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Abstract

In this paper we propose and analyze some strategies to construct asymptoti-

cally optimal algorithms for solving boundary reductions of the Laplace equation

in the interior and exterior of a polygon. The interior Dirichlet or Neumann

problems are, in fact, equivalent to a direct treatment of the Dirichlet-Neumann

mapping or its inverse, i.e., the Poincar�e-Steklov (PS) operator. To construct a

fast algorithm for the treatment of the discrete PS operator in the case of poly-

gons composed of rectangles and regular right triangles, we apply the Bramble-

Pasciak-Xu (BPX) multilevel preconditioner to the equivalent interface problem

in the H1=2-setting. Furthermore, a fast matrix-vector multiplication algorithm

is based on the frequency cutting techniques applied to the local Schur comple-

ments associated with the rectangular substructures specifying the nonmatching

decomposition of a given polygon. The proposed compression scheme to compute

the action of the discrete interior PS operator is shown to have a complexity of

the order O(N logqN); q 2 [2; 3] with memory needs of O(N log2N) where N is

the number of degrees of freedom on the polygonal boundary under considera-

tion. In the case of exterior problems we propose a modi�cation of the standard

direct BEM whose implementation is reduced to the wavelet approximation ap-

plied to either single layer or hypersingular harmonic potentials and, in addition,

to the matrix-vector multiplication for the discrete interior PS operator.

1



1 Introduction

When numerically solving boundary or interface reductions of elliptic boundary

value problems matrix compressions and preconditioning appear to be of main impor-

tance to develop e�cient numerical techniques. We refer to [3, 5],[12]-[15],[22, 31, 33]

for recent results on wavelet approximation in boundary element methods (BEM) which

yields asymptotically optimal algorithms. Another e�cient matrix compression tech-

nique in BEM based on the idea of panel clustering has been proposed in [19]. Optimal

multilevel algorithms for FE discretizations of elliptic di�erential equations have been

developed in [8, 11, 17, 29, 30, 39, 40].

We note that the multilevel methods based on BPX-type schemes [8] give rise to

e�cient spectrally equivalent preconditioners for a wide class of boundary/interface

operators in both H1=2- and H�1=2-settings [30]. In this way, optimal precondition-

ers are implicitly incorporated into wavelet based compression schemes in BEM since

the latter inherit the stability of prewavelet splittings. So far the main attention has

been paid for the development of asymptotically optimal methods to solve the classical

boundary integral equations with operators of the orders �1, 0 and 1.

The main topic of the present paper is the construction of e�cient matrix compres-

sion and preconditioning techniques for the harmonic Poincar�e-Steklov (PS) interface

operator of the order 1 and for its inverse. This results in asymptotically optimal

algorithms for solving boundary reductions of the Laplace equation in the interior or

exterior of a polygon. Note that the proposed matrix compression technique is de-

signed by special geometrical domain decompositions without global transformation of

the original nodal basis on the boundary. Thus, a multilevel preconditioning and fast

matrix-vector multiplication do a job independently (cf. the case of wavelet approxi-

mation in BEM) and they both are of a crucial importance to construct some optimal

algorithm.

The interior Dirichlet or Neumann problems are equivalent to a direct treatment

of the Dirichlet-Neumann mapping or its inverse, i.e., the PS operator. To compute

the action of an interior PS operator in the case of polygons composed of rectan-

gles and regular right triangles we propose the multilevel BPX-type scheme applied

to an equivalent interface reduction associated with a nonmatching decomposition of

a polygon into rectangular subdomains introduced in [23]. The underlying scheme

is analyzed in the general framework of the additive Schwarz method [17] based on

the stable multilevel splitting [30] of the trace space. A fast matrix-vector multipli-

cation with arising interface operator (assembled Schur complement) is based on the

frequency cutting technique applied to the local Schur complements associated with

rectangular substructures specifying a skeleton. Since the resultant multilevel additive

Schwarz operator gives rise to a uniformly bounded condition number we arrive at an

asymptotically optimal compression scheme of the complexity O(N logqN); q 2 [2; 3]

with memory needs of O(N log2N) where N is the number of degrees of freedom on

the boundary under consideration. Note that, in general, it is not possible to apply

directly the wavelet approximation to the PS operators since we have no longer their

explicit representation in terms of boundary integral operators.

In the case of exterior problems we propose a modi�cation of the standard direct

BEM whose implementation is reduced to the wavelet approximation applied to ei-
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ther the single layer or the hypersingular harmonic potential and, in addition, to the

matrix-vector multiplication with the discrete interior PS operator as above.

Observe that direct formulations in BEM provide some explicit implementation of

the Dirichlet-Neumann mapping or its inverse while the indirect (ansatz) methods op-

erate with the integral equations over some arti�cial boundary potentials. We notice

that in many applications the computation of a full set of Cauchy data (which usually

have a physical sense) has an independent signi�cance. In this concern we emphasize

that any direct BEM as well as formulations involving some PS operators will do the

job. However, the direct BEM equations always involve a pair of boundary integral

operators of di�erent kind and, thus, for each of them an appropriate wavelet based

compression technique is supposed to be applied. To reduce the complexity of a direct

BEM for an exterior problem we substitute in the corresponding boundary integral

equation a symmetric factorization of the double layer potential operator and arrive

at some equivalent equation involving only one symmetric and positive de�nite (SPD)

integral operator, namely, the single layer potential V or the hypersingular operator

D and the Poincar�e-Steklov mapping related to the interior problem. For the approx-

imation of the operator V or D one can apply the wavelet techniques developed in

[3, 5, 12, 13, 14, 31, 32] yielding the complexity O(N logqN); q 2 [1; 2]. Furthermore,

for a fast treatment of the interior PS operators on a polygonal boundary an asymp-

totically optimal multilevel BPX-type scheme developed in Section 5 may be applied.

Note that usually BEM have a certain advantage for exterior problems while FEM

seem to be superior in case of bounded domains. The proposed "combined" direct

formulation for the exterior problems includes one matrix-vector multiplication related

to an interior PS operator and the inversion of some SPD boundary integral operator.

This allows to "distribute" the complexity between exterior and interior solvers.

To solve a boundary integral equation of the second kind we introduce the Bubnov-

Galerkin scheme where a new inner product may be realized with asymptotically op-

timal costs. The L2-stability property of a discrete resolution operator and the quasi-

optimal error estimates follow from the positive de�nitness of the double layer potential

E � K in a new setting. This result remains valid even for 3D Lipschitz polyhedra.

We remark that the standard Galerkin methods (with respect to L2-inner product)

applied to the boundary integral equations with a resolution operator of the second

kind have an advantage if the double layer potential operator admits a priori more

e�cient wavelet approximation in comparison with related �rst kind operators. This

is the case for the biharmonic BEM [34, 26] where the double layer potential operator

for the bi-Laplacian is given in terms of the Calderon projections for the Laplacian.

Though we consider here the model problem of the Laplace equation on the plane

the proposed approach for fast computations with discrete PS operators may be ex-

tended to more general classes of variational elliptic BVPs, say to 3D problems and to

biharmonic problems in domains with polygonal boundaries.

The remainder of the paper is organized as follows. In Section 2 we overview the

boundary reductions of model BVPs for the Laplace equation based on direct and

ansatz formulations. Moreover, the mapping properties of the harmonic layer poten-

tials, the related Poincar�e-Steklov operators and the operators V 2 and D2 are collected.

The transformation of the direct BEM equations for the exterior problem to a form

including the only SPD operators is proposed. In Section 3, we discuss the symmetric

splittings of the double layer potentials introduced in [23]. Note that similar factor-
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izations have been considered in [28] to investigate the angular singularities of certain

boundary integral operators. Section 4 is devoted to the Bubnov-Galerkin approxima-

tion of the double layer potential. The quasi-optimal error estimate for the generalized

Galerkin scheme with respect to a new inner product generated by the discrete PS

operator is obtained. A sharp estimate on the spectrum of the discretized double layer

potential operator is given. In Section 5, we prove the uniform boundedness of the con-

dition number for the multilevel BPX scheme on the re�ned skeleton. The underlying

interface operator is given by the direct sum of FE approximations to the local PS op-

erators (with the Schur complement as a sti�ness matrix) associated with nonmatching

decomposition of a given polygon by rectangular substructures. This leads to an e�-

cient matrix compression technique for the discrete 'interior' PS operators in the case

of polygons composed of rectangles and regular right triangles. Thus, an extension of

the spectral like method from particular rectangular-type geometries to triangular and

polygonal ones requires now the nonmatching domain decomposition by rectangular

substructures and the multilevel BPX scheme on a related re�ned skeleton. In Section

6, a quasi-optimal estimate for the computing complexity of the proposed method is

given. Furthermore, the results of numerical examples manifesting an asymptotically

optimal performance of the proposed algorithm are provided. We conclude in Section

7 with a brief discussion of spectrally equivalent preconditioners for Galerkin approxi-

mations of the operators V and D related to some arbitrarily unstructured meshes.

2 Preliminaries

Let 
1 � R2 be a polygonal domain on the plane with the boundary � = [
N0

j=1�j,

where �j is an open edge and !j 2 (0; 2�); j = 1; : : : ; N0 is the interior angle at

sj = �j \ �j+1. The exterior domain R2
n
1 will be denoted by 
2. Let n be the unit

outward normal vector on �.

By Hs(
1) and H
s
loc(R

2); s � 0, we denote the usual Sobolev spaces on 
1 and R2,

respectively, [27]. With L2(�){duality, de�ne the trace spaces on �

Hs(�) :=

8><
>:

0u : u 2 H

s+1=2
loc (R2) ; 0 < s < 3=2

L2(�) ; s = 0

(H�s(�))0 ; s < 0 ;

where the trace operator


0 : H
s+1=2
loc (R2)! Hs(�); 0 < s < 3=2

is continuous and has a continuous right inverse. We equip the space Hs(�); 0 � s <

3=2 with the canonical norm. The generalized normal derivative operator


1 : H
1(
1;�)! H�1=2(�)

is continuous (see [9]) and coincides with the operator 
1u = @u
@n j�

= @nu for u 2

H2
loc(R

2). The space H1(
1;�) is equipped with the usual graph norm.
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Consider the interior and exterior BVPs for the Laplacian

�u = 0 in 
i; u 2 H1
loc(
i); i = 1; 2 (2.1)

subject to the Dirichlet


0u = u 2 H1=2(�) on � (2.2)

or Neumann


1u = v 2 H�1=2(�) on �; (v; 1)� = 0 (2.3)

boundary conditions. For the exterior problem in 
2 we additionally require the "ra-

diation conditions"

u(x) = c1 +O(
1

jxj
); jxj ! 1 :

The Dirichlet problems are uniquely solvable in H1
loc(
i); i = 1; 2 for any u 2 H1=2(�)

while the Neumann problems have unique solution up to an arbitrary constant.

Introduce the "interior" Dirichlet-Neumann mapping

T1 := 
1M1 : H
1=2+s(�)! H�1=2+s(�) (2.4)

which is known to be continuous for s 2 [�1=2; 1=2] (see [9]) where

M1u := u : H1=2(�)! H1(
1;�)

is the (continuous) solution operator related to the interior Dirichlet problem (2.1),

(2.2) in a weak formulation. The "exterior" Dirichlet-Neumann mapping T2 may be

introduced along the same line. Let

g(x; y) := �

1

2�
log jx� yj; x; y 2 R2

be the fundamental solution of the Laplacian. De�ne boundary integral operators

V; K; K 0 and D on � by

V u(x) =
R
�

g(x; y)u(y)dy; Ku(x) =
R
�

@
@ny

g(x; y)u(y)dy;

K 0u(x) =
R
�

@
@nx

g(x; y)u(y)dy; Du(x) = �

R
�

@
@nx

@
@ny

g(x; y)u(y)dy:
(2.5)

When dealing with the operator V we further assume that cap� 6= 1 which is valid, in

particular, under the condition diam(
1) < 1, see [21]. The operator Ti, i = 1; 2 has

the pseudoinverse Si, i.e. TiSiTi = Ti, which is called the Poincar�e-Steklov operator.

One can give an explicit form of the interior and exterior Poincar�e-Steklov operators

by

S1 := (1
2
E +K)�1V : H

�1=2
1 (�)! H1=2(�) ;

S2 := (1
2
E �K)�1V : H

�1=2
1 (�)! H1=2

g0 (�) ; for c1 = 0

where for s 2 [�1; 1]

Hs
f(�) := fu 2 Hs(�) : (u; f)L2 = 0g; f 2 (Hs(�))0 :

Here g0 2 H
�1=2(�) is the Robin potential de�ned as the eigen-solution 1

2
g0+K

0g0 = 0.

In particular, the operator T1 de�ned by (2.4) has the explicit representation

T1 := 
1M1 = V �1(
1

2
E +K) and KerT1 = spanf1g : (2.6)

Following [9, 2], we summarize the mapping properties of above introduced operators.
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Lemma 2.1 For all s 2 [�1=2; 1=2], the following operators are continuous

V : Hs�1=2(�)! Hs+1=2(�);

K : Hs+1=2(�)! Hs+1=2(�); K 0 : Hs�1=2(�)! Hs�1=2(�);

D : Hs+1=2(�)! Hs�1=2(�); KerD = spanf1g;

S1 : H
s�1=2
1 (�)! Hs+1=2(�);

T1 : H
s+1=2(�)! Hs�1=2(�); KerT1 = spanf1g:

The operators V; D; S1 and T1 are symmetric. Moreover, D and T1 are positive

de�nite on H
1=2
1 (�) while V and S1 are positive de�nite on H

�1=2
1 (�). The relations

1
2
+K � 1 = 0 and 1

2
g0 +K 0 g0 = 0 hold.

As a consequence of the above lemma one can easily derive the mapping properties of

the operators V 2 and D2.

Lemma 2.2 The operators V 2 and D2 are both continuous

V 2 : H�1(�) ! H1(�) ;

D2 : H1(�) ! H�1(�)

and SPD on H�1(�) and H1
1 (�), respectively. The estimates

(V �2u; u) �= kuk2H1(�); 8u 2 H1(�)

(D2u; u) �= (u0; u0)L2(�); 8u 2 H1(�)

hold where u0 = d
ds
u, s 2 �, and (�; �) is the L2-inner product.

Proof. Consider the operator V 2. Applying Lemma 2.1 successively with s = �1=2

and s = 1=2 one obtains the continuity of V 2. Under the condition diam
1 < 1 both

the operators V : H�1(�) ! L2(�) and V �1 : H1(�) ! L2(�) are bijective mappings

[9] yielding

(V 2pu; u) = kV puk
2

L2(�)
�= kuk2H�p(�) ; p = 1;�1 :

Thus the assertions for V 2 follow. The same holds for the operator D taking into

account that KerD = spanf1g.

Introduce the natural SPD boundary reductions of the interior Dirichlet problem

given u 2 H1=2(�); �nd v = 
1M1u = T1u 2 H
�1=2(�) (2.7)

and of the interior Neumann problem

given v 2 H
�1=2
1 (�); �nd u = S1v 2 H

1=2
1 (�): (2.8)

Their fast resolution for polygonal boundaries is based on asymptotically optimal al-

gorithms for computations with the interior PS operators S1 and T1 related to a right

triangular domain proposed in [23]. In Section 5 we develop an alternative approach

(with optimal costs) based on multilevel preconditioning on the re�ned interface which

appears to be well suited for both serial and parallel implementation.

In the case of exterior problems we consider boundary integral equations corresponding
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to the direct symmetric formulations.

Exterior Dirichlet problem: given u 2 H1=2(�),

�nd v = @nu 2 H
�1=2(�) with V v = (�

1

2
E +K)u on �: (2.9)

Exterior Neumann problem: given v = @nu 2 H
�1=2(�)

�nd u 2 H
1=2
1 (�) with Du = �(

1

2
E +K 0)v on �: (2.10)

Of course, the equations (2.9), (2.10) may be also regarded as the second kind boundary

integral equations with respect to u and v, correspondingly.

We reformulate the equations (2.9) and (2.10) of the direct method in a form which

involves the SPD operators T1 and S1 instead of the double layer potentials. To that

end, substitute the representation 1
2
E +K = V T1 on L

2(�) and 1
2
E �K 0 = D S1 on

H
�1=2
1 (�) (see Corollary 3.1) into the right hand sides of (2.9) and (2.10), respectively,

and obtain the equivalent equations

V (v + T1u) = �u ; (2.11)

D(u� S1v) = �v : (2.12)

For the solution of (2.11) and (2.12) one can apply the wavelet techniques for the

inversion of V and D combined with fast computations of the terms T1u and S1v, re-

spectively, involving the interior PS operator, see Section 5.

Alternatively, the indirect formulations which involve only one boundary integral oper-

ator but contain an arti�cial potential may be applied. Some disadvantages of such an

approach may be expected in the framework of coupled FEM{BEM methods. Besides,

the computation of unknown Cauchy data on the boundary needs some additional

boundary integral operator to be applied as well. More speci�cally, the double layer

ansatz

U(x) =

Z
�

@

@ny
g(x; y) (y)dy;  2 H1=2(�) (2.13)

leads to the equations
(1
2
E �K) = 
0u ;

D  = @nu
(2.14)

on � for the Dirichlet and Neumann problems, respectively. On the other hand, the

single layer ansatz

U(x) =

Z
�

g(x; y)�(y)dy; � 2 H�1=2(�) (2.15)

yields (for the same problems) the equations

V � = 
0u ;

(1
2
E +K 0)� = @nu :

(2.16)

To estimate an expected computing complexity of the above formulations (2.7)-(2.16)

we indicate that the interior problems (2.7), (2.8) involve only the SPD Poincar�e-

Steklov operators admitting a FE approximation of the complexity O(N logqN); q 2
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[1; 3] up to a discretization error [23, 25], see also Section 5. For the exterior problems

in the form (2.9)-(2.10) one should take care of a matrix compression procedure for the

double layer potential operator as well as for one of the operators V or D. Since we deal

with the operators of the orders 0; �1 and 1 the corresponding asymptotically optimal

algorithms based on the wavelet approximation are fashioned by rather di�erent ways,

see [12, 13, 31, 32, 33]. Due to the above arguments, the "combined" formulations

(2.11) and (2.12) look as less time consuming since in that cases the wavelet based

compression techniques should be applied to either the operator V or D only.

Note that the problem of L2-stability for the discretized operator 1
2
E�K on a Lipschitz

boundary (in 2D and 3D cases) may be addressed to the formulations (2.14) and (2.16).

In Section 4 we prove some stability results for Bubnov-Galerkin schemes on polygonal

boundaries which remain also valid in the case of a 3D Lipschitz polyhedra.

3 On symmetrization of the double layer potential

In this section we consider the integral equations (2.13) and (2.16) of the second kind.

Following [23] we apply symmetric factorizations for the operators 1
2
E�K and 1

2
E+K 0

which reduce the corresponding equations to some SPD form with respect to a new

inner product admitting an asymptotically optimal implementation.

Introduce the splittings of the spaces H1=2(�) and H�1=2(�) into direct sums of two

subspaces

H1=2(�) = spanf1g+H1=2
g0 (�) ; (3.1)

H�1=2(�) = spanfg0g+H
�1=2
1 (�) : (3.2)

Lemma 3.1 The splittings (3.1) and (3.2) are invariant with respect to the operators
1
2
E �K and 1

2
E �K 0, correspondingly.

Proof. Consider the operator 1
2
E �K. Let u 2 H1=2

g0
(�), then one obtains

(
1

2
u�Ku; g0) = (u;

1

2
g0 �K 0g0) = (u; g0) = 0 ;

i.e., (1
2
E�K)u 2 H1=2

g0 (�). The same holds for the other operators under consideration.

Remark 3.1 The splittings (3.1) and (3.2) remain valid for L2(�) with corresponding

L2-orthogonal sets.

Corollary 3.1 There holds

1
2
E +K = V T1 = E � S1 D on L2(�)

1
2
E �K = S1 D on H0

g0
(�) � L2(�)

1
2
E +K 0 = T1 V on H�1=2(�)

1
2
E �K 0 = D S1 = E � T1 V on H

�1=2
1 (�) � H�1=2(�):
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Corollary 3.1 shows that the operators E�K and E�K 0 allow the Bubnov-Galerkin ap-

proximations with respect to the properly chosen inner products. Such discretizations

immediately imply the L2-stability of the corresponding discrete operators yielding

quasi-optimal error estimates in the energy norm.

The following simple lemma gives lower estimates for the corresponding stability con-

stants. Since all arguments are, in fact, dimension-independent the results on the

L2-stability and quasi-optimal error estimates for the Bubnov-Galerkin schemes under

consideration remain valid in the case of a 3D Lipschitz polyhedra providing some quasi-

regular triangulations. We refer to [18] on L2-stability results for standard Galerkin

and collocation schemes. De�ne

�(
1

2
E �K) := f� 2 R : (

1

2
E �K)u = �u; with someu 2 H1=2(�)g:

Lemma 3.2 Let the estimates

a0(S1u; u) � (V u; u) � a1(S1u; u); 8u 2 H
�1=2
1 (�) ; (3.3)

b0(T1u; u) � (Du; u) � b1(T1u; u); 8u 2 H1=2(�) (3.4)

hold with given constants a0; a1; b0; b1 > 0. Then the inequalities

min
�6=0

�(
1

2
E +K) = min

�6=0
�(
1

2
E +K 0) � a0 ; (3.5)

min�(
1

2
E �K) = min�(

1

2
E �K 0) � b0 (3.6)

are valid.

Proof. With some u 2 H
1=2
1 (�), let

V T1u = �u; � 2 R: (3.7)

Then w = T1u 2 H
�1=2
1 (�) due to Lemma 2.1 and thus V w = �S1w. The assertion

for 1
2
E +K now follows from Lemma 3.1, from the �rst assertion of Corollary 3.1 and

(3.3). The same holds for the operators 1
2
E �K and 1

2
E �K 0 .

Corollary 3.2 The estimates (3.5) and (3.6) remain valid on the spaces L2(�) and

H�1(�), respectively.

Proof. Examining the proof of Lemma 3.2 we conclude that (3.7) with u 2 L2(�)

and (u; 1) = 0 actually implies V w = �S1w with some w 2 H�1
1 (�) (see [10] for

corresponding regularity results). Then the assertion follows from Lemma 2.1 and the

estimate kS1wkL2(�) � c1kwkH�1

1
(�) since T1 S1w = w for all w 2 H�1

1 (�).
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4 Bubnov-Galerkin approximation of the double layer

potential

Consider �rst the operator 1
2
E +K 0 = T1V de�ned on H�1=2(�). Let Wh � H1(
1)

be the subspace of piecewise linear C0-�nite elements related to the quasi-uniform

triangulation � = f�ng of 
1 = [n�n with mesh parameter h > 0. DenoteXh = Wh
j�
�

H1(�), Wh0 = Wh \ H
1
0 (
1) and let X 0

h be the space of piecewise constant functions

with respect to �h = f�hgj�. Introduce the Galerkin approximations Vh : X 0

h ! Xh

and SG
h : X 0

h ! Xh of the operators V and S1, respectively, related to X 0

h and de�ned

by

(Vhu; v) = (V u; v); (SG
h u; v) = (S1u; v) 8u; v 2 X 0

h:

In general one has (SG
h )

�1
6= T

G
h where the latter is given with respect to Xh.

By a standard way, de�ne the FE approximation Th : Xh ! X 0

h of the operator T1 by

(Thu; v)� =

Z

1

rurvdx; 8v 2 Wh (4.1)

where u 2 Wh satisfying 
0u = u 2 Xh and

Z

1

rurzdx = 0 8z 2 Wh0: (4.2)

Note that the FE approximation Sh of S1 satis�es Sh Th = Th Sh = E on KerT ?

1 . Due

to Lemma 2.1 both Sh and Th are SPD operators on KerT ?

1 .

Consider the Galerkin equation: �nd uh 2 X
0

h such that

h
(
1

2
E +K 0)uh; v

i
= [f; v]; 8v 2 X 0

h (4.3)

where

[u; v] = (S1u; v): (4.4)

Since the operator 1
2
E + K 0 is continuous and SPD with respect to the new inner

product (4.4) we obtain the quasioptimal convergence of uh to the exact solution u of

the equation

(
1

2
E +K 0)u = f 2 H

�1=2
1 (�):

Lemma 4.1 There exist unique solutions of (4.3) for small enough h > 0 which con-

verge quasioptimally, i.e.,

ku� uhkH�1=2(�) � c inf
v2X0

h

ku� vkH�1=2(�) : (4.5)

The problem (4.3) is stable in the sense that

�min

�
(SG

h )
�1 Vh

�
� a0 > 0 (4.6)

uniformly with respect to h > 0 where a0 is de�ned in Lemma 3.2.

10



We now perturb the ideal Galerkin equation (4.3) replacing SG
h by the FE approximate

operator Sh. Without loss of generality we assume f 2 X 0

h. Since the operators Sh and

SG
h are spectrally equivalent [20] then the perturbed equation

Th Vheuh = Qh f 2 X
0

h (4.7)

is uniquely solvable and stable, that is

inf
h
�min(Th Vh) � �0 > 0 :

Here Qh is the L
2-orthogonal projection onto X 0

h. The error estimate for the solutionseuh follows from the approximation properties of the FE discretization Sh to the operator

S1 investigated in [1].

Theorem 4.1 For a small enough h > 0 the estimate

ku� euhkH�1=2(�) � c0 inf
v2X0

h

ku� vkH�1=2(�) + c1 inf
z2Wh

kM1 S1 f � zkH1(
)

holds with the solution operator M1 de�ned in Section 2.

Proof. Rewrite the equations (4.3) and (4.7) in the forms

Vhuh = SG
h Ph f and Vheuh = ShQh f ;

respectively, where Ph is the [�; �]-orthogonal projection onto X 0

h. Substituting the

above equations and taking into account that f 2 X 0

h we now obtain

ku� euhkH�1=2(�) � cku� uhkH�1=2(�) + ckShf � S1fkH1=2(�): (4.8)

The �rst term in the right hand side of (4.8) is estimated by (4.5) while for the second

one we apply the estimate from [1]

kShf � S1fkH1=2(�) � c inf
z2Wh

kM1 S1 f � zkH1(
) :

This completes the proof.

Note that the Bubnov-Galerkin approximation of the operators 1
2
E �K 0 and 1

2
E �K

may be derived along the same line yielding quasi-optimal error estimates.

Remark 4.1 The solution complexity (which appears to be quasi-optimal) for the

equation (4.7) is estimated by those related to the wavelet based approximation of

the operator Vh (respectively, Dh) as well as by the e�ciency of a matrix compression

technique developed for the Poincar�e-Steklov operators, see Section 5. The advantage

of the above introduced Bubnov-Galerkin scheme is that it admits an optimal matrix

compression and may be e�ciently realized in an appropriate SPD setting.

11



5 On matrix compression for the Poincar�e-Steklov

operators

The Galerkin discretizations Vh and Dh of the operators V and D on polygons with

spline wavelets as basis functions have been recently developed in [31]. The inversion of

the compressed operators with an accuracy of the discretization error " = N��; � > 0

was shown to have the complexity O(N log2N) with memory needs O(N logN). The

Galerkin subspaces of piecewise constant and continuous, piecewise linear functions

related to quasiuniform meshes have been used in case of the operators V and D, re-

spectively.

From now on we consider the compression techniques for the interior Poincar�e-

Steklov operators Sh and Th = S�1h over polygonal boundaries. In the case of rectangu-

lar domains the corresponding compression schemes considered in [25] depend on the

idea of [4] and they have been shown to have the complexity O(N log2N) to achieve

the discretization error O(N��) with some �xed � > 0. This approach was extended

in [23] to the case of right triangles and special polygons based on nonmatching do-

main decomposition and iterative substructuring techniques exhibiting the complexity

O(N log3N).

Here we introduce a new elegant approach for fast computations with discrete PS

operators (more precisely, with the Schur complement matrix T de�ned by hT U; V i =

(Thu; v) where U and V are the vector representations of u and v, respectively, and

h�; �i is the Euclidean inner product) based on the multilevel splitting of the trace space

on the re�ned interface related to nonmatching domain decomposition and on the cor-

responding BPX [8] interface preconditioner. This again yields the overall complexity

of order O(N log3N) in the case of polygons composed of regular right triangles and

rectangles. Contrary to [23], the proposed compression scheme is well suited for both

serial and parallel implementations.

As the principal ingradient of the underlying technique we �rst consider the case of

a right triangle. For a given right triangle 
 of the size a � b introduce the uniform

triangulation f�kg with a meshsize h �
a
N
; N = 2p; p 2 IN. Let Wp � H1(
) be

a space of piecewise linear �nite elements de�ned on f�kg and let W 0
p � Wp be the

corresponding subspace of functions fromWp with zero traces on the hypothenuse 
3 of


. Following [23] introduce the sequence Dj; j = 0; 1; : : : ; q � p of decompositions of


, as shown in Fig.1 , by successively diadical breaking of triangular pieces belonging

to Dj�1 when visiting the level j. For notational convenience we set D0 = 
.

With a �xed subdomain pattern we associate the sequence fTkg; k 2 IT := fk =

1; : : : ; 2qg of a
N
�

b
N

-right triangles adjacent to the hypothenuse 
3 of 
 and the

sequence of rectangles fRikg, i; k 2 IR := fi; k : i = 1; : : : ; q; k = 1; : : : 2i�1g which

produce the resultant nonconformal and nonquasiuniform decomposition of 
. For

given q � p de�ne the skeleton

�q := ([i;k2IR@Rik)n
3 (5.1)

which alignes with the mesh lines by de�nition. Note that �0 = @
n
3, see Fig. 1.
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Figure 1: Decompositions D1, D2 and D3 of 
.

Let 
 : Wp ! C(�q) be the trace operator and 
ik be its restriction to Rik. Introduce

the trace space on �q
Y�q := 
W 0

p

equipped with the norm

kukY�q := inf
u2W 0

p :
u=u
kukH1(
) ; (5.2)

providing an H1=2-setting. Denote by (�; �)L2(�q) the usual L2 - inner product on �q
generating the corresponding duality h�; �i�q . Following [24, 23], introduce the SPD

interface operator A�q : Y�q ! Y 0

�q
by

hA�qu; vi�q :=
X

i;k2IR

(Tikuik; vik) +
2qX
k=1

(Tkuk; vk) (5.3)

for all u; v 2 Y�q where Tik and Tk are de�ned by (2.6) for rectangles Rik and triangles

Tk, correspondingly. Here uik = 
iku with the same notations for vik, uk and vk.

From now on we set for simplicity q = p. The implementation of the discrete Poincar�e-

Steklov operator on @
 (with the Schur complement as a sti�ness matrix) is reduced

to the inversion of A�p . Note that the equivalent H�-norm on the skeleton may be

de�ned by

kuk2Y�p :=
X

i;k2IR

kuikk
2
H�(�ik)

+
2pX
k=1

kukk
2
H�(�k)

(5.4)

where

kuk2H�(�ik)
= juj2H�(�ik)

+
1

Hi

Z
�ik

u2dx

with Hi = 2�ia and with the seminorm

juj2H�(�ik)
=

Z
�ik

Z
�ik

ju(x)� u(y)j2

jx� yj1+2�
dxdy; 0 < � � 1 :

With the corresponding norm for � 2 (0; 3=2), one can introduce the trace space

Y�p;� := fu = 
u : u 2 H1=2+�(
)g. Note that (5.2) now corresponds to � = 1=2.

13



Consider the splitting Vp =
pP

j=0
Vj with respect to a hierarchy of nested spaces

V0 � V1 � : : : � Vp = Y�p

de�ned by Vj = 
W 0
j where dimVj = O(j 2j); j = 0; 1; : : : ; p. Let f'j;mg = f
�j;mg

be the nodal basis functions of Vj where �j;m are the basis functions of W 0
j such that

supp�j;m \ �p 6= ;. Introduce the L2 -orthogonal projection by

Qj : Vp ! Vj; ((Qjv � v); u)L2(�p) = 0 8u 2 Vj; v 2 Vp

and de�ne the subspaces Wj = (Qj � Qj�1)Vp with W0 = V0, Q�1 = 0. Then Vj+1 =

Vj �Wj+1; j = 0; :::; p� 1 and we obtain the multilevel orthogonal splitting

Vp =W0 �W1 � : : :�Wp (5.5)

yielding the unique decomposition

u =
pX

k=0

wk; wk 2 Wk; u 2 Vp : (5.6)

The decomposition (5.6) gives a stable prewavelet splitting of Y�p.

Lemma 5.1 For every u 2 Y�p the estimates

c1kuk
2
Y�p;s

�

pX
j=0

22sjkwjk
2
L2(�p) � c2kuk

2
Y�p;s

(5.7)

hold for any 0 � s < 3
2
where Y�p;s is equipped with the norm (5.4). Moreover, there

holds

kuk2Y�p
�= inf

u=
pP

j=0

vj ; vj2Vj

� pX
j=0

2jkvjk
2
L2(�p)

�
; u 2 Vp : (5.8)

Proof. Let s = 1
2
. Adapting the arguments of Proposition 2 from [29] based on the

minimizing property of the norm (5.2) and applying the simple estimate

inf
g2W 0

j
:
ikg=h

kgk2L2(Rik)
�= 2�j khkL2(@Rik)

we now derive

kuk2Y�p
�= inf

u2W 0
p
:u

j�
=u

�
inf

u=
pP

j=0

uj ; uj2W 0
j

X
(i;k)2IR[IT

pX
j=0

22jkujk
2
L2(Rik)

�
(5.9)

�= inf

u=
pP

j=0

vj ; vj2Vj

� pX
j=0

2jkvjk
2
L2(�p)

�
; u 2 Vp
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which implies (5.8). Then (5.7) follows from the orthogonality of the decomposition

(5.6) along the same line as usual arguments used for justifying the stability of BPX

splitting. In the general case of s 2 (0; 3
2
) we again apply the minimizing property of

the trace norm to the scale Hs+ 1

2 (�ik) as well as the L2- stability of the domain space

splitting W 0
p =

pP
j=0

W 0
j , i.e.,

kuk2
Hs+1

2 (
)

�= inf

u=
pP

j=0

uj ; uj2W 0
j

� pX
j=0

22(s+
1

2
)j
kujk

2
L2(
)

�
; u 2 W 0

p ; (5.10)

see [29, 30] for more details. Similar to (5.9) we then obtain

kuk2Y�p;s
�= inf

u=
pP

j=0

vj ; vj2Vj

� pX
j=0

2sjkvjk
2
L2(�p)

�
; u 2 Vp (5.11)

which yields (5.7) for any s 2 [0; 3=2).

Corollary 5.1 For any u 2 Vp the estimates

c1

pX
j=0

2jkwjk
2
L2(�p) � hA�pu; ui�p � c2

pX
j=0

2j kwjk
2
L2(�p) (5.12)

and

c1hA�pu; ui�p � inf

u=
pP

j=0

uj ; uj2Vj

� pX
j=0

2jkujk
2
L2(�p)

�
� c2hA�pu; ui�p (5.13)

hold with constants c1; c2 independent of N and p :

Proof. For any u 2 Vp and any subdomain Rik we have

(Tikuik; uik) �= juikj
2
H1=2(�ik)

�= kuikk
2
H1=2(�ik)

since u(�ik) = 0 where �ik = 
3 \ @Rik. Then (5.12) follows from (5.7) and (5.4). In

turn, (5.13) is a consequence of (5.8). This completes our proof.

Note that (5.8) yields the norm equivalence for the approximation space A
1=2
2 (fVjg) on

the skeleton

kuk2Y�p
�= inf

u=
pP

j=0

vj ; vj2Vj

pX
j=0

2jkvjk
2
L2(�p)

�= kuk2A1=2 := kuk2L2(�p) +
pX

j=0

2jsj(u)
2
L2(�p)

with the sequence of best approximations de�ned by

sj(u)L2(�p) = inf
v2Vj

ku� vkL2(�p); u 2 Vp:
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Now we are in a position to design the multilevel BPX [8] or multilevel diagonal

scaling (MDS) [40] preconditioners based on the additive Schwarz method related to

the splitting (5.6). Note that though our scheme is similar to one developed in [29]

for the case of conformal decompositions the implementation of the �nal algorithm

under consideration di�ers from those proposed in [29]. In fact, the de�nition of A�

(5.3) is based on assembling the local components related to the underlying domain

decomposition. This admits an e�cient performance of corresponding matrix-vector

multiplication with asymptotically optimal cost. The proposed construction is actually

done in spirit of the multilevel methods technique with locally re�ned grids. The main

di�erence, however, is that in our case we use the properly nested re�nement of the

interface (associated with a nonuniform decomposition of 
) in the direction orthogonal

to the hypothenuse 
3 while the �nest grid on the domain remains �xed and uniform.

Starting with the decomposition Vp =
pP

j=0
Vj consider a more re�ned splitting of Vj

into one-dimensional subspaces Vj;m = span'j;m taking into account the L2-stability of

the corresponding nodal basis f'j;mg = f
�j;mg of Vj, j = 1; :::; p. De�ne the resultant

splitting

Vp =
pX

j=0

dimVjX
m=1

span
�j;m :

For any given u 2 Vp specify the action of the operator Tik with respect to the level j0
where the basis functions 'j0;m come from in order to optimize the computations with

the interface operator A�. Introduce the representation

(Tiku; 
�l;m) =

8<
:

(Tiku; 'l;m); l � i

(u; Tik'l;m) =
P

x
 62intfTig
a
u(x
); l < i (5.14)

which indicates that the computation of the components from (5.3) with i > l is a

trivial procedure.

The BPX scheme may be introduced with respect to the norm in Vj;m

(u; v)Vj;m = 2j(u; v)L2(�p)

and the corresponding projection PVj;m : Vp ! Vj;m de�ned by

(PVj;mu; vj) = (u; vj)Vj;m 8vj 2 Vj;m:

The resultant preconditioned operator usually called as multilevel additive Schwarz

(MAS) operator PBPX : Vp ! Vp takes the form

PBPXu :=
pX
l=0

X
(i;k)2IR[IT

dim
ikVlX
m=1

(Tiku; 
�l;m)

2l('l;m; 'l;m)L2(�p)
� 'l;m (5.15)

where we set Tik = Tk for i = p. The operator equation on the skeleton with the

SPD operator (5.15) may be e�ciently resolved by the iterative CG method applying

the corresponding optimal algorithm for fast computations with Tiku on rectangular

subdomains with respect to (5.14). The treatment of the layer neighboring the hy-

pothenuse has, obviously, the complexity O(N). The MDS scheme given by [40] for

FE discretizations of di�erential equations may be obtained if the terms 2l('l;m; 'l;m)

16



in the denominator are substituted by (Tik'l;m; 'l;m). However, in our case the BPX

scheme looks as a primary one. In fact, the MDS algorithm needs some extra computa-

tions of the diagonal entries (Tik'l;m; 'l;m) as far as the operators Tik are not local but

at the same time it does not improve the resultant condition number �(PBPX) since

we deal with the constant coe�cients case.

Theorem 5.1 The operator equation

PBPXu =
pX
l=0

X
(i;k)2IR[IT

dim
ikVlX
m=1

(	; 
�l;m)

2l('l;m; 'l;m)L2(�p)
� 'l;m (5.16)

is equivalent to the original interface problem

hA�pu; vi�p = h	; viL2(�p) 8v 2 Vp

and �(PBPX) = O(1) uniformly with respect to N and the number of levels p. The

computation of PBPXu , u 2 Vp has the complexity O(N log3N) with memory needs of

the order O(N log2N). The solution of (5.16) by the cascadic CG method up to the

approximation error " = "tolN
��; � > 0 has the expense log "�1tol � O(N log3N) where

"tol > 0 is some a priori �xed constant.

Proof. The uniform bound on the condition number �(PBPX) = O(1) follows from

(5.13) applied to the above introduced additive Schwarz operator PBPX . The complex-

ity of the residual computation PBPXu, u 2 Vp is discussed in Section 6. From [35] we

know that an optimal convergence of the CCG-method introduced in [16] is achieved if

we take into account the H2-regularity of the underlying Dirichlet problem, that means

in our case

kukH1+s(
) � c kuj�kH1=2+s(�) ; s 2 (0; 1];

see [27]. In the case of the Dirichlet problem under consideration we set s = 1 yielding

the full regularity. When using some more general boundary conditions providing a

de�cient regularity one can apply the convergence results for the CCG-method based

on the H1+s-regularity of the underlying BVP with some 0 < s < 1, see [6, 36]. On

the other hand, one also obtains the H1+s-regularity with some s 2 (0; 1) in the case

of nonconvex polygons. This completes our proof.

Remark 5.1 Note that a more parallel version of the MAS operator (5.15) related to

the splitting

Vp =
pX

j=j0

dimVjX
m=1

span
�j;m

with some j0 > 0 may be introduced assuming an exact solution of the coarse mesh

problem related to Vj0.

6 Computing complexity and numerical examples

As our main result, we have shown in Theorem 5.1 that the multilevel BPX scheme

introduced for a special interface reduction of the Laplacian leads to asymptotically
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optimal computations with the discrete PS operator in the case of right triangles. The

point is that a matrix compression technique originally developed for rectangles has

been thus extended to the case of triangular and, consequently, polygonal domains.

In fact, Theorem 5.1 remains valid in a more general case of polygons 
 = 
R [ 
T

composed of MR rectangles and MT right triangles 
i such that 
R = [i2IR
i and


T = [i2IT
i. The extension to the case of mixed boundary conditions is rather

straightforward keeping in mind the technical assumption @
T \ @
 � �D where

�D � @
 is the piece of @
 with the Dirichlet conditions imposed. The coarse mesh

space V0 and the skeleton � associate now with the chosen decomposition of 
, see Fig.

2, where '�' marks the coarse mesh nodes and thick lines correspond to the Neumann

conditions imposed.

The resultant interface operator A� is introduced by the direct sum involving the

terms A�p(
i) de�ned by (5.3) for any triangular substructure 
i 2 
T as well as by

the discrete PS operators T1;@
i
related to the rectangles 
i 2 
R

hA�u; vi� :=
X
i2IR

(T1;@
i
ui; vi) +

X
i2IT

hA�p(
i)ui; vii�p(
i): (6.1)

The multilevel BPX preconditioner for the operator A� leads to the equivalent interface

�
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Figure 2: Coarse mesh decompositions of a polygon.

equation similar to (5.16). In turn, the solution of the underlying interface problem

with the approximation error " = "tolN
��; � > 0 has the complexity

Q(A�1
� ) = log "�1tol �O(

X
i2IR

Ni log
2Ni +

X
i2IT

Ni log
3Ni) (6.2)

and it requires O(
P

i2IR[IT

Ni log
2Ni) memory where Ni is the number of degrees of free-

dom on the boundary �i = @
i.

Consider in more details the terms in (6.2) with i 2 IT related to triangular sub-

domains. The most laborious part in a treatment of (5.15) with a given u 2 Vp
is the computation of the sum corresponding to the �nest level l = p. This requires

O(Ni log
3Ni) operations for any triangle 
i 2 
T . The contributions from all remained

visiting levels with l = p� 1; : : : ; 0 may be obtained by successive extrapolation from

the element PVpu =
P

Vp;m�Vp

PVp;mu with respect to the explicit representation of hier-

archical basis functions on the skeleton. In fact, the scalar products (Tiku; 'l;m) are

calculated by using the values (Tiku; 'l+1;m) coming from the previous level l + 1 by

the extrapolation formulae

'l;� =
1

2

X
�2supp'l;� ;� 6=�

'l+1;� + 'l+1;�; l = p� 1; :::; 0
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where � and � are the corresponding nodal points. Thus, with any �xed subdomain


i 2 
T the computation of related terms with respect to (5.15) for indices l < p

now costs O(Ni logNi) operations which does not e�ect the resultant asymptotical

performance of the algorithm. The action of the interpolation (prolongation) operator

which maps the elements PVlu =
P

Vl;m2Vl

PVl;mu 2 Vl to Vp from any visiting level l =

0; 1; : : : ; p� 1 is also estimated by O(N logN) where N = O(
P
i
Ni). Thus, the matrix-

vector multiplication cost Q(A�) related to the interface operator A� is estimated by

Q(A�) = O(
X
i2IR

Ni log
2Ni +

X
i2IT

Ni log
3Ni) : (6.3)

Finally, the cascadic variant of the CG iterative method needs Q(A�1
� ) = log "�1tol �Q(A�)

operations, where Q(A�) is given by (6.3). The above estimate is valid for any polygon

composed of rectangles and regular right triangles.

We now provide some numerical examples con�rming the asymptotically optimal per-

formance of a computation with the discrete PS operator based on BPX-type interface

preconditioning. The corresponding runs have been done on IBM-PC 486/8/66.

In Table 1 we give the results corresponding to the Neumann problem for the Laplace

Nj = 2j + 1 BPX-cascadic CG BPX-CG BPS-PCG

j u
j+1
0 = U

j
j�1 u

j+1
0 = U j u

j
0 = 0

1 2.23 1 0.1 1 0.16 9 0.77 4 0.16

2 8:1 � 10�1 2 0.16 2 0.22 8 0.71 8 0.28

3 2: � 10�1 3 0.22 3 0.28 9 0.82 10 0.38

4 4:8 � 10�2 2 0.22 3 0.33 9 0.88 10 0.5

5 1:14 � 10�2 2 0.33 3 0.44 9 1.1 11 0.71

6 2:8 � 10�3 2 0.49 3 0.61 9 1.5 12 1.26

7 6:8 � 10�4 2 0.87 3 1.1 10 2.81 12 2.36

8 1:68 � 10�4 2 1.87 3 2.31 10 5.66 13 5.43

9 4:16 � 10�5 2 4.28 3 5.33 10 12.7 14 12.9

10 1:04 � 10�5 2 10.16 3 12.7 11 31.7 14 28.6

ju� � uhjL2 IT t=sec: IT t/sec. IT t/sec. IT t/sec.

Table 1: Iterations history for the BPX scheme applied to the Schur complement system

on a rectangle.

equation on 
 = (0; 1)� (0; 1) with the exact solution

u�(x; y) = sink�x �
h
e�k�y �

1

1� e�2k�
� eky� �

1

e2k� � 1

i
:

The multilevel method has been applied to the interface equation on �

given: v = @n u ; T1u = v:

The stopping criteria "CCG = 5:0 � h2j and "CG = "PCG = 5:0 � h210 have been used

where the mesh parameter is de�ned by hj = 2�j; j = 1; :::; 10. We denote by u
j
kj
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the resultant solution on the level j obtained by kj CG iterations. Two variants of an

initial guess u
j+1
0 for the BPX-CCG method were tested:

U
j
j�1 =

5

4
Ij u

j
kj
�

1

4
IjIj�1 u

j�1
kj�1

and U j = Ij u
j
kj
:

Here Ij : Vj ! Vj+1 is the linear interpolation operator while Ij : Vj ! Vj+1 is an

interpolation operator of the order O(h4) on the uniform mesh. The column marked

by BPS corresponds to the standard Bramble-Pasciak-Schatz preconditioner with the

condition number O(1 + log2Nj).

Note that some two grids extrapolation procedures for solving the Poisson equation

with di�erent choices of basic iterations have been considered in [41].

7 Mesh re�nement and preconditioning

Recall that the proposed approach leads to asymptotically optimal schemes in the

case of uniform meshes on any edge �j � @
 of a given polygon 
. The interior prob-

lem is equivalent to one matrix-vector multiplication with the "interior" PS operator

(or its inverse) while the exterior problem needs, in addition, the inversion of either

the integral operator V or D. For such piecewise uniform meshes we apply the e�-

cient frequency cutting and wavelet approximation to the above mentioned operators

which manifest themselves the optimal matrix compression. The principal issue is a

uniform bound on the condition number of the compressed or preconditioned operator

resulting from a multiscale basis transformation or from a multilevel space splitting,

respectively. Note that the MAS method of the complexity O(N2) for the hypersingu-

lar integral equation (in the case of quasi-uniform meshes) has been developed in [37].

The multilevel preconditioning in BEM was also discussed in [30]. In turn, examining

the proof of Corollary 5.1, we �nd that the BPX scheme in the H
1

2 - setting appears

to be well suited for inversion of the operator D on a closed curve. In the case of the

operator V it requires some additional duality arguments [30].

From now on, we assume some mesh re�nement near the corner point wj 2 @
.

Locally re�ned meshes are commonly used for accurately modelling angular singulari-

ties. In general, the matrix compression techniques we are concerned with can not be

extended straightforwardly to the case of non-quasiuniform partitions. However, apply-

ing some special geometrical re�nement and nested selection strategy on the skeleton

one can construct quasi-optimal algorithms. We now brie
y discuss the speci�c issues

arising in presence of locally re�ned meshes.

It turns out that in the case of the multilevel BPX scheme de�ned by (5.15), (5.16)

the nested selection strategy possesses uniform O(1) condition number estimates due

to the results in [7, 8, 29, 30] developed for the FE discretizations of elliptic di�erential

equations. These results apply verbatim to the case of interface equations if one uses

the geometrical re�nement with hanging nodes. This moderately deteriorates the com-

plexity of the Schur complement computations up to O(Nj(logNj)
4) + Q(A�) where

Q(A�) is de�ned by (6.2). The above estimate indicates a relatively tolerant complex-

ity growth of the underlying BPX scheme if the corresponding geometrical re�nement

is obtained by successively scaling O(logNj) times (say by factor 2) of the given master

domain. Since the number of the degrees of freedom on an edge with mesh re�nement
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is of the order Nref = O(Nj logNj) we again arrive at the complexity O(Nref log
3Nref).

This approach will be considered in a forthcoming paper.

Consider the problem of iterative inversion of the operators V and D arising from

the equations (2.11), (2.12) and (4.7). We further presume no restrictions concerning

the re�nement strategy and allow an arbitrary unstructured mesh on @
. With a cor-

responding triangulation f�ngj@
, let Dh and Vh be the Galerkin approximations of D

and V related to the subspaces Xh and X
0

h, respectively (see Section 4). The complex-

ity of a matrix-vector multiplication is expected to be of the order O(N2). Lemma 3.3

now implies that the operator Ph = �h + aE (here a = 0 in the case of Dh and a = 1

in the case of Vh) where �h : Xh ! X 0

h is de�ned by

(�hu; v) = (
d

ds
u;

d

ds
v) ; 8u; v 2 Xh

gives a spectrally equivalent preconditioner to both D2
h and V

�2
h uniformly with respect

to the particular re�nement chosen. Thus, the equivalent equations of the form

D2
hu = DhfD; V 2

h u = VhfV

may be e�ciently resolved by the PCG method with the preconditioner Ph resp. P
�1
h .

Moreover, the operator Ph having the SPD three-diagonal sti�ness matrix may be in-

verted by a direct method with O(N) operations. The solution of the transformed

equations with both the operator D2
h and V

2
h by the PCG method up to the �xed error

"0 > 0 has the complexity O(N2) uniformly with respect to an arbitrarily unstructured

mesh on @
.

Note that the proposed preconditioning technique may be extended to the case of

Galerkin approximation of the operators V and D related to a properly nested re�ned

(selected) mesh on a 3D closed surface. In such a way the BPX preconditioner should

be applied to the Laplace-Beltrami operator on the surface under consideration. The

underlying approach provides also an optimal preconditioner for the operator Dh de-

�ned on a nonclosed curve.
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