in brackets are extrapolated from the former 
ones using the convergence order a as given below. 

Since the solution of the integral equation has a singular behavior in the vicinity 
of the corners and edges, the convergence order of the L2-error ERR~ of the discrete 
equation (2.21) is expected to be worse than 7 /12, i.e., ERR~N i72 -+ oo. In our 
computations, however, we have observed that 

log(ERR~+1 ) - log( ERR~) 
a=- ' log( Ni+i) - log( Ni) 

(5.3) 

turns out to be somewhat better than expected (cf. a in Table 1). 
For the convergence of the approximate solution to th~ exact solution of the Di-

richlet problem in the interior of P, we expect that the rate of convergence coincides 
with the order of approximation by linear functions, i.e., maxKEVi (ERRxK) = 
O(N-1 ). This is confirmed by checking 

·+1 . f3 = _ log(maxi=1,2,3(ERR~, )) -log(maxi=1,2,3(ERR~,)), (S.4) 
log( Nj+i) - log( Nj) 

ERR~i = ERRx' for certain levels j (cf. f3 in Table 1). Note that because of 
N-1 

f'.J h2 this is in agreement with the remarks at the end of §2. 

5.2 The compressed scheme 

In the multiscale representation A~ we discard those elements which are below a 
given threshold th and end up with a compressed or sparsified matrix A~. The ratio 
between the total number N 2 of matrix elements of the full matrix and the number 
nze of nonzero elements after thresholding defines the compre.s.sion rate= cpr := 
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N
2 bd By compression we obtain a perturbed system. The solution of this pertur e nze . . 

system ( 4.16) is denoted by ii~. Substituting ii~ into the discrete representation 
formula (5.2), we compute 

· 1 1 3 nr · ( x - Y K' ) . · 
U~(x) := 47r L. 3 ?= Ix - YT I 13 ~ u~(yl(~ )ITI' 

rE0' i=l Ki 
(5.5) 

with T and KI as above. 
Of course, the compression causes an additional error. An acceptable compres-

sion should have only a negligable influence on the precision of the final approximate 
solution. To monitor ii~ we again replace the exact solution u of (2.19) by the nume-

ri~al solution u Jon a very fine level J and compute ERRt = llii.wu~~:llo. In order to 
determine which threshold results in a suitable compression, we compare this error 
with the error ERR~ of the discretizati~n scheme. Similarly we compare ERRxi 
with the corresponding error IU(xi) - U~(xi)I. ~o estimate this error we compute 
the maximum MERRx := maxi=1,2,3IU(xi)- U~(xi)I. This is the second quantity 
that should help determining which compression rate has still a negligable influence 
on the precision of the approximate solution. Finally, we compute the additional 

. . f th . ERR llu; -ii.~ Ila h' h . al d' 1 d . error ansmg rom e compression := llu' 11~ , w 1c 1s so 1sp aye m 
most of the tables. 

At this place we summarize all previously defined notation in Table 2. 
The main results for the geometries we have tested are presented in Tables 3, 4 

and 5. The bold quantities refer to the largest threshold th and the corresponding 
solution ii~ for which ERRt ~ ERR~ on the same level j (ERR~ is to be found 
in Table 1). In this case, thresholding apparently has a negligable influence on the 
solution ii~. Furthermore for the bold quantities one has M ERRx ~ ERRxi, i = 
1,2,3 and for j > 4 even MERRx ~ ERRxi,i = 1,2,3 (cf. Table 1). We observe 
that we can choose a larger threshold, and this results in a better compression for 
larger N, satisfying MERRx ~ infiERRxi, i = 1, 2, 3. 

In Figures 7 and 8 the number nze of nonzero elements of the compressed 
matrices A~, for which we observed acceptable precision (bold quantities in Tables 
3, 4 and 5) versus .the number of knot points N = #\Ji are plotted and compared 
with the N 2 elements of the dense matrix. Figure 8 exhibits a nearly linear increase 
of nze for greater N. The compression reduces storage significantly to 1 / cpr · N 2 • 

Likewise the CPU time for the matrix-vector multiplications of the iterative solution 
of the linear system decreases substantially. Additionally to the mentioned tables 
and figures, Figures 4,5, and 6 for the tetrahedron show the increasing sparsity 
of matrix A~ (this is equal to matrix. A~ if one consideres matrix entries whose 
modulus is greater than a constant threshold) produced by higher levels j. 

So far we have only made a first attempt using level dependent thresholds in 
order to fit the quadratic order of convergence. In this case of level dependent 
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thresholding we have observed a small improvement (see Table 6). Actually we 
have not invested further efforts in this direction. 

For the solution of the discrete and compressed scheme we use GMRES as an 
iterative procedure (cf. [38], [42]). This method has been proved to be an efficient 
tool for this kind of equation (cf. e.g., [37], [41], [25]). For comparison and for the 
estimation of the condition numbers ~(Aj) and ~(A~) we apply a direct method .. 
This method is an expert driver of the well known LA-package [17]. The number 
of iteration steps, the estimated condition numbers and the CPU times taE for 
Gaussian elimination and taM for GMRES iteration on a DEC 3000 AXP 500 
workstation are presented in Table 11. The termination bound for the iteration 
process is chosen to be abou_t ERR~/100. Because we have not constructed an 
orthogonal basis the condition of the original matrix should be better than that of 
the transformed matrix. Furthermore compression should have a minor influence 
on the condition numbers. This is confirmed by our experiments. The CPU-times 
taM(Aj)and taM(A~) for the iterative solution of the corresponding linear systems 
with GMRES from Table 11 are additionally displayed in Figure 9. In this figure all 
values of taM(Aj) and taM(A~) for the different domains are taken together to o~e 
curve, respectively. It underlines the nearly linear behavior of the CPU-time for the 
system with compressed matrix independently of the domain. We also made some 
experiments choosing different constant multiples cb, in the corresponding two scale 
relation (3.30). An appropriate choice of Cb does appear to improve the behavior 
of the condition numbers of the matrix A~ (cf. Tables 7 and 8). The condition 
numbers of the total transformation Tj are still quite large and seem to increase 
with N. Therefore the issue of stability requires further investigations. Nevertheless 
the present transformation Tj performs significantly better than the one obtained 
by substituting the stencil (3.3) for the tr~nsformation from the fine to the coarse 
grid by 

o~n (5.6) 

(cf. (3.11)). Again the bold marked value points to a knot KE Vj on the coarser 
grid. For the tetrahedron this is confirmed by the condition numbers of the trans-
formed matrix and the resulting number of iterations needed for the solution of the 
corresponding linear system by G MRES (see Table 9). 

In addition we have simulated the atomic decomposition (see [13] for more 
details) by compressing the matrices of the type A~~;, A~~J, A~~J given by ( 4.9). 
The compression and accuracy is observed to be somewhat worse than for the 
wavelet representation (cf. Table 10). 

Our last experiment was made to answer a question we were asked by practitio-
ners. We demonstrate the effect of compressing the original stiffness matrix in Table 
12. In the case of the cube, about 1/6 of the entries in the original stiffness matrix 
are zero. Further small entries ·exist due to decay in the kernel of the operator. 
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What will be the effect of can.celling small en.tries in the origin.al matrix? Applying 
the same threshold as in Table 3 to the origin.al stiffness matrix, the compression. 
becomes very in.effective. In addition. the resulting err<;>r is already unacceptable. 
If one wants to retain sufficient accuracy only a min.or compression. is admissible. 
Fin.ally, compression rates which are comparable to those for the multiscale repre-
sentation yields completely wrong results. This is in agreement with our theoretical 
predictions [13]. In fact, since a compression. of Ai neglects the influence of the far 
field, one cannot expect this to work. 

§6 Concluding remarks 

Our aim was to develop first a possibly cheap and unsophisticated scheme. In spite 
of a relatively strong compression one observes acceptable accuracy. For N rv 3500 
such a compression. rate is about 16 and we observed this rate to be more or less 
independent of the underlying geometry. Although we have considered only few 
levels, the results indicate a good asymptotic behavior. For the non.convex. body, 
the convergence is lower which accounts for the fact' that the compression produces 
less precise approximations. In CPU-time solving the linear system by an iterative 
scheme we also observed a speed up factor of about 5-8 and this value will increase 
according to the compression rate for higher discretizations. 

In view of an efficient matrix compression, iterative solvers are the only reaso-
nable choice for large scale systems. Our method damps the coefficients away from 
the singularity. Thus the double layer potential operator for the Laplacian can be 
well compressed since it has only fixed singularities along the edges. (One should 
not forget the presence of the identity operator). We expect the same to persist for 
the double layer potential for the Stokes system. But, for the N avier-Lame equati-
ons of elasticity and for 3-D Maxwell equation, the double layer potential operator 
is a singular integral operator even if the surface is smooth. In this case it is not 
clear whether the compression works comparatively well. 

We expect that the present method works well for the normal derivative of the 
double layer potential. This is a hyper-singular integral operator of order + 1 so that 
a multiscale representation should support preconditioning. The single layer poten-
tial operator is of order -1. In this case we expect that, for a suitable compression 
together with preconditioning, the present approach based on only two vanishing 
moments (cf. (3.28)) will not be sufficient. In the future it will be important to de-
velop methods with higher order moment conditions. Employing nonuniform grids 
becomes probably unavoidable when dealing with large scale problems which would 
justify the significant overhead in bookkeeping the data and managing the more 
complicated data structure. 

At this stage it is still hard to compare the present method with panel cluste-
ring. In a fu~ure project we want to compute the sparsified matrix directly which 
in turn may be additionally compressed by thresholding. For this purpose, the co-
efficients corresponding to the near field have to be computed with the accuracy for 
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the finest grid. The far field influence which mainly affects the coarser gnds, can 
be sufficiently handled by less accurate quadratures. We like to mention that this 
strategy is very similar in spirit to the clustering in the panel clustering method. 

In essence both methods have common roots and are closely related. The 
multiscale compression avoids the explicit multipole expansion. But as a prize 
one has to deal with all coarser levels. However, the multiscale method seems 
to offer a more flexible and widely applicable concept, although with the presently 
available tools one still encounters serious difficulties when dealing with complicated 
geometries. One advantage of the present multiscale technique applied to boundary 
integral equations is that we have additionally a simple a posteriori criterion to 
decide which coefficients are essentially required. Applying the present thresholding 
leads often to much better compression than the a priori choice of coefficients. This 
seems to apply to our double layer potential operator. Further advantages of the 
multiscale algorithm are related to preconditioning nonzero order ·operators and 
regularizing ill conditioned problems. 
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Let N =#Vi. 

procedure vector_decomposition (in: f(l · · · N), out: g(l · · · N)) 
for l = j - 1 to 0 step -1 do 
begin 

fora II L E !::J..l do % realizes gi = (Cl)* fit 1 , K E vi+i 

begin 
g(L) = f(L) 

29 

forall K' E vi+i, K' neighbor of L do % loops twice because of only two neighbors 
begin 

end 

end 
end 

g(L) = g(L) - ~f(K') 

forall K E vi do % realizes fk = (Ml)* JJ.t1 

begin 
f(K) = ~f(K) 
fora II L E !::J..1, L neigbor of K _do % usually loops six· times 
begin 

f(K) = f(K) + ~f(L) 
end 

end 

Now, ( 4.14) reads as follows: 

for K = 1 to N step 1 do 
begin 

for K' = 1 to N step 1 do 
begin 

f ( K') = aK,K' 
end 
vector _decomposition(!, aK,l···N) 

end 
for K' = 1 to N step 1 do 
begin 

for K = 1 to N step 1 do 
begin 

f(K) = aK,K' 
end 
vector _decomposition(!, a1 ... N,K') 

end. 

Figure 3. Pseudocode of pyramid scheme. 
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Discretization Method 

J N· J ERRi e a ERRxi ERRx2 ERRx3 {3 

cube: 

1 26 6.3. 10-2 - 1.2. 10-2 7.2. 10-3 2.9. 10-2 -
I 

2 98 2.6. 10-2 0.67 7.5. 10-4 9.3 · 10-5 4.4. 10-3 1.40 

3 386 1.0. 10-2 0.70 1.6. 10-4 3.1 · 10-5 6.7. 10-4 1.37 

4 1538 3.5. 10-3 0.76 4.0 · 10-5 7.4. 10-6 1.6. 10-4 1.04 

5 6146 (1.2. 10-3 ) - 1.0 · 10-5 1.9. 10-6 4.0 · 10-5 1.00 

tetrahedron: 

1 14 4.4. 10-2 - 3.4. 10-3 1.0. 10-3 2.2. 10-2 -

2 50 2.1. 10-2 0.58 4.5. 10-3 5.2. 10-3 2.8. 10-3 1.13 

3 194 8.7 .10-3 0.97 1.7 .10-4 2.1. 10-4 1.2. 10-4 2.37 

4 770 3.1 . 10-3 0.75 3.9 .10-5 5.1 · 10-5 1.2. 10-4 0.41 

5 3074 (1.0. 10-3 ) - 8.5. 10-6 1.2 · 10-5 2.9 · 10-5 1.03 

bench: 

1 58 4.4. 10-2 - 8.3. 10-3 1.2. 10-3 9.4. 10-3 -

2 226 1. 7. 10-2 0.70 4.4. 10-4 3.1. 10-4 2.2. 10-3 1.07 

3 898 5.9. 10-3 0.77 4.2 · 10-5 1.6 · 10-5 4.2. 10-4 1.20 

4 3586 (2.0. 10-3 ) - 8.5. 10-6 5.4. 10-6 1.0. 10-4 1.04 

Table 1. Error ERR~ for the solution of the discrete method, errors E RRxi, 
i = 1, 2, 3 at the points x1 , x2 , x 3 and convergence rates 2a. and 2{3. 
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Ai 

Ai 1/; 

A_i 
1/; 

-

W. Dahmen et al. 

matrix of the discretized equation (2.21) on a certain level j; 

corresponding solution· is ui 

matrix of the transformed equation ( 4.15) with j levels in the 

pyramid scheme (3.16) 

matrix of the transformed equation ( 4.16) after thresholding with 

threshold th on a certain level j; the corresponding solution is u~ 

nze number of nonzero elements of matrix A~ 

cpr N 2 /nze, compression rate 

K( A) estimated condition number of matrix A 

determined by an LA-pack routine during Gaussian elimination 

it( A) number of iterations in GMRES applied to the linear system 

with A the system matrix which is needed to get a prescribed 

llullo 
ERRi e 

ERR1/J e 

ERR 

U(xi) 

Ui(xi) 

U~(xi) 

ERRxi 

MERRx 

accuracy 

CPU-time necessary for it( A) iterations 

CPU-time to solve the equation (2.21) with ·Gaussian elimination 

solution of the discrete equation (2.21) for the highest level J; 

J = 5 for the cube, J = 5 for the polyhedron, 

J = 4 for the L-block 

(L:KEV'i lu( XK) l2)k 
llui - uJllo / lluJllo 
llu~ - uJllo / lluJllo 
lluj - u~lla I llujlla 
exact (known) value of the potential U at xi 

numerical calculation of the potential at xi from the solution ui 

numerical calculation of the potential at xi from solution u~ 

IU(xi) - Ui(xi)J 

maxi=l,2,3 IU(xi) - UJ(xi)I 

Table 2. Notation for all tables. 
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1 

2 

,. 

3 

4 

5 

nze II cpr II ERRt I ERR I MERR,,, I 

Cube 

26 676 3. 10-3 568 1.2 6.3. 10-2 2.0. 10-4 2.9. 10-2 

1. 10-2 466 1.4 6.3. 10-2 4.3. 10-3 2.9. 10-2 

3. 10-2 274 2.5 7.7 .10-2 8.5. 10-2 3.0. 10-2 . 

98 9.604 1. 10-3 5176 1.8 2.6. 10-2 2.3. 10-3 4.6. 10-3 

3. 10-3 3346 2.9 2.6. 10-2 5.5. 10-3 4.4. 10-3 

1. 10-2 1990 4.8 3.2. 10-2 2.5. 10-3 2.9. 10-3 

386 148.996 3. 10-4 36.484 4.1 1.0. 10-2 1.0. 10-3 6.7. 10-4 

1. 10-3 21.124 7.0 1.0. 10-2 4.4. 10-3 5.2. 10-4 

3. 10-3 12.646 11.8 1.9. 10-2 2.3. 10-2 1.9. 10-3 

1538 2.4. 106 1. 10-4 401.272 5.9 3.5. 10-3 4.7. 10-4 1.3. 10-4 

3. 10-4 235.588 10.3 3.6. 10-3 1.3. 10-3 1.2. 10-4 

1. 10-3 125.524 18.8 4.7. 10-3 3.8. 10-3 1.8. 10-4 

6146 38. 106 3. 10-5 2.098.108 18.0 - 2.9. 10-4 9.2. 10-6 

1. 10-4 1.118.296 33.8 - 8.4. 10-4 4.0. 10-5 

3. 10-4 647.032 58.4 - 2.1. 10-3 2.4. 10-5 

Table 3. Number nze of nonzero elements, compression rate cpr, errors ERRt, 
ERR and ME RRz for the multiscale algorithm on the cube for several thres-
holds th and levels j. 
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1 

2 

3 

4 
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Tetrahedron 

N· N? th nze cpr ERRVi ERR MERRx J J i e 

14 196 3. 10-3 188 1.0 4.4. 10-2 1.1 . 10-4 2.2. 10-2 

1 . 10-2 172 1.1 4.4. 10-2 1.8. 10-4 2.2. 10-2 

3. 10-2 122 1.6 5.5. 10-2 5.6. 10-2 3.7. 10-2 

50 2.500 1. 10-3 1948 1.3 2.1 . 10-2 7.5. 10-4 5.2. 10-3 

3. 10-3 1494 1.7 2.1 . 10-2 1.5 . 10-3 5.3. 10-3 

1 . 10-2 1016 2.5 2.3. 10-2 1.5. 10-2 6.3. 10-3 

194 37.636 3. 10-4 22.546 1.7 8.7 .10-3 2.2. 10-4 2.2. 10-4 

1 . 10-3 15.108 2.5 8.7. 10-3 1.6. 10-3 1.8. 10-4 

3. 10-3 9.736 3.9 9.4. 10-3 5.8. 10-3 1.5. 10-4 

770 592.900 1 . 10-4 159.022 3.7 3.1 . 10-3 3.1. 10-4 1.2. 10-4 

3. 10-4 96.244 6.2 3.2. 10-3 1.1 . 10-3 1.2. 10-4 

1 . 10-3 56.668 10.5 3.9. 10-3 3.0. 10-3 2.3. 10-4 

3074 9.4. 106 3. 10-5 1.179.686 8.0 - 1.8. 10-4 2.9. 10-5 

1 . 10-4 660.124 14.3 - 5.1 . 10-4 2.8. 10-5 

3. 10-4 389.018 24.3 - 1.4. 10-3 2.5. 10-5 

Table 4. Number nze of nonzero elements, compression rate cpr, errors ERRt, 
ERR and ME RR:c for the multiscale algorithm on the tetrahedron for several 
thresholds th and levels j. 
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1 

2 

3 

4 

J 

3 

4 

nze II cpr· 11 ERRt I ERR I MERR,, I 

Bench 

58 3.364 1. 10-3 2390 1.4 4.4. 10-2 3.2. 10-3 9.4. 10-3 

3. 10-3 1840 1.8 4.4. 10-2 1.2. 10-2 1.0. 10-2 

1. 10-2 1123 3.0 5.9. 10-2 5.8. 10-2 1.6. 10-2 

226 51.076 3. 10-4 25690 2.0 1.7. 10-2 1.3. 10-3 2.2. 10-3 

1. 10-3 15885 3.2. 1.8. 10-2 6.2. 10-3 2.1. 10-3 

3. 10-3 9437 5.4 2.3. 10-2 2.4. 10-2 2.3. 10-3 

898 806.404 1. 10-4 174.050 4.6 6.0. 10-3 8.5. 10-4 4.0. 10-4 

3. 10-4 101.954 7.9 6.3. 10-3 3.1. 10-3 3.9. 10-4 

1. 10-3 55.612 14.5 1.5. 10-2 1.9. 10-2 8.6. 10-4 

3586 13 . 106 3 · 10-5 1.481.035 8.7 - 3.9. 10-4 9.9 · 10-5 

1. 10-4 796.353 16.1 - 1.2. 10-3 9.5. 10-5 

3. 10-4 449.560 28.6 - 3.8. 10-3 1.0. 10-4 

Table 5. 'Number nze of nonzero elements, compression rate cpr, errors ERRt, 
ERR and ME RR:c for the multiscale algorithm on the bench for several thres-
holds th and levels j. 

Cube; level dependent thresholding 

N· J tho th1 th2 th3 th4 nze cpr ERR1fJ e MERRx 

386 1. 10-4 2tho 2th1 4th2 - 17.0U 8.8 1.1 . 10-2 - 8.7. 10-4 

1538 1 · 10-5 2tho 4th1 2th2 4th3 163.379 14.5 4.0. 10-3 1.5. 10-4 

Table 6. Number nze of nonzero elements, compression rate cpr, errors ERRt 
and ME RR:c for the multiscale algorithm on the cube for level dependent thres-
holding. 



38 

nze 

W. Dahmen et al. 

140000 ~~-----,-----.---..----.---.----.---.,...-----, 

120000 

100000 

80000 

60000 

40000 

20000 

cube ~ 
tetrahedron -A-

bench -a-
quadratic behavior · · · -

0 ~~r____J~__J~--1~__.L~__J_~__J_--:-__J_~_J 
0 100 200 300 400 500 600 700 800 900 

N 

Figure 7. Number nze of nonzero elements . of the transformed matrix A~ 
after thresholding in dependence of N;. Dotted line for comparison: quadratic 
behavior of the number of elements of the original stiffness matrix. 
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Figure 8. Number nze of nonzero elements of the transformed matrix A~ . 
after thresholding in dependence of N;. Dotted line for comparison: quadratic 
behavior of the number of elements of the original stiffness matrix. 
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Condition numbers 

domain J N· J K(Ai) Cb K(A~) 

cube 2 98 2.1 1/2 42.5 

1. 15.2 

2. 66.1 

3 386 2.4 1/2 96.5 

1. 38.8 

2. 87.7 

4 1538 2.8 1/2 147.8 

1. 81.6 

2. 133.0 

Table 7. Estimated condition numbers of the original stiffness matrix Ai and 
of matrix A~ in wavelet representation after thresholding for several constants 
Cb. 
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Condition numbers 

domain J N· J K(Ai) Cb K(A~) 

tetrahedron 2 50 2.0 1/2 43.4 

1. 17.5 

2. 40.7 

3 194 2.3 1. 42.6 

3/2 31.1 

2. 56.3 

4 770 5.3 1. 88.8 

3/2 63.4 

2. 65.7 

5 3074 8.6 1. 149.7 

3/2 114.7 

2. 118.2 

bench 1 58 4.1 1/4 60.0 

3/4 14.0 

1. 23.5 

2 226 6.6 1/4 200.9 

1/2 42.8 

1. 50.0 

3 898 11.0 1/2 106.3 

1. 95.0 

3/2 150.3 

4 3586 18.6 1/2 259.0 

1~ 177.2 

3/2 208.6 

Table 8. Estimated condition numbers of the original stiffness matrix Ai and 
of matrix A~ in wavelet representation after thresholding for several constants 
Cb (continuation). 
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Condition numbers 

J N· J x;(Ai) Cb x;(A~) it( A~) 

1 14 1.4 1. 12.7 5 

3/2 12.9 -

2. 18.4 -
2 50 2.0 1. 163. -

3/2 121. 21 

2. 163. -

3 194 2.3 1. 1620. -

3/2 1106. 39 

2. 1459. -

4 770 5.3 1. 14814. -
3/2 9697. 97 

2. 12596. -

5 3074 8.6 1. 126229. -

3/2 81720. 228 

2. 105497. -

Table 9. Estimated condition numbers of the original stiffness matrix Ai and 
of matrix A~ in wavelet representation after thresholding for the tetrahedron for 
several constants Cb. Transfor:mation (5.6) rather than (3.3) was used. Number 
of iterations for the solution of the linear system A~ u~ = f~ with GMRES. 



Multiscale Method on Polyhedra 

Atomic Decomposition 

J N· J th nze cpr ERR,µ e ERR MERRx 

cube: 

1 26 1. 10-2 466 1.4 6.3. 10-2 4.3. 10-3 3.0. 10-2 

2 98 3. 10-3 3.394 2.8 2.7. 10-2 1.0. 10-2 4.3. 10-3 

3 386 1. 10-3 21.892 6.8 1.8. 10-2 2.3 .10-2 1.2. 10-3 

4 1538 3. 10-4 243.880 9.7 1.0. 10-2 1.3. 10-2 2.5. 10-4 

5 6146 1. 10-4 1.375.108 27.5 - - 9.0 · 10-5 

tetrahedron: 

1 14 1 . 10-2 172 1.1 4.5. 10-2 2.1 .10-4 2.2. 10-2 

2 50 3. 10-3 1.464 1.7 2.1 . 10-2 3.9. 10-3 4.8. 10-3 

3 194 1. 10-3 14.500 2.6 9.0. 10-3 4.0. 10-3 · 1.4. 10-4 

4 770 3. 10-4 103.334 5.7 5.3. 10-3 5.9. 10-3 1.3. 10-4 

5 3074 1. 10-4 794.886 11.9 - 4.3. 10-3 2.2 · 10-5 

bench: 

1 58 3. 10-3 1.843 1.8 4.5. 10-2 1.1 . 10-2 1.0. 10-2 

2 226 1. 10-3 16.951 3.0 1.9. 10-2 1.2. 10-2 2.4. 10-3 

3 898 3. 10-4 124.268 6.5 1.2. 10-2 1.5. 10-2 6.3. 10-4 

4 3586 1. 10-4 1.065.490 12.1 - 9.8. 10-3 1.4. 10-4 

Table 10. Number nze of nonzero elements, compression rate cpr and errors 
E RRt, ERR and ME RR:x for the atomic decomposition; Thresholds th are 
chosen to be optimal for the wavelet transform ( cp. Tables 3,4,5). 
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CPU-times 

J N· J taE(Ai) K(Ai) it( Ai) taM(Ai) cpr K(A~) it( A~) taM(A~) 

cube: 

3 386 1.1 2.4 6 0.2 7.0 38.9 14 0.1 

4 1538 37.2 2.8 8 3.9 10.3 133.0 16 0.9 

5 6146 1585.0 3.2 11 52.0 33.8 215.7 23 6.0 

tetrahedron: 

3 194 0.3 2.3 7 0.06 3.9 31.1 13 0.03 

4 770 6.8 5.3 8 0.9 6.2 63.4 15 0.3 

5 3074 227.6 8.6 10 17.3 14.3 118.2 19 2.6 

bench: 

2 

3 

4 

226 0.4 6.6 7 0.05 3.2 50.0 17 0.06 

898 9.1 11.0 9 1.2 7;9 95.0 21 0.5 

3586 342.6 18.6 10 23.1 16.1 208.6 23 3.9 

Table 11. Number of iterations it for the solution of the linear systems Ai ui = 
fi and A~ ii~ = (Ti)*fi, respectively, with GMRES; CPU-times taM in seconds. 
Condition numbers"' of the corresponding matrices. For comparison: CPU-times 
taE for Gaussian elimination. 



Multi.scale Method on Polyhedra 

50 

40 

full matrix · · · -
compressed -

CPU-time30 

J 

3 

4 

20 

10 

0 L__....-.;,~========i_~ __ _l_~--1.~~___L~--_J_--__J 

0 1000 2000 3000 4000 5000 6000 7000 
N 

Figure 9. CPU-time in seconds for iterative solution of linear system with 
· uncompressed (dotted line) and compressed matrix, respectively. 

Cube; original stiffness matrix 

N· J 
N? 

J 
th nze cpr ERRt. ERR MERRx 

386 148.996 3. 10-4 123.636 1.2 1.0. 10-2 1.4. 10-3 5.7. 10-4 

1 . 10-3 94.832 1.6 4.7. 10-2 5.2. 10-2 1.6. 10-2 

3. 10-3 24.374 6.1 2.4. 10-1 2.4. 10-1 2.5. 10-1 

1538 2.4. 106 3. 10-5 1.969.924 1.2 3.5. 10-3 1.9. 10-4 1.6. 10-4 

3. 10-4 1.334.912 1.8 5.2. 10-2 5.3. 10-2 3.4. 10-2 

1 . 10-3 259.658 9.1 2.9. 10-1 2.9. 10-1 3.3. 10-1 

Table 12. Number nze of nonzero elements, compression rate cpr, errors ERRt, 
ERR and ME RR:c for thresholding the original stiffness matrix Ai of the cube 
for some levels. 
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