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ABSTRACT

Shape analysis is a well-established tool for processing surfaces. It is often a first step in 

performing tasks such as segmentation, symmetry detection, and finding correspondences 

between shapes. Shape analysis is traditionally employed on well-sampled surfaces where the 

geometry and topology is precisely known. When the form of the surface is that of a point 

cloud containing nonuniform sampling, noise, and incomplete measurements, traditional 

shape analysis methods perform poorly. Although one may first perform reconstruction on 

such a point cloud prior to performing shape analysis, if the geometry and topology is far 

from the true surface, then this can have an adverse impact on the subsequent analysis. 

Furthermore, for triangulated surfaces containing noise, thin sheets, and poorly shaped 

triangles, existing shape analysis methods can be highly unstable. This thesis explores 

methods of shape analysis applied directly to such defect-laden shapes.

We first study the problem of surface reconstruction, in order to obtain a better under

standing of the types of point clouds for which reconstruction methods contain difficulties. 

To this end, we have devised a benchmark for surface reconstruction, establishing a standard 

for measuring error in reconstruction. We then develop a new method for consistently ori

enting normals of such challenging point clouds by using a collection of harmonic functions, 

intrinsically defined on the point cloud. Next, we develop a new shape analysis tool which 

is tolerant to imperfections, by constructing distances directly on the point cloud defined 

as the likelihood of two points belonging to a mutually common medial ball, and apply this 

for segmentation and reconstruction. We extend this distance measure to define a diffusion 

process on the point cloud, tolerant to missing data, which is used for the purposes of 

matching incomplete shapes undergoing a nonrigid deformation. Lastly, we have developed 

an intrinsic method for multiresolution remeshing of a poor-quality triangulated surface via 

spectral bisection.
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CHAPTER 1

INTRODUCTION

Shape analysis is a fundamental tool in geometry processing. It is the process of extract

ing higher-level information from raw geometric representations. This form of information 

has use in a large number of applications, ranging from segmentation, shape classification, 

object retrieval, and semantic object modeling.

At its core, shape analysis relies on extracting surface properties, and then mapping 

these properties to higher-level objectives. Ideally, these properties satisfy certain levels of 

invariance which represent the semantics of the problem in which we are interested. For 

instance, if we are interested in categorizing objects which are all invariant to isometries, 

then some properties we may want to measure include Gaussian curvature, geodesics, and 

the heat kernel -  all measures which are isometry-invariant.

Often, there are strict assumptions on the type of geometric representation for which 

shape analysis is employed. Namely, for the aforementioned applications, the typical surface 

representation required is a triangulated surface mesh which contains good-quality triangles. 

The requirement is necessary so that the properties we wish to measure can be reliably done. 

For instance, if we are concerned with extracting the conformal structure of a surface, 

then most existing approaches require a triangulated surface where we precisely know the 

geometry and topology. Indeed, the range of useful information one can extract from 

a triangulated surface is vast [Meyer et al. 2002; Coifman and Lafon 2006; Lipman and 

Funkhouser 2009; Sun et al. 2009; Ben-Chen et al. 2010].

Quite often, however, the data on which we are interested in performing shape analysis 

fail to meet the requirements of a good-quality triangulated surface. This is a simple 

consequence of the data of interest: acquired real-world data. Shape analysis is most useful 

when applied on real shapes, as it is desirable to model and understand the physical world.

The reason for this discrepancy is the acquisition process. For a given shape, most 

geometry acquisition methods produce a set of range images, where each range image 

contains the sensed depth, and the range images are organized to produce an unstructured
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set of points. Three-dimensional acquisition is quite often highly imperfect, where the 

acquired geometry is defect-laden. These defects can range from nonuniform sampling, noisy 

measurements, misalignment in the consolidation of scans, and incomplete measurements. 

This form of the geometry is typically unsuitable on which to perform shape analysis.

The process of reconstruction is to take this set of points and produce a continuous 

surface representation, often a triangulated surface, which best approximates the sensed 

shape in both geometry and topology, and best handles such defects. One can use the output 

of reconstruction for the purposes of shape analysis, but if the geometry and topology of the 

reconstructed surface is far away from the original shape, this can be highly problematic 

for further processing. Furthermore, assuming that the reconstructed surface is correct, it 

may still be ill-suited for analysis as the triangles may be of poor quality, where remeshing 

the given surface mesh is necessary.

1.1 Thesis Contributions
The key point of this dissertation is to employ shape analysis directly on such defect-laden 

data, in order to produce good-quality, reconstructed surface meshes from acquired data. 

We approach shape analysis on defect-laden data from two different perspectives. First, 

we consider existing analysis methods for the purposes of reconstruction and remeshing. 

Secondly, we develop new shape analysis methods specifically designed for the purposes of 

imperfect data, and their applications.

Figure 1.1 demonstrates the contributions of this work. Our goal in this scenario is to 

take the point cloud on the left, reconstruct the surface as shown in the middle, and remesh 

the reconstructed surface in a multiresolution and hierarchical fashion, as shown on the 

right. To reconstruct a topologically and geometrically accurate surface, a key challenge 

is the presence of missing data on the arm and body, due to occlusion in the acquisition 

process. To remesh the surface at multiple resolutions, a key challenge is the right hand’s 

close proximity to the shoulder. The novel shape analysis approaches developed in this 

thesis are at the core of solving these challenging problems.

1.2 Thesis Outline
The first part of the thesis deals with a systematic understanding of surface reconstruc

tion, via the development of a benchmark for surface reconstruction. We develop a method 

for modeling shapes, sampling shapes, and evaluating reconstruction algorithms, in order to 

depict the broad range of behavior in surface reconstruction. This provides us with insight 

into the types of defects which most impact reconstruction, and consequently, informs how
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Fig. 1.1. We illustrate the contributions of employing shape analysis methods on raw, 
defect-laden data. From the point cloud on the left, we develop novel shape analysis methods 
to correctly infer its geometry and topology, shown in the middle. From this reconstructed 
surface, we use existing shape analysis methods to produce a hierarchy of quality surface 
meshes, shown on the right.

we devise shape analysis methods for this type of data. This work has been accepted with 

minor revisions in Berger et al. [2013].

Next, we consider the problem of normal orientation from the perspective of shape 

analysis. Normal orientation is the problem of classifying normal directions as being inside 

or outside over a point cloud, and is a necessary first step for many surface reconstruction 

algorithms. Our approach is to construct harmonic functions directly on the point cloud, 

and utilize their global smoothness property to consistently assign normal orientation -  we 

term this process harm onic point clou d  orientation , published in Seversky et al. [2011]. 

The challenge lies in remaining robust to imperfections such as nonuniform sampling, noise, 

and missing data.

From a point cloud containing properly oriented normals, we next consider the problem 

of constructing meaningful distances in the presence of missing data. Indeed, a measure as 

common as geodesic distances can prove to be quite misleading in the presence of missing 

data, and so we seek distances which are tolerant to the undersampling. We use the medial 

axis as a shape prior, and define distance as the likelihood of two points mutually belonging 

to a medial ball. We term this association measure the m edial kernel, and consider its 

applications for segmentation and reconstruction. This work has been published in Berger 

and Silva [2012a].
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We next extend the medial kernel for the purposes of computing correspondences be

tween pairs of scanned and incomplete shapes. Computing correspondences between incom

plete shapes undergoing a nonrigid deformation is quite a challenge, where reconstruction 

may be too impractical due to the substantial missing data. In such cases, we use the 

medial kernel to construct a diffusion process on the point cloud, and use the resulting heat 

diffusion for matching the medial regions of point clouds. We term this diffusion process 

m edial diffusion. This work has been published in Berger and Silva [2012b].

Last, we consider the problem of taking a poor-quality surface mesh and constructing 

a set of good-quality, nested surface meshes, via shape analysis. We illustrate how spectral 

methods may be used to hierarchically decompose a surface mesh so that uniform quality 

meshes, and feature adaptive meshes via wavelet methods, may both be produced. We term 

this decomposition the F iedler tree, published in Berger et al. [2010].



CHAPTER 2

BACKGROUND

The focus of this dissertation is on surface reconstruction, shape matching, and surface 

remeshing of defect-laden data. In particular, our focus is on shape analysis and how it 

benefits these problems. In this chapter, we discuss the various aspects of shape analysis for 

when the input surface representation is best suited -  either a well-sampled point cloud or 

a triangulated surface mesh. We then discuss the problems of reconstruction and matching, 

and in particular, the issues involved when dealing with nonuniform sampling, noise, and 

missing data. Last, we discuss the problem of remeshing from poor-quality triangles.

2.1 Shape Analysis
Shape analysis deals with the extraction of high-level information from the raw geometry 

of a surface. It can roughly be broken down into two forms: analysis of extrinsic geometry 

and analysis of intrinsic geometry.

2.1.1 Intrinsic Geometry
The intrinsic geometry of the surface refers to its geometry which is independent of the 

ambient space for which the surface may lie. In this context, shape analysis typically refers 

to the extraction of measures which are unique to the intrinsic geometry. Put another way, 

these are measures which are isometry-invariant. For instance, if a surface living in R3 is 

isometrically deformed, then although its embedding may be different, its intrinsic geometry 

remains the same. Common intrinsic measures of a surface are its surface area, geodesics, 

Gaussian curvature, and its Laplace-Beltrami operator.

Harmonic functions of a surface refer to those which lie in the kernel of the Laplace- 

Beltrami operator. These functions are globally smooth, as the Laplace-Beltrami operator 

when applied to a function can be seen as a measure of smoothness. This construction of 

smooth functions has a number of benefits, ranging from mesh parameterization [Desbrun 

et al. 2002], deformation [Au et al. 2007], and segmentation [Zheng and Tai 2010].
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The eigenfunctions of the Laplace-Beltrami operator underscore a large number of 

applications. Taken in isolation, the eigenfunctions can be looked at as modes of varying 

frequencies, where the corresponding eigenvalue represents the frequency for an individual 

eigenfunction [Vallet and Levy 2008]. This is analogous to the complex exponentials 

associated with the Fourier transform for linear spaces.

The heat kernel of a surface is the fundamental solution to the heat equation, which 

governs how heat diffuses over the surface. As it may be computed from the eigenfunctions 

of the Laplace-Beltrami operator, it is also isometry-invariant. The heat kernel has use 

in a large number of applications, ranging from feature point detection [Sun et al. 2009], 

segmentation [Gebal et al. 2009], shape retrieval [Dey et al. 2010], and intrinsic symmetry 

detection [Ovsjanikov et al. 2010].

Diffusion distances [Coifman and Lafon 2006] are closely related to the heat kernel, as 

these distances are a measure of connectedness of random walks defined by the Laplace- 

Beltrami operator. As such, these distances have greater tolerance to topological defects 

than geodesic distances, and have proven useful for pose-invariant segmentation [De Goes 

et al. 2008].

2.1.2 Extrinsic Geometry
The extrinsic geometry of a surface refers to the ambient space in which the surface lives. 

In this context, shape analysis traditionally takes the form of analyzing the volume which 

encloses the surface. Note that the extrinsic geometry can differ from the intrinsic geometry, 

in that there may exist an isometric deformation of a surface which can drastically change 

the shape’s underlying volume. Nonetheless, analyzing the extrinsic geometry of a surface 

can nicely complement the intrinsic analysis of a surface.

The medial axis is a very common method for extracting extrinsic measures. It is the 

set of points in the volume in which the number of closest points to the surface is larger 

than one. In particular, the medial axis transform is the subset of these points interior 

to the surface which, along with taking the distances as ball radii, can be used to exactly 

represent the volume of the surface by taking the union of balls.

For triangulated surfaces, one may extract the medial axis by computing the distance 

field of the surface, and taking all of the points where its gradient is discontinuous [Sud et al.

2005]. Alternatively, for well-sampled point clouds, Voronoi-based methods such as Amenta 

et al. [2001] and Dey and Zhao [2004] may be used, where Voronoi vertices far from the 

point cloud, known as “poles” , are identified as points on the medial axis.
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Once extracted, the medial axis has a large number of applications. One can simplify 

the medial axis transform itself, wherein its resulting surface is also simplified [Tam and 

Heidrich 2003; Miklos et al. 2010]. The simplified representation of the medial axis, and 

its invariance to pose, may be used for shape retrieval [Zhang et al. 2005]. The medial 

axis is also suitable for volumetric segmentation [Chang and Kimia 2008], by separating the 

individual medial sheets and identifying points on the surface to which the sheets belong.

Although quite descriptive, the medial axis can be somewhat difficult to handle, as it 

is composed of a set of curves and surface sheets nontrivially intersecting. Hence, another 

line of work focuses on extracting skeleton curves, a simpler representation than the medial 

axis. Various approaches exist for skeleton extraction, ranging from contouring Reeb graphs 

of scalar fields [Hilaga et al. 2001], growing deformable models in the volume [Sharf et al.

2006], thinning the medial axis [Dey and Sun 2006a], and surface contraction via mean 

curvature smoothing [Au et al. 2008].

The advantage of the medial axis and curve skeleton approaches is their compact repre

sentation of the volume. Another set of approaches capture the volume by computing mea

sures directly on the surface, rather than operating on an explicity geometric representation. 

The shape diameter function [Shapira et al. 2008] focuses on measuring the overall thickness 

of the volume at a given point by sampling a cone of rays in the direction of a point’s 

normal. The method of Liu et al. [2009] extends this by constructing a volume-dependent 

metric on the faces of a mesh. These approaches support several applications, ranging from 

segmentation, salient feature point detection, as well as skeletonization itself.

2.1.3 Discussion
A drawback to the above approaches is the requirement of either a triangulated surface, 

or a surface which has been well-sampled. Hence, one faces a challenge in applying such 

intrinsic and extrinsic shape analyses to a surface which has been acquired, where the 

requirements of a well-sampled surface are often violated. A common approach is to first 

perform surface reconstruction prior to running these methods on acquired data, which we 

next discuss.

2.2 Surface Reconstruction
Surface reconstruction is the process of taking a set of points and recovering the original 

surface from which those points were measured. In particular, the representation of the 

recovered surface is typically one in which the geometry and topology is precisely known
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and faithful to the measured surface. Triangulated surfaces, as used in the majority of the 

above approaches, is quite commonly the target representation.

The challenges involved in producing a triangulated surface from a set of measured 

points stem from the acquisition process. There exists a large number of acquisition 

modalities, ranging from passive methods such as multiview stereo, to active methods such 

as laser-based optical triangulation and structured lighting. Most of these methods produce 

range scans which contain measurement noise, nonuniform sampling, as well as missing 

measurements, which can be due to the surface reflectance, occlusion, and the grazing angle 

at which the surface is measured. Furthermore, misalignment errors can arise from the 

process of registering individual range scans into a single surface. The ability to handle 

these imperfections is what distinguishes the various surface reconstruction algorithms.

2.2.1 Interpolating Methods
One class of reconstruction methods focuses on producing a triangulated surface which 

interpolates a subset of the data, that is, a subset of the input point cloud is preserved 

in the output. These methods are typically based on extracting a subset of the Delaunay 

triangulation of the point cloud, such that for every triangle retained, its dual Voronoi edge 

meets at the medial axis [Amenta and Bern 1999]. A variety of methods have been proposed 

in this vein for noise-free methods, such as the power crust algorithm [Amenta and Bern 

1999] and cocone [Amenta et al. 2002]. These methods have been extended to support noisy 

data by using the size of medial balls as a measure of stability [Dey and Sun 2006b].

The above methods are provably good, in the sense that so long as certain sampling 

conditions are satisfied with respect to the medial axis, these algorithms will correctly 

reconstruct the surface. However, in practice, it is extremely difficult to verify these 

sampling conditions, and as the level of data imperfection increases, these methods tend to 

not degrade gracefully.

2.2.2 Approximating Methods
Another line of reconstruction algorithms relax the interpolation assumption, such that 

the reconstruction need only approximate the input point cloud. This provides for robust 

algorithms in the presence of noise, nonuniform sampling, and missing data, albeit at the 

expense of guarantees. These algorithms typically require a set of normals accompanying 

the points, such that the normals are consistently oriented according to the inside and 

outside of the surface.
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One of the first approaches to orienting normals is that of Hoppe et al. [1992]. Unoriented 

normal directions are first found via PCA, while orientation is found by first fixing a single 

normal’s orientation, and propagating it to normals of close position and direction via a 

minimal spanning tree. This form of orientation propagation has been extended to handle 

sharp features [Xie et al. 2003], as well as thin surface sheets and missing data [Huang 

et al. 2009]. The above methods of orientation are local, in that the propagation decision is 

determined only via local information. Hence, a single incorrect orientation can erroneously 

propagate over large regions of the point cloud.

Other methods approach normal orientation from a global perspective. The method 

of Liu and Wang [2010] performs a coarse, bounding reconstruction [Ohtake et al. 2005b] 

of the point cloud to drive a more refined normal orientation estimator. The works of Chen 

et al. [2010] and Chen et al. [2011] utilize point set visibility [Katz et al. 2007] in order to 

determine the orientation of a normal by considering whether or not a point is visible on the 

bounding volume of the surface. These methods make sampling assumptions on the point 

cloud, wherein the presence of nonuniform sampling and missing data, visibility [Katz et al.

2007] and coarse reconstruction [Ohtake et al. 2005b] can perform poorly, and consequently 

so does the orientation approach.

Once equipped with normals, most approximating methods aim to construct an implicit 

function over the volume whose zero level-set is the surface. A common approach is to 

employ regularized shape fitting to the point cloud. This can be performed globally in 

the case of RBFs [Carr et al. 2001] and locally for Multiresolution Partition of Unity 

methods [Ohtake et al. 2003; Nagai et al. 2009], Moving Least Squares [Alexa et al. 2003; 

Guennebaud and Gross 2007], and compact RBFs [Ohtake et al. 2005a]. For these methods, 

there is often a tradeoff between smoothness in the output and faithfulness to the input, 

where it can be challenging to strike the right balance.

Other approximation methods frame the problem of reconstruction as finding an indica

tor function over the volume, where points inside of the volume of the surface are assigned a 

value of one and all other points zero. These approaches transform this volumetric problem 

to one on the surface via Stokes theorem, and consequently solving for the indicator function 

amounts to solving the Poisson equation. The method of Kazhdan [2005] inverts the gradient 

operator via Fourier methods, while Kazhdan et al. [2006] directly solves the Poisson 

equation in the spatial domain through a hierarchical solver. This was extended in Alliez 

et al. [2007] to provide for a better domain decomposition via Delaunay refinement and a 

more robust estimation of normals. The method of Manson et al. [2008] adapted Kazhdan



10

[2005] in using Wavelets as the basis of choice for which to invert the gradient operator.

Although approximating methods tend to be more robust to data imperfections com

pared to interpolating methods, there exists situations where regularizing the problem can 

produce poor surface reconstructions. For instance, if one is interested in capturing the 

topology of the original surface, approximating methods can erroneously fill in or attach 

tunnels and produce extraneous components under smoothness priors.

As an alternative to smoothness priors, similar to the goals of this dissertation, other 

methods have employed shape analysis to properly steer surface reconstruction. The key 

challenge is operating on raw point clouds containing various imperfections. The method 

of Tagliasacchi et al. [2009] extracts a skeleton from an incomplete point cloud by employing 

a cylindrical prior on the output shape, associating for each point a rotationally-invariant 

symmetry axis in order to find its accompanying skeletal point. Resampling of the surface 

may be performed by sampling these cylindrical regions. Regions of the point cloud 

which violate the cylindrical prior can result in a poor embedding; hence, substantial 

postprocessing is necessary to obtain a clean skeleton. This work was extended in Li 

et al. [2010] by strictly enforcing cylindrical shapes through a snake deformation model, 

hence making their method highly robust to larger gaps of data. The work of Cao et al. 

[2010] supports a broader class of shapes by extending the contraction approach of Au 

et al. [2008] to the case of point clouds. In the presence of missing data, however, the 

constructed Laplacian may respect the boundary components, potentially resulting in a 

poor contraction.

2.3 Shape Matching
Shape matching refers to finding correspondences between a pair of shapes. It can 

take on many forms, depending on assumptions in the types of shapes being matched, the 

underlying deformation space of the shapes, and how the shapes are sampled. Here, we 

discuss prior work most relevant to the goals of the thesis: a single shape undergoing a 

nonrigid deformation, containing missing data.

In the area of nonrigid registration, computing correspondence is a key component in 

the process of registering scans of a deforming shape. In these scenarios, missing data 

frequently arise, and in order for the particular deformation model to adequately converge, 

it is essential to construct meaningful correspondences in the presence of imperfections.

For time-varying capture, a number of approaches exist for computing correspondences, 

where they tend to rely on the coherence in motion between scan frames. Most of these 

approaches make assumptions either on templates, the acquisition process, or initialization.
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The approaches of SiiBmuth et al. [2008] and Li et al. [2009] rely on apriori defined templates 

to construct correspondences, since one can reliably construct geodesics on the template, 

which should remain invariant across the scanning sequence. The methods of Popa et al.

[2010] and Li et al. [2012] rely on stereo matches to initialize the dense matching of corre

spondences. Other approaches [Wand et al. 2009; Sharf et al. 2008] rely on point-to-plane 

distance correspondences, which implicitly assumes that the motion between frames is small.

For a general collection of shapes, where frame-to-frame motion coherence is lost, cor

respondence becomes a much harder problem. The approach of Chang and Zwicker [2008] 

relies on local features to extract a set of candidate correspondences. In the presence 

of missing data, however, it can be challenging to reliably construct local features. The 

methods of Li et al. [2008] and Chang and Zwicker [2009] instead rely on an initial overlap 

between point clouds, and consequently point-to-plane distance correspondences. A more 

sophisticated approach is the method of Huang et al. [2008], where local features and 

geodesics are used to drive spectral matching. They use a k-nearest neighbor graph to 

construct geodesics; hence, it is only reliable when the lack of data is consistent across 

scans.

There are a large number of techniques for finding correspondences between well-sampled 

shapes; see van Kaick et al. [2011] for an overview. The approach of Bronstein et al. [2006] 

applies generalized multidimensional scaling to find correspondences which best preserve 

geodesic distances. A deformation model is used in Zhang et al. [2008] to measure the 

quality of correspondences, where quality is defined in terms of deformation distortion. 

Mobius voting [Lipman and Funkhouser 2009] seeks to find correspondences which best 

preserve the conformal structure, thus allowing for a large space of deformations.

It is nontrivial to generalize the above approaches to point clouds, as they typically re

quire a continuous surface representation. A notable exception is the method of Ovsjanikov 

et al. [2010], where they show how the heat kernel can be used to match nonrigid shapes, 

as the heat kernel is invariant to isometries. They demonstrate how their approach can be 

used for partial matching, as well as its insensitivity to small topological changes. Although 

used for meshes, the approach of Ovsjanikov et al. [2010] only requires a discretization of 

the Laplace-Beltrami operator, and numerous such discretizations exist for point clouds; 

see Belkin et al. [2009] and Luo et al. [2009].

Little work has addressed the correspondence problem in the presence of large missing 

data. The work of Tevs et al. [2009] and Tevs et al. [2012] uses geodesic distances and 

a RANSAC-like approach to find landmark correspondences, which subsequently drives a



12

dense correspondence matcher. They employ a k-nearest neighbor graph construction to 

approximate geodesics; hence, they still require some coherence in the missing data for an 

accurate correspondence. Perhaps most similar to our work is Zheng et al. [2010], where 

they employ the method of Tagliasacchi et al. [2009] to build a set of skeletons, and perform 

correspondence on the skeleton graphs. The challenge in this work is that the skeletons 

might be of widely varying topology, depending on the effectiveness of Tagliasacchi et al. 

[2009]; hence, partial matching must be employed to bring the skeletons into correspondence.

2.4 Surface Remeshing
Surface remeshing is the problem of converting a poor-quality surface mesh into one 

of better quality, while still closely approximating the original surface. Quality can refer 

to a number of different measures, ranging from minimum angle in a triangle, the ratio 

between the inradius and circumradius (commonly known as the radius ratio), and the 

ratio between the circumradius and the shortest edge length. Our approach is focused on 

remeshing surfaces which contain poor-quality triangles, and potentially high levels of noise, 

in a multiresolution manner; hence, we limit the discussion of remeshing algorithms to such 

relevant works.
A common approach for generating multiresolution methods is via mesh simplification. 

QSlim [Garland and Heckbert 1997] is a well-known method for simplifying a mesh via 

edge collapses, from which a hierarchy of meshes may be generated, using a progressive 

mesh [Hoppe 1996] approach. Other methods operate in the ambient space of the mesh 

through spatial subdivision, performing simplification by collapsing vertices which belong 

to common grid cells [Rossignac and Borrel 1993; Schaefer and Warren 2003], or through 

a hybrid approach of 3D-2D spatial decomposition [Boubekeur et al. 2006]. However, such 

methods tend to produce poor-quality triangles as part of the simplification.

Surface parameterization is a common approach to constructing quality meshes. There 

exists global parameterization methods [Alliez et al. 2003] and methods which construct 

multiple local overlapping parameterizations [Surazhsky and Gotsman 2003], where once 

a parameterization is known, remeshing the surface amounts to the simpler problem of 

resampling a 2D domain. Although one may obtain quality multiresolution from a global 

parameterization via subdivision schemes, it is highly nontrivial and expensive to construct 

a global parameterization.

Other methods use the concept of the centroidal Voronoi diagram to remesh surfaces 

directly, either approximately [Valette et al. 2008] or exactly [Yan et al. 2009]. Such methods 

require quite expensive optimization procedures, needing many iterations to adequately
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converge to a quality triangulation. Furthermore, to construct a multiresolution mesh, it is 

necessary to run these algorithms from scratch each time for every resolution.

Delaunay refinement is a popular approach for producing provably good-quality triangle 

meshes. For surface meshes, the approach of Boissonnat and Oudot [2005] maintains the 

restricted Delaunay triangulation of a surface, where appropriate sizing functions can be 

used to produce quality meshes. This was extended in Cheng et al. [2007] to the case 

of sharp features and nonmanifold configurations. Although these approaches are greedy, 

in that the mesh is constructed by incremental sampling, it still remains nontrivial to 

extend these methods to produce multiresolution meshes. Another disadvantage of these 

approaches is the requirement of operating in the ambient space of the surface, where nearby 

surface sheets may impose strict sampling requirements.



CHAPTER 3

A BENCHMARK FOR SURFACE 
RECONSTRUCTION

In this chapter, we consider the establishment of a benchmark for surface reconstruction. 

Surface reconstruction is motivated by a large number of applications. For instance, it is a 

crucial first step in the recovery of nonrigid motion of time-varying geometry [Sharf et al. 

2008; Li et al. 2009], and used as “ground-truth” data for multiview stereo reconstruction 

evaluation [Seitz et al. 2006].

There has been a vast amount of work dedicated to surface reconstruction, but to date, 

there lacks a sufficient means of evaluating and comparing these methods. Part of this 

problem stems from the data on which most approaches operate: scanned point clouds of 

the real world. Hence, there is a noticeable absence of ground truth in these scenarios, and 

it is unclear how to perform evaluation with respect to raw range data.

There are some existing approaches which produce synthetically generated point clouds 

from triangle meshes; hence, in these scenarios, it becomes possible to perform evaluation. 

Existing approaches such as Kazhdan [2005] and Manson et al. [2008] randomly sample 

triangle meshes to produce point clouds, while the methods of Hoppe et al. [1992] and ter 

Haar et al. [2005] obtain synthetic scans of a triangle mesh from ray tracing or z-buffering the 

mesh. While these methods may produce realistic data under the assumption of completely 

clean data, these approaches are insufficient for replicating common scan artifacts. Indeed, 

to compare reconstruction algorithms, it is essential to work with data which is, if not 

scanned real-world data, as-realistic-as-possible.

Evaluation methodology aside, part of the difficulty in establishing a benchmark is 

the large variability in point clouds. Under triangulation-based scanning, a surface may 

be sampled under a wide variety of conditions, producing point clouds containing many 

different characteristics such as noise, outliers, nonuniform sampling, and missing data. 

This variability is further enhanced when scan data are processed to produce an oriented 

point cloud, where registration and normal orientation must be performed. With all of these
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factors considered, it is difficult to determine the effectiveness of a surface reconstruction 

algorithm operating on an arbitrary point cloud; see Figure 3.1 for an illustration.

To this end, we propose a benchmark for surface reconstruction for approximating meth

ods. In particular, we operate in a synthetic environment in order to provide quantitative 

results, but provide realistic data by simulating a laser-based optical triangulation scanner. 

Our benchmark is broken up into three main phases: surface modeling, sampling, and 

evaluation. See Figure 3.2 for the full pipeline.

We start off with an implicit surface. In order to minimize any potential bias inherit in 

our implicit surface representation, we use integrated polygonal constraints, and approximate 

an implicit surface from a triangle mesh, as detailed in Section 3.1.

We then sample this implicit surface to obtain an oriented point cloud. We simulate the 

process of an optical triangulation scanner in order to produce range scans. We then slightly 

overlap the range scans and register them via a rigid-body registration algorithm. From the 

registered point cloud, we then compute and orient normals for each point, producing an 

oriented point cloud suitable for the class of algorithms under consideration. These steps 

are described in more detail in Section 3.2.

From the oriented point cloud, we now run a surface reconstruction algorithm on the 

input. This gives us a triangle mesh, which we evaluate by comparing to the implicit surface 

and a dense uniformly sampled point cloud of the implicit surface. We then construct

Fourier MPU SPSS APSS

Fig. 3.1. Here, we have synthetically sampled the Gargoyle model, and ran eight separate 
reconstruction algorithms on this point cloud. Note the differences between the algorithms 
on the claw, where some algorithms over-smooth the data, while others result in spurious 
holes being produced. Our benchmark aims to generate such imperfect point cloud data 
and study these various forms of error.
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Fig. 3.2. Overview of our benchmark. First, we create an implicit representation of a surface mesh. We then sample this implicit surface 
by synthetically scanning the shape to obtain individual range scans, and consolidate the scans into a single oriented point cloud via 
registration and normal estimation. We run a reconstruction algorithm on this oriented point cloud, and compare this output to the 
implicit model and a dense uniform sampling of the implicit shape to obtain quantitative results.

Evaluation

Range Images

►

Point Cloud

Reconstruction



17

positional and normal error metrics, demonstrated in Figure 3.2 as individual distributions 

of point-to-point correspondences. This is explained in more detail in Section 3.3.

In summary, we make the following contributions:

-  R ea listic  data. We utilize a collection of both simple and complex shapes, where an 

implicit surface is used as the computational representation. We then synthetically 

scan the implicit surface to provide a collection of point clouds, where our scanning 

simulation is validated against real data.

-  A ccu ra cy . By employing implicit surfaces, we have a precise means of performing 

evaluation, in both positional and differential measures. We utilize particle systems 

to uniformly sample both the implicit surface and the reconstructed surface mesh, 

thereby minimizing any potential bias of measure from the corresponding triangula

tion.

-  C om prehensiveness. The set of experiments comprise a broad range of behavior 

across surface reconstruction algorithms.

3.1 Surface Modeling
For modeling ground-truth data, care must be taken in the surface representation, as it 

impacts the rest of our pipeline. Although triangulated surfaces are popular and easy to 

work with, we use smooth and piecewise-smooth surfaces as ground-truth, as it benefits the 

sampling and evaluation phases as follows:

-  Sam pling. Our laser-based scanning simulator requires a surface equipped with a 

smooth normal field in order to best model an optical laser scanner. As the normal 

field of a triangulated surface is discontinuous between triangle faces, this surface 

representation can adversely impact our scanning simulator.

-  Evaluation. The surface reconstruction algorithms under consideration assume a 

point cloud sampled from a smooth surface, so using a smooth surface for quantitative 

evaluation respects an algorithm’s assumptions. Moreover, a smooth normal field 

permits us to reliably evaluate differential quantities in the reconstruction.

We use implicit surfaces to model smooth and piecewise-smooth surfaces, where we 

introduce integrated polygonal constraints as a mechanism for shape modeling. Namely, 

we create smooth and piecewise-smooth implicit surfaces by approximating triangulated 

surface meshes, or more generally polygon soups, through weight functions integrated over



18

polygons. The advantages of using polygonal constraints over point constraints are twofold. 

First, approximation from a point cloud may produce specific forms of surface features in 

the presence of missing data; under polygon soup, we can ensure there is no such missing 

data. Secondly, identification and preservation of sharp features of a polygonal mesh is 

far more robust than a point cloud. This allows us to easily model smooth surfaces which 

contain sharp features.

3.1.1 Polygonal MPU
Our implicit representation is a straightforward extension of Multilevel Partition of 

Unity (MPU) [Ohtake et al. 2003] applied to polygon soup, with the main distinction of 

integrating weight functions over polygons. We use the weight function of Shen et al. [2004], 

defined for a given point x  2 R3 and for an arbitrary point on a triangle t, p 2 t:

w(x, P) =  -----------1-------- 2 (3.1)
(|x -  P|2 +  e2)2

Here, e is a smoothing parameter used to ensure that w is bound above when x  lies on t -  

we have set it to 0.1% of the bounding box diagonal for each shape. We may now integrate 

this weight function over the entire triangle t:

w ( x , t ) =  w(x,  p )dp (3.2)
Jp2t

The quartic falloff in distance results in points which are far away from a triangle contain

ing a low contribution to the implicit function. This falloff is necessary since the shape 

functions we use are roughly linear in distance; hence, w will dominate the shape function’s 

contribution.

For evaluating Equation 3.2, Shen et al. [2004] propose a method for numerical in

tegration. However, we derive a closed form solution for this expression. This prevents 

potential numerical inaccuracies caused by a quadrature scheme, which could be particularly 

detrimental to having a reliable benchmark. We outline the derivation in Appendix A.1.

Equipped with a mechanism for integrating weights over polygons, we proceed with 

MPU by fitting shape functions to a triangle soup T  =  (ti, ...,tn}. We adaptively build an 

octree over T , where for each octree cell, we associate with it a sphere whose radius is the 

length of the diagonal of the cell. We then gather all triangles which are contained in, or 

overlap the sphere, and fit a shape function to those triangles.
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In practice, we use linear functions for our shape functions, where for each cell i, we 

associate the function gj(x) =  x Tn  +  bj. For all triangles which belong to the sphere of cell 

i, Tj C T , we fit the shape function as follows:

E teT  nJ p et w(si, p ) d p / q  q \ 

ni =  R------- T------ ^ ----  (3.3)
EteTiJpet  p ) dp

EteTj /pet p w(si, p ) d p 

DteT^pet w(si , p )d p ,
where nt is the triangle normal of t and Sj is the center of the sphere for cell i. Although 

one may use higher order shape functions under polygonal constraints, such as quadrics, we 

found the difference to be negligible, where the main difference is that for linear functions 

we require a larger number of shape functions to adequately approximate T.

The octree is built such that each cell is subdivided only if the zero set of its shape 

function deviates sufficiently from the sphere’s triangles. If the octree cell’s sphere is empty 

to start, then we grow the radius of the sphere out until we encompass a sufficient number 

of triangles (set to six in our experiments), and terminate the subdivision with its shape 

function. Once the octree construction is complete, we have a spherical covering of the space. 

We may then evaluate the implicit function at a point by blending all shape functions whose 

spheres contain that point:
f (x) =  E i  qi (x)g j(x) (3 5)
f  (x) =  P i  qj(x) (3.5)

where qi is a quadratic b-spline function centered at Si.

To preserve sharp features, we follow Ohtake et al. [2003] in detecting sharp features 

within a leaf cell and consequently applying CSG operations for exact feature preservation. 

In these cases, rather than using polygon soup, we instead use a manifold triangle mesh, 

so that sharp features can be easily identified by observing dihedral angles. We then apply 

union and intersection operations on overlapping shape functions to exactly preserve the 

sharp feature, where we support edges and corners containing a maximum degree of four.

3.1.2 Benchmark Shapes
We have modeled shapes specific to our two sets of experiments. Our first set of 

experiments consists of complex shapes, and so we have modeled five shapes containing 

different types of complexities. See Figure 3.3 for these shapes. The Gargoyle model 

contains details of various feature sizes, ranging from the bumps on the bottom to the 

ridges on its wings. The Dancing Children model is of nontrivial topology, containing 

tunnels of different sizes, in addition to having many varying features such as the rim of
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Gargoyle Dancing Children Quasimoto Anchor D aratech

Fig. 3.3. Complex shapes created via our Polygonal MPU scheme. In our experiments, these 
shapes are utilized by performing synthetic range scanning under a wide variety of typical 
use-case scan parameters. This class of shapes contains many interesting characteristics for 
scanning, such as multiple scales of detail, nontrivial topology, and sharp features.

the hat on the left child and wrinkles in the cloth. The Quasimoto model is representative 

of a shape containing articulated parts, such as arms, legs, and head. The Anchor model 

contains sharp features, moderately-sized tunnels, as well as a single deep concavity. Lastly, 

the Daratech model contains sharp features, small tunnels, as well as thin surface sheets.

We note that the origin of these triangulated surfaces has a slight implication on the 

rest of the benchmark. That is, some of these models were scanned and consequently 

reconstructed to produce a triangle mesh. This has two consequences: the models must 

be visible from the perspective of a scanner, and polygonal MPU may inherit some of 

the smoothness properties of the particular reconstruction algorithm. While we did not 

notice any particular bias due to the latter, the visibility requirement is consistent with 

how we synthetically sample the models, namely through an optical scanner. Hence, it is 

still possible to sample all parts of a surface with our scanning simulator.

The second set of experiments utilizes simple shapes which may be sampled in a con

trolled manner. See Figure 3.4 for these shapes. The Bumpy Sphere contains smooth 

features at varying scales. The Spiral shape is primarily composed of a thin cylindrical

Fig. 3.4. Simple shapes created via our Polygonal MPU scheme. In our experiments, these 
shapes are scanned in a precise a manner in order to replicate specific scanning difficulties, 
such as sparsity, missing data, and noise.
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feature. Lastly, the Mailbox consists of straight and curved sharp features alike, while also 

remaining simple enough to sample in a controlled setting.

3.2 Sampling
The intent of our sampling scheme is to replicate the acquisition process of a triangulation- 

based scanner, in order to produce realistic point clouds. To this end, sampling is composed 

of three intermediate stages: synthetic range scanning, registration, and orientation. See 

Figure 3.5 for an illustration of our synthetic scanner’s capability in replicating such prop

erties.

3.2.1 Synthetic Range Scans
We simulate the acquisition of range scans by modeling a basic optical laser-based trian

gulation scanning system. Such scanning systems suffer from random error and systematic 

error. Random error is due to physical constraints, such as noise in the laser, variations in 

the reflectance due to surface materials, and nonlinear camera warping. Systematic error is 

the result of imprecise range measurement due to the peak detection algorithm. Our range 

scans are generated by synthesizing random error, while reproducing systematic error by

(a) Uniform sampling (b) Nonuniform sampling

(c) Noisy data (d) Misaligned scans

Fig. 3.5. Common characteristics of 3D scans. These point clouds were generated using 
our synthetic scanner, illustrating our capability to replicate common scan properties. In 
the noise and misalignment insets, we have color mapped the points by their distance away 
from the implicit shape, with yellow being far and green being close.
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performing standard peak detection.

3.2.1.1 Random Error Synthesis
We synthesize random errors by generating a series of radiance images, where each image 

is the result of a single laser stripe projection onto the implicit surface. To this end, given 

a pinhole camera at position c and a baseline configuration, we first generate the exact 

range data by ray tracing the implicit surface. We reject all points that are not visible 

from the laser position, which is a function of the baseline distance. This provides us with 

a set of pixels containing geometry P  =  ( p 1, p 2,... ,p n} and their corresponding points 

X  =  (x i , x2, ...,xn}.

We now project laser stripes onto the range geometry. We model each laser stripe 

projection according to a cylindrical projection, parameterized by laser position l, field of 

view of the laser stripe a, and triangulation angle ✓. The triangulation angle is defined 

with respect to an initial laser stripe plane. We may then define the laser stripe frustum as 

the volume enclosed by the two planes (l, ✓ — § }  and (l, ✓ +  § } .  A point is considered to 

be contained within the frustum if it is within positive distance to both planes. Figure 3.6 

depicts a 2D illustration of this configuration, where the red points of the green curve are 

considered to be within the laser’s frustum.

For a single laser stripe, we gather all range geometry which is contained within the 

stripe. This consequently defines the set of “active” pixels to which the laser stripe con

tributes. We then determine the noise-free radiance at pixel p i due to a laser stripe at 

triangulation angle ✓ by Curless and Levoy [1995]:

- 2 . 0  ( d ( x j ) ) 2

Le (pi) =  |n ■ w|e ^ 2 (3.6)

where ni is the normal of the implicit surface at x^ !  is the unit vector pointing towards the 

laser position from xi, d : R3 !  R is the closest distance to the center of the laser frustum, 

and is the width of the frustum at x i . Here, we assume that the surface is purely diffuse; 

hence, the BRDF is reduced to a constant factor which we omit.

Fig. 3.6. Baseline configuration for determining points which are visible to the laser.
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In practice, diffuse surfaces suffer from noise in the form of laser speckle, where surface 

roughness contributes to variations in the reflectance [Baribeau and Rioux 1991]. We 

observe that this form of noise is more significant further away from the center of the 

laser stripe frustum. We model this as additive noise sampled under a normal distribution, 

where the variance is the distance away from the center of the laser stripe:

Le (pi) =  Le (pj) +  -qea (xj) (3.7)

Here,  ̂is a user-specified noise magnitude, while e is a random variable normally distributed 

with variance a, the distance away from the center stripe. In addition, we also allow 

for smoothing of the noisy radiance image by convolving Le with a Gaussian kernel of a 

user-specified bandwidth.

3.2.1.2 Systematic Error
For each corrupted radiance image Le , we next perform peak detection in order to 

find each pixel’s laser stripe plane. From the laser stripe plane, depth is obtained simply by 

triangulation. A common assumption in many peak detection algorithms is for the radiance 

profile, either over space or time (triangulation angle), to be Gaussian [Curless and Levoy 

1995]. However, in the presence of depth discontinuities, curved surfaces, and noise, this 

assumption is violated, resulting in range containing systematic errors.

To this end, we consider all radiance images Le defined for each triangulation angle 

✓ 2 {di ,d2, ■ ■•✓m], where m is the number of laser stripes. For each pixel, we consider its 

radiance profile as ✓ increases. We fit a Gaussian to this radiance profile via the Levenberg- 

Marquardt method. This Gaussian provides us with a mean, which determines the stripe 

plane, as well as a peak magnitude and variance, both of which are used for rejecting 

unconfident range data.

Please see Appendix A.2 for the full list of scanning parameters and common parameter 

settings.

3.2.2 Validation
It is important to verify that the range scans we are producing contain artifacts found 

in real scans. To this end, we validate the manner in which we generate range scans 

by comparing them to data acquired by commercial scanning systems. We illustrate our 

capability of replicating noise and missing data artifacts, which arguably have the greatest 

impact on surface reconstruction. We are not interested in exactly reproducing scans 

produced by commercial scanning systems. Most systems perform postprocessing which
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is far beyond the scope of our scanning simulation. Instead, we show that our scanning 

simulation is expressive enough to generate a range of scan artifacts, while still capable of 

generating artifacts of a commercial scanner under proper scan parameters. To perform 

validation, we use the following pipeline: model implicit surface !  3D print surface !  scan 

printed model !  register scan to implicit surface !  compare to our synthetic scan.

We have manufactured the Gargoyle model via 3D printing, through the company 

Shapeways [Shapeways 2011]. The minimum detail at which models may be manufactured 

through Shapeways is 0.2mm. From this physical model, we then scan it via an optical 

triangulation-based scanner, namely the NextEngine scanner [NextEngine 2011]. In its 

finest resolution mode, termed macro mode, the scanner has a maximum accuracy of 

0.127mm. For shapes in which the distance from the camera is at a specified optimum, and 

whose normal is approximately aligned with the camera’s optical axis, we found this to be 

true. However, for a complex shape like the Gargoyle, as we will demonstrate, the accuracy 

can indeed vary and the noise magnitude becomes greater than the shape’s resolution.

To compare a real scan to a synthetic scan, we first register the real scan to the implicit 

surface. We perform ICP under a rigid-body deformation in order to best align the real 

scan to the implicit surface. As the NextEngine does not provide specifics on their CCD 

sensor, we take the depth image and utilize the camera calibration toolbox [Bouguet 2010] 

to obtain the intrinsic and extrinsic camera parameters. We feed these camera parameters 

in to our synthetic scanning system to obtain a comparable range scan. We note that a small 

nonrigid deformation might be preferable to a rigid-body deformation for registration due 

to small nonlinear camera deformation artifacts [Brown and Rusinkiewicz 2007]. However, 

this adversely impacts camera calibration and hence is unsuitable for our purposes.

3.2.2.1 Noise Validation
In our scanning simulation, noise is strongly dependent on laser stripe resolution, laser 

stripe field of view, noise magnitude, and image smoothing bandwidth. As NextEngine does 

not provide these parameters for their system, to compare noise against the NextEngine 

scanner, we have best estimated the stripe resolution, field of view, and smoothing band

width, while varying the noise magnitude. See Figure 3.7 for the comparison. Note that 

real scanner noise is in fact anisotropic - a function of the baseline [Abbasinejad et al. 2009]. 

Hence, we see “bumps” which are slightly aligned with the direction of the laser projection 

in the NextEngine scan. Our synthetic scans demonstrate this anisotropy as well. We show 

that by simply tuning the noise magnitude, we are capable of producing a variety of noise 

profiles, wherein the NextEngine scanner is but a subset.
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Fig. 3.7. Comparison of noise profiles between our scanning simulation in increasing noise 
magnitude (bottom), and a NextEngine scan (top-center). Note that real scanner noise takes 
the form of bumps aligned in the direction of the laser scan projection (top-right), and our 
synthetic noise is able to capture this anisotropic noise over varying noise magnitude.

3.2.2.2 Missing Data Validation
Missing data in a range scan are typically the result of the rejection of unconfident 

range data. In our scanning simulation, this is related to the peak intensity threshold, 

where a small peak may indicate a poor Gaussian fit. Hence, to compare missing data to 

the NextEngine scanner, we vary the peak intensity threshold and observe where regions 

of missing data exist; see Figure 3.8. As shown, the NextEngine scanner has a fixed 

threshold at which to reject unconfident range, while in our scanning system, this is a 

tunable parameter, producing varying degrees of missing data.

3.2.3 Scanning and Registration
Given that we have a means of acquiring range scans, next we must determine where 

to scan, and register the scans. It is extremely difficult to automate the process of po

sitioning/orienting a scanner, as this is inherently a manual process. We assume an ideal 

environment wherein we place the scanner at uniformly sampled positions over the bounding 

sphere of the object, such that the camera is oriented to look at the object’s center of mass. 

Note that such acquisition systems are starting to gain popularity [Vlasic et al. 2009].

From these individual range scans, we next register them into a single coordinate system. 

First, we overlap the scans by a parameterized amount. We then run the registration
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Fig. 3.8. A comparison of missing data between our scanning simulation in increasing peak 
threshold (bottom), and a NextEngine scan (top-center). Note the similarities in regions of 
missing data between our scan (bottom-right) and the NextEngine scan, chiefly due to the 
grazing angle at which laser strikes the surface, resulting in a low level of radiance.

algorithm of Brown and Rusinkiewicz [2007] to align the scans, which is a variant of ICP 

wherein a rigid-body transformation is assumed to be sufficient to align all scans. Note 

that the amount of overlap effectively determines the quality of the alignment. Less overlap 

means a poorer initialization, and the optimization process may hit an undesirable local 

minimum causing misalignment errors.

3.2.4 Orientation
From the registered point cloud, we must assign a normal to each point. One option is to 

simply use the analytical normal defined by the implicit function. However, for misaligned 

and noisy data, it becomes unclear what the normal should be from the implicit function. 

As a result, we also allow for normal orientation via the method of Hoppe et al. [1992].

Under this method, at every point, we estimate the local tangent plane via PCA, by 

gathering the k-nearest neighbors and extracting the eigenvectors of the covariance matrix. 

PCA, however, does not give orientation of the normals, and so we employ the minimum 

spanning tree approach of Hoppe et al. [1992] to propagate normal directions.

We note that by using this method, we may end up with noisy tangent planes due to 

a number of factors such as nonuniform sampling, noise, misalignment, and missing data. 

Moreover, normals may be oriented in the opposite direction due to these factors. However,
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in certain scanning situations, we may have knowledge of the scanner positions, which can 

be used to properly orient the normals. Hence, we allow for both options in our experiments.

3.3 Evaluation
In order to evaluate the quality of a surface mesh M  output by a reconstruction algorithm 

against the input implicit surface Q, we take the view of discrete differential geometry 

for defining error measures. As illustrated in Hildebrandt et al. [2006], pointwise plus 

normal convergence of a polyhedral surface to a smooth surface implies convergence in the 

metric, surface area, and Laplace-Beltrami operator. In their context, pointwise convergence 

is measured in terms of Hausdorff distance and normal convergence is measured as the 

supremum of the infinity norm over all normals. We take their basic framework and expand 

it to include other error measures, in order to provide a more informative evaluation.

3.3.1 Shortest Distance Map : Q !  M

To construct error measures, we first define the shortest distance map, termed $ . This 

map defines, for each point on M , its closest point in Euclidean distance to Q. More 

specifically, for a point a  2 Q, the map $ : Q !  M  associates a  2 Q as the closest point to 

$ (a )  2 M . We follow the approach of Hildebrandt et al. [2006] for the construction of the 

map:

$ (a )  =  a  +  0 (a )N  q (a ) (3.8)

where Nq is the normal field over Q and 0 : Q !  R is the signed distance along the normal 

N Q(a ). So long as the Hausdorff distance of Q and M  is bound by the reach of Q, or the 

minimal radius of all medial balls, then this construction ensures that a  is the point on Q 

closest in distance to $ (a )  2 M  [Federer 1959].

3.3.1.1 Sampling
The correspondences defined by the shortest distance map are used to construct error 

measures for comparing the reconstructed surface and implicit shape [Hildebrandt et al.

2006]. To obtain this in practice, we must densely sample Q in order to obtain discretized 

yet precise error measures, in a similar manner to METRO [Cignoni et al. 1998]. However, 

we depart from METRO by employing particle systems to sample Q, as we require not 

only dense samplings, but uniform samplings. A uniform sampling is essential in achieving 

accurate mean error measures, as a nonuniform sampling may bias certain regions of the 

surface in the construction of the mean.
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We sample Q by the method of Meyer et al. [2007], which minimizes an energy functional 

based on interparticle distances. A uniform distribution of samples is achieved by prescrib

ing a single interparticle distance for all particles. We have empirically set the interparticle 

distance based on the complexity of each shape, such that all features of the shape are 

sufficiently sampled. See Figure 3.9 for uniform samplings of our complex shapes. If we 

denote Pq as the set of samples chosen from Q, we build a set of ordered pairs representing 

shortest distance correspondences:

Cq =  {(x , a )  | a  2 Pq , x  =  $ ( a ) }  (3.9)

3.3.1.2 Correspondence Validation
If the Hausdorff distance between Q and M  exceeds the reach of Q, then there may exist 

pairings in Cq which are not shortest distance correspondences. Namely, this situation 

implies that there may exist a  2 Q such that the line connecting a  and $ (a )  crosses the 

medial axis of M ; hence, $  may no longer be bijective.

To handle such situations, we use the sample set Pq to validate correspondences con

structed through $ . Since Pq is a dense and uniformly distributed sampling of Q, closest 

point queries through Pq serve as an upper bound in any potential error in the $  mapping.

More specifically, for a given correspondence a  and x  =  $ (a ) ,  we query the closest 

point to x  in Pq, denoted as ^. If |x — |̂ <  |x — a|, this implies an incorrect pairing;

Fig. 3.9. Complex shapes sampled under particle systems. Note the high density and 
uniform distribution in the particles. Both of these properties are essential for obtaining 
precise error measures.
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hence, we exclude the correspondence from Cq and instead add the correspondence (x, fl) 

to Cq. See Figure 3.10 for a 2D illustration of the validation procedure.

3.3.2 Dual Map : M !  Q
Expanding on the work of Hildebrandt et al. [2006], we also construct a shortest distance 

map dual to $  which we term 'I', which considers for each point on Q its closest point to M . 

There can exist points on the reconstructed mesh M  which are not observed by the map $, 

and hence not considered as part of the error measurements. The mapping I  allows us to 

capture these otherwise unseen shortest distance correspondences.

To this end, we follow the methodology established in the previous section to construct 

I  : M  !  Q, for a given x  2 M :

I ( x )  =  x  +  V>(x )N m  (x) (3.10)

where N m  is the normal field over M  and p : M  !  R is the signed distance along the 

normal Nm (x).

3.3.2.1 Sampling
Analogous to the $  mapping, we sample M  in order to construct a discrete set of 

correspondences for the dual map. In sampling M , we have adapted the approach of Meyer 

et al. [2007] to triangulated surfaces, though other methods such as Poisson disk sampling 

may be employed to achieve a uniform sampling [Bowers et al. 2010]. Rather than specify 

an interparticle distance for M  in the optimization, we specify the number of particles, as 

the output reconstructed mesh can be arbitrarily complicated. If we denote PM as the set

Fig. 3.10. A situation where the $  mapping produces an incorrect shortest distance 
correspondence. The dashed red line indicates the normal line from a  to x, giving us 
an inaccurate correspondence since is closer to x  than a . So we instead take (x, fl) as a 
correspondence.
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of samples chosen from M , we build a set of ordered pairs representing shortest distance 

correspondences defined by the dual map:

3.3.2.2 Correspondence Validation
If the Hausdorff distance between Q and M  is large, then similar to the $  mapping, 

the I  mapping may result in pairs belonging to CM which are not shortest distance 

correspondences. In addition, due to the reach of M  being 0, even if the Hausdorff distance 

is small, there may still exist incorrect pairings in CM. We note that this mostly occurs 

near triangle edges where the dihedral angle is large; however, large dihedral angles are 

a rare occurrence in our setting since the mesh M  intends to closely approximate the 

(piecewise-)smooth surface Q.

In either case, we can still employ a similar validation scheme to the $  mapping to ensure 

that the error in 'I' is bounded. Since the sample set PM densely and uniformly samples 

M , closest point queries in PM ensure an upper bound in the error. More specifically, for a 

given correspondence x  and a  =  I ( x ) ,  we query the closest point to a  in PM, denoted as y. 

If |a — y| <  |a — x|, this implies an incorrect pairing; hence, we exclude the correspondence 

from CM and instead add the correspondence (a , y ) to CM.

3.3.3 Discrete Error Measures
From here, we may define a variety of discrete error measures between Q and M . 

Denoting |S| =  |Cq | +  |CM|, Hausdorff distance is approximated by:

These measures depict error in very different ways; see Figure 3.11 for an illustration. 

Here, the circle is the smooth shape, while the piecewise linear curve is the approximating 

mesh. Hausdorff distance will be large for the pair of shapes on the left, while mean distance

larger than the pair of shapes on the left, while Hausdorff distance will be less.

From these shortest distance correspondences, we have a method of measuring higher- 

order geometric properties, by comparing differential properties at the correspondences.

Cm  =  { (a ,  x) | x  e  Pm , a  =  I ( x ) } (3.11)

H(Q, M ) =  max j max | x  — a| , max | a  — x
( x , a ) e C Q  ( a , x ) e C M | (3.12)

while mean distance is approximated by:

(3.13)

will be rather small, whereas for the pair of shapes on the right, mean distance will be much
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Fig. 3.11. Different forms of surface reconstruction error. On the left, Hausdorff distance is 
large while mean distance is small, while the opposite holds on the right.

This is analogous to defining pullbacks on $  and 'I'. We opt to measure normal angle devia

tions in a similar manner to distance measures. If we denote y (a , x) =  Z (N n (a ), N M(x)), 

the maximum and mean angle deviation of point correspondences, respectively, are:

Hn (Q ,M ) =  max< max j ( a ,  x), max j ( a ,  x U  (3.14)
I  ( x , a ) e C Q  ( a , x ) e C M  J

VN(q , M)  =  - ^ (  Y j Y(a,  x ) ^ Y j  Y(a,  x ) )  (3.15)
( x , a ) e C n  (a , x ) e C M

In practice, we take N M to be triangle normals, as opposed to more sophisticated normal 

estimation methods [Meyer et al. 2002]. Such methods are sensitive to the triangulation and 

typically assume smoothness in the normal field, where in the presence of sharp features, 

this can result in undesirable over-smoothing.

3.3.4 Algorithms
We have chosen a wide variety of publicly available surface reconstruction algorithms to 

test our benchmark against. For the sake of fair comparison, we have only used algorithms 

which take an oriented point cloud as input, and output an approximating surface. Here, 

we provide a categorization and brief description of each algorithm, while also providing an 

abbreviation of each to help identify them in the experiments to follow.

3.3.4.1 Indicator Function
This class of algorithms reconstructs a three-dimensional solid O by finding the scalar 

function x, known as the indicator function, defined in R3 such that:

x « = { j x 2 o  • <3-16>

where the surface Q is then defined by @O. In practice, these approaches approximate x  by 

operating on a regular grid or an octree, and generate Q by isosurfacing the grid.
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Poisson surface reconstruction (abbr. Poisson) [Kazhdan et al. 2006] solves for x  by 

noticing that V x  should agree with the normal field N  at dO. This amounts to inverting 

the gradient operator; hence, x  is found by solving the Poisson equation:

V - V x  =  V - V  (3.17)

where V  is the smoothed normal field defined throughout the volume. The Poisson equation 

is efficiently solved only near the surface by using an adaptive multigrid solver defined on the 

octree built on the point cloud. Note that use of an octree may result in limited resolution 

over regions of missing data.

An alternative method of constructing the indicator function is to solve for it indirectly 

by projecting x  onto a basis, and then performing an inverse transform to obtain x. By 

invoking Stokes theorem, this projection need only be performed on dO:

I V  ■ F(p)dp =  I (F(p), N (p)} dp (3.18)
Jo Jao

where F is a vector-valued function whose divergence V  ■ F defines the basis.

Fourier surface reconstruction (abbr. Fourier) [Kazhdan 2005] employs the Fourier basis 

as part of their solution. For efficiency, they use the Fast Fourier transform (FFT), hence 

requiring a regular grid and the grid resolution being a power of two. However, use of a 

regular grid has its benefits when faced with missing data, as their is no loss of resolution.

Wavelet surface reconstruction (abbr. W avelet) [Manson et al. 2008] employs a Wavelet 

basis for the solution of Equation 3.18. They show how one may use a Haar or a Daubechies 

(4-tap) basis, where in our experiments, we employ the 4-tap Daubechies basis. Due to the 

multiresolution structure of wavelets, they use an octree for the basis projection; hence, 

similar to Poisson, this method may result in limited resolution over regions of missing 

data.

3.3.4.2 Point Set Surfaces
Point set surfaces (PSS) are defined based on moving least squares (MLS), where a 

projection operator is used to define a surface by its collection of stationary points, or 

where the output point of the projection operator is its input point. Originally defined 

for unoriented points, its definition is greatly simplified when considering points equipped 

with normals, and may be used for surface reconstruction by considering its implicit surface 

definition, rather than its projection operator.

Basic PSS methods use a weighted combination of linear functions to locally define the 

surface at every point. Borrowing terminology from Guennebaud and Gross [2007], we use
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two different definitions in our experiments: simple point set surfaces (abbr. SPSS) [Adam

son and Alexa 2003] and implicit moving least squares (abbr. IM LS) [Kolluri 2005]. The 

implicit surface definition of SPSS is:

f (x )  =  n (x)T (x  -  c (x)) (3.19)

where n is a weighted average of normals in a neighborhood of x, and c is the weighted 

centroid in a neighborhood of x. The weights used in computing the normal and the centroid 

are derived from a smooth, positive function wx defined with respect to x, which gives points 

closer to x  larger influence. IMLS is defined as the implicit function:

f  (x) =  p , w* (p ,)(x  -  p ,)Tn,
E ,  wx (p ,)

We note that IMLS is a weighted average of linear functions, whereas SPSS is a single 

linear function, whose centroid and normal is a weighted average of points and normals, 

respectively.

Algebraic point set surfaces (abbr. A P S S ) [Guennebaud and Gross 2007] uses spheres 

defined algebraically as the shape function. Rather than directly obtaining the implicit 

function at a point, APSS fits a sphere to a neighborhood of points, requiring the solution 

of a linear least squares system for every point. By using a higher-order function, the 

method can be more robust to sparse data than SPSS and IMLS.

For our experiments, the software package provided by Gael Guennebaud contains 

implementations of SPSS, IMLS, and APSS. Each PSS is evaluated over a regular grid, 

and the reconstructed surface is obtained by isosurfacing the zero level-set. In the software, 

neighborhoods used to locally fit functions are estimated at each point based on the density 

of the input point cloud. In the presence of missing data, this method may produce an 

empty neighborhood, producing holes in the output. This has an impact on evaluation, 

which we further discuss throughout the experiments sections.

3.3.4.3 Multilevel Partition of Unity
In our own implicit surface definition, we use a variant of Multilevel Partition of Unity 

(MPU) applied to polygon soup, and so we refer to Section 3.1.1 for details about the 

overall approach, noting that the construction of MPU with points is quite similar to that 

of polygons. In our experiments, we use three variants. First, we use the original approach 

of Ohtake et al. [2003] (abbr. M P U ), where linear functions are used as low-order implicits. 

We opted not to use the fitting of sharp features, as we found its sharp feature detection 

to be rather sensitive and frequently produce erroneous fits. We also use the approach
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of Nagai et al. [2009] (abbr. M P U S m ), which defines differential operators directly on the 

MPU function, though restricted to linear functions. In doing so, diffusion of the MPU 

function becomes possible, resulting in a more robust reconstruction method. Lastly, we 

also use the method of Ohtake et al. [2005b] (abbr. R B F ), which uses compactly-supported 

radial basis functions for locally-defined implicit functions in the MPU construction. For 

all MPU methods, a surface mesh is generated by first evaluating the MPU function over a 

regular grid, and isosurfacing the zero level-set to obtain the surface.

3.3.4.4 Scattered Point Meshing
The method of Ohtake et al. [2005a] (abbr. Scattered) is a departure from the above 

approaches. This method grows weighted spheres around points in order to determine the 

connectivity in the output triangle mesh. Quadric error functions [Garland and Heckbert 

1997] are used to position points in the output mesh, which can result in a small amount of 

simplification in the output. Similar to the PSS methods, regions of absent data may result 

in holes in the output.

3.3.5 Algorithm Parameters
We provide a brief description of the most relevant parameters for each algorithm.

3.3.5.1 Resolution
As all algorithms, except Scattered, contour a grid to obtain the surface, they must 

contain sufficient grid resolution to adequately preserve all surface details. Our aim is to 

provide each algorithm with such a sufficient resolution, while maintaining fairness across 

algorithms which may define grids differently. To achieve this, for each implicit surface, we 

first determine the resolution which is necessary to extract the surface with minimal error. 

We find that across all shapes, a resolution of 3503 provides for sufficient resolution to 

preserve surface details; hence, for the PSS and MPU methods, we have set their resolution 

to 350. For Fourier, the resolution at which to contour is also the resolution at which the 

FFT is applied. As it must be a power of two, we set it to 512 in order to reduce any 

smoothing resulting from the FFT.

Since Poisson and Wavelet build an octree over the point cloud, we must strike a balance 

between resolution to where data exist, and where data do not exist due to incomplete 

sampling. Although a maximum octree depth of 9 may appear most reasonable, in regions 

of missing data, we found this resolution to be too coarse. Note that both methods refine 

octree nodes if certain sampling conditions are not satisfied; hence, a larger depth can
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greatly improve the reconstruction in regions of missing data. For Poisson, for a given 

sample point at an arbitrary depth, if neighboring nodes at that depth are not included in 

the octree, then these nodes are refined in order to support subnode precision. Figure 3.12 

illustrates Poisson for two different maximum depths, and how the additional resolution 

shown on the bottom improves the reconstruction in regions of missing data. For Wavelet, 

as we are using 4-tap Daubechies Wavelets, a local support of 43 samples is necessary, and 

so neighboring nodes not already in the octree will similarly be refined. Hence, for both 

methods, we set the maximum tree depth to 10, in order to strike a compromise between 

resolution to where data exist, while providing sufficient resolution to where data do not 

exist.

3.3.5.2 Noise
Algorithms tend to handle noise according to their categorization. For indicator func

tions, noise may be combated by splatting the points in the grid under a large bandwidth, 

as well as through lowering the grid resolution, effectively serving as a low pass filter. PSS 

methods all contain a bandwidth which determines the extent of neighborhood influence. 

A large bandwidth results in more points for consideration in shape fitting and hence larger 

data smoothing. MPU methods and Scattered all contain error thresholds for which to 

determine the quality of a shape fit. In the presence of noise, the tolerance may simply be 

increased to avoid overfitting. MPUSm also provides parameters specific to their diffusion 

method, for which we use author-suggested settings.

3.3.5.3 Discussion
In practice, we set an algorithm’s parameters based on the characteristics of the input 

point cloud, namely the noise level. As the point clouds of experiments 7.1-7.3 contain a 

constant level of noise, we have kept all algorithm parameters fixed throughout these exper

iments. Though one may fine-tune an algorithm’s parameters to improve its performance 

with respect to a particular error metric, parameter insensitivity is an important indication

Fig. 3.12. Poisson surface reconstruction for two different maximum depths. Note that the 
additional resolution serves to refine regions of missing data.
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of algorithmic robustness. Only in experiment 7.4, where noise varies, do we set algorithm 

parameters in accordance with the noise level.

3.4 Results
Our results are broken down into two main sets of experiments: one in which complex 

shapes are sampled under a variety of sampling settings, and one in which simple shapes 

are sampled under specific sampling settings. Please see Appendix A.2 for reference to the 

types of units used throughout the results.

We have not used the maximum angle deviation as an error measure in our experiments. 

By using triangle normals as the normal field over a surface mesh, this measure can be 

quite high even when the mesh contains low error in all other measures. As a result, in 

comparing algorithms, we found this error measure to be rather indistinguishable; hence, 

we have omitted it.

Note that it is possible for these algorithms to produce surfaces containing multiple 

connected components. We have decided to extract the largest connected component, in 

terms of surface area, as the surface for evaluation rather than all components. Unfor

tunately, this biases algorithms in which connected components are created far from the 

ground truth surface over algorithms which create additional components near the surface. 

Hence, in addition to the error metrics, we have provided additional information on the 

algorithms including the number of connected components, as well as the length of the 

boundary components, whether or not the surface is manifold, deviation from the true 

genus, and computation time.

3.4.1 Error Distributions
Our first set of experiments focuses on the performance of surface reconstruction algo

rithms restricted to a single shape. For a single shape, we sample it across a variety of 

scanner parameter settings, run all reconstruction algorithms across all point clouds, and 

compute error metrics for each point cloud. For each algorithm, we then aggregate the error 

metrics across all point clouds to obtain what we term error distributions.

We argue that error distributions are more effective for benchmarking reconstruction 

algorithms, rather than comparing algorithms with respect to a single point cloud. Each 

algorithm has its strengths and flaws for particular forms of data, and to sample a shape in 

such a way that it caters towards the strengths of certain algorithms provides an incomplete 

picture in the comparison of reconstruction algorithms.
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To this end, we generate samples by varying scanning parameters across typical use-case 

settings. Namely, we vary sampling resolution, the number of range scans, the distance the 

camera resides from the object, peak threshold, and variance threshold. Please see Table 3.1 

for the full range of parameters over all shapes. We have adapted certain parameter ranges 

to the specific shapes in order to ensure adequate coverage in the point clouds, and to 

sufficiently capture shape details. To reproduce small imperfections commonly found in 

range data, we introduce a constant, modest amount of noise into the laser signal. We also 

slightly overlap the scans and register them, causing small misalignment errors. For each 

point cloud, we randomly distribute camera positions uniformly on the bounding sphere of 

the object, rather than keeping their positions fixed.

See Figure 3.13 for the results of this experiment across all shapes, wherein the distri

butions take the form of box plots. The three error measures, mean distance, Hausdorff 

distance, and mean angle deviation, illuminate the various strengths and weaknesses of the 

algorithms.

3.4.1.1 Smooth Surfaces
The Gargoyle, Dancing Children, and Quasimoto shapes represent our class of shapes 

containing entirely smooth surface features. We find that the algorithms generally perform 

quite well on these shapes; however, the different error metrics point to subtle differences in 

performance. For instance, Wavelet tends to produce nonsmooth, rather bumpy surfaces, 

yet the surface tends to stay close to the surface, which is likely due to the use of wavelet 

bases in the presence of nonuniform or missing data. This nonsmoothness is depicted in the 

mean distance and angle deviation plots, yet its Hausdorff distance performance is quite

Table 3.1. The range of scanning parameters used in the error distribution experiments. 
Here, res represents the image resolution of a single range scan, scans is the number of 
scans taken, camera dist is the camera distance away from the center of the object, peak is 
the radiance threshold at which to reject depth, and variance is the variance threshold at 
which to reject depth.

shape res scans camera dist peak variance
Gargoyle 250-350 7-11 75-115 0.2-0.4 0.5-0.75
DC 250-350 7-11 75-115 0.2-0.4 0.5-0.75
Quasimoto 250-350 7-11 75-115 0.2-0.4 0.5-0.75
Anchor 175-225 8-12 60-100 0.2-0.4 0.5-0.75
Daratech 250-350 8-12 75-115 0.2-0.4 0.5-0.75
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competitive, indicating it never strays too far from the surface.

It is well known that Poisson and Fourier tends to oversmooth the data, and in our 
experiments, this is reflected in their rather large error in mean distance. However, in 

terms of Hausdorff distance and mean angle deviation, they perform rather well, and are 
fairly consistent in their performance. This indicates that these algorithms are reliable in 

reconstructing surfaces which do not deviate too far from the original, while also remaining 

close in differential quantities. We note that Fourier is more consistent than Poisson, as 

Poisson suffers from a lack of resolution in regions of missing data.

While RBF performed well on the Dancing Children and Quasimoto models, on the 
Gargoyle model, we see that it performed poorly across all metrics. The Gargoyle model 

is particularly difficult to sample as it has many concavities, and as shown by the lower 
quartile having large error across all metrics, RBF would tend to fill in the inside of the 

surface.

3.4.1.2 Sharp Features
The Anchor and Daratech shapes are particularly difficult to reconstruct. As these are 

shapes with sharp features, algorithms which only model smooth surfaces will have difficulty 

in reproducing sharp features. Additionally, these shapes have small topological features 

which are difficult to adequately scan due to occlusion. Hence, we do not necessarily expect 

these algorithms to perform as well on these shapes as the others, and instead, we use these 

shapes to measure robustness.
In observing MPU and MPUSm, we find instability in the presence of the Anchor and 

Daratech point clouds, where large spurious surface sheets are produced as a result of 

improperly fitting smooth shape functions to sharp features. However, note that the PSS 

methods perform much better, despite also using smooth shape functions. PSS methods fit 

shape functions at every point; hence, the error will be contained locally if there exists a 

poor fit, whereas MPU fits shape functions to the entire shape, resulting in a potentially 

unbounded error if a poor fit exists. Interestingly, RBF performs quite well in distance, 
yet has rather large error in normals. We found the RBF interpolant to remain quite close 

to the surface, at the expense of producing high-frequency details, hence the large normal 

deviations.

3.4.1.3 Topology
Overall, we find that the PSS methods and Scattered tend to perform quite well in 

the error metrics. However, these are also methods which produce holes in the presence
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of insufficient data. To depict the performance of these algorithms in terms of topology, 
we also show how these algorithms behave in their number of connected components, total 

length of boundary components, whether or not the reconstructed mesh is manifold, and 

the deviation from the true genus, averaged over all point clouds and shapes -  see Table 3.2. 

As shown, Fourier and Poisson tend to outperform these methods in all categories. With 

respect to the PSS methods, this demonstrates that they tend not to produce topologically 

clean implicit functions, likely due to their local nature. Additionally, we see that Scattered 

produces large holes, yet all of the shapes are watertight.

3.4.2 Sparse Sampling

A common data characteristic of point clouds is sparsity. Namely, for range scan data, 

it is common for certain areas of the surface to be sampled less densely than others. Here, 

we investigate how reconstruction algorithms behave as data sparsity varies in a controlled 

setting. We are interested in observing how these algorithms infer the surface between the 

given input points.
In this experiment, we only vary the sampling resolution. We fix the number of scans 

and camera positions such that the shape is sufficiently sampled. We use the analytical 
normals of the surface, and no noise or misalignment. We use such clean input in order to 

restrict the problem to only data inference. We use the bumpy sphere as the test shape, as 

the coarse-scale features of the surface make data inference plausible.

Table 3.2. Additional information for experiment 1, averaged across all point clouds and 
shapes. Here, comps refers to number of connected components, bndry is the length of 
boundary components, manifold is whether or not a mesh is manifold, 1 being it is and 0 
otherwise, genus refers to the amount which deviates from the actual genus, and time is in 
seconds.

algorithm comps bndry manifold genus time
apss 47.37 140.86 0.50 1.82 36.02
fourier 1.54 0.00 1.00 0.49 28.70
imls 38.48 194.65 0.74 1.66 34.11
mpu 100.69 9.71 0.49 0.79 12.83
mpusmooth 2.88 2.93 0.91 0.67 17.83
poisson 1.54 0.44 1.00 0.63 36.83
rbf 51.73 6.30 0.82 13.55 34.78
scattered 1.90 214.21 1.00 7.47 4.48
spss 174.53 143.14 0.26 3.98 33.53
wavelet 1.35 0.04 1.00 0.71 2.13
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See Figure 3.14 for plots of the experiment. MPUSm was unable to smooth its spherical 

covering on half of the point clouds due to the extreme sparsity, so we have omitted it from 

this experiment. From the distance measures, we immediately see a partitioning of the 
algorithms: IMLS, Poisson, SPSS, and Wavelet all tend to behave rather poorly, while the 

other algorithms perform well. We should certainly expect this for Poisson and Wavelet, as 

the resolution of the output is proportional to the input size. However, it is interesting to 

observe the significant improvement of APSS over IMLS and SPSS, indicating that fitting 

spheres under sparse data is more advantageous than trying to fit planes to the data.
We also see that Fourier demonstrates remarkable robustness to sparse data. Under 

very sparse data, Fourier performs best, whereas APSS, MPU, RBF, and Scattered per
form rather poorly under such data, though they perform better as resolution increases. 

However, observe that as the sampling resolution becomes somewhat dense, the distance 

error in APSS, MPU, and RBF steadily decreases while Fourier remains stagnant. This 
is a consequence of Fourier’s inherent data smoothing, whereas those algorithms which fit 

shape functions to the data only improve their fits as resolution increases.

3.4.3 Missing Data
Missing data will almost always be present in scanned data, simply due to concavities in 

the shape which cannot be reached by the scanner or insufficient scanning due to physical 

restraints of the scanner. In order to have a controlled setting to replicate missing data, we 
vary the peak threshold at which range may be rejected from consideration. We note that 
this is quite common for scanners, since the accuracy of the scanner suffers when the angle 

at which the laser line-of-sight and the normal becomes large, and the preferred option may 

be to reject range rather than accept outliers.
Similar to the previous experiment, here, we fix the number of scans and camera 

positions, and use no additive noise, in order to isolate missing data as the primary challenge 

in the input. We then vary the peak threshold at which to reject samples from 0.8 to 0.4, 

where 1 is the expected peak. We have used the bumpy sphere and mailbox shapes, in 
order to observe the behavior of these algorithms in the presence of missing data on both 

smooth and sharp features.
See Figure 3.15 for plots of the experiment. We find that all of the indicator function 

methods perform quite well across both shapes, with the notable exception of Wavelet 

failing to converge to the limit surface as missing data decreases. We credit the robustness 
of indicator function methods to being global methods which do not attempt to fit shape 

functions.
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Indeed, methods which fit shape functions have rather erratic behavior, particularly in 

the mailbox shape. MPU, MPUSm, and RBF are quite unstable, producing spurious surface 

sheets as missing data are introduced. When a neighborhood of a sharp feature, namely an 
edge, is sampled on one side and not on the other, shape functions of this kind are expected 

to be produced. As missing data increase, the samples used for shape fitting change, which 

results in spurious surface sheets only occasionally appearing. This variability in the points 

used for shape fitting is the cause of the inconsistencies found across MPU, MPUsm, RBF, 

and the PSS methods as missing data increase.

Scattered and the PSS methods tend to produce holes in the presence of large missing 

data, due to an insufficient number of samples in these areas. These missing data are the 
cause for their unstable behavior in the mailbox shape, as more missing data are introduced.

3.4.4 Noise
Finally, we consider how robust reconstruction algorithms are to noise in the range data. 

We consider two scan parameters which have a significant impact on noise: noise magnitude 

and laser frustum field of view. The effect of noise magnitude is fairly clear; however, we 
note that the thickness of the laser plays a significant impact on outliers. The thicker 

the laser, the more difficult peak detection becomes at depth discontinuities, resulting in 

outliers.

To this end, we have taken the spiral shape and sampled it under varying noise magni

tudes, and varying laser thickness. We sufficiently sample it so that missing data or sparsity 
are not an issue, and compute normals directly from the points, allowing for improper 

orientation if direction propagation is incorrect. For each algorithm and each point cloud, 
we also manually set the parameters to perform best, considering the scale of the noise. For 

the PSS and indicator function methods, such parameter settings are quite intuitive as they 

are based on sampling density bandwidths. However, for all other methods, a maximum 
error tolerance effectively determines the amount of smoothing performed, which can be 

quite sensitive.

See Figure 3.16 for plots of the noise experiments. Note that Fourier and Poisson, in 
terms of all error metrics, are quite robust in the presence of noise. This is likely due to 

the global nature of these methods, where smoothing the data is a natural consequence. As 

observed by its large variance, RBF performs rather poorly in the presence of noise. Indeed, 

the necessity to produce dipoles for RBF becomes especially problematic in the presence of 

noise and outliers.
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We observe that MPU and MPUsm are somewhat robust in the presence of noise given 

their small variance in Hausdorff distance, though interestingly, we see significant differences 

between them in the two different distance measures. The smoothing performed via MPUSm 

tends to expand the surface outward, resulting in poor mean distance, yet it never strays 
too far from the surface, hence its good behavior in terms of Hausdorff distance.

The PSS methods all tend to smooth out noise and remain robust to outliers. However, 

far away from the surface, their behavior tends to be quite poor; see Table 3.3. They tend 

to produce many extraneous connected components, as well as boundary components.

3.5 Discussion
Our small-scale experiments tend to correlate well with the results of the error distri

bution experiments. For instance, the unstable behavior of RBF in the presence of sparse 

and missing data manifests itself in its unstable behavior across the gargoyle model, which 

is particularly difficult to adequately sample due its numerous concavities. Likewise, the 

behavior of MPU and to a lesser extent MPUSm in the presence of missing data on the 

mailbox correlates with their large variance in the Anchor and Daratech, indicative of the 

fact that they have trouble reconstructing sharp features. Conversely, we see that the stable 
behavior of Fourier in the small-scale experiments correlates well with its relatively small 

variance in the distribution plots.

Our experiments point toward a number of deficiencies in the state of surface reconstruc

tion. Our results demonstrate the remarkable robustness of methods based on computation 

of the indicator functions, yet these methods tend to oversmooth the data, reflected in

Table 3.3. Additional information for the noisy spiral experiments, averaged across all 
point clouds.

algorithm comps bndry manifold genus time
apss 221.60 0.71 1 . 0 0 0 . 0 0 50.59
fourier 1 . 0 0 0 . 0 0 1 . 0 0 0 . 0 0 27.24
imls 193.16 4.76 1 . 0 0 0 . 0 0 48.62
mpu 1 . 2 0 0 . 0 0 1 . 0 0 0 . 0 0 7.13
mpusmooth 1.08 0.06 1 . 0 0 0 . 0 0 23.08
poisson 1 . 0 0 0 . 0 0 1 . 0 0 0 . 0 0 30.90
rbf 12.48 4.69 0.92 0.30 18.90
scattered 1.08 0 . 0 0 1 . 0 0 0.44 3.11
spss 257.20 1.13 1 . 0 0 0 . 0 0 48.18
wavelet 1 . 0 0 0 . 0 0 1 . 0 0 0 . 0 0 2.26



47

their poor performance in mean distance across complex shapes. Developing an algorithm 

based on the indicator function which does not oversmooth the data would be very useful. 

Conversely, although MLS methods perform rather well in terms of mean and Hausdorff 
distance across the complex shapes, they demonstrate poor far-field behavior. We think 
that combining MLS methods with global constraints of some nature may rectify these 

issues.
Our benchmark should also prove to be useful for recent methods which resample point 

clouds with large missing data [Tagliasacchi et al. 2009; Cao et al. 2010; Shalom et al. 
2010]. Although we have produced such point clouds in order to test robustness, it would 
be interesting to see how well these more recent resampling methods perform quantitatively.

All told, our benchmark consists of 351 point clouds across eight shapes, providing rich 

data for surface reconstruction developers. For our first set of experiments, we have 48 
point clouds for each shape. Over 10 algorithms, this amounts to a total of 2400 different 

reconstruction outputs, and over both distance and normal correspondences, we have a 

total of 4800 correspondence mappings. We think that this construction of a distribution of 

point clouds for a given shape could be used in other areas, for instance potentially learning 

surface reconstruction, by using the point clouds and ground truth data as training data.

3.5.1 Limitations
While the surfaces in our benchmark cover a broad range of shapes, they are by no means 

exhaustive. As surface reconstruction becomes more specialized, such as the reconstruction 

of large-scale architectural buildings [Nan et al. 2010], we envision our benchmark to expand 

to these specific forms of surfaces. Our implicit shape representation should easily be able 

to accommodate other types of shapes.
Although we have generated a large variety of point cloud data with our sampling 

scheme, we are keeping fixed certain settings which may be worth further exploration. For 

instance, we assume a diffuse BRDF in the scanning simulation, where it may be interesting 

to consider different forms of surface reflectance, and even spatially-varying BRDFs.
Though laser-based optical triangulation scanners are quite popular, other forms of 

scanning may be worth simulating in order to replicate different acquisition artifacts. For 

instance, time-of-flight scanners contain a very distinct random noise profile and systematic 

error due to the emission of infrared light into the scene. Multiview stereo methods 

are known to produce geometry containing significant noise, as object texture, material, 

and lighting tend to play a more significant role in such passive methods, compared to 

active methods like laser-based scanning. An accurate simulation of multiview stereo
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would necessitate a highly photorealistic renderer, where the large space of parameters 

(for instance, BRDF, subsurface scattering, and lack of texture) would be interesting to 

explore, effectively extending the rather controlled environment of Seitz et al. [2006].

3.6 Summary
We have presented a benchmark for surface reconstruction. We have proposed novel 

methods for modeling and sampling smooth and piecewise-smooth shapes, as well as evalu

ation of reconstruction algorithms. Our extensive experiments demonstrate the quantitative 
behavior of many state-of-the-art surface reconstruction algorithms across a diverse range 

of realistic point clouds. The experiments are useful in several ways: they illustrate which 

algorithms are best suited for specific types of data, point out deficiencies in the current 

state of surface reconstruction, and indicate future work for reconstruction.
In particular, the results of the benchmark have informed many of the subsequent 

chapters in this thesis. The benchmark results highlight which relevant problems to focus 

on in processing point clouds, namely noise and missing data. Since quite often the reason 
for failure in existing reconstruction methods is the use of smoothness priors in the ambient 

space of the point cloud, this has motivated the subsequent work in developing shape 
analysis methods directly on the point cloud, rather than the ambient space. Lastly, 
the benchmark provides for an easy mechanism of generating point clouds and obtaining 

quantitative results, which we use throughout the thesis.



CHAPTER 4

HARMONIC POINT CLOUD 
ORIENTATION

One of the key requirements of an approximating reconstruction method is the consistent 
orientation of normals defined at every point. That is, for a given point cloud, at each point, 

we must assign the direction which the normal should point -  typically, we want to assign 

this direction such that the normal points outside of the surface. This task is challenging 
for the types of shapes and point clouds that we studied in our benchmark, namely point 

clouds with sharp features, nearby surface sheets, noise, undersampling, and missing data.

Existing methods are sensitive to these imperfections, as the direction to choose for a 

normal is based on local geometric properties. Typically, such approaches use measures 
such as normal direction deviation [Hoppe et al. 1992; Huang et al. 2009] or curvature esti

mation [Guennebaud and Gross 2007], coupled with normal direction propagation [Hoppe 

et al. 1992] to determine orientation. An issue with these approaches is that if one or 
several normal directions are incorrect, then the subsequent propagation will result in 

large, contiguous regions of the point cloud containing the incorrect orientation. This is 

particularly detrimental to surface reconstruction algorithms, as they will begin to interpret 

the inside as the outside.
In this chapter, we propose a new method for normal orientation estimation which 

instead considers the problem from a more global perspective. We use globally smooth 
functions defined directly on the point cloud, which are inherently insensitive to data charac

teristics and imperfections on the point cloud. Specifically, we consider harmonic functions 
defined on point clouds -  functions which lie in the kernel of the Laplace-Beltrami operator. 

Such functions are well-known to be extremely insensitive to the data characterization 

attributed to acquired 3D point clouds [Dey et al. 2010].
Harmonic functions are used for normal orientation by considering their gradient fields, 

restricted to the local tangent plane of each point. From these gradient fields, we cast 
the problem of normal orientation as an assignment of cross-product orderings between
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gradients locally at each point. Away from critical points, two functions are sufficient to 

fully determine the orientation, if the functions never intersect [Edelsbrunner et al. 2004]. 

This is analogous to the construction of a global parameterization over the point cloud, 

where for a pair of functions u : R3 !  R , v : R3 !  R, the orientation at a point pi is 

simply defined as Vu(pi) 0  Vv(pi), where 0  denotes the vector cross product.
In practice, we are faced with point clouds with the aforementioned imperfections and 

nontrivial topology, which results in harmonic functions containing critical points. The 

presence of critical points, and in the discrete setting critical regions, changes how the 

gradient behaves locally. In such cases, it is unsuitable to determine only two functions. 
Instead, we produce a set of harmonic functions defined over the point cloud, resulting in 

a set of gradient fields. In order to avoid regions where a critical point may exist and to 

account for imperfections in the data, we assign a pair of gradient fields to each point. The 

assigned pairing is the two most correlated functions with respect to the flow of the gradient 
within the neighborhood of the point. Figure 4.1 shows how these local pairings of gradient 

fields and harmonic functions are used to determine a normal’s orientation.
To summarize, the contributions of our method are as follows:

Fig. 4.1. Consistent normal orientation using the gradient fields of multiple harmonic 
functions. Left: Four harmonic functions defined on a point cloud of a cube, color mapped 
from blue to red to indicate increasing function value. Right: Paired gradient fields for four 
points (denoted by a yellow ball) and their neighborhoods (bold vectors). The gradient 
field of each function is denoted by a different colored vector. Given an ordered pairing, the 
normal orientation for a point is simply: Vu(pi) 0  Vv (pi), where Vu is indicated by the 
longer of the two vectors.
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-  We demonstrate the utility of harmonic functions for robust orientation of point 

clouds.

-  We frame the problem of orientation propagation as the assignment of cross-product 

orderings across smooth gradient fields.

-  We show the benefit of our method by applying it to the problem of surface recon
struction for challenging point cloud data.

4.1 Harmonic Function Generation
Key to our approach is the generation of globally smooth functions defined directly 

on the point cloud. Harmonic functions are a natural candidate, as these functions are 
smooth by construction. Additionally, the formulation of the discrete Laplace-Beltrami 

operator [Belkin et al. 2008 2009] allows for the construction of the operator for both 

surface meshes and point clouds.

To this end, we employ the discretization of Luo et al. [2009] for defining the Laplace- 

Beltrami operator directly on a point cloud P  =  (p i, p2,...,p n}, such that the discrete 
Laplace Operator L is an n x n matrix

T [i][j] =  /  G (i  j )  i =  j  (4 1)T [i][j]= \  G (i,i) - £ n=1 G (i,j) Otherwise ( )

1 \\vi- pj||2
where G (i,j) =  e 4h and h determines the kernel support size. Note, we deviate 

slightly from Luo et al. [2009] in the formulation of L and do not weight each entry by the 

Voronoi area. For noisy, nonuniform sampled data, the Voronoi cell area for a given point 

may not always be well-defined.

We determine h by estimating the average sample density over all points. At each point 
pi, let r(p i) be the radius of the enclosing sphere of the k-nearest neighbors of pi, N (p i), 

given by r(p i) =  maxq2N(pi) ||pi — q|| [Pauly et al. 2008]. The average sample density over 

all points, h, is then given by:

h =  w\ X  r(pi) <4'2>
| | i2P

In order to ensure sufficient coverage in the presence of nonuniformly sampled data while 

also ensuring that L remains sparse, values of G less than s are set to 0, where s is given 

by s =  min G (i,j ) for all points pi and their k-nearest neighbors p j. In the presence of 
outliers, however, s can be very small, leading to only a few nonzero entries in each row of 

L. For these cases, we set s empirically.
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Given that L is positive semidefinite and symmetric, we generate harmonic functions by 

first prescribing Dirichlet boundary conditions at two points p» and p j , and then solve for 

the harmonic function u whose Laplacian is zero,

Lu =  0 (4.3)

u(pi) =  -1  u (p j) =  1

We seek a collection of harmonic functions such that the following two conditions are 

satisfied:

-  Critical points are distributed throughout the point cloud.

-  Gradient fields are as-orthogonal-as-possible.

In general, developing heuristics for the placement of Dirichlet boundary constraints such 
that harmonic functions satisfy these conditions is highly nontrivial. Heuristics based on 

maximizing L2 distance in R3, farthest point sampling, or some intrinsic measure will be 

sensitive to any noise and sampling artifacts in the point cloud data. This can introduce 

significant bias in the generation of gradient fields, such that large regions of the point cloud 

may contain near-coincident gradient fields, even if a large number of functions are used.
We instead solve for the harmonic function u by prescribing boundary constraints at 

two random points such that one takes on the global minimum and the other the global 

maximum. In this way, we can obtain a set of harmonic functions U =  {u 1,u2, ...,um} by 
simply choosing the random placement for boundary constraints. Doing so minimizes any 

such bias potentially introduced by some heuristic measure, whereby simply increasing the 

number of functions to use increases the likelihood of satisfactory gradient fields. Figure

4.2 shows two harmonic functions with different boundary constraints.
Given that we must generate a potentially large number of harmonic functions, an effi

cient means of solving for Equation 4.3 is essential. Thus, rather than solving Equation 4.3 

exactly under hard constraints (for instance through Lagrange multipliers), we use the 

method of Xu et al. [2009] and instead prescribe soft constraints,

(L +  P ) u =  Pb (4.4)

where P  is a penalty matrix containing large values on the diagonal entries correspond
ing to boundary constraints i and j  and zero everywhere else. Similarly, we assign the 

corresponding constraint values to the ith and j th entries of b.
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Fig. 4.2. Two different harmonic functions defined on a point cloud, and their resulting 
gradient fields.

By constructing the Cholesky factorization L =  GGT with respect to the boundary 

constraints only once, we may then subsequently factorize L efficiently following the ap

proach of Xu et al. [2009]. Namely, we forego the need to repeatedly factorize L for each 

new set of constraints. Instead, we use the Cholesky supernodal algorithm by updating 

the factorization with new boundary constraints, followed by downdating with respect to 
the previous boundary constraints. In this way, we have an efficient means of generating 

multiple harmonic functions.

4.2 Gradient Pairing
To determine normal orientation, we use the set of harmonic functions {u 1,u2, •••,um} 

and operate on their corresponding gradient fields G =  {g i ,g 2,...,gm}. Restricting the 

gradient fields to lie in the tangent plane of each point p 2 P  enables the consistent 

comparison of different gradient fields at p. The normals are estimated for simplicity using 
PCA. At first glance, the use of PCA may seem to restrict the robustness of our method as 

in related approaches. However, we will later show that our method is extremely insensitive 

to noise in the estimated tangent planes.

For a function u  and point p, its gradient gi is found numerically by using a first-order 

Taylor series expansion of u  about p

Ui(p +  s) «  ui(p) +  giTs. (4.5)

From this expansion, we take N to be the set of k-nearest neighbors of p and find the 
gradient by minimizing
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argmin ^  ||u (p) +  gT (q  — p) — u  (q) ||2 (4.6)
gi q 2N

where q is q projected to the tangent plane of p. The optimal gradient is found by solving 

the normal equation associated with the least-squares system of (4.6). Each gradient is 
then normalized. In Figure 4.2, we show the gradient fields associated with two harmonic 

functions.

4.2.1 Order Assignment
Given the set of gradient fields defined at each point, we would like to obtain some 

relationship or ordering between the respective functions locally at each point such that the 

ordering can be used to propagate a given orientation to all points.

Key to propagating a consistent normal to all points is the assignment of gradient field 

pairings for each point p 2  P . We seek an unordered pair of gradient fields (i, j ) for p, where 

gi, gj 2  G, such that the gradients in the neighborhood of p are as-orthogonal-as-possible 
and sufficiently far away from critical points -  locations where the gradient vanishes. The 

inner product between gradient fields at a single point is a natural measure of orthogonality, 
but is unreliable for several reasons. First, for noisy tangent planes, this can indeed be a 
misleading measure. Secondly, in the vicinity of a critical point, the gradient field will 

exhibit nonzero divergence and hence may be unsuitable for consistent pairing. Figure 4.3 

illustrates the importance of proper pairing of gradient fields.

To robustly determine optimal pairings, we consider the statistics of inner products 

of p and its local neighborhood. The following procedure is repeated for all points in 

P . We define rp, as the set of points which contains point p and its k-nearest neighbors, 
(q 1, . . . ,  qK}. For a point q in rp, we define

eij(q) =  | < gi(q^ g j(q) > | (4.7)

as our (absolute) inner product measure. The measure in (4.7) is defined for all points 
in rp to obtain a distribution of inner products. For each possible gradient pairing (i, j ), 

the mean ^ij- (rp) and variance ofj (rp) of our inner product measure is computed on the 

distribution rp.

The mean ^ij- (rp) and variance ofj (rp) of this distribution precisely measures the two 

different quantities of interest. A small mean indicates orthogonality, whereas a small 

variance is a robust measure of smoothness and small divergence since it indicates that the 

two gradient fields agree in a local neighborhood.
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(a) Gradients (b) Large Variance (c) Dependent (d) Ideal Pairing

Fig. 4.3. Selection of gradient fields for consistent orientation. In (a) we show a set of four 
gradient fields in a local neighborhood. In (b), the orange-colored field contains a saddle 
point, while (c) shows nearly aligned gradients, both being rather unstable. In (d), the 
proper fields are selected.

Using these local statistics, we define a metric indicating the quality of a gradient pairing 

(i, j ) at a point p:

Eij (Vp) = otafj (rjp) +  (Vp) (4.8)

where a and 3 define the importance of the variance and mean and are set to 0.1 and 0.9, 

respectively. By favoring gradient field pairings which have a lower mean (more-orthogonal) 

than those with a lower variance (smooth), we can increase the likelihood that two fields 

do not cross in a neighborhood away from a critical point. Near a critical point, we observe 

that such regions are typically associated with a high variance and low orthogonality, as 

shown in Figure 4.3 (b). Using Equation 4.8, the optimal pairing (i, j ) is sought which 

minimizes the metric over all possible combinations of gradient fields ( i , j ):

(i, j ) =  argmin Eij (r/p). (4.9)
i,j

Our method of selecting gradient functions does not require that the tangent planes 

between two points ever be compared directly. Instead, the normal orientation is estimated 

by comparing paired gradients within a given tangent plane and computing vector cross 
products. As a result, our method is robust to sharp features, missing data, nonuniform 

sampling, etc., provided the gradients are smooth in the neighborhood. Thus, we obtain a 

consistent metric that is decoupled from the geometric artifacts in a given local neighbor

hood.

4.3 Gradient-Based Normal Propagation
From the optimal pairings, we must now determine the correct ordering for each un

ordered pair of gradient functions for all points in the set. Once the ordering is found, 

the normal vector can be assigned for each point in the set, without the need to explicitly 
compare tangent planes. This assignment process is illustrated in Figure 4.4. Here, we



Fig. 4.4. Normal Assignment. Left: Propagation of the normal at p to g, and r. Middle: Ordering of the function pair (s,r) at q such 
that gr(p) 0 g s(p) =  np. Right: Normal propagation over an edge. Our method is insensitive to changes in local curvature since gradient 
comparisons are performed w.r.t a single point’s tangent plane.

Or
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show the propagation of a normal from p to q and r through the ordering of the optimal 

gradient pairs, (gi, g j), (gs, gr), and (gt, g„), respectively.

We propagate the normal orientations over the point set by leveraging the global nature 

of the gradient functions. Specifically, a point p is used as the initial starting point and 

it is assumed its normal, np is correctly oriented. We then construct a minimum spanning 

tree (MST) and traverse the edges in the tree to propagate the given normal direction. We 
use the ordering of the paired gradients with respect to the known normal orientation at a 

point p to transfer the orientation to a neighboring point q by transferring the ordering of 

the gradients at p to q.

Let the optimal gradient pairings for p and neighbor q be denoted ( i , j ) and (s,r), 

respectively. The cost of propagating a normal from p to q is evaluated in terms of the 

quality of the gradient pairing (i, j ) at q and similarly the quality of pairing (s,r) at p. 
The cost of propagating a normal from p to neighbor q is then given by

cost (p, q) =  Eij(rq) +  Esr (rp) (4.10)

where Eij(r q) and Esr (rp) is the objective function of Equation 4.8 evaluated at the optimal 

gradient pair (i, j ) at the point q and gradient pair (s,r) at the point p, respectively. In 
this way, low-cost edges correspond to neighboring points whose associated gradient pairings 

vary smoothly with respect to the neighborhoods of both points.

Given the MST and cost function for traversing its edges, the normal is propagated from 

p to q by ordering the gradients at q to be consistent with the gradients and normal at p. 

The orientation of the normal vector at q is found by computing the vector cross product 

of the gradient vectors gs and gr at p and then taking the dot product with the normal 

vector at point p. If the dot product is one, then the ordering (gs, gr) at point q is correct; 

otherwise, the ordering is switched. This criteria can be expressed as

{gs (q) ® gr (q) < gs (p) ® gr (p) ,np > = 1  ( 4  11)
gr (q) ® gs (q) otherwise . ( . )

This process is illustrated for three points in Figure 4.4.

4.4 Results
We demonstrate our algorithm’s ability to assign normal orientations under a wide 

variety of different sampling characteristics, ranging from sharp features, thin surface sheets, 

noise, misalignment, and missing data. In particular, we use the benchmark from Chap

ter 3 to generate realistic point clouds. Since we have ground truth shapes, we have a

nq =
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means of obtaining quantitatitve comparisons, which we measure as the ratio of incorrect 

normal assignments to the total number of sample points. In addition, we also perform 
surface reconstruction using the estimated normal orientation information and compare the 

reconstructed results. We have compared our algorithm (termed HARM) to the classic 

orientation minimum spanning tree (MST) approach of Hoppe et al. [1992], herein termed 

MST and to the recent work of Liu and Wang [2010], herein termed POT.

For all results, we used a fixed neighborhood of 15 point samples during all aspects of 

the algorithm. This includes normal orientation using PCA, to the pairing and ordering of 

gradient fields. In contrast, previous MST orientation tend to be sensitive to neighborhood 
size. The number of functions to evaluate varies across objects. As a rule of thumb, we 

chose to evaluate more randomly constrained functions than generally necessary to ensure 

that the set of functions provided a sufficient gradient field covering. For the Quasimoto, 

Anchor, and Daratech models, the total number of functions computed were 2 2 , 15, and 
15, respectively.

Figure 4.5 shows a comparison of our method with previous works for a smooth shape. 

The left side contains misalignment artifacts and missing data. Observe that MST fails 

in the region of misalignment as indicated by the string of inconsistent normals on the 

left side. The POT method tends to fail in areas of missing data, where the lack of data 

results in a poor spherical covering. In contrast, our algorithm succeeds in having the fewest 

inconsistent normals, failing only in areas of critical regions. Perhaps even more drastic a 

comparison is when noise is added to the model, shown on the right side. We introduce 
Gaussian noise with a variance of 1% of the bounding box diagonal to the 3D point cloud

HARM MST POT HARM MST POT

(a) 15 (b) 435 (c) 40 (d) 171 (e) 12,509 (f) 13,181

Fig. 4.5. We compare normal orientation on the Quasimoto model for our method (termed 
HARM), MST, and POT. A red splat marks an incorrect orientation. In (a), (b), and (c) 
we compare against a synthetically scanned point cloud. In (d), (e), and (f), we have added 
1% Gaussian noise to the point locations. The bottom row shows the number of incorrectly 
oriented normals.



59

while maintaining the original normal direction. Positional noise manifests itself in normal 

noise, where local methods may easily fail. We see that our method is several orders of 
magnitude better, illustrating our intrinsic resilience to noise in the normals.

Next, we compare to a shape containing sharp features and a modest amount of noise; 

see Figure 4.6. While MST is competitive with our method, we see that POT has issues 
in the presence of sharp features. Indeed, the control mesh generated via their spherical 

covering may be problematic at noisy, sharp features. As harmonic functions are insensitive 

to sharp features and noise, our method has little issue in handling them.

Finally, we consider a shape which contains sharp features and nearby surface sheets; see 

Figure 4.7. The presence of thin surface sheets poses significant challenges for local methods, 

as shown by the incorrect orientation by MST of entire surface patches. The harmonic 

functions we generate remain robust to thin surface sheets, producing few inconsistencies.
To demonstrate the impact of improper orientation, we selected another scan of the 

Daratech model, oriented the normals, and ran Poisson Surface Reconstruction [Kazhdan 

et al. 2006] on the result. See Figure 4.8 for the results. We clearly see the impact of 

inverting normals on a surface sheet, where MST and POT fail in different instances. Our 

method produces proper normals, giving us a more accurate reconstruction.

HARM MST POT

(d) 270 (e) 428 (f) 1015

Fig. 4.6. Incorrect normal orientations for two synthetic scans of the Anchor model for the 
HARM, POT, MST methods. Red splats mark incorrect orientations.
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HARM

(a) 8 8

MST

(b) 2,358

POT

(c) 320

Fig. 4.7. Incorrect normal orientations for two synthetic scans of the Daratech model for 
the HARM, POT, MST methods. A red splat indicates an incorrect orientation.

HARM MST POT

(a) 139 (b) 7,062 
Normal Assignment

(c) 11,562

Surface Reconstructions

Fig. 4.8. We show the impact of normal orientation on surface reconstruction. Top: Normal 
estimation results for the Daratech model using the HARM, MST, and POT methods. 
Bottom: Poisson surface reconstruction using the estimated oriented normals.
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4.5 Discussion and Limitations
The strength of our method lies in its ability to orient normals by considering the global 

gradient flows of a set of harmonic functions. When errors do occur, they can often be 

traced back to the construction of the randomly generated function set.

The set of Dirichlet functions should be constructed such that for each point, there exists 
at least two gradients which vary smoothly and approach orthogonality in the neighborhood 

of every point. While increasing the number of functions can mitigate bad pairings, for 

certain surfaces such as highly tubular structures, some sample points may not fully satisfy 

this requirement under the randomly generated Dirichlet constraints. However, this can 

be addressed by ensuring satisfactory coverage through the placement of additional user 

supplied constraints interactively, as in Xu et al. [2009]. Figure 4.9 shows how additional 

variability can be added by placing constraints near the region of interest.

Alternatively, an automated approach may be developed by the observation that our 

edge cost measure defined in Equation 4.10 is quite consistent. In other words, we rarely 

encounter false positives or false negatives in our measure. Thus, for edges which are deemed 
poor pairings, we may confidently augment the cost function for normal propagation with 

other standard edge-cost measures, such as the work of Konig and Gumhold [2009].
Finally, constructing the Laplace-Beltrami operator for noisy and nonuniformly sampled 

point clouds is still an active area of research. While our method is shown to be robust in

(a) Initial Results (c) Modified

Fig. 4.9. Variation in estimation due to random function generation. (a) Results using four 
randomly generated harmonic functions. (b) Results after adding an additional function. 
(c) and (d) the gradient fields before and after the addition.
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the presence of noise and missing data, the construction of the Laplace-Beltrami operator 

can be sensitive to outliers due to the fixed global bandwidth used and in the presence of 

thin-surface sheets due to the k-nearest neighbor assumption.

4.6 Summary
The consistent orientation of point clouds is a critical preprocessing step for many 

geometry processing tasks, and in particular is necessary for the faithful reconstruction 

of a sampled surface in the presence of acquisition artifacts. We show how to use harmonic 

functions defined directly on the point cloud to robustly estimate normal orientation. We 
show that through the formulation of a propagation and flipping criterion, based on the 

gradient fields of these harmonic functions, we can achieve consistent results for point 

clouds exhibiting different acquisition artifacts.

The key insight of our approach is the use of globally smooth functions defined directly 

on point clouds for normal orientation. Note that the gradient estimation and normal 

propagation steps of our method only require a scalar field on the point cloud. Hence, 

any other set of intrinsically-defined functions may be used, such as the Laplace-Beltrami 

eigenfunctions, the heat kernel, and diffusion distances.



CHAPTER 5

THE MEDIAL KERNEL

In the previous chapter, we saw how to utilize intrinsic, globally smooth functions defined 
directly on the point cloud for normal estimation. A natural question to ask is whether we 

can use similar intrinsically-defined quantities for the purposes of surface reconstruction, 
particularly in the presence of nonuniformly sampled and incomplete data. However, 

the Laplace-Beltrami operator defined for point clouds assumes rather strict sampling 

criteria, where in the presence of missing data, quantities derived from this operator will 

at best respect the boundary components stemming from incomplete data. Worse yet, for 

undersampled nearby surface sheets, false connections may be made in the construction, 
resulting in a topologically incorrect representation.

In this chapter, we focus on the problem of constructing an operator directly on the 

point cloud which is tolerant to missing data, and useful for the purposes of reconstruction. 

In particular, our main goal is the construction of distances defined on the point cloud, 
wherein the distances are derived from such an operator.

To construct such a representation, we first need to find a more general invariant of a 

surface which is resilient to missing data. The medial axis of the surface is such an object

-  indeed, previous works [Tagliasacchi et al. 2009; Cao et al. 2010; Li et al. 2010] have 
demonstrated how to extract skeletal representations, or medial representations strictly 

consisting of a set of curves, in the presence of missing data. We take influence from these 

methods by constructing distances which adhere to the medial axis, yet we depart from 

the aforementioned approaches by constructing these distances algebraically, rather than 
geometrically.

We introduce the medial kernel, an association measure which provides for a robust 

construction of volume-aware distances. The kernel measure is simply the likelihood of 
two points lying on a common interior medial ball. From the medial kernel, we construct 
a random walk on the point cloud, where movement in the walk is restricted to regions 

containing similar medial balls. In particular, if a subset of points exclusively has a large
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association according to the medial kernel, then for a sufficiently large time scale, the random 

walk will only permit movement within this subset. Our distance construction follows as 

the diffusion distances [Coifman and Lafon 2006] of this random walk, where two points 
contain low distance if they are highly connected in terms of walking along similar medial 

balls.
We leverage the medial kernel for several applications -  see Figure 5.1 for an overview. 

The distances induced by the kernel provide for a simple method of segmenting the point 

cloud into coherent volumetric parts. The medial kernel can be used to construct function 

bases, where projection onto this basis serves to average function values along medial 

regions. We use this for surface reconstruction in the presence of missing data. Lastly, we 
combine these two methods to perform reconstruction-by-parts, a reconstruction method 

which adheres to the volume indicated by the medial kernel.

5.1 Overview
Before going into the details of our approach, we present a brief 2D example illustrating 

the intuition behind our method; see Figure 5.2.
Consider the sampled 2D curve on the left-hand side of Figure 5.2. In observing its set 

of medial balls, we find that there exists a total of five -  two medial balls capping the ends 
of the shape, and three medial balls towards the center. This information may be encoded 

as a correspondence matrix C , where C j is 1 if points i and j  belong to the same medial 

ball, and 0 otherwise. Interpreting C as an adjacency graph, the block structure reveals 

that we have a disconnected collection of cliques, one clique for every medial ball.
Note that the medial axis can be represented through the spectral properties of C . Under 

a suitable orthogonal transformation, the eigenvectors of C serve as indicator functions for 

each medial ball, where for a given eigenvector, its nonzero function values group points 

which lie on the same medial ball. The nonzero eigenvalues of C represent the number of 

points belonging to a medial ball. If we row-normalize C to obtain C, then the multiplicity 
of eigenvalue with magnitude 1 is the number of medial balls, and consequently the rank of 

C is the number of medial balls.
Now, consider a slight perturbation of this shape, composed of a set of points P  = 

{p 1, p2, ..., pk} with accompanying normals N =  {n 1, n2, ..., nk}, where the structure of the 

cliques is imprecise; see the middle of Figure 5.2. In this scenario, we would like to best 
recover the cliques and group points which contain a similar medial structure. In other 

words, we want to approximate the matrix C . Our approach for approximating C is to 
construct, for a given pair of points in P, a similarity measure representing the likelihood of
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Medial Kernel Applications

Fig. 5.1. An overview of the medial kernel. From the input point cloud (left), our main contribution is the construction of distances 
defined directly on the points (middle), where distance represents the likelihood of two points lying on a medial ball. Note the insensitivity 
to undersampling and missing data. We leverage these distances for several applications, shown on the right.
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Fig. 5.2. Overview of the medial kernel construction. The clean point set and its set of medial balls illustrates the block structure we 
would like to recover on the noisy point set. Our medial kernel approximates such correspondences, by measuring the likelihood in which 
two points contain a medial ball. Note the similarities in spectra between the clean and noisy point sets. We exploit this by applying 
diffusion distances to the medial kernel to recover the block structure and correspondences.
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these two points lying on a medial ball. We call this similarity measure the medial kernel, 

denoted 0 : P  x P  !  R.

Given a pair of points pi , pj 2 P  with normals ni, n j, we construct the medial kernel 
in two steps. First, we generate a candidate ball, a representative medial ball for (pi, p j) 

being equidistant to pi and pj and whose normals at the points are similar to ni and n j. 

Next, we define a measure of medial dissimilarity, or how far away the candidate ball is 
from being medial. Following the definition of a medial ball, for a candidate ball, this is 

decomposed into two measures: how far from tangential with respect to ni and n j, and 
how empty. Emptiness is a function of the number of points residing inside of the ball, and 

how close they are to the ball center. We then convert this dissimilarity measure into a 

similarity measure to obtain the medial kernel; see the right side of Figure 5.2.

From the medial kernel 0(-, ■), we arrive at our approximation to C , the matrix M  : 

M j =  0(pi, p j). Note that nonuniform sampling, positional noise, and normal noise 

manifest as noise in M . However, similar to Lipman et al. [2010], we find that M ’s row 

normalized matrix M  largely inherits the spectral properties of C. This can be seen in the 

eigenvalues of M  where its top five eigenvalues reside near 1, and all others quickly converge 
to 0 -  a consequence of the rank deficiency of M. This indicates the existence of five medial 

balls.
For any shape with a well-defined medial axis, M  should exhibit rank deficiency, and we 

seek to define distances which respect this low rank structure. Note that the medial kernel 

induces a particular random walk on the point cloud, where for large time scales, points 
walk along similar medial regions. Moreover, a set of points which exclusively contain high 

associativity in the medial kernel will remain “stuck” in the walk, only moving between each 

other. Our distance construction follows as the measure of connectedness in this random 

walk: the diffusion distances [Coifman and Lafon 2006] of M ; see the right side of Figure 5.2. 

Diffusion distances are a natural tool for recovering such a low-rank structure, in our case 
grouping together points which mutually contain a similar medial region. Note that unlike 
the eigenvectors of M, the diffusion distances are invariant to any orthogonal transformation 

of its eigenspaces [Lipman et al. 2010]. Observe on the far right that for t =  20, we recover 
the original block structure of C, grouping points which contain similar medial balls.

5.2 Medial Kernel Construction
Here, we describe the details of the medial kernel construction. The medial kernel 

associates similarity to a pair of points based on the likelihood of such points containing a
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medial ball. We construct this by first generating a candidate ball for the points, and then 

measure how far away this ball is from being a medial ball.

Our construction requires oriented normals N , where we compute normal directions 
from the input point set P  via PCA. If P  is obtained from a scanner, we use the individual 
scans to best orient N ; otherwise, if scan information is unavailable, we propagate normal 

orientation via a minimal spanning tree approach.

5.2.1 Candidate Ball Generation

For points pi and pj with normals ni and n j, we want its candidate ball to best represent 

an interior medial ball. This implies that the center c j  lies on the bisecting plane of the 

points, while the normals of the ball at pi and pj respectively coincide with ni and n j.
To this end, we intersect the lines formed from the points and normals against the 

bisecting plane to obtain intersection points x i and x j . We discard balls if either intersection 

is along the positive direction of their normal, indicative of a ball lying in the exterior of 

the shape, or if both lines fail to intersect the bisecting plane. We would like to have 
the ball normals at pi and pj mutually satisfy ni and n j, but at sharp features, this can 

produce balls of arbitrarily large radius. Figure 5.3 depicts such a situation, where the 

bottom point’s normal line fails to intersect the bisecting plane, shown as the dashed black 
line. Hence, we relax this requirement by additionally considering the balls formed by the 

individual intersection points. This corresponds to the left point’s normal intersection with 

the bisecting plane. So, from the points {x i, Xi+X j , x j }, we take the candidate ball center 

cij as the one with minimal radius, which by construction is equidistant to pi and p j . Such 
a hard constraint on point equidistance and soft constraint on normal agreement expresses 
our precedence for point positions over point normals, since normal estimation is often 

imperfect.

^  ^  ^

Fig. 5.3. An illustration of finding a candidate ball in the presence of sharp features. In 
this case, both antinormal rays may fail to intersect the bisecting plane, so we choose the 
antinormal ray which forms the ball of minimal radius.



69

5.2.2 M ed ia l D issim ilarity

From the candidate ball, we measure its deviation from a medial ball in two measures: 

one measures emptiness, while the other measures how tangential.

Here, si and Sj are the normals of the candidate ball at points pi and p j , and ^ is the 

ball distance measure, measuring how close a point p lies from the center of the candidate 

ball cij . We would like ^ to satisfy the following properties: scale-invariance, slow falloff, 

and computational efficiency. Scale-invariance implies that the distance measure is relative

closer to the candidate ball center contribute more, indicative of the ball deeply penetrating 
the surface. Lastly, ^ should be defined such that its summation over all points may be 
performed efficiently and exactly.

To this end, we define ^ as follows:

We empirically found that this quartic falloff is suitable for penalizing points which belong 

in the deep interior of a candidate ball. We experimented with a quadratic falloff, but found

resulting in emptiness measures which erroneously indicated the potential of a medial ball.

Naively evaluating the dissimilarity measure, even using a spatial acceleration structure, 

can still be linear in the number of points for balls with large radius. However, note that ^ 

can be expanded such that it is linear in c and powers of c. More specifically, assume that 

Ps ✓ P is a set of points which reside within the candidate ball. We can thus safely rewrite

Y as:

of c, thus resulting in the above summation to be constant time for any candidate ball in 
which Ps is contained, by performing a small amount of preprocessing with little memory 

overhead.

(5.1)
peP

T(pi> p j) =  lni -  Si| +  lnj -  Sj I (5.2)

to the radius of the candidate ball. We want to prescribe a falloff to ^ such that points

(5.3)

that it failed to sufficiently penalize points which are near the center of a candidate ball,

pePs
We will show that this can be written as a set of terms linear in c and a small set of powers
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Note that the factors of 1 and 1 have no bearing on the expansion and can be ignored. 
Consider the expansion of the quartic term |p — c|4:

|P — c |4  =  |c|4  +  |p|4  +  21c|2 1p|2 — 4(c, p )(—(c, p) +  |c|2  +  |p|2) (5.5)

The first three terms are linear in |c|4, 1, and 21c|2, respectively. Expanding the remaining 

terms, we obtain:

—4 ( -c T(ppT)c +  (|c|2 c, p) +  (c, |p|2 p)) (5.6)

Hence, we have linearity in terms of c, and powers of c.

Returning to the original summation, due to linearity in c and its various powers, we 

can precompute this summation with a small set of terms: |Ps|, ^  |p|4, 2 ^  | p 2 1, 4 ^  ppT , 

4 E  P, and 4 E  |p |2 p. So, for a given c, we can compute its corresponding terms: | c| 4, | c| 2, 
c, and | c| 2 c, and apply it to the precomputed summed terms to obtain the exact distance 

measure.

For this to be effective in practice, we must know a priori that Ps belongs to the candidate 

ball. We achieve this speed up by constructing a kd-tree over P , and for each node, compute 
the aforementioned distance measure terms, along with the bounding box of the points for 

that node. Then, given c and r, as we traverse the kd-tree if the bounding box of a tree node 

is entirely contained within the candidate ball, we apply the above precomputed summation 

to obtain the emptiness measure.

5.2.3 M ed ia l K ern el

From the measures 7  and r , we may now define the medial kernel 0, effectively converting 
medial dissimilarity into a similarity measure:

/ Y(Pi >Pj ) ^ 2 / T (Pi >P j )\ 2
0(pi, p j) = e  ̂ CTe '  ̂ CTt '  (5.7)

where ae and at define bandwidths for the emptiness and tangential measures, respectively. 

We have set ae =  2 and at =  0.7 for all results in this chapter, unless otherwise specified. 

We perform this measure over all point pairs to arrive at the similarity matrix M  : M j = 

0 (pj, p j), where each entry encodes how likely the point pair contains a medial ball.
In practice, we find most entries of M  to have small magnitude -  a function of the 

complexity of the medial axis. Hence, we set M j  to 0 if M j <  10-7 , resulting in M 

typically being quite sparse. We use this sparsity to employ an early termination in the 

traversal of the kd-tree for computing the emptiness measure 7 , allowing us to quickly 
discard point pairs which are highly dissimilar.



71

The matrix M  can be quite noisy. For instance, since we have a hard constraint on 

equidistance in candidate ball generation, two adjacent points lying on a plane will result in 

a ball with unbounded radius, and consequently low similarity. However, if two such points 
mutually share other points which have a high similarity, then there is a strong likelihood 

that these points belong to the same medial ball.

As discussed in Section 5.1, the diffusion maps of M  capture this similarity, in the form 
of measuring the connectedness of random walks defined via the medial kernel. To this 

end, consider the matrix M  taken as the row-normalization of M , as suggested by Coifman 

and Lafon [2006] and Lipman et al. [2010]. It has an eigendecomposition of the form 

M  =  VXUT, where its eigenvalues and left/right eigenvectors are real-valued. Letting

V =  [ 'I' 1 I 2 ■ ■ ■ 'I' k] , the resulting diffusion map at point pi under a time scale t is:

$t(pi) =  {Al I  1 ( pi) , A21 2 ( pi) , A 33I  3 ( pi) , . . . } (5.8)

The diffusion distances directly follow from $:

^ (p ^  p j) =  l$t(pi) -  $ t(p j) |2 (5.9)

Unless otherwise specified, we used a time scale of t =  160 for all results, which we found to 

be a conservative time scale as useful distances are typically achieved at smaller times. Due 

to the large time scale used, we found it necessary to only retain the top 300 eigenvectors, 
and since M  is sparse, this can be computed efficiently via ARPACK.

See Figure 5.4 for several examples of diffusion distances of the medial kernel. Note how 
the distances relate points which have high likelihood of belonging to an underlying medial 

ball, for both well-sampled shapes and single range scans alike. Figure 5.5 illustrates our 

ability to handle the case of two nearby planar surface sheets. Note that although adjacent 

planar points are initially dissimilar, under a suitable time scale, we are able to capture the 
similarity, indicative of a medial ball lying between the surface.

Figure 5.6 shows the kernel’s robustness to missing data and noise. Note that noise is 
both positional and normal, since we compute normals from the points via PCA. This is 

a particularly challenging model as the foot resides directly next to the leg of the dancer, 

with missing data between the two parts. As noise increases, our method is still able to 

associate similarity to points occupying similar volume, as points on the back of the leg 
contain small distance to the source point.

We note that the distances of the medial kernel do not exactly correspond to diffusion 
distances measured along the medial axis, namely due to two properties. First, our kernel 

construction results in fast diffusion for a point on the surface whose corresponding medial
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Fig. 5.4. Diffusion distances derived from the medial kernel from various source points for 
a variety of point clouds, ranging from fully-sampled meshes to single range scans.

0 ( x , - )  6*40 ( x , - )

Fig. 5.5. Distances constructed on thin planar sheets. Although adjacent points to x are 
initially dissimilar, diffusion distances capture the association from the other side of the 
surface for suitably large times.
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Fig. 5.6. The performance of our medial kernel under missing data and increasing noise. 
Note that the source point contains low distance to points occupying similar volume.

axis point contains a large number of generating surface points. For instance, a portion 

of a surface bounding a medial sheet contains fewer generating surface points compared 

to a spherical part of a surface. Secondly, in regions of negative Gaussian curvature, the 

medial kernel between two points can contain low similarity, regardless of how close they 

are in Euclidean distance, as there does not exist a candidate ball which coincides with their 

normals. This can result in a sharp decrease in distance between such points, and under 
substantial missing data, it may disconnect parts of a surface.

To illustrate this behavior, we generate a sequence of shapes smoothly deforming as a 
function of these two properties, and look at how the distances between two fixed points 

change under a large set of time scales. We have taken a cylindrical shape generated via 

a union of balls, and continuously deformed the shape by shrinking balls which are closer 
to the center of the shape. We parameterize the set of shapes by the amount in which we 

shrink the balls, and we uniformly sample each shape to produce a point cloud. Since we 

uniformly sample each shape, there will be a smaller amount of points in regions where the 

balls are of smaller radii. Moreover, by shrinking balls closer to the center of the cylinder, 

this results in a “pinching” effect, resulting in a region of negative curvature.
Figure 5.7 shows the set of shapes and the resulting distances. In order to quantitatively
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r= l ---------  r=0.6 ---------  r=0.2 ---------  r=0.08
r=0.8 ---------  r=0.4 ---------  r=0.1 ---------

time

Fig. 5.7. We show how the distances between two points changes as we deform the cylinder 
(top-left) by shrinking its center, according to the radius r of the shape’s center medial 
ball. Note that even though the distances are sensitive to this deformation, we nonetheless 
maintain connectivity between the highlighted points.
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compare across different shapes, we normalize the embedding of Equation 5.8 prior to taking 

the distances, as suggested in Goldberg and Kim [2010]. As expected, we see that the 

shrinking of the balls results in distances between the two points being larger, as a function 
of the time scale. However, note that we are still able to retain connectivity between the 

points even as we nearly pinch off the surface at r =  0.08. As we will see in our applications, 

the ability to retain connectivity where the surface should be, while separating different 

nearby undersampled parts of a surface, permits us to robustly handle missing data.

5.3 Applications
We illustrate several applications of the medial kernel: segmenting a point cloud into 

volumetric parts, “medializing” functions by deriving a function basis from the medial 
kernel, and reconstruction-by-parts.

5.3.1 Volume-Aware Segmentation

For large time scales, the diffusion distances of the medial kernel serve to associate 
similarity to points which contain smoothly varying volumetric emptiness. Based on this 

observation, we can easily perform point cloud segmentation using the medial kernel, where 

points are segmented into clusters occupying similar volumes.

We achieve this segmentation by performing k-means on the diffusion maps, defined 
by Equation 5.8. We normalize the coordinates prior to clustering, similar to existing 

methods [Zelnik-Manor and Perona 2004; Solomon et al. 2011]. The resulting segmentation 

is not intended to be a semantic part decomposition, but rather a decomposition into simple 
and coherent volumetric parts. In particular, the main contribution is segmentation in the 

presence of missing data; see Figure 5.8 for an illustration. The segmentation properly 

clusters the palm into separate parts, separating it from the two fingers despite the fact 
that there exist no data underneath the fingers. In fact, the number of clusters has an 

intuitive interpretation in the context of medial kernels: we achieve an adaptive sampling 

of medial segments, producing more clusters for regions with smaller medial balls.

5.3.2 Medial Basis

In addition to constructing random walks, the medial kernel can also be used to define a 

basis from which to project functions onto, in a similar manner to Lipman et al. [2010]. In 
particular, powers of the matrix M  correspond to a family of such bases, where for a large 

t, M t serves to effectively reduce the numerical rank of M. Recall that the numerical rank 

of M t reflects the complexity of the shape’s medial axis. The linear subspace of functions
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Fig. 5.8. Segmentation results on a hand point cloud (left). Note that the knuckle of the 
ring finger is properly associated with the palm, despite the lack of data on the palm.

spanned by Mjt correspond to functions which are constant along medial balls. Hence, for 

an arbitrary function f , its projection onto M t serves to diffuse function values along medial 

balls, in the process “medializing” f .

More specifically, from the diagonalization of M  =  VEUT, suppose we have the set of 

right eigenvectors U =  [0 1 © 2 ••• ©k]. Powers of M  may be expressed as:

I  iAt© (5.10)

Then, the projection of f  onto M t is:

M 1 f  = X  I  i At < ©T, f i (5.11)

In considering useful functions to medialize, we observe that one should choose functions 

which are naturally invariant to the medial basis, yet are initially noisy. The union of 

balls [Miklos et al. 2010], or the set of interior medial balls, is thus a natural candidate. 
This provides us with a simple yet robust method for reconstruction, which we term the 

Diffusion of Union of Balls (DUB).

In our approximate scenario, we derive the initial set of balls from our construction of 

the kernel. For a given point pi, we define its initial ball [ci,ri] as:

Ci = E  j cij ̂ (p j, p j) 
E ?- ^(pi, p j)

ri = E j  rij<ft(pi, p j) 
E j  0 (p*, p j)

(5.12)
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Assuming that c and r refer to the set of ball centers and radii defined over the point set, 

respectively, then its diffusion over the medial basis is: cC =  M lc and r( =  M lr.

As long as there exists sufficient evidence of a volume, we find that DUB is quite effective 
at preserving the overall volume of the shape; see Figure 5.9 for an illustration. We note 

that this method is similar to VASE [Tagliasacchi et al. 2011], in that we both rely on 

smoothness in the volume to diffuse a medial representation. However, we define a diffusion 
operator on the point cloud, rather than an intermediate mesh representation.

5.3.3 Reconstruction by Parts
Although DUB is effective when the initial set of balls is noisy, if the basis is also 

noisy, then the diffusion can produce undesirable results due to the contamination of 

dissimilar balls. The mid-left image of Figure 5.10 depicts the situation, where false 

positives exist between the hand and the body of the dancer, causing a tunnel to appear 
in the reconstruction. However, this is precisely what our segmentation method resolves: 

the clustering of the point cloud into coherent volumetric parts. Hence, it is natural to 

combine the two methods, resulting in a surface reconstruction method which performs 
reconstruction-by-parts. See Figure 5.10 for an illustration.

We first segment the point cloud into volumetric components via k-means. The number 

of clusters should be large enough so that nearby parts are separated, yet not so big that 
there exists an insufficient number of points to represent a volume. For most shapes, this 

range is typically quite large, however, and for all results in this chapter, we found 20 — 30 

segments to be sufficient. We next pad each segment out with points belonging to other

t= 5 t= 10
Fig. 5.9. We apply DUB to the point cloud on the top-left for times t =  0, t = 5 , and t =  10. 
Note how despite the missing data, by projecting onto M, we are able to sufficiently smooth 
out the noise.
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Fig. 5.10. From the point cloud on the left, we first show the reconstruction through 
Diffusion of Union of Balls (DUB) on the entire point cloud, followed by projection (mid
left). Note the tunnel introduced due to false positives in our kernel. By segmenting 
the point cloud (mid-right) and then performing reconstruction-by-parts, we produce a 
topologically accurate reconstruction (right).

segments which are close in terms of our medial-factored distances. We achieve this by 

performing a k-nearest neighbors query with respect to the diffusion map across all of the 

points in a segment, adding points which belong to different segments. We choose k =  25 in 

our implementation, which we have found to provide for sufficient overlap between segments.
We then apply DUB to each segment, to obtain a collection of union of balls. Our 

volumetric segmentation ensures that each DUB-reconstructed segment encompasses a 

proper volume of the shape, where we found time scale t =  4 to provide for a smooth 

yet geometrically faithful representation for each segment. We then take the union of the 

union of balls as our reconstructed mesh. Namely, we treat all of the union of balls as an 

implicit surface and isosurface to obtain the reconstructed mesh. Since we are padding each 

segment with points in nearby segments (with respect to medial-factored distances), there 

exists sufficient overlap between individual reconstructions to form a single component.
The resulting mesh is slightly shrunken due to the diffusion process. We obtain the final 

reconstruction by interleaving MLS projection (via Algebraic Point Set Surfaces [Guen- 

nebaud and Gross 2007]) and least squares meshes [Sorkine et al. 2005], applied to the 

vertices of the mesh, in a similar manner to Sharf et al. [2006]. Namely, in the first step, 

we use APSS to project the mesh vertices onto the point cloud. Only vertices already close
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to the point cloud are projected, where mesh vertices in regions of missing data remain in 

place. We depart from Sharf et al. [2006] by restricting the projection step to the individual 

clusters, in order to prevent projection issues associated with undersampling of the point 
cloud. More specifically, since each mesh vertex originated from a specific segment, we 

can associate that vertex to a point cloud segment. In gathering an epsilon ball for the 

projection step, we only use those points which belong to the segment. This has two 

benefits: it prevents points from drifting to other regions, and it allows us to use a rather 
large epsilon ball in the projection, hence rendering our method robust to highly nonuniform 

sampling.
In the second step, we then minimize an energy over the mesh which simultaneously 

satisfies smoothness via a Bi-Laplacian term, and a data term with respect to the original 

mesh. Weights favoring smoothness are given to points which are far from the point cloud. 

We alternate these two steps until convergence, where we found 5 iterations to be sufficient 
in our experiments.

5.4 Results
We compare our approach to kernel methods regarding distances and segmentation, as 

well as to reconstruction methods. Most point clouds used in our experiments have been 

acquired either through NextEngine or Kreon scanners, and consequently downsampled 
through farthest point sampling. No data smoothing is employed in the downsampling; we 
use the original points and normals.

5.4.1 Kernel Methods
We first compare the diffusion distances of our medial kernel to a more standard kernel, 

namely the feature-preserving kernel of Oztireli et al. [2 0 1 0 ] which approximates the heat 

kernel for point clouds. Note that the heat kernel is well-known to be robust to missing data 
and topological shortcuts, as demonstrated for segmentation of surface meshes in De Goes 

et al. [2008]. For point clouds, the approach of (Oztireli et al. [2010] constructs the kernel 

as:
_ /  IP i - P j  I ) 2 _  ( |ni - n j  I )2

k(pi, p j) =  e 1 1 1 ; (5.13)

Originally used for its short-time behavior, we consider its long-time behavior in diffusion 

distances. We set ap to 0.02 of the bounding box diagonal, and an to 0.5, a small bandwidth 

which heavily penalizes normal differences [Oztireli et al. 2 0 1 0 ].
See Figure 5.11 for a comparison between distances. The Mannequin model highlights 

the issues with thin sheets, where although both methods contain false positives, our method
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Fig. 5.11. A comparison of distances between our kernel (MK) and the kernel of Oztireli 
et al. [2010] (HK), both under large-time diffusion distances. Note that the kernel of (Oztireli 
et al. [2010] can leak into other parts of the shape (left) while not adequately covering distant 
sheets (right). Our method properly handles both cases.

succesfully filters them out since the connectedness induced by medial balls is stronger. 

The Bumpy Sphere model highlights the opposite issue: points which are outside of the 

bandwidths of ap and an are never connected; hence, the kernel of Oztireli et al. [2010] 

retains the boundary components. Our method identifies the presence of a medial ball 

connecting the three disparate sheets. Figure 5.12 shows how this type of identification 

results in a volumetric segmentation, whereas k-means applied to Oztireli et al. [2010] 

keeps these parts separate.

5.4.2 Comparison to Killing Vector Fields
Our method bears resemblance to the recent work on mesh segmentation via killing 

vector fields (KVFs) [Solomon et al. 2011]. A KVF defines an isometric self-mapping, 
where Solomon et al. [2011] show how the eigenfunctions of a suitable KVF energy can be

Fig. 5.12. K-means segmentation applied to our method (MK) and the kernel of Oztireli 
et al. [2010] (HK). Note how our segmentation captures the body of the wolf, despite the 
large missing data.
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used to localize self-isometries for segmentation. For large time scales, our method begins 

to resemble local self-isometries, as the medial ball itself can be looked upon as a local 

transformation. Indeed, our segmentation approach of clustering (weighted) eigenvectors of 

a point cloud operator mirrors Solomon et al. [2011], and as Figure 5.13 shows, we obtain 
nearly identical segmentations for the given model. It would be interesting future work to 

extend Solomon et al. [2011] to the case of incomplete point clouds via our method.

5.4.3 Surface Reconstruction
We have run our reconstruction algorithm on a set of challenging acquired data, con

taining missing data and thin surface sheets. In these scenarios, an explicit segmentation 
of these regions substantially simplifies reconstruction. We show that our distances provide 

for a robust means of achieving this segmentation and generating a faithful reconstruction.

See Figure 5.14 for a comparison of our method with that of Fourier surface reconstruc

tion [Kazhdan 2005], adaptive RBFs [Ohtake et al. 2005b], and smoothed MPU [Nagai et al. 

2009]. One potential issue with these methods is that they employ function fitting [Ohtake 

et al. 2005b; Nagai et al. 2009] or variational reconstruction [Kazhdan 2005] independent 

of the structure of the point cloud. Hence, for thin sheets with missing data, there are no 

constraints on the surface produced. By segmenting the point cloud via the medial kernel, 

we avoid issues related to missing data and undersampling. Table 5.1 shows the genus 

of the resulting reconstructions. As shown, our method is able to preserve the topology 

of the scanned objects, whereas the other methods demonstrate highly variable behavior. 

Such erroneous tunnels can be quite detrimental to further processing of the reconstructed 
objects.

Our method is also robust to the number of segments used for reconstruction. See 
Figure 5.15 for an illustration of the hand point cloud reconstructed under different numbers

Fig. 5.13. Comparison of our method to killing vector field segmentation [Solomon et al. 
2011]. Note that our method produces competitive results.
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Fig. 5.14. Comparison of surface reconstruction. We first show our reconstruction by way of 
segmentation, and then a comparison of our method to FFT [Kazhdan 2005], CRBF [Ohtake 
et al. 2005b], and SPU [Nagai et al. 2009]. Since our method explicitly segments parts of the 
point cloud, we avoid issues related to missing data and thin surface sheets, where previous 
methods contain difficulties.

Table 5.1. A comparison of the genus for the reconstruction algorithms and our method.

Alg Hand Mannequin Batter
MK 0 0 2
FFT 2 6 1
CRBF 8 14 2
SPU 1 9 2

of clusters. As shown, the reconstruction is largely unaffected by the different number of 

clusters.

5.5 Discussion and Limitations
Our medial kernel relies on sufficient evidence of a medial structure for success, so in 

this absence, our method will result in either isolated points or false positives. The former 

case does not pose much of a problem in the context of distances and segmentation, but 

for reconstruction, it may be difficult to construct an initial set of union-of-balls. In the
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Fig. 5.15. From the point cloud on the left, we show segmentations of different cluster sizes, 
and the reconstructions. Note the insensitivity to the number of clusters.

latter case, false positives typically occur when neighboring parts have insufficient data to 
penalize candidate balls between the parts.

Our kernel construction requires oriented normals, where although it is quite robust to 

normal directions (see Figure 5.6), it is somewhat sensitive to inverted orientation. Our 
approach can tolerate a small amount of inverted orientation, but for large and continuous 

regions of inverted normals, we begin to interpret exterior medial balls as being interior.

Perhaps the biggest drawback to our approach is its computational complexity. To 
construct our measure of emptiness, we must consider, for every pair of points, the entire 

point set. Hence, in the worst case, the complexity is cubic in the number of points. However 
in practice, our acceleration scheme typically provides an order of magnitude improvement. 

Figure 5.16 shows computational timings as a function of point cloud size, and as shown, the 

kernel construction is generally quadratic. We find that our acceleration scheme is slowest 

when dealing with spherical parts of a shape, since for these points, the kernel measure is 
high and so we must sum over all other points on the part to obtain an accurate measure. 

This is the cause of the Batter model being so time consuming, due to the head part. 

However, a voting scheme analogous to Lipman et al. [2010] should considerably speed this 

up.

5.6 Summary
We have presented a method for constructing distances directly on point clouds which 

are insensitive to missing data. Our key insight is the connection between the medial 
axis and the inherent rank-deficiency of the correspondence matrix which associates points 

belonging to common medial balls. Even if there exists false positives and false negatives in
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Kernel Construction Timings

Number Of Points

Fig. 5.16. Timings for kernel construction on the shapes used in Figure 5.14, as a function 
of point cloud size.

the medial kernel, the connectedness induced by the low-rank structure renders our distance 

construction highly robust to incomplete point clouds.

We have demonstrated how the distances can be used for a number of applications, 
ranging from segmentation, the construction of function bases, and surface reconstruction. 

In particular, we have demonstrated these applications when point clouds simultaneously 

contain large gaps of missing data and nearby surface sheets. In these cases, it is quite 
difficult to construct a notion of sampling density -  indeed, our distance construction never 
makes use of local neighborhoods such as an epsilon ball or k-nearest neighbors. This is in 

part why our method is highly robust to missing data.



CHAPTER 6

MEDIAL DIFFUSION

In the previous chapter, we illustrated how to use the medial kernel for the purposes 

of surface reconstruction, and its robustness to missing data. For shapes containing sub

stantial missing data, however, reconstruction may simply be too impractical, as additional 
information may be necessary. Indeed for certain tasks, reconstruction may not even be 

necessary, where the information inherent in the medial kernel may be sufficient.
In this chapter, we consider the problem of matching incomplete shapes which are 

undergoing a nonrigid deformation. The problem amounts to finding correspondences 

between shapes which adhere to the underlying nonrigid deformation. Nonrigid motion 
is fairly common in dynamic data capture scenarios, such as human and animal movement.

Although matching well-sampled shapes under nonrigid motion has been fairly well- 

studied [Lipman and Funkhouser 2009; Ovsjanikov et al. 2010; Tevs et al. 2011], for un

dersampled shapes, this is a highly nontrivial problem. For acquired point clouds, it is 
necessary to construct quantities which are invariant to the motion and insensitive to the 

lack of data for successfully matching shapes. As we have previously shown, the medial 

kernel is insensitive to missing data, as the medial axis is a useful shape prior. Moreover, 

previous work has shown [Zhang et al. 2005] that the medial axis is also invariant to pose. 
In fact, the work of Zheng et al. [2010] used the method of Tagliasacchi et al. [2009] to 

match a set of compact graph skeletons.

Our approach departs from Zheng et al. [2010] and the usage of such compact repre
sentations by instead embracing the full point cloud, in conjunction with the medial axis 

prior, for shape matching. Inspired by heat kernel matching [Ovsjanikov et al. 2010], we 

introduce medial diffusion for matching shapes, where matching amounts to finding points 

which belong to similar medial regions; see Figure 6.1. We seek correspondences between 
medial regions for such challenging point clouds, as there may exist a relatively small amount 

of surface correspondences due to missing data, where for the left shapes in Figure 6.1, this 

is due to the two shapes being scanned from opposing views.
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Fig. 6.1. Our approach is able to match shapes undergoing nonrigid motion which contain 
significant missing data. Here, we show the landmark correspondences automatically found 
by our algorithm, and the extrapolated dense mapping, color-mapped by the left shape’s 
medial embedding.

Our main contribution is the construction of a Laplace operator defined with respect to 

the medial axis, for which its resulting heat kernel is suitable for shape matching. Key to 

our construction is that we define the operator directly on the point cloud, via the medial 
kernel. This direct construction has a number of advantages:

-  Our diffusion more faithfully represents the shape compared to curve skeleton meth
ods, as these are inherently lossy representations -  for instance, we can capture medial 

sheets.

-  The diffusion process is sensitive to the geometry of the surface compared to skeletal 
representations -  for example, cylindrical regions of different radii exhibit distinct 

behavior.

-  By working directly on the point cloud, we can easily combine other diffusion pro

cesses.

From medial diffusion, we introduce a practical algorithm for finding landmark points 

between shapes, and subsequently extrapolating the landmarks to a dense correspondence 

of medial regions. Our approach also easily extends to detecting intrinsic symmetries, or 
nonrigid self-transformations. We show how our method is tolerant to missing data, and 
improves on standard heat kernel matching of incomplete shapes.
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6.1 Medial Diffusion
Our approach to constructing a diffusion process with respect to the medial axis of a 

shape is determined via a Laplace operator. We first discuss such a Laplace operator on a 
smooth surface, which we term the Medial Laplacian. We then detail its discretization on 

a point cloud, and lastly the diffusion process itself.

6.1.1 Medial Laplacian
Consider an open set O embedded in R3 whose boundary is the surface S . Every point 

x 2 O is associated with a set of points in S which are at a smallest distance to x. We 

denote this set by r(x ). The set of points x  2 O for which |r(x)| > 2 comprises the medial 

axis of O, which we denote by M .

The medial axis is a very descriptive object, as it carries the homotopy information of 

O. However, it is a rather difficult object to utilize, as it is composed of a set of adjoining 

sheets and curves. To define a Laplace operator directly on the medial axis, one option is to 

construct it piecewise for each sheet and curve, and handle special cases at junctions. One 
issue with proceeding in this way is that we lose information with respect to the geometry of 

S, for instance, spherical parts of varying radii are treated equally, as are cylindrical parts 
of different radii.

To better capture the surface, we use r  as a density measure. As |r| is nonsmooth over 

M , denote |T| as its smoothed variant, defined as:

|r(x)| =  f  exp ( -  d(Z’ IIx(z))) dz (6.1)
Js o

where n x(z) =  min d(y,z), or the smallest geodesic distance d between the set r (x ) and yer(x)
z. We follow the approach of Belkin and Niyogi [2005] to define a functional approximation 
to the Laplacian, in effect using a local Gaussian as an approximation. For a given function 

f  defined on S, we define the Medial Laplacian A M over M  as:

A m /(p ) =  f(p ) /  a(p, q)|r(q)| dq -  I  f  (q)a(p, q)|r(q)| dq (6.2)
M M

where a(p, q) is a Gaussian parameterized by a sufficiently small time scale h:

|p-q| 2
a(p, q) =  e h (6.3)

We note that this is in fact a weighted Laplacian [Belkin and Niyogi 2005], where |T| 

is used to weight regions of the medial axis in which the number of closest points varies. 

Hence, it is now sensitive to the surface area of S. Note that we can also approximate AM
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as an integral over S itself. If we denote for a given point x 2 S its corresponding point on 

the medial axis by x , then we define the Medial Laplacian A s over S as:

A s f  (p) =  f  (p) /  a (p ,q )d q  — f  f  (q )a (p ,q )d q  (6.4)
JS JS

Note that the density measure |r| is implicitly included in the integration over S, since 

|r(x)| is the smoothed surface area over all points r (x ).
The Medial Laplacian is invariant to deformations on S which isometrically preserve its 

medial axis, while also preserving each point’s ball radius. As demonstrated in previous 

work [Zhang et al. 2005; Zheng et al. 2010], this property is often satisfied in real-world de
formations, such as varying human pose. However, it is a smaller space of deformations than 
isometric deformations of S permit, whereas if we denote the Laplace-Beltrami operator of 

S by LS, it is well-known that LS is invariant to the space of all isometric deformations [Sun 

et al. 2009]. For instance, consider taking a sphere and as-isometrically-as-possible squash

ing it -  the medial axes of these two shapes will clearly be very different. Nonetheless, in 
the presence of missing data, LS can be very far from the Laplace-Beltrami operator of the 

true shape, where as we will show, A s remains tolerant to missing data.

6.1.2 Point Cloud Medial Laplacian

We now illustrate our approach for discretizing the Medial Laplacian on a point cloud. 

Consider a point cloud P  =  (p i, p 2 , p n} accompanied with normals N =  (n i, n 2 , n n}. 
Normals are either directly taken from the acquisition process, or if not available, then 
estimated via PCA and oriented with a minimum spanning tree approach.

One option for discretizing the Medial Laplacian is to consider its form defined directly 

on the medial axis -  A m. Yet as previously discussed, there exists numerous approaches for 

estimating the medial axis, and in the presence of missing data, each approach has various 
strengths and drawbacks; hence, it is unclear which to choose. Moreover, given a medial 

representation, it is highly nontrivial to estimate each point’s density |r|.

Hence, we discretize A s instead, for two main reasons. First, we do not need to define 

r , as it is implicitly included in the integration. Secondly, we may interpret the distance 
between points on the medial axis, |p — q|, as the dissimilarity in medial regions between p 

and q. Hence, it is not necessary to explicitly measure this distance, but rather construct 

the likelihood of two points belonging to a common medial ball -  our so-called medial kernel 

0 , developed in the previous chapter.
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Recall that the medial kernel may be broken down into dissimilarity with respect to the 
emptiness of a candidate ball and tangential agreement:

(p^ p j)
(  Y(Pi>P j  ) ^ 2 (  T (Pi>Pj  ) Nj 2

(6.5)

where y is the emptiness measure and r is the tangential measure.

The measure of 0 serves as an approximation to a; see Figure 6.2 for an illustration. 

The parameters of ae and at are analogous to the time scale h, where by increasing ae and 
CTt, we begin to associate points whose corresponding medial axis points are further away. 

We have found ae =  5 and at =  0.7 to be suitable values, which we used for all results in 

this chapter.
To discretize A S into the point cloud Medial Laplacian A P, we replace a with 0 and 

follow the integral estimation approach of Belkin et al. [2009]:

(6 .6 )a p f  (p) =  f  (p ) E  0 (p>q)| ?  q| -  £  f  (q) 0 (p> q)| ?  q!
^  p

where | ?  q| denotes the dual surface area which q occupies.
Crucial to an accurate discretization is an accurate estimation of the dual area at every 

point. The approach of Belkin et al. [2009] defines the dual area at a point as the area formed 

by its local Delaunay triangulation. In the presence of missing data, this will effectively 

lead to the preservation of the inferred boundary components. We depart from Belkin 

et al. [2009] and derive a more nonlocal method, based on our candidate ball centers. The 
basic idea is to find a neighborhood of points which belong to a similar medial region, and 

construct a triangulation from these points in the spirit of Belkin et al. [2009], from which 

the dual area follows; see Figure 6.3 for an illustration of the method.

Fig. 6.2. On the left, we depict the distance between medial points a to define the Medial 
Laplacian A s , while on the right, we show medial similarity 0, as an approximation to a. 
Note that 0 does not require those points’ corresponding medial axis points.

ue e
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Fig. 6.3. An illustration of dual area estimation for a point p: first we gather points which 
belong to a similar medial neighborhood, take these points’ convex hull, and use the triangles 
incident to p to estimate its dual area.

For each point Pi 2 P , we estimate its corresponding medial axis point p i by taking a 

weighted average of its candidate ball centers:

E j c ij ̂ (pi, P j)
p i =

E ,  0 (Pi, P j)
(6.7)

We may similarly estimate its medial ball radius:

E j  Tij 0 (Pi, P j) 
E j  0 (p i , P j)

Ti = (6 .8 )

We then gather all other points Pj whose estimated medial axis points pj are within a small

e:

Bi =  {Pj 2 P  | |pi -  Pj | < e} (6.9)

where e is fixed at 1.5 times the average sampling density of P . Intuitively, Bi consists of 

points who belong to a similar medial region of Pi.

Next, we take the convex hull of Bi, and extract the set of triangles incident to Pi. For 

concave regions, Pi may not reside on the convex hull; in such situations, we project all of 
the points to the ball formed by (pi ,Ti), and then take its convex hull’s triangles incident 

to Pi. The dual area | ?  Pi | follows as one-third of the area of all incident triangles.

6 .1.3 M ed ia l D iffusion

We may now construct a diffusion process from the Medial Laplacian A s . The diffusion 

process is governed by the heat equation for a given function f  defined over S :

@f (x,t) 
dt

-  A s f  (x,t) =  0 (6 .1 0 )

We may then define the operator Mt =  etAs, where Mtf  satisfies the heat equation for all 

t. Note that Mtf  has the effect of diffusing f  along the medial axis.
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We can now associate a function mt(x, y) with Mt such that the following is satisfied:

Intuitively, for two points x and y, mt measures the amount of heat which has diffused 

between the two points in time t, where heat diffusion is restricted over the medial axis; 

hence, we term this medial diffusion.

For a point cloud P , we approximate mt through A P, using the fact that mt can be 
computed from the eigendecomposition of A P, with A P 'I'j =  — A j :

Analogous to the heat kernel associated with the Laplace-Beltrami operator [Sun 

et al. 2009], mt inherits the properties of its defining Laplacian A p . For example, given 

a point x, if y 2 r (x ), then mt(x, y) will be large for any time t -  heat will immediately 

diffuse between the points. For regions containing varying ball radii, the medial diffusion 
will be sensitive to the surface area; see Figure 6.4 for an illustration. We see that for large 

cylindrical regions, the larger surface area results in fast heat dissipation; hence, mt will be 

low, whereas for smaller regions, mt will be larger.

More importantly, the diffusion is tolerant to missing data. Note that our association 

measure 0 captures nonlocal relationships. For regions of missing data where at least two 
points indicate a medial structure, heat will diffuse in a nonlocal manner. Combined with 

A P’s insensitivity to nonrigid deformations, mt is a useful measure for identifying similar 

medial regions in incomplete shapes. In Figure 6.5, we illustrate mt(x, x) as a signature 
over a set of time scales t, similar to Sun et al. [2009]. Note that we are able to identify 
medial regions which are invariant to the pose.

Returning to our area estimation scheme, we find that dual areas can be somewhat noisy 
in regions which violate the medial axis prior. However, for our purposes, noisy areas are 

not too problematic, as we can claim the perturbation results of Sun et al. [2009]. Namely, 

we can write Ap as Ap =  D -1 W , where W is the symmetric weight matrix and D is the 

diagonal matrix containing area weights. Now, suppose that A P =  (D +  F )-1 (W +  E ), 
where E and F are the noise weight and area matrices, respectively, with ||E|| < e and 
||F|| < a under a suitable matrix norm ||-||. Denoting Mt as the heat operator of A p , then

Intuitively, this means that the association measure between points, captured in W, has 
a larger impact on error than the area weights D. In our experiments, we have found that

(6 .1 1 )

(6 .1 2 )

||Mt — Mt|| =  O (^ a  +  e).
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Fig. 6.4. We illustrate the behavior of medial diffusion on the shape at the top, whose 
corresponding medial diffusion is plotted over time. Note that the diffusion is sensitive to 
the volume formed by the medial balls, where at a heat diffuses faster than x; hence, it has 
a lower medial diffusion.

even if the estimated total surface areas between shapes are off by 10% -  15%, this has a 
negligible impact on our shape matching approach.

6.1.4 Combining Laplacians
An issue with medial diffusion is its behavior in regions of negative curvature, where 

the heat will diffuse very slowly, due to the large change in distance between medial axis 

points, as a function of small change in distance over the surface. This has an impact 

on nonrigid motion which results in significant volume change, such as regions containing 

negative curvature become zero or positive curvature. To address this, we can easily combine 
the standard Gaussian weight a with the medial similarity weight 0, so that the diffusion is 

less sensitive to negative curvature regions. Combining Laplace weights is common in the
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Fig. 6.5. We illustrate medial diffusion as a shape signature, similar to Sun et al. [2009], 
where we depict the intrinsic symmetry of the shoulders. Note the lack of data on the 
lower-right shoulder, whereas the lower-left shoulder contains data, yet is still recognized as 
having a similar signature.

spectral clustering literature, where in our situation, one may view the intrinsic geometry 

and the medial axis as multiple views of the same data [Zhou and Burges 2007].

To combine Laplacians, we adapt the approach of Zhou and Burges [2007]. As 0 and a  

have widely varying densities, they must be suitably normalized prior to being combined. 

To this end, consider the weighted summations for 0 and a:

(U (pi ) = ^ 2 1 ? p j i0 (pi, p j) d«(pi) =  ^ 1 ? p j ia (pi, p j) (6.13)
j=i j=i

For a given interpolation factor v, we then combine the weights as [Belkin and Niyogi 2005]:

f X XI x 0 (pi> p j) a (pi> p j) / « 1/A^ (pi, p j) =  (1 -  V) ,  ^ F +  V ,  ^  (6.14)
V “^(pi)d^(pj) V “a(pi)da(pj)

We then replace 0 in the definition of Ap with a.

We have used a value of v =  0.5 for all of our experiments. Using this setting, we find

that in most regions the medial similarity term 0 tends to dominate, and only in negative

curvature regions a  has an impact in the diffusion. See Figure 6.6 for an illustration of

combining these weights, showing how a  provides a boost in regions of negative curvature.

6.2 Shape Matching
We now describe our approach in using mt for matching shapes. We have adapted 

the approach of Ovsjanikov et al. [2010], which uses the observation that, given a single 

landmark correspondence, kt can be used to infer all remaining correspondences. We apply 

this same methodology to m t by finding a small set of landmark correspondences, and using 

them to extrapolate a dense matching of medial regions. We depart from Ovsjanikov et al.
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Fig. 6.6. We illustrate the effect of combining the surface-based diffusion process a  with 
medial-based diffusion 0. For r  =  0, or strictly using 0, we see that heat diffusion slows 
down in the region of the neck, where curvature is negative. By combining with a  for 
r  =  0.5, heat diffusion becomes less sensitive to the negative curvature.

[2010] in how we find candidate correspondence points, and how P  is sampled in order to 

evaluate the error of a potential matching. These modifications are necessary to handle 

point clouds containing missing data.

Given two point clouds to be matched, P  and Q, we first uniformly subsample each 

with respect to the medial axis. We follow the approach of Berger and Silva [2012a] by 

performing spectral clustering in the space of the diffusion maps formed by AP ,and Aq ,
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where we denote the resulting subsets as SP and Sq . We found 700 points to be a sufficiently 

fine medial representation. This results in a set of points whose corresponding medial regions 

are uniformly spaced.

We then choose a point p i 2 S P at random, and for all points in S q , we choose the 

q i 2 S q whose medial diffusion best matches p i over all points and time scales:

qi =  a rg m in V  min |mp (pi, p) -  mQ(qi, q)| (6.15)
p tSpq2SQ

where mp (p, q) represents P ’s medial diffusion over all times, similarly for Q. To realize 

this, we follow Sun et al. [2009] and logarithmically sample m over a discrete set of times, 

where we found 25 time scales to be sufficient, and each entry of mt (p, q) is divided by the 

heat trace at t. We may then embed mp (p, q) in a high dimensional space, and efficiently 

find qi’s minimum q 2 Sq through a kd-tree search, where we use the norm. To avoid 

searching all of Sq for the corresponding landmark, we only consider the top 5% qi 2 Sq 

whose signatures mt (qi, qi) are closest to mt (pi, p i). The found qi is unique up to the set 

of points which generate the medial axis point qi. This redundancy is in part why our 

approach is robust -  if the exact corresponding surface point is missing, we can instead 

assign a different point which generates the same medial axis point.

From this first landmark correspondence (pi, qi), we greedily find additional correspon

dences via the same procedure, restricting the newly found correspondences to be consist 

with the previous ones. This can easily be accomplished by appending the previously found 

landmark coordinates to the new ones, as in Ovsjanikov et al. [2010]. We find new landmarks 

in SP by performing a farthest-point sampling defined with respect to the diffusion map 

of A p . This has the effect of sampling landmark points in P  which are far apart in the 

medial axis. We denote by L  the set of landmark correspondences, where we found a total 

of 5 -  6 landmark correspondences to provide for sufficiently good results, corroborated by 

matching approaches [Zhang et al. 2008; Kim et al. 2011] for well-sampled shapes.

We then use the | L| landmarks to extrapolate a dense set of correspondences between 

medial regions. This is accomplished by finding, for each p 2 P , the point q 2 Q in which 

the medial diffusion is consistent across the respective landmarks, as well as the signature 

mt (x, x) [Ovsjanikov et al. 2010]:

L
q =  a rg m in V  |mp (pi, p) -  mQ(qi, q)| +  |mp (p, p) -  mQ(q, q)| (6.16)

q2Q i=i

The initial randomly chosen landmark from SP may be a rather nondescriptive feature with 

respect to S q , resulting in a poor matching. Hence, we repeat this process (10 times in



96

our experiments), and choose the matching which gives the lowest error in Equation 6.16, 

though a RANSAC-like approach [Tevs et al. 2009] could also be used.

6.3 Results
To evaluate our method, we have conducted two sets of experiments. First we measure 

the tolerance of our diffusion process to nonrigid motion and missing data. Secondly, we 

have run our matching algorithm across a set of shapes, and compared it with other similar 

shape matching methods.

We have used shapes in the SCAPE [Anguelov et al. 2005], TOSCA [Bronstein et al. 

2008], and multiview photometric stereo (MVPS) datasets [Vlasic et al. 2009] in our exper

iments. For the TOSCA and SCAPE datasets, we synthetically scan the shapes using the 

scanner of our benchmark, as detailed in Chapter 3.

Regarding computational complexity, the largest amount of time spent in our method 

is constructing AP . For point clouds ranging in size from 15,000-20,000, it typically takes 

5-9 minutes per shape to construct the Laplacian. Hence, for all point clouds used, we have 

subsampled them to within this range via farthest point sampling.

6.3.1 Tolerance to M issing D ata

We first evaluate the quality of our method under varying pose and missing data. One 

way of achieving this is to extract the medial axis of a shape, and measure the geodesic 

distance distortion along the medial axis. However, the medial axis is well-known to be 

rather unstable, and the specific medial axis simplification approach to take (see Chazal 

and Lieutier [2005] and Miklos et al. [2010]) is unclear.

Instead, we measure the error in mt , in order to observe the consistency across pose and 

missing data. We use the SCAPE dataset, as ground truth correspondences are known. 

For a given SCAPE mesh, we synthetically scan it over a constant set of viewpoints. We 

parameterize the peak threshold at which range is accepted based on the laser intensity, 

giving us a controllable yet realistic means of generating missing data. For a given well- 

sampled rest pose P , we measure the medial diffusion error on an input point cloud Q 

as:

E(P,Q ) =  TcW n X (  X  |mt (x>y) -  mt ( f (x ) ,/ ( y ))|2) 2 (6.17)
| || | t€T (x,y)ec

where C is a set of pairs of points uniformly sampled over Q, T  is the set of logarithmic 

time scales, and /  is the ground truth mapping function between Q and P.
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See Figure 6.7 for the results. As shown, m t remains quite stable as missing data are 

introduced, over varying pose. Only when large gaps of data begin to appear does the error 

in mt begin to increase. At these levels, the impact of the different poses becomes evident, 

as the rest pose contains the lowest error.

6.3.2 Intrinsic Sym m etries
The detection of intrinsic symmetries follows as a straightforward extension of the shape 

matching method -  rather than compare two shapes, we employ mt on the same point cloud.

0.02
0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 

scanner peak threshold

Fig. 6.7. We measure the error in medial diffusion mt across varying missing data and pose. 
We show the rest pose on the upper left, and on the upper right, a subset of the poses and 
point clouds on which the rest pose is measured against.
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Note that intrinsic symmetries in our situation refer to points along medial regions being 

invariant to a nonrigid self transformation. We visualize these correspondences by using 

the estimated medial ball centers pj.

See Figure 6.8 for results on several shapes. Note that the front left leg of the cat point 

cloud is a separated component from the body, yet due to our method’s nonlocal diffusion, 

we can still detect its symmetry with the front right leg.

6.3.3 Shape M atching

We now evaluate our matching approach across a set of shapes, compared with several 

approaches. To visualize the correspondences, for each point pj on the left shape, we assign 

it a color based on the position of its estimated medial ball center p j , and assign this same 

color to its corresponding point on the right shape.

Figure 6.9 shows our matching results on several shapes from the SCAPE dataset. As 

shown, our method is able to properly find landmark correspondences, and extrapolate a 

dense mapping between the shapes, despite the lack of data. In particular, note that the 

missing data are not consistent between the pairs of shapes as missing data occur in different 

regions. Our method is shown to remain highly tolerant to these imperfections.

Figure 6.10 shows matching results across several different animal categories. In the 

inset, we depict the similarities of the medial diffusion signature mt (x, x) across the two 

cat point clouds. Note that the head of the left cat is a separated component from the rest 

of the body, yet we are still able to associate similarity to the neck of the right cat, despite 

the neck noticeably absent on the left cat.

In Figure 6.11, we compare our method with the skeleton extraction approach of Tagliasac-

Fig. 6.8. We show detected intrinsic symmetries between medial regions for point clouds 
containing missing data.
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Fig. 6.9. Correspondence results on the SCAPE dataset. On the top left pair, note the 
absence of data on the left shape’s stomach -  we are able to infer that the back of the left 
shape and the stomach of the right shape share a medial region.

Fig. 6.10. Correspondence results across several different animal categories. In the inset, 
we depict the differences in the signature m t (x,x), color-mapped across the two shapes. 
Note the signature’s insensitivity to the lack of data.

chi et al. [2009] -  the skeleton graphs used in Zheng et al. [2010]. The compactness in 

the representation theoretically makes matching easier, yet as shown in the left shape, 

a node representing the head is absent, while an additional joint is introduced near the 

elbow, which makes matching rather ill-posed -  it is unclear which to keep and which to 

prune. Our method incurs no such drawback by instead operating on the entire point 

cloud. Furthermore, note our method’s ability to match medial sheets, shown across the
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Fig. 6.11. A comparison of our approach with skeletons extracted via Tagliasacchi et al. 
[2009]. Note the inconsistencies in the graph skeletons, which renders such matching rather 
ill-posed.

chest, where by construction this is lost in Tagliasacchi et al. [2009].

Last, we have compared our method to the heat kernel matching approach of Ovsjanikov 

et al. [2010]. As Ovsjanikov et al. [2010] was originally designed for meshes, we instead use 

our strategy for finding candidate landmark points. We use the color-mapped positions 

p  ̂ to visualize their correspondences. See Figure 6.12 for the results. As shown, the 

heat kernel matching approach faces difficulty in finding landmark points for the SCAPE 

point clouds; hence, the extrapolated correspondences are rather inaccurate. Our approach 

remains tolerant to the missing data. For the MVPS data, we see that Ovsjanikov et al. 

[2010] is able to properly find landmark correspondences for the “Abhijeet” sequence, yet 

the extrapolated correspondences are still imperfect. Our approach is able to properly 

match the right shoulder and head.

6.4 Discussion and Limitations
Although our method can handle a large range of incomplete shapes, it can perform 

poorly when the medial axis prior is not adequately satisfied. In particular, when the 

missing data are large relative to the size of the medial balls, then we may infer two separate 

connected components. In such situations, it is difficult to construct a shape prior which 

this resembles; hence, stronger priors such as templates may be necessary.

Our method is fairly robust to deformations resulting in small changes to volume, but 

significant volume change can be problematic. For instance, substantial folding of cloth or 

fluid motion can result in drastic, nonisometric changes to the medial axis. Constructing a 

measure which is tolerant to such deformations, as well as incomplete data, is a challenging 

and important area for future work.

As in most shape matching methods, our approach is vulnerable to symmetric flips. As
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medial diffusion heat kernel medial diffusion heat kernel

Fig. 6.12. A comparison of our method with Ovsjanikov et al. [2010]. Note how we are 
able to find landmarks and good-quality extrapolated correspondences, whereas significant 
differences in the intrinsic structures of the shapes can pose problems for Ovsjanikov et al. 
[2010].

shown in Ovsjanikov et al. [2011], symmetries in a shape pose a substantial challenge to any 

shape matching method, where there may exist multiple maps which contain equally low 

distortion. In our case, we suffer from confusing the symmetries in the medial axis, where 

Figure 6.13 shows how our method can choose the wrong correspondence due to the inherent 

bilateral symmetry. However, it should be possible to use either a deformation-driven 

approach [Zhang et al. 2008], or combining a collection of matches [Kim et al. 2011], in

Fig. 6.13. A case where our method gives the wrong correspondence due to intrinsic 
symmetries between the shapes.
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order to resolve this limitation.

6.5 Summary
In this chapter, we have presented a method for matching incomplete shapes undergoing 

nonrigid motion. Our main contribution is the construction of a diffusion process on the 

point cloud which measures heat diffusion along the medial axis. As the medial axis is 

a strong prior for missing data, we have shown how heat diffuses in a nonlocal manner, 

insensitive to both nonrigid motion and missing data, and how this may be used for matching 

incomplete shapes.



CHAPTER 7

MULTIRESOLUTION SURFACE 

REMESHING

In previous chapters, we have considered surface reconstruction, and how shape analysis 

may benefit the pursuit of geometrically and topologically accurate reconstruction. For 

certain applications, the quality of the triangles in the reconstructed surface mesh can be 

just as important as the faithfulness to the original surface. In particular, a hierarchy of 

good-quality meshes has a large range of applications; for instance, in multigrid approaches 

for solving PDEs, it is necessary for each mesh in the hierarchy to be of acceptable quality.

In this chapter, we introduce a novel method for multiresolution remeshing which is 

intrinsic to the surface. We propose a top-down, binary, hierarchical surface decomposition 

to generate well-formed surface patches at every scale. Namely, we utilize the first nontrivial 

eigenfunction of the Laplace-Beltrami operator to drive the decomposition. This has a 

natural analogue in the area of graph theory, a process known as spectral bisection [Biyikoglu 

et al. 2007], where a combinatorial or weighted Laplacian is used. The first nontrivial 

eigenvector used to drive the decomposition is known as the Fiedler vector. We adapt this 

notation to coin our structure the Fiedler tree.

By utilizing the Laplace-Beltrami operator instead of the combinatorial Laplacian, we 

obtain many nice properties: surface patches of uniform area, well-shaped surface patches, 

mesh-independence, and noise robustness, among others. Moreover, we are able to generate 

high-quality uniform meshes at multiple scales. Uniform in our case refers to uniform trian

gle areas and consistently good-quality in the resulting triangles, measured by the triangle 

radius ratio metric. As our approach is intrinsic to the surface, we completely avoid issues 

related to operating in the ambient space of the mesh, where existing approaches [Cheng 

et al. 2007; Yan et al. 2009] face difficulties.

Due to the properties of our construction, we argue that we have a well-defined notion 

of scale on the surface. This provides for a natural means of constructing wavelets on a 

surface, as scale is notoriously difficult to define on a sampled manifold [Kobbelt et al. 1998;
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Guskov et al. 1999]. As an application, we illustrate the construction of a Haar wavelet 

basis, and from this wavelet basis, a trivial means of producing feature-sensitive meshes.

Figure 7.1 illustrates such flexibility, showing from left to right three different resolutions 

for the model on the left. Two different representations are presented for each resolution 

level, illustrating the capability of generating high-quality uniform meshes (top) as well as 

adaptive meshes capturing surface features (bottom).

Our contributions are summarized as follows:

-  Quality Irregular Multiresolution: We are able to generate a hierarchy of quality 

meshes, a task difficult to achieve with respect to current remeshing and simplification 

schemes.

-  Embedding Independence: As our decomposition, and corresponding meshes, are com

pletely determined by the Laplace-Beltrami operator, our meshes are intrinsic to the 

surface.

-  Noise Robustness: Utilizing the Fiedler vector, we are able to produce quality trian

gulations even in the presence of high-frequency noise.

-  Multiscale Analysis: The binary hierarchy permits a multiscale analysis very similar to 

a Haar wavelet decomposition, making noise and feature identification quite natural.

Fig. 7.1. Overview of our Fiedler tree approach. From the original egea model on the left, 
we are able to generate quality uniform meshes at different scales (top row). Due to the 
hierarchical nature, feature-sensitive meshes are also easily generated (bottom row)



105

7.1 Fiedler Binary Tree Decomposition
The proposed framework relies on a binary hierarchical structure to carry out the 

multiscale decomposition. Once the hierarchical structure is established, a CW complex 

is constructed from which a triangulation can be built. Details on how to accomplish the 

tree construction follows in this section, while triangulation is handled in Section 7.2.

7.1.1 Tree Construction
In order to construct a binary decomposition of the surface mesh, we require a mechanism 

to recursively split the mesh in two parts. Partitioning a surface into two surface patches 

amounts to finding a cut along the surface, or equivalently, finding a series of curves which 

splits the surface into two connected components. We utilize the nodal regions of the 

Laplace-Beltrami eigenfunctions to make these splits. Namely, we use the first nontrivial 

eigenfunction of the Laplace-Beltrami operator, which in graph theory circles is commonly 

referred to as the Fiedler vector, when considering the more general Laplacian. Splitting 

along the zero-set of the Fiedler vector ensures a split of the surface into exactly two 

connected components from the Courant Nodal Domain theorem [Gebal et al. 2009], hence 

ensuring a binary decomposition.

To this end, we employ the discrete Laplace-Beltrami operator of Vallet and Levy [2008], 

utilizing dual barycenter areas. In the computation of the Fiedler vector we also use the 

method of Vallet and Levy [2008] in performing a spectral shift, in order to ensure a faster 

convergence in eigenvector computations.

Once we have computed the Fiedler vector on the original surface, we isocontour the 

zero set, assuming linear interpolation, to split the mesh in two patches. From the two 

newly created surface patches, we simply recurse this process until a user-defined level of 

the tree is met. See Figure 7.2 for an illustration.

Note that we exactly isocontour the surface, rather than respect the original connectivity 

of the surface. By exactly cutting along the zero set, we are not inhibited by highly irregular 

meshes where portions of the surface may have large triangles, and others may have small 

triangles. Therefore, we are able to keep the notion of scale on a surface mesh independent.

For numerical robustness, we take care of instances where the Fiedler vector contains 

values approximately zero. If the value of the Fiedler vector in a vertex is very close 

to zero, then the resulting submesh may contain very poor triangles, for instance skinny 

triangles, posing numerical instability issues for the eigenvector computations. We assign 

these vertices a small random value, within a range that will render the submesh numerically 

stable.
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Fig. 7.2. Binary mesh decomposition: each patch (tree node) is recursively split on the 
Fiedler nodal line.

When splitting the mesh, every triangle along the nodal line is split into three separate 

triangles, where two triangles will be assigned to one of the submeshes, and the other triangle 

to the other submesh. This results in a significant amount of triangles being created at finer 

scales, though we suspect that symbolically cutting triangles similar to Yan et al. [2009] is 

a viable alternative and would save much memory.

7.1.2 Fiedler Tree Properties
By splitting along the Fiedler vector, we inherit several attractive properties in our 

decomposition. The Fiedler vector is known to be a good approximation to the normalized 

min-cut [Shi and Malik 2000] in the segmentation literature. For the decomposition of a 

surface Q into Q =  Qi_ U Q2, we recall the cut energy as:

at u n  n \  cut(Qi , Q2) . cut(Qi, Q2) ^  ,N c u t(Q 1, Q2) = ------- (7.1)assoc(Q1, Q) assoc(Q2, Q)

where assoc is a measure of similarity between two domains, and cut measures the dissim

ilarity in the boundary between Qi and Q2.
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In contrast to segmentation approaches, our measure of similarity is entirely uniform, in 

that by using the Laplace-Beltrami operator, we are only considering the intrinsic geometry 

for the purposes of segmentation. Thus, if we denote £ =  Q1 n Q2 as the nodal set, we in 

fact have:

Ncut(Qi, Q2) =  +  (7.2)
s(S2i) - ( ^ 2)

where I represents the length of a curve, and - represents surface area. Thus, in our case, 

the Fiedler vector approximates the minimization of the ratio of nodal set length to surface 

area [Szlam et al. 2005]. As a result, for every split, we are likely to obtain surface patches 

which are of similar surface area, while the split itself is of small length, and typically 

of small Gaussian curvature magnitude on the boundary. We argue that both of these 

properties give rise to a well-defined notion of scale in the decomposition.
Our tree construction is also mesh-independent. That is, for a given surface meshed in 

two different ways, our construction will produce identical decompositions. Seeing as the 

Laplace-Beltrami operator is isometry-invariant, this should come as no surprise. Only at 

very fine scales does the decomposition begin to differ, due to using linear interpolation in 

making the cuts. Figure 7.3 illustrates the mesh-independent property, showing patches in 

three different levels of the hierarchy. Notice that patches are practically indentical in the 

top and botton rows, even though the construction is performed with respect to completely 

different meshings (the left-most models).

Last, it has been illustrated in previous works [Levy 2006; Gebal et al. 2009] that the 

Fiedler vector, in some sense, follows the “shape” of the surface. For the purposes of our 

construction, we find that for tubular and anisotropic surface patches, the zero set of the 

Fiedler vector consistently aligns with the maximum principal curvature directions. In other 

words, the cut tends to be along the minimum axis of the surface, and as a consequence, 

effectively removes the anisotropy of the surface. See Figure 7.4 for an illustration.

7.2 Triangle Mesh Generation
Producing a triangulation from the tree construction involves topological and geometric 

considerations. We handle both in turn.

7.2.1 Topological C onstruction
At the end of the tree construction process, we are left with a set of surface patches at 

all scales. At some scale, each surface patch will become homeomorphic to a topological 

disk. At this scale, we have in fact constructed a cell complex, or CW-complex. For the 

space of a 2-manifold, a CW-complex consists of a set of 0, 1, and 2-cells, where an n-cell
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O

(a) Original meshes (b) Patches in depths 4, 5, and 6

Fig. 7.3. Intrinsic nature of the hierarchical decomposition. Almost identical decompositions 
are generated from meshes with varying refinement.

Fig. 7.4. Our decomposition tends to split along the minimum axis, and consequently along 
maximum principal curvatures, as illustrated for an ellipsoid.

is homeomorphic to an n-ball, and the boundary of an n-cell strictly consists of cells of 

dimension m < n [Munkres 1993]. In our context, 2-cells are the surface patches, 1-cells are 

arcs on the boundary of the patches whose ends are the 0-cells, or vertices.

The significance of the CW-complex for our purposes lies in the fact that, under certain 

circumstances, its dual complex is a valid triangulation. The dual complex of the CW- 

complex takes every n-cell and maps it to a unique (2 — n)-cell, such that every 2-cell 

becomes a point, every 1-cell becomes an edge, and a 0-cell becomes a facet. Each 0-cell 

will map to a triangle if and only if the number of 1-cells which intersect to form the 0-cell 

is exactly three. As our tree construction always cuts every edge the zero set crosses, open 

zero sets along the surface will always start/end at unique points, and consequently, we are 

always guaranteed triangle elements.

The only remaining issue is whether or not the dual complex is indeed a valid triangu

lation. There are three cases where zero set cuts will result in invalid triangulations, which 

correspond with violations of the closed ball property [Edelsbrunner and Shah 1997]:

-  The zero set is closed.

-  The zero set consists of multiple connected components.
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-  The zero set starts and ends at the same 1-cell.

The first case results in a dangling edge, the second case results in a degenerate triangle, and 

the third case results in the creation of duplicate triangles. Hierarchical space partitioning 

approaches [Schaefer and Warren 2003; Boubekeur et al. 2006] suffer from similar problems; 

however, since we are partioning the surface directly, we may trivially detect these cases. 

We find that the first two cases only occur in coarse levels of the tree, as when we approach 

finer levels, the 2-cells begin to resemble developable, convex, topological disks, for which 

the zero set is known to be open and of a single component [Melas 1992]. The third case, 

however, may still occur at any level, although in practice, it is rare to occur at finer levels 

of the tree. In all examples in this chapter, we have found that the closed ball property is 

first satisfied at a rather coarse level, and is consistently satisfied at all finer levels.

Care must be taken in the implementation of this hierarchical CW-complex for the 

purposes of memory efficiency. To this end, we only store the triangles of the finest-scale 

CW-complex; that is, we label the triangles in the finest level in accordance with patches in 

that level. Moreover, ids are assigned such that the multiresolution structure is maintained. 

In other words, if a triangle has a label k in the finest level, then it will be labeled in its 

father node as |_|J, ensuring a consistent hierarchical labeling scheme. Therefore, a patch 

with id k at level j  is labeled as 2k or 2k +  1 at level j  +  1 (the same being valid for the 

triangles representing these patches). Hence, we are always able to process the CW-complex 

at any scale, strictly from the finest scale.

We next illustrate two mechanisms for generating meshes: multiresolution uniform 

meshes, and quadric error meshes.

7.2.1.1 M ultiresolution Uniform  M eshing
Generation of a uniform mesh amounts to reconstruction at a particular depth, or scale, 

in the tree. Namely, for a prescribed resolution j , we identify the patches corresponding 

to depth j  using the scheme as described above. This effectively corresponds to the CW- 

complex at scale j .  From here, we identify the 0-cells to be the triangles in the dual 

triangulation, where a dual triangle’s vertices are determined by the intersecting three 

2-cells. This construction guarantees an oriented simplicial complex decomposition of the 

surface. Spatial partioning approaches [Rossignac and Borrel 1993; Schaefer and Warren

2003], on the other hand, encounter difficulty in ensuring a decomposition that guarantees 

a well-defined simplicial complex as output, as issues may occur in clustering points which 

are close in Euclidean distance yet far apart in geodesic distance.
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7.2.1.2 Quadric Error M eshing

Similar to previous approaches [Schaefer and Warren 2003; Boubekeur et al. 2006], we 

may utilize our spatial decomposition for the purposes of applying quadric error-based 

decimation [Garland and Heckbert 1997]. The primary difference here is that we have 

well-defined surface patches, both in terms of shape and uniform area across all scales, 

whereas spatial partitioning approaches greatly suffer from nonuniformity as a result of 

axis-aligned spatial decompositions.

We prioritize nodes of the tree starting from the finest level, where the priority is the 

quadric error metric. When two neighboring nodes have both been removed, we may add 

their parent to the queue for processing. When adding parent nodes to the queue, we may 

simply add their child quadric error functions together; however, note that since we have 

a binary tree structure, it is relatively inexpensive to compute the quadric error function 

from scratch. In fact, it is O(|V|1og|V|) in the number of vertices |V|, whereas Garland 

and Heckbert [1997] rely on edge collapses, and consequently, it would be quadratic in their 

approach.

Once we have selected the subset of nodes to be retained, we need to generate the dual 

triangulation. We associate each 2-cell with its scale and id, and then generate a unique id 

for each (scale, id) pairing. This gives us a consistent CW-complex representative of the 

quadric error decimation. Generation of the dual triangulation then proceeds in exactly the 

same manner as above.

See Figure 7.5 for a comparison between our approach and qslim. Note that the results 

are quite similar; however, the order of complexity of our approach is ^ , where |V| is the 

number of vertices, whereas qslim works off of edge collapses; hence, the complexity for a 

typical mesh with qslim is of the order 3|V|, which is roughly the number of edges.

7.2.2 G eom etric Em bedding
In computing a representative vertex for every 2-cell, its center of mass is a logical choice. 

That is, for every 2-cell, we may take the area-weighted coordinate as the vertex position.

A disadvantage to using the center of mass is that we may miss features on the surface. 

If feature preservation is desired, we may position vertices according to the quadric error 

metric, taken with respect to the 2-cell. By doing so, however, our mesh quality suffers. To 

satisfy both ends, we opt to interpolate between the center of mass and the quadric error 

vertex, by a user-defined parameter a. This way, the user may choose between high-quality 

triangulations and feature preservation.
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M ifSCMilf
Fig. 7.5. QSlim decimation (middle), compared to our quadric error meshing approach 
(right). Eigenvector computation time: 14s. Qslim timing for 4K and 1K vertex decimation, 
respectively: 44ms and 54ms. Our timing for 4K and 1K vertex decimation, respectively: 
31ms and 57ms.

7.2.3 Triangulation Properties
If we are to use the center of mass for vertex positions, then our construction is able 

to produce high-quality triangulations. This is a consequence of the tree construction 

properties discussed in Section 7.1.2. The fact that the nodal curves tend to follow the 

maximum principal curvature directions results in edges in the dual triangulation following 

the minimum principal curvature directions. This also accounts for the “quad-like” structure 

in our meshes, and consequently, our triangles are slightly anistropic in the principal 

directions of the curvature tensor. As well, the property of surface patches being of almost 

uniform area for each level results in triangles containing very similar areas in the dual 

triangulation. See Figure 7.6 for an example illustrating these properties across several 

scales.

Simultaneously satisfying small-length nodal curves and equi-areal surface patches is 

rather difficult, and occasionally, the Fiedler vector will favor one over the other. In the 

former case, this will result in nonuniform surface areas, and hence, the dual triangulation 

will have triangles of varying areas. In most cases, however, we have noticed this to be 

desirable; for instance, the legs of the horse in Figure 7.6 should be meshed denser than the 

stomach. In the latter case, nodal curves may result in surface patches being nonconvex, in 

which case, skinny triangles and high-valence vertices are produced. In practice, we have 

observed that this rarely occurs.

The property of mesh independent tree constructions in fact translates to near identical 

triangulations. See Figure 7.7 for an example. Note that there are subtle differences in the 

meshes, as neighboring 2-cells may differ, corresponding to a difference of an edge flip in 

the triangulations.

Last, we note that our meshes are very robust to geometric noise. As pointed out in
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Fig. 7.6. The CW-complex and corresponding triangulations, for different scales. Note the 
consistency in the quality of the decomposition, as we go to finer scales.

Fig. 7.7. Mesh generation for the eight model from two different meshings of the same 
surface.

previous work [Rustamov 2007], the low-frequency eigenfunctions of the Laplace-Beltrami 

operator are robust to even topological noise, in addition to geometric noise. The Fiedler 

vector being the lowest frequency nontrivial eigenfunction, it is most robust. This is a 

property inherited throughout our hierarchy, as Figure 7.8 illustrates. The noise in this 

example is generated by perturbing the per-vertex normals, and displacing the vertices a 

small amount along this perturbation. We are additionally able to produce high-quality 

triangles in the presence of noise, as our triangle radius ratio histograms demonstrate.
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Fig. 7.8. Multiscale representation of half-noise Julius model (left most). Our approach 
(bottom row) can robustly smooth noise out while still producing good-quality meshes 
in every level of the hierarchy. The noise remains prevalent when QEM is used as a 
simplification mechanism, thus preventing the generation of good meshes. Histograms on 
the bottom right of each model show the triangle radius ratio quality for each model.

7.3 Fiedler Multiscale Analysis
Multiscale analysis usually relies on recursively decomposing a given signal into low- 

frequency and high-frequency components. Although different approaches can be used to 

compute low-frequency and high-frequency components of a signal in each resolution, such 

as expansion in a set of basis functions or prediction/updating schemes [Jansen and Oonincx 

2005], all multiscale methods demand a splitting mechanism (also called up-sampling) in 

order to identify the subset of data that will be “shifted” to the next coarser level. Efficient 

splitting schemes are particularly difficult to be defined on unstructured data, as a biased 

choice might introduce artifacts in the multiscale decomposition. Our hierarchical scheme, 

however, provides for an intuitive notion of scale, and hence is an attractive starting point 

for many multiresolution methods. We illustrate such functionality by implementing a 

Haar-like multiscale analysis using our decomposition as a splitting mechanism.
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Let yk be a surface patch with index k at scale j  of the tree. Denoting by Y2+1 and 

Yj++1 the children nodes of yj , we can compute scaling and detail coefficients cjk, dk in yk by 

simple averaging and differencing from scaling coefficients d2+1 and c^++1 in Y2+1 and ifc + r

More specifically, scaling and detail coefficients in level j  can be computed as [Jansen and 

Oonincx 2005]:

to be the area-weighted average of the function values on that surface patch (assuming the 

function is constant in each patch of the finest level). Similarly, an inverse transform may 

be applied as follows:

The capability of computing scaling and detail coefficients complements the binary 

hierarchical decomposition with a natural mechanism to detect features and surface details. 

In fact, we may utilize the Haar wavelet decomposition for the purposes of detecting 

multiscale features in the mesh. To this end, we analyze the variation in per-vertex 

normals. If we denote the components of normal vectors as functions nx, n y, nz over 

the surface, we may run our Haar decomposition, as described in Equation 7.4, to obtain 

wavelet (detail) coefficients dx, dy, and dz for each coordinate function, respectively. By 

setting d j  =  (dxjk,dy3k ,dzk) as a vector in every node k at scale j , we can take || d j  || 

as a feature measure at node k (and level j ) of the tree. An example of such a Haar-like 

decomposition can be seen in Figure 7.9, where the warmer colors in the bottom models 

represent high values of detail coefficients. Notice that by going from right to left, more 

details are added in the model, characterizing the typical behavior of a multiscale scheme.

Scaling and detail coefficients may also be exploited for the purposes of feature detection 

and vertex positioning during the multiresolution process. In fact, we have exploited the 

Haar-like multiscale analysis for feature-sensitive meshing. The feature measure described 

above may be easily leveraged to produce adaptive meshes; that is, meshes where the 

sampling density is a function of the features of the mesh. This is achieved by culling nodes 

(2-cells) from the tree in a greedy manner prioritized by || d^ ||.

(7.5)

(7.6)
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Fig. 7.9. Illustration of the multiscale decomposition of the normals. From right to left, we 
are adding more details to the model, until we get the original surface back.

Similar to the quadric error meshing, we first place all leaf nodes in the tree in a 

priority queue. A tree node is added to the queue only if its children have been removed. 

Additionally, in order to maintain nice triangulations and prevent high valence vertices, we 

do not allow the merging of two nodes 1, n32++_1 into njk if a child of the neighbor node 

of nk still exists. Once all nodes have been removed, the triangulation is generated in the 

exact same manner as Section 7.2.1. This adaptive mechanism was used to generate the 

bottom models in Figure 7.1.

In Section 7.2.2, we demonstrated a means of computing the center of mass over every 

surface patch. This is unfortunately of complexity O(\V \log\V |) to compute. However, we 

may make the computation linear by noting that the projection of the coordinate functions 

onto the Haar basis exactly corresponds to the center of masses at different scales. That 

is, the scaling coefficients of the coordinate functions at a particular scale correspond to 

the center of masses computed at that scale. Only the finest scale integration needs to be 

computed.



116

7.4 Experimental Results
In this section, we present the results of applying the described methodology for the 

purposes of generating multiresolution uniform meshes and feature-sensitive meshes. All 

the models presented in the following applications were generated on a MacBook with a 

dual-core processor of 2 GHz and 2 GB of memory.

While minimum angle in a triangle is a common quality measure in the remeshing 

literature, we find that our meshes are slightly anisotropic in the curvature tensor; see 

Section 7.2.3 for a discussion on this matter. Hence, minimum angle is not a fair measure 

of quality for our meshes. For this reason, we measure mesh quality by the incircle to 

circumcircle ratio, commonly referred to as the radius ratio.

Figure 7.10 demonstrates our results for a variety of surface meshes, uniform and 

adaptive meshing alike. The rocker arm mesh demonstrates our method’s robustness to 

meshes with highly irregular geometry and connectivity, where discrete variational methods 

face problems [Valette et al. 2008].

Figure 7.11 shows our multiresolution scheme applied to the fertility model, decimated 

to 16K and 8K vertices from 240K vertices. Note the drastic improvement in mesh quality 

(top part), and our method’s resilience to the input triangulation. The mesh independence 

of our construction ensures a high-quality triangulation, regardless of how the input surface 

is meshed.

Table 7.1 shows quality statistics for these meshes, under the radius ratio measure. We 

note that for the uniform meshes, and the other uniform meshing results shown throughout, 

we obtain very consistent histograms, independent of the particular mesh, in a similar 

manner to Schreiner et al. [2006]. Note that our approach often results in more than 99% 

of good-quality triangles, where the notion of a good-quality triangle is such that its radius 

ratio is greater than 0.5 [Schreiner et al. 2006].
Table 7.2 shows quality statistics in terms of the minimum angle in a triangle. Since our 

method tends to produce anisotropic triangles, most triangles contain an angle of 90°, where 

for such an angle, its adjacent edges are typically aligned with the principal curvatures. As 

a result, the best we can expect the minimum angle to be in such a triangle is at most 

45°. As shown in the table, we typically achieve an average minimum angle of around 40°, 

indicative that we remain close to the best possible minimum angle. Moreover, even despite 

the anisotropy, most of the triangles contain a minimum angle above 30°, while for most 

meshes, the worst minimum angle is bound below reasonably well.

Table 7.3 shows the computational time involved in the Fiedler vector computation. 

Times refer to the total time; that is, the 8 seconds shown in the column of the rocker arm
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Fig. 7.10. Uniform and adaptive meshing results for a variety of surface meshes.

Fig. 7.11. Fertility model, 240K vertices, uniformly decimated to 16K vertices, 8K vertices. 
Our Fiedler approach is shown in the top-half image.
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Table 7.1. Radius ratio of multiresolution models presented in Figure 7.10. Numbers in 
each entry correspond to average-quality, worst case, and percentage of triangles within the 
interval [0.5,1.0], which comprise the good-quality triangles.

Rocker 
Av Wt [%]

Un 8K 
0.84 0.06 99.0%k Ad 4K 

0.82 0.02 98%

A
Un 2K 

0.84 0.15 99.3%
Ad 1K 

0.80 0.18 94.4%

Hand 
Av Wt [%]

Un 32K 
0.82 0.13 99.7%

Ad 16K 
0.82 0.15 98.8%

Un 8K 
0.83 0.25 99.8%

J.
Ad 4K 

0.81 0.01 96.2%)

, h
Bimba 

Av Wt [%]
Un 64K 

0.83 0.02 99.5%
Ad 32K 

0.83 0.01 98.5%
Un 16K 

0.83 0.16 99.7%
Ad 8K 

0.80 0.05 95.2%

I ill
Dragon 

Av Wt [%]
Un 64K 

0.83 0.01 99.7%
Ad 32K 

0.83 0.01 98.5%
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0.84 0.15 99.7%
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0.81 0.04 95.3%

Ji I
Fertility 

Av Wt [%]
Un 16K 

0.82 0.10 99.8%
Ad 8K 

0.82 0.10 98.2%
Un 4K 

0.83 0.17 99.6%
Ad 2K 

0.80 0.11 95.1%

iu
-...nr II III IB

model is the time to carry out the eigen decomposion in the 213 — 1 =  8,191 nodes (the 

Fiedler vector is not computed in the tree leaves).

Figure 7.8 demonstrates qslim’s inherent limitation in mistaking noise as features. Space 

decomposition-based methods tend to be more robust to noise, so we have compared our 

approach to that of the VS-tree [Boubekeur et al. 2006] in Figure 7.12. Although the 

VS-tree has the capability to construct a decomposition on the surface at a fine-enough 

level, utilizing a height field indicator in the presence of high-frequency noise results in 

unreliable analysis. The Fiedler tree, however, remains invariant to this high-frequency 

noise, sufficiently smoothing the mesh. We note that the VS-tree and qslim have the 

advantage of being computationally efficient, whereas our method is significantly more time 

consuming. However, our comparisons illustrate flaws in these approaches, resulting from 

the lack of a proper analysis of the surface at multiple scales, which is precisely what our 

method excels at.

Last, we have compared the quality of our meshes to that of a state of the art remeshing 

algorithm, delpsc [Cheng et al. 2007]. See Figure 7.13 for a comparison of the egea model,
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Table 7.2. Minimum angle of multiresolution models presented in Figure 7.10. Numbers 
in each entry correspond to average minimum angle, worst minimum angle, and percentage 
of triangles whose minimum angle is greater than 30°.

Rocker Un 8K
39.82° 9.19° 92.0%

. i l k

Ad 4K 
39.41° 5.29° 88.3%ik Un 2K 

40.4° 13.82° 93.5%

Ik
Ad 1K

37.79° 7.41° 80.0%,

LA
Hand Un 32K 

38.2° 12.64° 93.7%
Ad 16K 

39.19° 11.67° 90.4%
Un 8K 

38.88° 18.12° 94.0%
Ad 4K 

38.37° 2.73° 83.7%

A
Bimba Un 64K

39.09° 5.76° 94.6%,

.ilJ
Ad 32K

39.59° 4.1° 91.7%,

Al
Un 16K 

39.24° 12.71° 94.8%,
Ad 8K

38.14° 3.66° 83.2%,

-i ll h .... -nil III .JV
Dragon Un 64K 

38.96° 2.59° 93.7%
Ad 32K 

39.65° 2.15° 90.0%
Un 16K 

39.76° 11.29° 93.9%
Ad 8K 

38.37° 3.6° 81.9%ifi I
Fertility Un 16K 

38.52° 9.81° 90.7%
Ad 8K 

39.11° 4.91° 88.5%
Un 4K 

39.54° 15.89° 92.2%
Ad 2K 

37.7° 7.32° 80.0%

III ill IlJ ,11 Ilk

Table 7.3. Computational times to compute the Fiedler vector during the tree construction.

M odel Rocker Hand Bimba Dragon Fertility

Size 10K vert. 53K vert. 90K vert. 152K vert. 240K vert.

#  Levels 13 15 16 16 14

Eigen Calc. 8s 49s 1m40s 2m48s 4m44s
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Fig. 7.12. Comparison of VS-tree [Boubekeur et al. 2006] (left) to our approach (right), for 
simplification of a noisy surface. The original surface (135K vertices) is decimated to 21K 
vertices for both approaches. Timing for VS-tree: 70ms, timing for our method: 2m30s for 
eigenvector computations, and 900ms to generate the mesh

Fig. 7.13. Comparison of delpsc [Cheng et al. 2007] on the left, to our method on the right, 
with corresponding triangle radius ratio histograms. Timing for delpsc: 7.4s, timing for our 
method: 7.5s for eigenvector computations, and 109ms to generate the mesh
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remeshed to approximately 4K vertices. Our results are competitive in terms of triangle 

radius ratio, albeit not quite as good; however, we are able to construct a multiresolution 

hierarchy of quality meshes, whereas delpsc operates with respect to a target number of 

vertices.

7.5 Discussion and Limitations
Examples and comparisons presented in Sections 7.1-7.4 support that our multireso

lution scheme gathers a set of properties not present in any other approach devoted to 

represent meshes in multiresolution. Table 7.4 exemplifies this fact, in comparing our 

approach to the various methodologies. As can be observed (the symbol X means a property 

is present), only the Fiedler tree endows the intrinsic properties of mesh independence, noise 

robustness, mesh quality, feature detection, and multiresolution. The symbol • indicates a 

property is not intrinsic, but can be somehow approximated through tuned implementation.

Table 7.4 also suggests that the proposed Fiedler tree represents a methodology that 

stands between hierarchical space decomposition and remeshing approaches. Our approach 

shares the conceptual simplicity of space decomposition techniques, as we are merely per

forming a top-down hierarchical partitioning of the surface, instead of the volume in which 

the surface resides. We are able to produce meshes which are of competitive quality to that 

of remeshing schemes, yet at the same time, our approach is much simpler in comparison 

to most remeshing schemes.

Another interesting aspect of our approach is the ability to analyze features at multiple 

scales. The intrinsic hierarchical structure provided by the Fiedler tree makes multiscale 

analysis quite natural. In fact, the Haar-like implementation described in Section 7.3 is

Table 7.4. Comparison of our approach to other methodologies. The symbol X means the 
property is present while the symbol • indicates the property can be somehow incorporated.

M ethod  /  
P ro p e rty

Mesh
Independence

Noise
Robustness

Mesh
Quality

Feature
Detection

Multi
resolution

Comput.
Efficiency

Decimation
Methods X X •

Space/Tree
Partition • • X X

Fiedler
Decomposition X X X X X

Remeshing
Methods X X
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only the simplest mechanism in carrying out multiscale feature analysis. We believe that 

more sophisticated and accurate schemes can be derived on top of our decomposition.

Our binary hierarchical mesh decomposition is only one way of decomposing a mesh, 

and many hierarchical segmentation methods, including spectral methods, exist in the 

literature [Liu and Zhang 2007; De Goes et al. 2008; Reuter et al. 2009; Reuter 2010]. 

However, recall that the advantage of utilizing the Fiedler vector is in generating patches 

which have small boundary length, and consistent surface areas. As segmentation methods 

assume some notion of part saliency, they are unlikely to satisfy these properties, especially 

in the absence of saliency, which is common at finer depths in the decomposition. We note 

that a possible extension to our decomposition is choosing a different eigenfunction which 

still splits the mesh into two connected components, while satisfying other properties such 

as reflectional symmetries [Ovsjanikov et al. 2008; Vallet and Lvy 2009]. This could lead to 

a method for intrinsically symmetric remeshing, and we leave this for future work.

The main limitation of our approach is the computational burden, including processing 

time and memory consumption. Althouth Table 7.3 shows our technique could be applied 

to process fairly big meshes on a conventional laptop, massive meshes would demand 

out-of-core eigenvector computation methods, especially in the first levels of the hierar

chy, increasing computational times considerably. Moreover, by cutting exactly along the 

surface, we are encumbered by an increasing number of triangles being produced at every 

scale. This hinders the performance and memory efficiency of our method.

7.6 Summary
In this chapter, we have presented a novel method for multiresolution remeshing by 

utilizing spectral surface processing. In particular, we demonstrate the utility of the Fiedler 

vector for generating a balanced hierarchy of well-formed surface patches which are intrinsic 

to the surface. We have demonstrated applications to quality uniform mesh generation, 

adaptive mesh generation in the spirit of Haar wavelets, and the inherent robustness to 

noise.



CHAPTER 8

CONCLUSIONS

In this thesis, we have explored the use of shape analysis for imperfect, defect-laden data. 

In order to first gain insight into the types of imperfections which should be considered for 

point clouds, we established a benchmark for surface reconstruction, providing us with 

a means of quantitatively comparing surface reconstruction algorithms and exploring the 

impact of various data imperfections.

We then considered how existing shape analysis methods can benefit several tasks, 

namely normal orientation and surface remeshing. We demonstrated how to use a set of 

harmonic functions defined on the point cloud to orient normals, and how the Fiedler vector 

can be used to produce a hierarchy of good-quality surface meshes. Both of these methods 

use the Laplace-Beltrami operator of a surface: the former considers functions which lie in 

the kernel of the Laplacian, while the latter considers the first nontrivial eigenfunction of 

the Laplacian. As these functions have been shown to be robust to noise and nonuniform 

sampling in different areas, we leveraged these properties for improving normal orientation 

and multiresolution remeshing.

Last, we developed new shape analysis methods in order to process incomplete point 

clouds. In particular, we used the medial axis as a prior in order to construct new distances, 

and illustrated how these distances benefit segmentation and reconstruction. We then 

extended this to the construction of a diffusion process implicitly defined on the medial axis, 

and how this may be used to compute correspondences and intrinsic symmetries. These 

approaches demonstrate a unique blend of extrinsic and intrinsic shape analysis: they are 

extrinsic in that we are considering the volume of the shape via the medial axis, while also 

being intrinsic to the medial representation in that we employ diffusion distances and heat 

diffusion.
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8.1 FUture Work
The work established in this thesis should provide for many avenues of future work. In 

particular, the processing of incomplete point clouds still remains a challenging task, and 

the medial kernel provides but one way of handling this type of data.

8.1.1 N ew  Kernels
The medial kernel is driven by the medial axis prior for incomplete point clouds. We 

envision a family of like-minded kernels to be developed, each of which exploiting different 

structures of missing data. The symmetry-factored kernel of Lipman et al. [2010] is another 

existing example: symmetry is a redundant cue in shape analysis, in that incomplete data 

may still exhibit partial symmetries.

Structure repetition [Li et al. 2011] is a useful prior in missing data, where the challenge 

in developing such a kernel lies in constructing a smooth measure which represents the 

association of repeating elements, and relationship between elements. If photometric and 

reflectance information is available, then an analogous structure repetition kernel could 

easily be developed for this type of information. Visibility priors are well-known to be robust 

to missing data [Curless and Levoy 1996; Tagliasacchi et al. 2011], and so the construction 

of a visibility kernel would be a natural extension.

8.1.2 M ultiple Kernel Processing
With all of these kernels, and the various parameters each one will inevitably contain, a 

principled method of combining these kernels is desirable, and which is ideally independent 

of the type of task to perform. We think the multiple kernel learning literature [Bach et al.

2004] should prove extremely useful.

The goal in multiple kernel learning is to find the optimal linear combination of a set 

of kernels for a given task, typically classification. In some sense, our combination of the 

medial kernel with the standard Gaussian kernel in our shape matching approach represents 

a rather crude approach to this. One possible future direction is to consider the optimal 

linear combination of kernels for shape matching, based on a training set of incomplete 

point clouds in correspondence, resulting in multiple kernel shape matching. For instance, 

we may consider the aforementioned class of kernels over a set of different parameters, and 

a class of shapes containing missing data, and consequently learn the important weights. 

This may result in certain shape classes where the medial kernel is assigned a low weight 

while the visibility and symmetry priors are assigned more larger weights, and hence higher 

importance.
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8.1.3 Towards M inimal Acquisition

A motivating application for developing methods to process incomplete point clouds is 

minimal geometry acquisition. Despite the numerous advances in 3D geometry acquisition, 

it still remains quite challenging to fully acquire a surface. For instance, while multiview 

stereo methods can produce rather complete geometry, they are rather cumbersome to setup 

and calibrate. On the other hand, while structure-from-motion methods are convenient for 

passively obtaining geometry from image collections, they often produce extremely sparse 

data.

Methods which can strictly operate on incomplete point clouds are hence attractive 

in these scenarios. In this thesis, we have developed a number of ways of processing 

incomplete point clouds, ranging from segmentation to finding correspondences, but we 

can see other methods developed strictly for incomplete data, such as shape deformation, 

skeletonization, physically-based simulation, and shape modeling. In particular, we have 

used our distances derived from the medial kernel for the purposes of skinning incomplete 

point clouds, and have found preliminary results for animation to be promising. Being 

able to process incomplete, defect-laden data in this manner relieves the burden from the 

acquirer, resulting in simpler and cost-effective ways of capturing and processing the real 

world.



APPENDIX A

RECONSTRUCTION BENCHM ARK  

DETAILS

Here, we provide additional details regarding the surface reconstruction benchmark.

A.1 Polygonal Weight Functions
In this section, we detail the closed-form solution for Equation 3.2, used in the formation 

of our implicit functions. The basic idea is to cast the integral into the local coordinate 

system of the triangle, and perform integration in terms of polar coordinates, analogous to 

the construction of Green coordinates [Lipman and Levin 2010].

For a given evaluation point x and triangle t composed of the vertices p i , p 2, and p 3, 

and normal n, we project x onto the plane of t:

x =  x +  (p i — x, n )n  (A.1)

2 2 2 2 2 2 Now, for a given p 2 t, |x — p| +  e2 =  |x — p| +  |x — x| +  e2 =  |x — p| +  Ai , where 

Ai =  |x — x |2 +  e2 and is constant throughout the integration. We can now rewrite the 

integral as: Z Z

I  w(x p )dp =  X sgn(ti) I  — -----dp ,2 (A.2)
J pet V  Jpett (|x — p |2 +  Ai)2

where t is broken up into t i , t 2, t3, formed from the triangles composed of x and p i , p 2, p 3, 

and sgn represents the orientation of the triangle: positive if oriented properly, and negative 

otherwise. See the left image of Figure A.1 for an illustration of this decomposition.
Without loss of generality, we consider a single triangle t i . We now convert this integral 

into polar coordinates:

f  dp f 9=3 f r dr d$
Jpet! ( | i  — p |2 +  Ai)2 = = 0  ==o (r2 +  Ai)2 

= 1  f 3 d0 p 
= — 2 Jo R (̂ )2 +  Ai

The integration is centered with respect to x , where p is the angle in t i opposite x , and 

R($) is the length parameterized by ✓. See the middle image of Figure A.1.
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Fig. A.1. We illustrate the decomposition of the integration of polygonal weight functions. 
We first decompose integration into three separate triangles (left), for such a single triangle 
perform integration in polar coordinates (middle), followed by breaking up the integration 
into simpler components through orthogonal projection onto the opposing edge (right).

In order to have a clean parameterization of the length R(9), we break up the integral 

into two parts by considering the orthogonal projection of the point x onto its opposing 

edge, x , and breaking t 1 into: t\  = <  x , p 2, x > and t2 = <  x , x , p3 >. Without loss of 

generality, we consider t1, and we obtain: R(6) =  Co- #]; see the right image of Figure A.1. 

Hence, the integral becomes:

r  pi 

J  0
dO

o R 2 (O) +  Ai
=  sg n it!)

cos2(O)

uU  (P i  \* — * \ =  sgn<t i )( A i -

0 \x - x \2 + Ai cos2(O) 
-  yI2 rpi dO

0
0 \x — x \2 +  A1 cos2 (O))

where sgn(ti) is the sign of the orientation of the triangle, which may be negative if x 

projects outside of t 1. Applying the double angle formula to the above integral we obtain:

rPl __________dO__________
10 l\x — X\2 + 4jL) + 2̂t cos(2O)

Setting b =  \x — x \2 +  -2- and c = , we may apply the relevant antiderivative [Abramowitz 

and Stegun 1964] to obtain:

dO
b + c cos(2O) Vb2 — c2

tan

A.2 Description of Synthetic Scanner
Here, we provide additional details on our synthetic scanner, as described in Sec

tion 3.2.1. To clarify the following discussion, we note that for each shape in our benchmark, 

we have set its maximum dimension to be 70mm. Hence, any scanning parameter based 

on distance is defined with respect to the bound of 70mm. Additionally, we place an upper 

bound on the radiance to be 1.

1
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Our synthetic scanner is controlled by the following parameters:

-  Im age resolution. The image resolution, in conjunction with the number of scans 

used, effectively defines the resolution of the point cloud.

-  Baseline distance. A small baseline distance magnifies depth errors in triangulation, 

while a large baseline results in greater occlusion. We have fixed our baseline to be 

with respect to the x-axis of the camera, though this may easily be adjusted to the 

y-axis by changing the laser sweep direction. We found that baseline distances ranging 

from 10mm to 150mm provide good variety in triangulation accuracy and occlusions.

-  S tripe  fru stum  field of view. The thickness of the laser stripe has an impact on 

peak detection, in appropriately fitting a Gaussian. By default, we set the field of view 

such that the number of pixels visible within a distance of 50mm from the camera is 

roughly 10, which is a function of the image resolution.

-  S tripe  resolution. The number of laser stripes to project impacts the resolution 

of the depth. By default, we set this to be the x resolution of the camera, in order 

to obtain sufficient coverage. Setting the stripe resolution to be lower than the x 

resolution may result in some points not being affected by the laser stripes. By 

assigning a sufficiently large stripe frustum field of view, one may be able to obtain 

sufficient coverage.

-  Noise m agnitude. The magnitude of the noise corrupts the laser projection, making 

peak detection imprecise. Typical noise magnitudes we have used range from 0, or no 

noise, to 0.6, which can greatly corrupt the radiance signal.

-  R adiance sm oothing  bandw id th . Smoothing the radiance image reduces noise, 

though at the potential cost of sacrificing the expected Gaussian laser profile. The 

bandwidth to use is largely dependent on the stripe frustum field of view and noise 

level. For instance, a thick laser under large noise magnitude will require a fairly 

large bandwidth to sufficiently smooth out the noise. We note that smoothing, in 

conjunction with additive noise, may result in a radiance signal with smaller peak 

magnitudes, which can impact the peak magnitude threshold.

-  P eak  m agnitude  th resho ld . For large thresholds, this will reject parts of the 

surface whose radiance signal is determined weak by a pixel’s corresponding Gaussian 

fit. This is a major cause of missing data. For a laser containing little or no noise,
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typical thresholds range from 0.8, which will result in only highly confident range 

data, to 0.1, which will result in the rejection of few points. Under noise and radiance 

smoothing, the peak threshold must be adjusted to account for an expected reduction 

in peak magnitude.

-  V ariance th resho ld . Range at depth discontinuities are likely to be rejected under 

this threshold. We set the variance with respect to the width of the laser, where by 

default we only reject range whose variance in the Gaussian fit is larger than twice that 

of the laser width. Similar to the peak magnitude threshold, the variance threshold 

is sensitive to the noise magnitude and smoothing bandwidth.

We note that in our experiments, although we have generated quite a large number of 

point clouds, we have hardly explored the full parameter space of our scanner. By publicly 

releasing our synthetic scanner software, surface reconstruction researchers and practitioners 

will be able to replicate specific scanning conditions which they are interested in operating 

on.



APPENDIX B

IMPLEMENTATION DETAILS

The algorithms developed in this thesis were designed with simplicity in mind, such that 

the core implementation of each algorithm is closely tied with the novelty and contribution 

of the method. This results in a rather straightforward implementation for each method, 

so that our algorithms are easily reproducible. In this appendix, we provide more detailed 

descriptions and pseudocode for an important subset of these methods. In conjunction with 

standard numerical linear algebra libraries, this should serve as a set of recipes for one to 

rapidly implement the methods described in this thesis.

B.1 Medial Kernel
We describe the construction of the medial kernel, and in particular distances, in this 

section. The other applications of our approach, namely segmentation and reconstruction, 

follow as straightforward extensions of the kernel and distance construction. The construc

tion of the medial kernel can be broken up into two main components: generation of the 

candidate ball, and deviation of the candidate ball from a medial ball.

The cand idateball routine of Algorithm 1 takes a pair of points, along with their corre

sponding normals, and returns a ball’s center and radius. We first perform ray-intersections 

against the bisecting plane, where rays are formed for each point along the corresponding 

normal. If one of these rays fails to intersect the bisecting plane, then we do not form a 

candidate ball for these point pairs. We then take the corresponding bisecting points b , b j , 

and the center of these points b k. Note that all lie on the bisecting plane -  we consequently 

take the candidate ball as the one with smallest radius.

The em ptiness routine of Algorithm 2 takes a candidate ball and efficiently computes 

the emptiness term 7 . Here, we assume that a kd-tree has been built on the point cloud, 

such that each node contains the precomputated expansion terms for all points inside of the 

node, as described in Section 5.2.2. As we traverse the tree and construct the emptiness 

measure, if the current measure is determined to exceed a maximum dissimilarity, resulting
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A lgorithm  1 Candidate Ball Generation: cand idateball(p i , p j , n ,̂ n j)
b =  pi+pj . n =  pj - pt 
b =  2 . n  =  ||pj-ptk
b =  p +  (b-pi,nfc) „ . y =  b +  (b-p j,n6) . b =  pi+pj
bi =  p t +  <nt,nb) n  . yj =  bj +  n  ,nb) nj . Dfc =  2
if bj =  1  or bj =  1  th en  

re tu rn  no intersection 
end if
B =  {bj, b j , bfc}
cjj =  argmin{kc — pj|||c 2 B}

c
r ij =  k cij p i k 
re tu rn  (c j  , rjj)

in the medial kernel to be numerically zero, then we terminate the traversal early. This 

results in a substantial speed-up, in that we can quickly discard pairs of points which are 

clearly dissimilar.

The medial kernel 0 easily follows; see Algorithm 3: first, we construct a candidate ball 

for the points, measure the tangential dissimilarity r  and emptiness 7 , and convert this into 

a similarity measure. In practice, if the medial kernel is sufficiently small for a pair of points 

(pi, p j), then we do not store the value. In doing so, we obtain a fairly sparse number of 

entries whose medial kernel is nonzero. Note that this is largely a function of the medial 

axis -  clean spherical parts, for instance, will result in many nonzero entries.

Our distances are a straightforward adaptation of diffusion distances applied to 0, as 

shown in Algorithm 4. In order to properly apply diffusion distances, we must make the 

matrix M row-stochastic, so that it encodes a random walk. We use the normalization 

of Coifman and Lafon [2006], where we divide every entry of each row by the row’s sum

mation.

B.2 Medial Laplacian
We next describe the construction of the Medial Laplacian, used for the purposes of 

shape matching in Section 6.1.3. We have omitted pseudocode for the matching process, as 

it is a straightforward adaptation of Ovsjanikov et al. [2010]. Aside from the medial kernel, 

as just described, there are two main components to the Medial Laplacian: area estimation 

and combining kernels.

Estimating the area at a given point amounts to finding other points which belong to 

a similar medial region, and taking the convex hull of these points, see Algorithm 5. Once 

the convex hull is constructed, we then take the area as one-third of the area of all incident 

triangles to the point. If the query point does not lie on the convex hull, then we project
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A lgorithm  2 Efficiently Computing Emptiness: em ptiness(c, r)
Y =  0
L root node of kd-tree containing precomputed emptiness expansions 
while |L| > 0 do 

node dequeue(L) 
if node.is_leaf th en

Y =  Y+node.precomputed_expansion(c, r) 
if Y exceeds maximum dissimilarity th en

re tu rn  Y 
end if 

end if
if -  node.intersects_sphere(c, r) th en  

continue 
end if
if node.contained_in_sphere(c, r) th en

Y =  Y+node.precomputed_expansion(c, r) 
if Y exceeds maximum dissimilarity th en

re tu rn  Y 
end if 
continue 

end if
left_node —- node.left_child ; right_node —- node.right_child 
l =left_node.center ; r =right_node.center 
if ||l — c|| < ||r — c|| th en

L.enqueue(left_node) ; L.enqueue(right_node) 
else

L.enqueue(right_node) ; L.enqueue(left_node) 
end if 

end while

the neighbor points onto the estimated medial ball of the query point, and use the convex 

hull of this neighborhood instead.

The construction of the Medial Laplacian is a combination of two different kernels: a 

local Gaussian a, and the medial kernel 0. As both of these kernels can have widely varying 

densities, they must be normalized prior to being combined -  this is the purpose of the da 

and d^ arrays. Once constructed, then the weight entries of the Medial Laplacian are 

simply a linear combination of the two kernels, normalized by their respective densities; 

see Algorithm 6. Note that although the above construction is quadratic in the number 

of points, as both 0 and a  are typically sparse, a more efficient (albeit more notationally 

cumbersome) implementation is to store each entry of 0 and a  in a hash, indexed by the 

particular pair of points.
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A lgorithm  3 Medial Kernel Computation: 0(pj, p j , nj, n j)
(cjj, r jj) =  candidateball(p i, p j , n j, n j)
if no intersection th en

re tu rn  10-io / /  arbitrarily small value indicating no similarity 
end if
s _ pi ctj . s . _ pj — ctj
j =  llpt-ctj II . j =  |p j-ctj II

Y = em ptiness(c jj, rjj)
r  =  l l n — s*N +  |n j — sj k
re tu rn  e

2Yae

A lgorithm  4 Distances: dt ( i , j )
M : Mjj =  0(pj, p j , nj, n j)
D =diag(M 1) . M =  D - i M . MM ̂  =  Ak ̂  
^t(pj) =  { A ^  i ( pj ) , AJj 2 ( pj ) , Â  ̂  3 ( pj ) , ... }
$ t(p j ) =  {Ai tf i ( pj ) , A*2 2 ( pj ) , A?j 3 ( pj ) , ... } 
re tu rn  ||$t(pj) — $ t(p j) |

B.3 Fiedler Tree
Last, we describe the construction of the Fiedler Tree. In particular, we show how to 

construct the hierarchy of surfaces via spectral bisection, followed by how to generate a 

mesh at any level in the hierarchy. The multiresolution analysis, for instance adaptive mesh 

generation, follows as a straightforward adaptation.

The Fiedler tree is constructed by performing spectral bisection with respect to the 

Fiedler vector of the Laplace-Beltrami operator. see Algorithm 7. Starting from the input 

mesh, we compute the Fiedler vector, and then construct two child meshes separated by the 

Fiedler vector. Triangles in which all vertices are negative or positive are assigned to the 

negative child mesh (2i) and the positive child mesh (2i +  1), respectively. When the zero 

set cuts through a triangle, we use linear interpolation (zero_intersect) to split the triangle 

into one triangle and one quad -  though in practice, we triangulate the quad so that we 

can still easily construct the Laplace-Beltrami operator and perform linear interpolation.

This process is recursively done until a user-specificed maximum depth, D, is specified, 

giving us a collection of surface meshes at every depth. This is a slight departure from the 

implementation described in Section 7.2.1, where the pseudocode presented is less memory- 

efficient. However, it is a faster construction, as it is not necessary to construct a level of 

the hierarchy from scratch, as described in Section 7.2.1.

Once the Fiedler tree has been constructed, we may take an arbitrary depth d < D and 

generate its dual triangulation from the CW complex. see Algorithm 8. The CW complex
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A lgorithm  5 Area Estimation: area_estim ation(P, i)
for k =  1 to N  do

- =  J2 j ckj 0(P k ,Pj )
Pk =  p j ^(Pk,Pj) 

end for
=  E  j rij <f>(Pi,Pj )

* E j ^(Pi>Pj)
B* =  {pj G P  | |p* — pj| < e} / /  e is 1.5 times average sampling density
C =conve^hull(B*)
area =  0
if pi G C th en

for t G C and p* G t do 
area=area+1  |t| 

end for 
else

Bi =  { sphere_projection (p*,pi,ri) | |p* — pj| < e}
C  =convex_hull(B*) 
for t G C and p* G t do 

area=area+1  |t| 
end for 

end if 
re tu rn  area

is composed of a collection of surface patches, noted as M d, where we first generate a 

triangulated mesh composed of all M*d. The centroid method is simply the area-weighted 

center of a surface patch. Then, for each vertex in M d, if it is incident to three unique cells, 

we generate a triangle. Note that the number of unique incident cells will only range from 

one -  three, due to how we construct the Fiedler tree; hence, we are guaranteed a valid 

triangulation so long as the closed ball property is satisfied, as discussed in Section 7.2.1.
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A l g o r i t h m  6  M e d ia l  L a p l a c i a n  C o n s t r u c t i o n :  m e d i a l _ l a p l a c i a n ( P ,  r )

f o r  i =  1 t o  n  d o
a i = a r e a _ e s t i m a t i o n ( i )
f o r  j  =  1 t o  i d o

_ /  IIPi- P jk\ 2
a ij =  e  ̂ '
(pij =  0 ( p i ,  P j , n i ,  n j ) 

e n d  f o r  
e n d  f o r
in i t ( d « )  ; in i t ( d ^ )  / /  a r r a y s  c o n t a i n i n g  lo c a l  d e n s i t ie s ,  in i t i a l ly  al l  e n t r i e s  a r e  0 
f o r  i =  1 t o  n  d o  

f o r  j  =  1 t o  i d o

d « [ i ] — d « [ i ] +  ®ij ai ; da [j ] — aa[j  ] +  ®ij aj
d T [i] — dT [i] +  0 i j  ai ; dT[j ] — a T [j] +  0 i j  aj 

e n d  f o r  
e n d  f o r
f o r  i =  1 t o  n  d o  

D(i, i )  =  ai 
f o r  j  =  1 t o  i d o

W( i , j )  =  (1 -  r ) d^iTf^ij] +  r da[i]da[j] 
e n d  f o r  

e n d  f o r  
r e t u r n  W D
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A lgorithm  7 Fiedler Tree: fiedlersplit(M , d, i, D)
if d =  D th en  

re tu rn  
end if
Form Laplace-Beltrami operator Am
Am f2 =  A2/2 / /  f 2 is the Fiedler vector
M2+  =  0 ; M ^+l =  0 / /  child meshes initially empty
for t =  {v1,v2,v3} G M do

if f2(v1) < 0 and  f2(v2) < 0 and  f2(v3) < 0 th en  
Mdi+1.add_tri(t) ; continue 

else if f2(v1) > 0 and  f2(v2) > 0 and  f2(v3) > 0 th en  
M di+11.add_tri(t) ; continue 

end if
if f2(v1) < 0 th en  

if f2(v2) < 0 th en
M f+1.add_quad(v1,zero_intersect(f2,v1,v3),zero_intersect(f2, v2, v3),v2) 
M2i+11.add_tri(v3,zero_intersect(f2, v2, v3),zer^intersect(f2,v1,v3)) 

else
M2d+1.ad^tri(v1 ,zero_intersect(f2,v1,v2),zero_intersect(f2, v1,v3)) 
M2i+11.add_quad(v2,v3 ,zero_intersect(f2, v1, v3),zer^intersect(f2,v1,v2)) 

end if 
else

if f2(v2) > 0 th en
Md+11.add_quad(v1,zero_intersect(f2, v1, v3),zero_intersect(f2,v2,v3),v2) 
Md+1.add_tri(v3,zero_intersect(f2,v2,v3),zero_intersect(f2, v1,v3)) 

else
Md+11.add_tri(v1,zero_intersect(f2, v1, v2),zer^intersect(f2,v1,v3)) 
Md+1.add_quad(v2,v3,zero_intersect(f2,v1,v3),zero_intersect(f2, v1, v2)) 

end if 
end if 

end for
fiedlersplit(M d+1,d +  1, 2i, D) ; fiedlersplit(M 2d+11,d +  1, 2i +  1,D)
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A lgorithm  8 Dual Triangulation: triangulate(d)

M d =  0 . C =  [] 
for i =  0 to 2d — 1 do 

for t 2 M d do 
t.id= i 

end for 
M d =  M d U M d 
C[i] =centroid(Md) 

end for
U = 0
for v 2 M d do

duaLids =  0
for t 2 M d incident to v do 

duaLids =  duaLids U t.id 
end for
if |dual_ids| =  3 th en  

continue 
end if
U.add_tri(C[dual_ids[0]], C[dual_ids[1]], C[duaLids[2]]) 

end for 
re tu rn  U



REFERENCES

A b b a s i n e j a d , F., K i l , Y., S h a r f , A., a n d  A m e n t a , N. 2009. Rotating scans for 
systematic error removal. Computer Graphics Forum 28, 5, 1319-1326.

A b r a m o w i t z , M. a n d  S t e g u n , I. 1964. Handbook of mathematical functions with 
formulas, graphs, and mathematical tables. Vol. 55. Dover publications.

A d a m s o n , A. a n d  A l e x a , M. 2003. Approximating and intersecting surfaces from 
points. In Symposium on Geometry Processing. Eurographics Association, 230-239.

A l e x a , M., B e h r , J., C o h e n - O r , D., F l e i s h m a n , S., L e v i n , D., a n d  S i l v a , C. 
2003. Computing and rendering point set surfaces. IEEE Transactions on Visualization 
and Computer Graphics 9, 1, 3-15.

A l l i e z , P., C o h e n - S t e i n e r , D., T o n g , Y., a n d  D e s b r u n , M. 2007. Voronoi-based 
variational reconstruction of unoriented point sets. In Symposium on Geometry Process
ing. Eurographics Association, 39-48.

A l l i e z , P., d e  V e r d i r e , E., D e v i l l e r s , O., a n d  I s e n b u r g , M. 2003. Isotropic 
surface remeshing. In Shape Modeling International. IEEE, 49-58.

A m e n t a , N. a n d  B e r n , M. 1999. Surface reconstruction by Voronoi filtering. Discrete 
and Computational Geometry 22, 4, 481-504.

A m e n t a , N., C h o i , S., D e y , T. K., a n d  L e e k h a , N. 2002. A simple algorithm for 
homeomorphic surface reconstruction. Int. J. Comput. Geometry Appl. 12, 1-2, 125-141.

A m e n t a , N., C h o i , S., a n d  K o l l u r i , R. 2001. The power crust. In Symposium on 
Solid Modeling and Applications. ACM, 249-266.

A n g u e l o v , D., S r i n i v a s a n , P., P a n g , H ., K o l l e r , D., T h r u n , S., a n d  D a v i s , J. 
2005. The correlated correspondence algorithm for unsupervised registration of nonrigid 
surfaces. Advances in neural information processing systems 17, 33-40.

A u , O., F u , H., T a i , C ., a n d  C o h e n - O r , D. 2007. Handle-aware isolines for scalable 
shape editing. ACM  Transactions on Graphics 26, 3, 83:1-83:10.

A u , O., T a i , C ., C h u , H., C o h e n - O r , D., a n d  L e e , T. 2008. Skeleton extraction by 
mesh contraction. ACM  Transactions on Graphics 27, 3, 44:1-44:10.

B a c h , F., L a n c k r i e t , G., a n d  J o r d a n , M. 2004. Multiple kernel learning, conic 
duality, and the smo algorithm. In International Conference on Machine Learning. ACM, 
6.

B a r i b e a u , R. a n d  R i o u x , M. 1991. Influence of speckle on laser range finders. Applied 
Optics 30, 20, 2873-2878.



139

B e l k i n , M. a n d  N i y o g i , P. 2005. Towards a theoretical foundation for laplacian-based 
manifold methods. In Conference on Learning Theory. Springer, 486-500.

B e l k i n , M., S u n , J., a n d  W a n g , Y. 2008. Discrete laplace operator on meshed 
surfaces. In Symposium on Computational Geometry. ACM, 278-287.

B e l k i n , M., S u n , J., a n d  W a n g , Y. 2009. Constructing laplace operator from point 
clouds in r d. In Proceedings of the twentieth Annual ACM -SIAM  Symposium on Discrete 
Algorithms. Society for Industrial and Applied Mathematics, 1031-1040.

B e n - C h e n , M., B u t s c h e r , A., S o l o m o n , J., a n d  G u i b a s , L. 2010. On discrete 
killing vector fields and patterns on surfaces. Computer Graphics Forum 29, 5, 1701-1711.

B e r g e r , M., G u s t a v o  N o n a t o , L., P a s c u c c i , V ., a n d  S il v a , C. 2010. Fiedler trees 
for multiscale surface analysis. Computers & Graphics 34, 3 , 272-281.

B e r g e r , M., L e v i n e , J., N o n a t o , L., T a u b i n , G., a n d  S il v a , C. 2013. A benchmark 
for surface reconstruction. ACM  Transactions on Graphics (to appear).

B e r g e r , M. a n d  S il v a , C. 2012a. Medial kernels. Computer Graphics Forum 31, 2, 
795-804.

B e r g e r , M. a n d  S il v a , C. 2012b. Nonrigid matching of undersampled shapes via 
medial diffusion. Computer Graphics Forum 31, 5, 1587-1596.

B i y i k o g l u , T., L e y d o l d , J., a n d  S t a d l e r , P. 2007. Laplacian eigenvectors of graphs: 
Perron-Frobenius and Faber-Krahn type theorems. Springer.

B o i s s o n n a t , J. a n d  O u d o t , S. 2005. Provably good sampling and meshing of surfaces. 
Graphical Models 67, 5, 405-451.

B o u b e k e u r , T., H e i d r i c h , W., G r a n i e r , X., a n d  S c h l i c k , C. 2006. Volume-surface 
tree. Computer Graphics Forum 25, 399-406.

B o u g u e t , J. 2010. Camera calibration toolbox for matlab. Available at: http://w w w . 
v is io n .ca ltech .ed u /b o u g u e tj/ca lib _ d o c .

B o w e r s , J., W a n g , R., W e i , L.-Y., a n d  M a l e t z , D. 2010. Parallel poisson disk 
sampling with spectrum analysis on surfaces. ACM  Transactions on Graphics 29, 6, 
166:1-166:10.

B r o n s t e i n , A., B r o n s t e i n , M., B r o n s t e i n , M., a n d  K i m m e l , R. 2008. Numerical 
geometry o f non-rigid shapes. Springer-Verlag New York Inc.

B r o n s t e i n , A., B r o n s t e i n , M., a n d  K i m m e l , R. 2006. Generalized multidimensional 
scaling: a framework for isometry-invariant partial surface matching. Proceedings of the 
National Academy of Sciences of the United States of America 103, 5, 1168-1172.

B r o w n , B. a n d  R u s i n k i e w i c z , S. 2007. Global non-rigid alignment of 3-D scans. ACM  
Transactions on Graphics 26, 3, 21:1-21:10.

C a o , J., T a g l i a s a c c h i , A ., O l s o n , M., Z h a n g , H., a n d  S u , Z. 2010. Point Cloud 
Skeletons via Laplacian Based Contraction. In Shape Modeling International. IEEE, 
187-197.

http://www


140

C a r r , J., B e a t s o n , R., C h e r r i e , J., M i t c h e l l , T., F r i g h t , W., M o C a l l u m , B., 
a n d  E v a n s , T. 2001. Reconstruction and representation of 3d objects with radial basis 
functions. In SIGGRAPH. ACM, 67-76.

C h a n g , M. a n d  K i m i a , B. 2008. Regularizing 3d medial axis using medial scaffold 
transforms. In CVPR. IEEE, 1-8.

C h a n g , W. a n d  Z w i c k e r , M. 2008. Automatic registration for articulated shapes. 
Computer Graphics Forum 27, 5, 1459-1468.

C h a n g , W. a n d  Z w i c k e r , M. 2009. Range scan registration using reduced deformable 
models. Computer Graphics Forum 28, 2, 447-456.

C h a z a l , F. a n d  L i e u t i e r , A. 2005. The A-medial axis. Graphical Models 67, 4, 
304-331.

C h e n , Y., C h e n , B., L a i , S., a n d  N i s h i t a , T. 2010. Binary orientation trees for 
volume and surface reconstruction from unoriented point clouds. Computer Graphics 
Forum 29, 7, 2011-2019.

C h e n , Y., L e e , T., C h e n , B., a n d  L a i , S. 2011. Bipartite polar classification for 
surface reconstruction. Computer Graphics Forum 30, 7, 2003-2010.

C h e n g , S., D e y , T., a n d  L e v i n e , J. 2007. A practical Delaunay meshing algorithm 
for a large class of domains. In International Meshing Roundtable. Springer, 477-494.

C i g n o n i , P., M o n t a n i , C., a n d  S c o p i g n o , R. 1998. A comparison of mesh simplifi
cation algorithms. Computers & Graphics 22, 1, 37-54.

C o i f m a n , R. a n d  L a f o n , S. 2006. Diffusion maps. Applied and Computational 
Harmonic Analysis 21, 1, 5-30.

C u r l e s s , B. a n d  L e v o y , M. 1995. Better optical triangulation through spacetime 
analysis. In ICCV. IEEE, 987-994.

C u r l e s s , B. a n d  L e v o y , M. 1996. A volumetric method for building complex models 
from range images. In SIGGRAPH. ACM, 303-312.

D e  G o e s , F., G o l d e n s t e i n , S., a n d  V e l h o , L. 2008. A hierarchical segmentation of 
articulated bodies. Computer Graphics Forum 27, 5, 1349-1356.

D e s b r u n , M., M e y e r , M., a n d  A l l i e z , P. 2002. Intrinsic parameterizations of surface 
meshes. Computer Graphics Forum 21, 3, 209-218.

D e y , T., L i , K., L u o , C., R a n j a n , P., S a f a , I., a n d  W a n g , Y. 2010. Persistent 
heat signature for pose-oblivious matching of incomplete models. Computer Graphics 
Forum 29, 5, 1545-1554.

D e y , T., R a n j a n , P., a n d  W a n g , Y. 2010. Convergence, stability, and discrete 
approximation of laplace spectra. In Proceedings o f the twenty-first Annual ACM -SIAM  
Symposium on Discrete Algorithms. 650-663.

D e y , T. a n d  S u n , J. 2006a. Defining and computing curve-skeletons with medial 
geodesic function. In Symposium on Geometry Processing. Eurographics Association, 
143-152.



141

D e y , T. a n d  S u n , J. 2006b. Normal and feature approximations from noisy point 
clouds. FSTTC S 2006: Foundations of Software Technology and Theoretical Computer 
Science, 21-32.

D e y , T. a n d  Z h a o , W. 2004. Approximate medial axis as a voronoi subcomplex. 
Computer-Aided Design 36, 2, 195-202.

E d e l s b r u n n e r , H., H a r e r , J., N a t a r a j a n , V., a n d  P a s c u c c i , V. 2004. Local and 
global comparison of continuous functions. IEEE Visualization, 275-280.

E d e l s b r u n n e r , H. a n d  S h a h , N. 1997. Triangulating Topological Spaces. Interna
tional Journal of Computational Geometry & Applications 7, 4, 365-378.

F e d e r e r , H. 1959. Curvature measures. Transactions of the American Mathematical 
Society 93, 3, 418-491.

G a r l a n d , M. a n d  H e c k b e r t , P. S. 1997. Surface simplification using quadric error 
metrics. In SIGGRAPH. ACM, 209-216.

G e b a l , K., B ^ r e n t z e n , J., A a n ^ s , H., a n d  L a r s e n , R. 2009. Shape Analysis Using 
the Auto Diffusion Function. Computer Graphics Forum 28, 5, 1405-1413.

G o l d b e r g , M. J. a n d  K i m , S. 2010. Some remarks on diffusion distances. Journal of 
Applied Mathematics 2010, 17.

G u e n n e b a u d , G. a n d  G r o s s , M. 2007. Algebraic point set surfaces. ACM  Transaction 
on Graphics 26, 3, 23:1-23:10.

G u s k o v , I., S w e l d e n s , W., a n d  S c h r o d e r , P. 1999. Multiresolution signal process
ing for meshes. In SIGGRAPH. ACM, 325-334.

H i l a g a , M., S h i n a g a w a , Y., K o h m u r a , T., a n d  K u n i i , T. 2001. Topology matching 
for fully automatic similarity estimation of 3d shapes. In SIGGRAPH. ACM, 203-212.

H i l d e b r a n d t , K., P o l t h i e r , K., a n d  W a r d e t z k y , M. 2006. On the convergence 
of metric and geometric properties of polyhedral surfaces. Geometriae Dedicata 123, 1, 
89-112.

H o p p e , H. 1996. Progressive meshes. In SIGGRAPH. ACM, 99-108.

H o p p e , H., D e R o s e , T., D u c h a m p , T., M c D o n a l d , J., a n d  S t u e t z l e , W. 1992. 
Surface reconstruction from unorganized points. In SIGGRAPH. ACM, 71-78.

H u a n g , H., L i , D., Z h a n g , H., A s c h e r , U., a n d  C o h e n - O r , D. 2009. Consoli
dation of unorganized point clouds for surface reconstruction. ACM  Transactions on 
Graphics 28, 5, 176:1-176:7.

H u a n g , Q., A d a m s , B., W i c k e , M., a n d  G u i b a s , L. 2008. Non-rigid registration 
under isometric deformations. Computer Graphics Forum 27, 5, 1449-1457.

J a n s e n , M. a n d  O o n i n c x , P. 2005. Second generation wavelets and applications. 
Springer.

K a t z , S., T a l , A ., a n d  B a s r i , R. 2007. Direct visibility of point sets. ACM  
Transactions on Graphics 26, 3, 24:1-24:11.



142

K a z h d a n , M. 2005. Reconstruction of solid models from oriented point sets. In 
Symposium on Geometry Processing. Eurographics Association, 73-82.

K a z h d a n , M., B o l i t h o , M., a n d  H o p p e , H. 2006. Poisson surface reconstruction. In 
Symposium on Geometry processing. Eurographics Association, 61-70.

K i m , V., L i p m a n , Y., a n d  F u n k h o u s e r , T. 2011. Blended intrinsic maps. ACM  
Transactions on Graphics 30, 4, 79:1-79:12.

K o b b e l t , L., C a m p a g n a , S., V o r s a t z , J., a n d  S e i d e l , H.-P. 1998. Interactive 
multiresolution modeling on arbitrary meshes. In SIGGRAPH. ACM, 105-114.

K o l l u r i , R. 2005. Provably good moving least squares. In Proceedings of the sixteenth 
annual ACM -SIAM  symposium on Discrete algorithms. SODA ’05. Society for Industrial 
and Applied Mathematics, 1008-1017.

K o n i g , S. a n d  G u m h o l d , S. 2009. Consistent propagation of normal orientations in 
point clouds. In VMV. 83-92.

L e v y , B. 2006. Laplace-Beltrami Eigenfunctions Towards an Algorithm That Under
stands Geometry. In Shape Modeling and Applications. IEEE, 13-20.

L i , G., L i u , L., Z h e n g , H., a n d  M i t r a , N. J. 2010. Analysis, reconstruction and 
manipulation using arterial snakes. ACM  Transactions on Graphics 29, 6, 152:1-152:10.

L i , H., A d a m s , B., G u i b a s , L., a n d  P a u l y , M. 2009. Robust single-view geometry 
and motion reconstruction. ACM  Transactions on Graphics 28, 5, 175:1-175:10.

L i , H., L u o , L., V l a s i c , D., P e e r s , P., P o p o v i c , J., P a u l y , M ., a n d  R u s i n k i e w i c z , 
S. 2012. Temporally coherent completion of dynamic shapes. ACM  Transactions on 
Graphics 31, 1, 2:1- 2:11.

L i , H., S u m n e r , R., a n d  P a u l y , M. 2008. Global correspondence optimization for 
non-rigid registration of depth scans. Computer Graphics Forum 27, 5, 1421-1430.

L i , Y., W u , X., C h r y s a t h o u , Y., S h a r f , A., C o h e n - O r , D., a n d  M i t r a , N. J. 
2011. Globfit: consistently fitting primitives by discovering global relations. ACM  
Transactions on Graphics 30, 4, 52:1-52:12.

L i p m a n , Y., C h e n , X., D a u b e c h i e s , I., a n d  F u n k h o u s e r , T. 2010. Symmetry 
factored embedding and distance. AC M  Transactions on Graphics 29, 4, 103:1-103:12.

L i p m a n , Y. a n d  F u n k h o u s e r , T. A. 2009. Mobius voting for surface correspondence. 
ACM  Transactions on Graphics 28, 3, 72:1-72:12.

L i p m a n , Y. a n d  L e v i n , D. 2010. Derivation and Analysis of Green Coordinates. 
Computational Methods and Function Theory 10, 1, 167-188.

L i u , R. a n d  Z h a n g , H. 2007. Mesh segmentation via spectral embedding and contour 
analysis. Computer Graphics Forum 26, 3, 385-394.

L i u , R., Z h a n g , H., S h a m i r , A., a n d  C o h e n - O r , D. 2009. A part-aware surface 
metric for shape analysis. Computer Graphics Forum 28, 2, 397-406.

L i u , S. a n d  W a n g , C. 2010. Orienting unorganized points for surface reconstruction. 
Computers & Graphics 34, 3 , 209-218.



143

Luo, C., S a f a , I., a n d  W a n g , Y. 2009. Approximating gradients for meshes and point 
clouds via diffusion metric. Computer Graphics Forum 28, 5, 1497-1508.

Luo, C., S u n , J., a n d  W a n g , Y. 2009. Integral estimation from point cloud in d- 
dimensional space: A geometric view. In Symposium on Computational Geometry. ACM, 
116-124.

M a n s o n , J., P e t r o v a , G., a n d  S c h a e f e r , S. 2008. Streaming surface reconstruction 
using wavelets. In Computer Graphics Forum. Vol. 27. Blackwell Publishing Ltd, 1411
1420.

M e l a s , A. 1992. On the nodal line of the second eigenfunction of the Laplacian in R2. 
Journal o f Differential Geometry 35, 1, 255-263.

M e y e r , M., D e s b r u n , M., S c h r o d e r , P., a n d  B a r r , A. 2002. Discrete differential- 
geometry operators for triangulated 2-manifolds. Visualization and mathematics 3, 7, 
34-57.

M e y e r , M., K i r b y , R., a n d  W h i t a k e r , R. 2007. Topology, accuracy, and quality 
of isosurface meshes using dynamic particles. IEEE Transactions on Visualization and 
Computer Graphics 13, 6, 1704-1711.

M i k l o s , B., G i e s e n , J., a n d  P a u l y , M. 2010. Discrete scale axis representations for 
3d geometry. ACM  Transactions on Graphics 29, 4, 101:1-101:10.

M u n k r e s , J. 1993. Elements of algebraic topology. Perseus Books.

N a g a i , Y., O h t a k e , Y., a n d  S u z u k i , H. 2009. Smoothing of Partition of Unity Implicit 
Surfaces for Noise Robust Surface Reconstruction. In Computer Graphics Forum. Vol. 28. 
Blackwell Publishing Ltd, 1339-1348.

N a n , L., S h a r f , A., Z h a n g , H., C o h e n - O r , D., a n d  C h e n , B. 2010. SmartBoxes 
for interactive urban reconstruction. ACM  Transactions on Graphics 29, 4, 93:1-93:10.

N e x t E n g i n e . 2011. Nextengine 3d laser scanner. http://ww w .nextengine.com .

O h t a k e , Y., B e l y a e v , A., A l e x a , M., T u r k , G., a n d  S e i d e l , H. 2003. Multi-level 
partition of unity implicits. ACM  Transactions on Graphics 22, 3, 463-470.

O h t a k e , Y., B e l y a e v , A., a n d  S e i d e l , H. 2005a. An integrating approach to meshing 
scattered point data. In Symposium on Solid and Physical Modeling. ACM, 61-69.

O h t a k e , Y., B e l y a e v , A. G., a n d  S e i d e l , H.-P. 2005b. 3d scattered data in
terpolation and approximation with multilevel compactly supported rbfs. Graphical 
Models 67, 3, 150-165.

O v s j a n i k o v , M., H u a n g , Q., a n d  G u i b a s , L. 2011. A condition number for non-rigid 
shape matching. Computer Graphics Forum 30, 5, 1503-1512.

O v s j a n i k o v , M., M e r i g o t , Q., M E m o l i , F., a n d  G u i b a s , L. J. 2010. One point 
isometric matching with the heat kernel. Computer Graphics Forum 29, 5, 1555-1564.

O v s j a n i k o v , M., S u n , J., a n d  G u i b a s , L. 2008. Global intrinsic symmetries of shapes. 
Computer Graphics Forum 27, 5, 1341-1348.

http://www.nextengine.com


144

O z t i r e l i , A. C., A l e x a , M., a n d  G r o s s , M. 2010. Spectral sampling of manifolds. 
ACM  Transactions on Graphics 29, 6, 168:1-168:8.

P a u l y , M ., G r o s s , M., a n d  K o b b e l t , L. 2008. Efficient simplification of point- 
sampled surfaces. In IEEE Visualization. 163-170.

P o p a , T., S o u t h - D i c k i n s o n , I., B r a d l e y , D., S h e f f e r , A., a n d  H e i d r i c h , W.
2010. Globally consistent space-time reconstruction. Computer Graphics Forum 29, 5, 
1633-1642.

R e u t e r , M. 2010. Hierarchical shape segmentation and registration via topological fea
tures of laplace-beltrami eigenfunctions. International Journal of Computer Vision 89, 2, 
287-308.

R e u t e r , M., B i a s o t t i , S., G i o r g i , D., P a t a n e , G., a n d  S p a g n u o l o , M. 2009. 
Discrete laplace-beltrami operators for shape analysis and segmentation. Computers & 
Graphics 33, 381-390.

R o s s i g n a c , J. a n d  B o r r e l , P. 1993. Multi-resolution 3d approximations for rendering 
complex scenes. In Geometric Modeling and Computer Graphics. Springer-Verlag, 455
465.

R u s t a m o v , R. 2007. Laplace-Beltrami eigenfunctions for deformation invariant shape 
representation. In Symposium on Geometry Processing. Eurographics Association, 225
233.

S c h a e f e r , S. a n d  W a r r e n , J. 2003. Adaptive vertex clustering using octrees. In 
SIA M  Geometric Design and Computing. 491-500.

S c h r e i n e r , J., S c h e i d e g g e r , C., F l e i s h m a n , S., a n d  S i l v a , C. 2006. Direct (re) 
meshing for efficient surface processing. Computer Graphics Forum 25, 3, 527-536.

S e i t z , S., C u r l e s s , B., D i e b e l , J., S c h a r s t e i n , D., a n d  S z e l i s k i , R. 2006. A 
comparison and evaluation of multi-view stereo reconstruction algorithms. In CVPR. 
IEEE, 519-528.

S e v e r s k y , L., B e r g e r , M., a n d  Y i n , L. 2011. Harmonic point cloud orientation. 
Computers & Graphics 35, 3, 492-499.

S h a l o m , S., S h a m i r , A., Z h a n g , H., a n d  C o h e n - O r , D. 2010. Cone carving for 
surface reconstruction. ACM  Transactions on Graphics 29, 6, 150:1-150:10.

S h a p e w a y s . 2011. Shapeways. http://www.shapeways.com.

S h a p i r a , L., S h a m i r , A., a n d  C o h e n - O r , D. 2008. Consistent mesh partitioning and 
skeletonisation using the shape diameter function. The Visual Computer 24, 4, 249-259.

S h a r f , A., A l c a n t a r a , D., L e w i n e r , T., G r e i f , C., S h e f f e r , A., A m e n t a , N., 
a n d  C o h e n - O r , D. 2008. Space-time surface reconstruction using incompressible flow. 
ACM  Transactions on Graphics 27, 5, 110:1-110:10.

S h a r f , A., L e w i n e r , T., S h a m i r , A., K o b b e l t , L., a n d  C o h e n - O r , D. 2006. Com
peting fronts for coarse-to-fine surface reconstruction. Computer Graphics Forum 25, 3, 
389-398.

http://www.shapeways.com


145

S h e n , C., O ’B r i e n , J., a n d  S h e w c h u k , J. 2004. Interpolating and approximating 
implicit surfaces from polygon soup. ACM  Transactions on Graphics 23, 3, 896-904.

S h i , J. a n d  M a l i k , J. 2000. Normalized cuts and image segmentation. IEEE Transac
tions on Pattern Analysis and Machine Intelligence 22, 8, 888-905.

S o l o m o n , J., B e n - C h e n , M., B u t s c h e r , A., a n d  G u i b a s , L. 2011. Discovery of 
intrinsic primitives on triangle meshes. Computer Graphics Forum 30, 2, 365-374.

S o r k i n e , O., C o h e n - O r , D., I r o n y , D., a n d  T o l e d o , S. 2005. Geometry-aware 
bases for shape approximation. IEEE Transactions on Visualization and Computer 
Graphics 11, 2, 171-180.

S u d , A., F o s k e y , M., a n d  M a n o c h a , D. 2005. Homotopy-preserving medial axis 
simplification. In Symposium on Solid and Physical Modeling. ACM, 39-50.

S u n , J., O v s j a n i k o v , M., a n d  G u i b a s , L. 2009. A concise and provably informative 
multi-scale signature based on heat diffusion. Computer Graphics Forum 28, 5, 1383
1392.

S u n , X., R o s i n , P., M a r t i n , R., a n d  L a n g b e i n , F. 2009. Noise analysis and synthesis 
for 3D laser depth scanners. Graphical Models 71, 2, 34-48.

S u r a z h s k y , V. a n d  G o t s m a n , C. 2003. Explicit surface remeshing. In Symposium on 
Geometry Processing. Eurographics Association, 20-30.

S u s s m u t h , J., W i n t e r , M., a n d  G r e i n e r , G. 2008. Reconstructing animated meshes 
from time-varying point clouds. Computer Graphics Forum 27, 5, 1469-1476.

S z l a m , A., M a g g i o n i , M., C o i f m a n , R., a n d  B r e m e r  J r , J. 2005. Diffusion-driven 
multiscale analysis on manifolds and graphs: Top-down and bottom-up constructions. 
In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Vol. 
5914. 445-455.

T a g l i a s a c c h i , A ., O l s o n , M., Z h a n g , H., H a m a r n e h , G., a n d  C o h e n - O r , D.
2011. Vase: Volume-aware surface evolution for surface reconstruction from incomplete 
point clouds. Computer Graphics Forum 30, 5, 1563-1571.

T a g l i a s a c c h i , A ., Z h a n g , H., a n d  C o h e n - O r , D. 2009. Curve skeleton extraction 
from incomplete point cloud. ACM  Transactions on Graphics 28, 3, 71:1-71:9.

T a m , R. a n d  H e i d r i c h , W. 2003. Shape simplification based on the medial axis 
transform. In IEEE Visualization. 481-488.

t e r  H a a r , F., C i g n o n i , P., M i n , P., a n d  V e l t k a m p , R. 2005. A Comparison of 
Systems and Tools for 3D Scanning. In 3D Digital Imaging and Modeling: Applications 
of Heritage, Industry, Medicine and Land, Workshop Italy-Canada.

T e v s , A., B e r n e r , A., W a n d , M ., I h r k e , I., B o k e l o h , M., K e r b e r , J., a n d  
S e i d e l , H. 2012. Animation cartography - intrinsic reconstruction of shape and motion. 
ACM  Transactions on Graphics 31, 2, 12:1-12:15.

T e v s , A., B e r n e r , A., W a n d , M ., I h r k e , I., a n d  S e i d e l , H.-P. 2011. Intrinsic shape 
matching by planned landmark sampling. Computer Graphics Forum 30, 2, 543-552.



146

T e v s , A., B o k e l o h , M., W a n d , M ., S c h i l l i n g , A., a n d  S e i d e l , H. 2009. Isometric 
registration of ambiguous and partial data. In CVPR. IEEE, 1185-1192.

V a l e t t e , S., C h a s s e r y , J., a n d  P r o s t , R. 2008. Generic remeshing of 3d trian
gular meshes with metric-dependent discrete voronoi diagrams. IEEE Transactions on 
Visualization and Computer Graphics 14, 2, 369-381.

V a l l e t , B. a n d  L e v y , B. 2008. Spectral geometry processing with manifold harmonics,. 
Computer Graphics Forum 22, 2, 251-260.

V a l l e t , B. a n d  L v y , B. 2009. What you seam is what you get. Tech. rep., INRIA - 
ALICE Project Team.

v a n  K a i c k , O., Z h a n g , H., H a m a r n e h , G., a n d  C o h e n - O r , D. 2011. A survey on 
shape correspondence. Computer Graphics Forum 30, 6, 1681-1707.

V l a s i c , D., P e e r s , P., B a r a n , I., D e b e v e c , P., P o p o v i c , J., R u s i n k i e w i c z , S., 
a n d  M a t u s i k , W. 2009. Dynamic shape capture using multi-view photometric stereo. 
ACM  Transactions on Graphics 28, 5, 174:1-174:11.

W a n d , M ., A d a m s , B., O v s j a n i k o v , M., B e r n e r , A., B o k e l o h , M., J e n k e , P., 
G u i b a s , L., S e i d e l , H., a n d  S c h i l l i n g , A. 2009. Efficient reconstruction of nonrigid 
shape and motion from real-time 3d scanner data. ACM  Transactions on Graphics 28, 2, 
15:1-15:15.

X i e , H., W a n g , J . , H u a , J., Q i n , H., a n d  K a u f m a n , A. 2003. Piecewise c1 continuous 
surface reconstruction of noisy point clouds via local implicit quadric regression. In IEEE  
Visualization. 91-98.

X u , K., Z h a n g , H., C o h e n - O r , D., a n d  X i o n g , Y. 2009. Dynamic harmonic fields 
for surface processing. Computers & Graphics 33, 3, 391-398.

Y a n , D ., L E v y , B., L i u , Y., S u n , F., a n d  W a n g , W. 2009. Isotropic remeshing 
with fast and exact computation of restricted Voronoi diagram. Computer Graphics 
Forum 28, 5, 1445-1454.

Z e l n i k - M a n o r , L. a n d  P e r o n a , P. 2004. Self-tuning spectral clustering. Advances 
in neural information processing systems 17, 1601-1608.

Z h a n g , H., S h e f f e r , A., C o h e n - O r , D., Z h o u , Q., V a n  K a i c k , O., a n d  
T a g l i a s a c c h i , A. 2008. Deformation-driven shape correspondence. Computer Graphics 
Forum 27, 5, 1431-1439.

Z h a n g , J., S i d d i q i , K., M a c r i n i , D., S h o k o u f a n d e h , A., a n d  D i c k i n s o n , S. 2005. 
Retrieving articulated 3-d models using medial surfaces and their graph spectra. In 
Energy minimization methods in computer vision and pattern recognition. Springer, 285
300.

Z h e n g , Q., S h a r f , A., T a g l i a s a c c h i , A ., C h e n , B., Z h a n g , H., S h e f f e r , A., 
a n d  C o h e n - O r , D. 2010. Consensus skeleton for non-rigid space-time registration. 
Computer Graphics Forum 29, 2, 635-644.

Z h e n g , Y. a n d  T a i , C. 2010. Mesh decomposition with cross-boundary brushes. 
Computer Graphics Forum 29, 2, 527-535.



147

Z h o u , D. a n d  B u r g e s , C. 2007. Spectral clustering and transductive learning with 
multiple views. In International Conference on Machine Learning. ACM, 1159-1166.


