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This dissertation focuses on inverse problems for partial differential equa-

tions with multiscale coefficients in which the goal is to determine the coeffi-

cients in the equation using solution data. Such problems pose a huge com-

putational challenge, in particular when the coefficients are of multiscale form.

When faced with balancing computational cost with accuracy, most approaches

only deal with models of large scale behavior and, for example, account for

microscopic processes by using effective or empirical equations of state on the

continuum scale to simplify computations. Obtaining these models often results

in the loss of the desired fine scale details. In this thesis we introduce ways to

overcome this issue using a multiscale approach.

The first part of the thesis establishes the close relation between compu-

tational grids in multiscale modeling and sampling strategies developed in in-

formation theory. The theory developed is based on the mathematical analysis
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of multiscale functions of the type that are studied in averaging and homog-

enization theory and in multiscale modeling. Typical examples are two-scale

functions f (x , x/ε), (0 < ε ≪ 1) that are periodic in the second variable. We

prove that under certain band limiting conditions these multiscale functions can

be uniquely and stably recovered from nonuniform samples of optimal rate.

In the second part, we present a new multiscale approach for inverse

homogenization problems. We prove that in certain cases where the specific

form of the multiscale coefficients is known a priori, imposing an additional

constraint of a microscale parametrization results in a well-posed inverse prob-

lem. The mathematical analysis is based on homogenization theory for partial

differential equations and classical theory of inverse problems. The numerical

analysis involves the design of multiscale methods, such as the heterogeneous

multiscale method (HMM) [32]. The use of HMM solvers for the forward model

has unveiled theoretical and numerical results for microscale parameter recov-

ery, including applications to inverse problems arising in exploration seismology

and medical imaging.
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Chapter 1

Introduction

This dissertation focuses on inverse problems for multiscale partial differ-

ential equations (PDEs) in which solution data is used to determine coefficients

in the equation. PDE-constrained inverse problems involve many computational

difficulties, in particular when the coefficients are of multiscale form. Two major

challenges are addressed in this work by introducing theoretical and numerical

strategies for multiscale inverse problems and then providing theoretical jus-

tification of the representation of multiscale functions using sampling theory

corresponding to the numerical methods.

The scientific motivation for this work is the problem of obtaining high

resolution images of a medium that has a microstructure. Examples that will

be considered come from medical imaging of biological tissue, and reflection

seismology, where the aim is to image the layered structure of the subsurface

(see Figure 1.1). The goal is to use some knowledge of microstructure in the

inversion process. To do so, we will consider model problems involving peri-

odic microstructures that are designed to mimic target applications in medical

imaging and reflection seismology. The periodicity assumption is made in order

to use the mathematical tools available for the asymptotic analysis of periodic
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structures.

Figure 1.1: Microstructure imaging. Left: Microscopy image of subcutaneous

fat layer in mouse skin [43] (Image courtesy of Chris Freudiger, Wei Min, Brain

Saar, Harvard University). Right: a 3D reflection profile of a polygonal faulted

interval from seismic data [20] (Image courtesy of Joe Cartwright).

For an open, bounded domain, Ω ⊂ Rd , consider the model equation

−∇ · (aε(x)∇uε(x)) + bε(x)uε(x) = f (x) in Ω, (1.0.1)

where the constant ε≪ 1 represents the ratio of scales in the problem, and aε(x)

and bε(x) posess variations on the ε−scale. When faced with balancing com-

putational cost with accuracy, most approaches only deal with scientific models

of large scale behavior and, for example, account for microscopic processes by

using effective or homogenized equations to simplify computations.

Homogenization theory [15, 51] provides the form of the effective prob-

lem corresponding to (1.0.1); as ε→ 0, uε* U in H1(Ω), where U solves

−∇ · (A(x)∇U(x))+ b(x)U(x) = f (x) in Ω, (1.0.2)
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where the theory gives a constructive definition of A and b.

The full inverse problem for (1.0.1) can be formulated as the minimiza-

tion of the least-squares distance between predictions of the forward model and

observed data. Direct inversion has a high computational cost and is typically

ill-posed; a number of different sequences aε give the same limiting solution U ,

limε→0 uε = U . In [70], the forward model in the full inverse problem is re-

placed by the homogenized equation corresponding to (1.0.1). This approach

has a lower computational cost, however it does not guarantee recovery of the

original multiscale coefficients.

Our approach is to include micro scales in the inversion by assuming that

the unknown coefficient aε is completely determined by a function m through

a bijective mapping m → aε(m). The previous inverse problems can then be

formulated in terms of microstructure, allowing for a constrained problem with

fewer unknowns. Often, the explicit form of the homogenized coefficient cor-

responding to aε is not known, and therefore predictions of A(m) cannot be

computed. This issue is addressed numerically using the heterogeneous multi-

scale method, or HMM, introduced by E and Engquist [32]. HMM provides a

framework for the design of methods that capture macroscale properties of a

system using microscale information.

In this work a HMM forward solver is used to make effective predictions.

Doing so increases the accuracy in the inversion process while benefiting from

the low computational cost of a macroscale solver. In addition to numerical

studies that illustrate the performance of these formulations, we will include
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theoretical results that are motivated by inverse problems for (1.0.1)with bε = 0

[3].

A major computational challenge is that in direct numerical simulation

the smallest important scales must be resolved over the length of the largest

scales in each dimension. Even the basic cost of direct numerical simulation can

be understood from the viewpoint of information theory. The classical Shannon

sampling theorem states that in order to represent the solution, at least two

unknowns per wavelength is required [76]. If the size of the computational

domain is 1 and ε≪ 1 is the smallest important wave length, then at least 2ε−1

unknowns are required in each dimension. The computational complexity in d

dimensions must then be at least O(ε−d).

If this is too much for the available computational resources, then some

special features of the original problem must be exploited. Scale separation is

assumed in homogenization theory [15] and in convergence analysis of HMM

[63]. The functions involved are typically of the form

f ε(x) = f (x , x/ε) where f (x , y) is periodic in y, 0 < ε≪ 1.

With equidistant sampling points the rate must still be the same as above, O(ε−d),

in order to recover the function. Different sampling strategies are required to

exploit the special structure of the functions. This corresponds to strategies for

numerical computational grids in multiscale simulations.

Chapter 2 describes the homogenization theory used to develop effective

models for multiscale systems. In Chapter 3 the abstract HMM framework is
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described as well as an outline of a typical HMM scheme for elliptic partial dif-

ferential equations. In Chapter 4 we prove that some techniques of multiscale

computations actually are optimal if seen via information theory and sampling

theory. In Chapter 5, we apply homogenization theory and multiscale numeri-

cal methods to inverse problems for PDEs with oscillatory coefficients. Chapters

4 and 5 are parts of submitted manuscripts. We conclude and describe future

directions in Chapter 6.
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Chapter 2

Homogenization

Multiscale problems arising in science and engineering can involve com-

plex relationships between processes occurring on different spatial and temporal

scales. An example is the solution of boundary value problems in periodic het-

erogeneous media, where the size of the heterogeneities, denoted ε, may be

much smaller than the size of the domain. Often, we desire a global view of the

behavior of the solution in a homogeneous domain.

The mathematical framework developed for these problems is called av-

eraging or homogenization. Homogenization theory provides a way to extract

effective properties of the microscopic solution of the unit cell (micro) problem

and translate these properties into parameters for the global (macro) problem.

This is done using an asymptotic analysis of the microscopic model. The effective

model then describes solutions to the boundary value problem as ε→ 0.

It should be noted that homogenization theory extends to more general

classes of problems. The most general theory in homogenization was first intro-

duced as G− convergence by Spagnolo [79, 80], and later generalized by Tartar

[83] and Murat and Tartar [65] as H−convergence. Homogenization theory is

also developed in the variational setting of Γ−convergence [27, 26, 18] and in

6



terms of 2−scale convergence in [4]. See [4, 23, 25, 37, 51, 65, 69] for further

details about these techniques.

We focus here on periodic homogenization for partial differential equa-

tions in order to relate the mathematical theory to physical applications involv-

ing media with periodic or locally periodic microstructures. The study of peri-

odic structures using asymptotic analysis can be found in the works of Babuska

[5, 6, 7, 8] and Bensoussan, Lions, and Papanicolau [15]. Periodic homogeniza-

tion is rigorously justified through H−convergence.

2.1 Homogenization of elliptic equations

We start with some basic definitions and notation to describe Sobolev

spaces of periodic functions.

Definition 2.1.1. Let X be a Banach space with norm ‖ · ‖X and let Ω denote an

open subset of Rd. The space Y := L2(Ω; X ) consists of all measurable functions

u : x ∈ Ω→ u(x) ∈ X such that ‖u(x)‖X ∈ L2(Ω).

The space Y = L2(Ω; X ) is equipped with the norm

‖u‖Y =

�∫

Ω

(‖u(x)‖X )
2

d x

�1/2

.

These ideas can be generalized to H1(Ω; X ). See [69] for more details. We will

denote the d−dimensional unit torus, or the unit cell by Td .
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Definition 2.1.2. Functions f : Rd → R that satisfy

f (y + ei) = f (y) ∀y ∈ Rd , i ∈ {1, . . . , d},

where {ei} is the standard basis for Rd , are called 1−periodic functions.

Then C∞
per
(Td) is the restriction to Td of smooth functions in C∞(Rd) that

are 1−periodic. The spaces Lp
per
(Td) are defined to be the completion of C∞

per
(Td)

with respect to the Lp−norm. The same holds for H1
per
(Td).

In periodic homogenization of functions of two scales, it is common for

multiscale functions to be constructed from functions u(x , y) that are periodic

in the second variable. Then, setting uε(x) = u(x , x/ε) produces a function that

has a highly oscillatory component on the ε−scale.

Definition 2.1.3. Locally periodic functions are functions that belong to the space

L2(Ω; C∞
per
(Td)) equipped with the norm

‖u‖L2(Ω;C∞per (T
d )) =

�∫

Ω

�

sup
y∈Td

|u(x , y)|
�2

d x

�1/2

.

The following theorem (see [69]) is used to relate the convergence prop-

erties of uε in the space L2(Ω) to the convergence of locally periodic functions

u(x , y).

Theorem 2.1.1. Let u ∈ L2(Ω; Cper(T
d)), ε > 0, and uε(x) = u(x , x/ε). Then

(i) uε ∈ L2(Ω) and ‖uε‖L2(Ω) ≤ ‖u‖L2(Ω,Cper (T
d )),

(ii) uε converges to
∫

Td u(x , y)d y weakly in L2(Ω) as ε→ 0,
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(iii) As ε→ 0, ‖uε‖L2(Ω)→ ‖u‖L2(Ω×Td ).

We remark that the homogenization theory presented next can be ex-

tended to functions with lower regularity and refer to the references [51, 69]

for further reading.

Elliptic differential operators in divergence form

We let Ω ⊂ Rd be an open, bounded domain with smooth boundary ∂Ω.

We will consider solutions uε ∈ H1(Ω) to the Dirichlet problem
¨

−∇ · (aε∇uε) + bεuε = f , in Ω,

uε = 0, in ∂Ω,
(2.1.1)

for a source term f ∈ L2(Ω) and aε(x) = {ai j(x , x/ε)} and bε(x) = b(x , x/ε) for

locally periodic functions ai j(x , y) and b(x , y). Furthermore, we assume that

a(x , y) = {ai j(x , y)} is a uniformly positive definite, symmetric matrix function

with bounded elements.

The goal of homogenization is to describe the limiting behavior of solu-

tions to the family of problems (2.1.1). Classical results [51, 69] state that as

ε → 0, uε → U , where U ∈ H1(Ω) is a solution to the effective or homogenized

equation of the form
¨

−∇ · (A∇U) + bU = f , in Ω,

U = 0, in ∂Ω.
(2.1.2)

The source term f is assumed to be a function that contains variations on the

slow scale, and the homogenized coefficients A and b are independent of ε. Also,

A is a symmetric, uniformly positive definite matrix function.
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Theorem 2.1.2 (Classical homogenization of elliptic equations). Let uε be the

weak solution of the multiscale problem (2.1.1) and let U be the weak solution to

the homogenized problem (2.1.2) with coefficients A(x) and b(x) defined for each

x in Ω by the formulas

A(x) =

∫

Td

�

a(x , y) + a(x , y)∇χ(x , y)T
�

d y, (2.1.3)

b(x) =

∫

Td

b(x , y)d y, (2.1.4)

where the vector field χ : Ω × Td → Rd is a weak solution to the following cell

problem for each x ∈ Ω
¨

−∇y ·
�

∇yχ(x , y)a(x , y)T
�

=∇y · a(x , y)T ,

y → χ(x , y) is 1− periodic.
(2.1.5)

Then, the following convergence holds:

1. uε* U weakly in H1
0
(Ω);

2. uε→ U strongly in L2(Ω);

3. aε∇uε + bεuε→ A∇U + bU weakly in L2(Ω).

Remark 2.1.1. In one dimension the coefficients can be explicitly computed using

the formulas

A(x) =

�∫ 1

0

a(x , y)−1d y

�−1

, b(x) =

∫ 1

0

b(x , y)d y. (2.1.6)

Note that this expression requires the evaluation of the integrals in (2.1.6) for

each x ∈ Ω. If we restrict ourselves to functions aε(x) = a(x/ε) and bε(x) =
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b(x/ε) for functions a and b that are both 1−periodic, the formulas are simpli-

fied. In this case A is a constant function equal to the harmonic mean of a and

b is a constant function equal to the arithmetic mean of b.

The homogenized equation in higher dimensions can be formally derived

using the method of matched asymptotics, where it is assumed a priori that

solutions of the Dirichlet problem (2.1.1) have a decomposition of the form

uε(x) = u0(x , y) + εu1(x , y) + ε2u2(x , y) + . . . where y = ε−1x . (2.1.7)

The functions u0, u1, u2, . . . are assumed to be locally periodic. Since differenti-

ation of the right hand side of (2.1.7) can be expressed as

∇ =∇x + ε
−1∇y ,

it follows that the differential operator Lε corresponding to (2.1.1) applied to

functions with representation (2.1.7) can be written as

Lεuε − f =ε−2L1u0 + ε
−1(L1u1 + L2u0)

+ ε0(L1u2 + L2u1 + L3u0 − f )

+ ε(L1u2 + L2u2 + L3u1) +O(ε2),

where the operators L1, L2, and L3 are defined by

L1 = −∇y ·
�

a(x , y)∇y

�

,

L2 = −∇y · (a(x , y)∇x)−∇x ·
�

a(x , y)∇y

�

,

L3 = −∇x · (a(x , y)∇x) + b(x , y).
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Collecting O(ε−2), O(ε−1), and O(1) terms in the expression for Lε produces

a system of equations with the unknowns u0, u1, and u2. Enforcing that the

compatibility conditions of the Fredholm alternative are satisfied leads to the

condition u0 = U and A, b as in Theorem 2.1.2.

The method of matched asymptotics does not provide a rigorous homoge-

nization result, rather a guide to deriving the homogenized equation. In general,

there is no way of ensuring that uε has the multiscale decomposition (2.1.7).

Techniques for proving 2.1.2, include two-scale convergence, Γ−convergence,

and G−convergence. A review of the general theory can be found in the homog-

enization literature [4, 23, 37, 51, 69].

2.2 Discussion, related issues

The given expression for A is implicit and determined by solutions to the

cell problems. There are special cases where the explicit form of A is known,

including the one-dimensional case and homogenized equations for layered ma-

terials in higher dimensions. In d dimensions, layered materials are modeled

using a coefficient of the form aε(x) = a(y/ε), where the matrix a is a func-

tion of y1 only, that is, ai j(y) = ai j(y1), i, j = 1, 2, . . . , d. For more general

problems, the homogenized coefficients cannot be explicitly computed; how-

ever, theoretical bounds on the coefficients can be obtained. Homogenization

for locally periodic structures is developed in [75].

In practice, numerical homogenization techniques such as upscaling are

12



Figure 2.1: Periodic homogenization. Plots of the full solution (left) and ho-

mogenized solution (right) of the multiscale elliptic equation (2.1.1).

used to determine effective solutions. Figure 2.1 contains a plot of the multi-

scale solution to (2.1.1) and the homogenized solution using the finite element

method with piecewise linear basis functions. In order to resolve the full so-

lution, a triangulation must contain elements of size h < ε. The homogenized

solution, independent of epsilon, is resolved on a triangulation with elements of

size H > ε.
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Chapter 3

Heterogeneous Multiscale Methods (HMM)

A main challenge in multiscale modeling is in overcoming the high com-

putational cost of direct simulation. One way around this is to use an effective

equation to describe the system that is derived from averaging or homogeniza-

tion techniques.The heterogeneous multiscale method (HMM) was introduced

in [32] to provide a framework for modifying existing methods in order to effi-

ciently handle multiscale problems. The HMM philosophy is to approximate the

solution to a macroscale model by judiciously extracting needed information

from the microscale model, allowing for an exchange of information between

the solvers as needed. HMM has been applied to multiscale partial differen-

tial equations, including elliptic problems, parabolic problems, wave equations,

ordinary differential equations, and stochastic problems [1, 35, 31].

3.1 Abstract framework

The main goal of HMM is to design methods that capture the effective

properties of a multiscale system without full knowledge of the effective model.

We think of {U} as the set of macroscopic state variables of interest, defined on

a macroscopic computational domain ΩH with step size H. At our disposal is a
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fine-scale model that describes the set of microscopic state variables {u} that are

defined on a microscopic domain Ωh with step size h.

The relationship between the macroscale solution U and the microscale

solution u can be described using operators for compression and reconstruction,

denoted, Q and R respectively, that satisfy

Qu= U , RU = u.

In order for consistency, Q and R must satisfy QRU = U for all macroscopic solu-

tions U . Examples of Q include projection and coarse-graining, and we usually

think of Q as a linear operator, though this is not always the case. There is no

unique way to define the reconstruction operator R. Examples of compression

and reconstruction operators are given in [32].

HMM is used for a class of multiscale problems where it is assumed that

a macroscale model C describes the macroscopic state variable U through the

state equation

C(U , D) = 0. (3.1.1)

Here, D denotes the data needed for the macroscale model to be complete. This

data is dependent on the microscale variable, in other words D = D(u), where

u solves the microscopic state equation

c(u, d) = 0, (3.1.2)

where the relationship d = d(U) represents the data needed from the macroscale

model in order to compute microscale simulations.
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HMM is designed for problems where the goal is to determine the macro-

scopic solution U when C is known except for the missing parameter D, which is

estimated using a known microscale model c, and the constitutive relationship

between the models. The main components of HMM follow.

1. A macroscopic solver. The macroscale model (3.1.1) is assumed to be

known except for the missing parameter D. The knowledge of the form of

C allows for us to select an appropriate solver for the macroscale model.

2. A way to estimate missing parameters in the macroscale model. The assump-

tions of scale separation allow us to use microscale simulations in order

to estimate D. This can be done “on the fly” or as a pre-processing step.

There are two steps.

(a) Constrained microscale simulation. Here the microscopic model given

in (3.1.2) is solved by enforcing compatibility conditions with the

macroscopic solution through the constraint d = d(U). Examples

of these compatibility conditions are initial data or boundary condi-

tions, and in practice this is where most of the technical difficulties

lie.

(b) Data processing. Once the microscale solution to (3.1.2) is known,

the macroscale parameter D = D(u) can be estimated and then sub-

stituted into the effective model (3.1.1).

The main difficulty of HMM is the notion of a preconceived macroscale

model. In our setting of elliptic partial differential equations, homogenization
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theory is used to derive the effective equation, however it should be noted that

HMM is a framework for the design of multiscale methods, and the effective

equation can be obtained through other means.

3.2 HMM for second order elliptic equations

Here we will consider the classical elliptic equation for a domain Ω ⊂ Rd

¨

−∇ · (aε(x)∇uε(x)) = 0, in Ω

uε(x) = 0, in ∂Ω.
(3.2.1)

One class of methods developed for these problems is the multiscale finite el-

ement method (MsFEM) [33, 48]. MsFEM involves a discretization of the full

problem (3.2.1) and the use of multiscale basis functions that resolve details of

the solution at all scales. Therefore, the computational complexity is propor-

tional to the number of unknowns in the fine scale problem. If the chief concern

is the resolution of the effective properties of the solution, a reduced model can

be used to simplify computations.

The multiscale problem (3.2.1) is well studied in homogenization theory

[15, 51] and is commonly used to demonstrate techniques in multiscale compu-

tation. The homogenized equation corresponding to (3.2.1) is of the form

¨

−∇ · (A(x)∇U(x)) = 0, in Ω

U(x) = 0, in ∂Ω.
(3.2.2)

Numerical methods such as the finite element heterogeneous multiscale

method (FE-HMM) [1, 32] approximate the solution to an effective problem

(3.2.2) using grids with typical macroscale spacing H > ε. A main advantage
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of FE-HMM is that only partial knowledge of the homogenized coefficient is

needed.

In the basic setting for FE-HMM, the macroscale model is F = F(U , A),

and the missing data is A, the effective coefficient. Figure 3.1 contains a diagram

of the coupled macro-micro grids used in a typical FE-HMM scheme.

1. Macro model discretization. First, the effective model (3.2.2) is dis-

cretized using a finite element space XH corresponding to the triangulation

TH of the domainΩ containing of element size H. The resulting macroscale

bilinear form is defined for functions V and W lying in the finite element

space XH , and it is

B(V, W ) :=

∫

Ω

∇V (x) · AHM M(x)∇W(x)d x ,

where AHM M is not known explicitly. This term is approximated using nu-

merical quadrature for a set of quadrature points, {x l}, and weights, {ωl},

B(V, W ) ≃
∑

K∈TH

|K |
∑

xl∈K

ωl (∇V · AHM M∇W ) (x l), (3.2.3)

where |K | is the measure of K .

2. The micro solver. For V ∈ XH , the stiffness matrix entries B(V, V ) are

computed using a microscale solver when the effective coefficient AHM M is

not known. The effective behavior of aε is captured locally by solving cell

problems. The microscopic model is f (vε
l
, vε

l
|∂ Iδ(xl )

) = 0, where vε
l

is the

solution to

−∇ · (aε∇vε
l
) = 0 in Iδ(x l) := x l ± δ

2
I , (3.2.4)
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with the boundary conditions dependent on V . There are three formula-

tions of the local microscale problem.

i. The Dirichlet formulation for the local microscale problem (3.2.4) im-

poses the boundary conditions

vε
l
(x) = V (x) on ∂ Iδ(x l).

ii. The Neumann formulation for the local microscale problem (3.2.4)

imposes the boundary conditions

aε∇vε
l
· n = λ · n on ∂ Iδ(x l)

where λ is the constant Lagrange multiplier for the constraint

〈∇vε
l
〉Iδ(xl )

= 〈∇V 〉Iδ(xl )
.

iii. The periodic formulation for the local microscale problem (3.2.4) im-

poses the boundary conditions

vε
l
− V is Iδ(x l)− periodic.

In this work, a P1 finite element method is chosen with triangulations T l
h

of the subdomains Iδ(x l). The spacing h < ε is chosen sufficiently small

in order to resolve the microscale.

3. Reconstruction step. Then, the term (∇V ·AHM M∇W )(x l) in (3.2.3) can

be estimated by

(∇V · AHM M∇W)(x l) ≃
1

δn

∫

Iδ(xl )

∇vε
l
· (aε∇wε

l
)d x .
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The HMM bilinear form is then defined by

BHM M(V, W ) :=
∑

K∈TH

|K |
δn

∑

xl∈K

ωl

∫

Iδ(xl )

∇vε
l
· (aε∇wε

l
)d x . (3.2.5)

Finally, the HMM solution, UHM M , solves the problem

min
V∈XH

1

2
BHM M (V, V )− ( f , V ).

Figure 3.1: FEM-HMM Discretization. An illustration of HMM for divergence

form PDEs. The orange dotted lines represent the macroscopic computational

domain TH . The collection of light blue boxes represent the microscopic compu-

tational domains T l
h

centered at the points x l.

x l

The cell size δ and the boundary conditions in (3.2.4) can vary. See

[96] for results on the effects of the different boundary conditions and cell size

on the estimate of the effective coefficients. Periodic conditions were found to

give the best performance; in general, Neumann boundary conditions result in

an underestimation of the effective coefficient and Dirichlet conditions result in

and overestimation. The effects of cell size and boundary conditions on the error

associated with HMM are plotted in Figures 3.2 and 3.3.
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Implementation

An implementation of HMM for the problem (3.2.1) is given by Algo-

rithm 1 and Algorithm 2. Here, the macroscale model and microscale model are

both discretized using the finite element method. The macroscale triangulation

TH contains elements of size H, and the microscale triangulation Th contains el-

ements of size h, with H > ε and h chosen small enough that it resolves the

ε−scale.

Macro solver. Algorithm 1 contains a solver for the equation C(U HM M , D) =

0 given by (3.1.1). This algorithm requires inputs of the coefficient aε in the

microscale equation (3.1.2) and H and h, the resolution of the coarse and fine

meshes.

• On line 2, the variables initialized are the macroscale triangulation TH of

the domain Ω and the set of finite element basis functions XH . In our

numerical simulations, piecewise-linear basis functions are used.

• At this point, a basic finite element formulation can be used to solve the

homogenized problem (3.1.1) if there is knowledge of A. Since aε is not

assumed to be periodic, there may be no way to determine A directly from

A, so constrained microscale simulation must be used to estimate A. In

order to reduce computational cost, the stiffness matrix contribution of A

will be estimated for certain values in the domain. On line 3 the values
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for the nodes and weights corresponding to the quadrature formula (3.2.3)

are stored.

• Then, on lines 4 − 6 a microscale solver is used to estimate D, the entries

of the macroscale stiffness matrix.

• Once the missing information D is estimated, the model C(U HM M , D) = 0

is solved on lines 7 − 8.

Microscale solver. A finite element formulation is chosen to solve the microscale

cell problems (3.2.4) with constraints given by the macroscale basis functions V

and W in XH . The pseudo code is given in Algorithm 2.

• The for loop in lines 2 − 9 is used to store each approximation of the

quantity (∇W ·AHM M∇V )(x) at each quadrature node in the set {x l}.

• The local subdomains Iδ(x l) are initialized on line 3.

• Then, on lines 4 − 5 the functions V and W are used to create constraints

for the microscale simulations of the form d = d(V ) and d = d(W ). Here,

the constraints are in the form of boundary conditions.

• The cell problems are solved on lines 6 − 7 using an O(h) triangulation

of the subdomain Iδ(x l).

• On line 10, the quadrature formula is applied using the given weights and

nodes. This is the data processing step, D = D(u).
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Algorithm 1 FE-HMM scheme

1: function HMMSOLN(aε , H, h)

2: (XH ,TH) = ELEMENTBASIS(H)

3: {(x l,ωl)}= QUADFORMULA(TH )

4: for all Vj, Vk in XH do

5: Djk← MICROSOLVER(aε , h, (Vj, Vk), {(x l,ωl)})
6: end for

7: UHMM← MACROSOLVER(D, TH)

8: return UHMM

9: end function

Algorithm 2 Constrained microscale simulation and data processing

1: function MICROSOLVER(aε , h, (V, W ), {(x l ,ωl)})
2: for all x l do

3: Iδ = x l ± δ
2

I

4: gv = BC(V , Iδ)

5: gw = BC(W , Iδ)

6: vε = CELLSOLN(aε , gv , h)

7: wε = CELLSOLN(aε , gw, h)

8: Q l ← 1

δd

∫

Iδ
∇wε · aε∇vεd x

9: end for

10: D← QUAD({Q l}, {(x l,ωl)})
11: return D

12: end function

3.3 Computational complexity and error estimates

Because HMM involves different models for the macroscale state and

the microscale state, the numerical analysis of HMM depends on the choice of

solvers. Instead, a general result for error estimates resulting from HMM dis-

cretizations has been developed in [32] for so-called “Type B” problems, where

it is assumed that a microscale model exists but is either partially known or
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computationally expensive to directly compute.

This research primarly involves the application of HMM to elliptic PDEs,

so we will present relevant numerical analysis for elliptic homogenization prob-

lems in Ming and Zhang [63]. Here it is assumed that the HMM macroscale

model is solved with an order k scheme on a computational domain with reso-

lution H.

Theorem 3.3.1 (Ming, Zhang 2005). Denote by U , UHM M the solutions to (3.2.2)

and the HMM solution, respectively. Let

e(HM M) = max
xl∈K,K∈TH

‖A(x l)− AHM M(x l)‖,

where ‖ ·‖ is the Euclidean norm. If U is sufficiently smooth, and λI ≤ aε ≤ ΛI for

λ,Λ > 0, then there exists a constant C independent of ε,δ and H such that

‖U − UHM M‖1 ≤ C
�

Hk + e(HM M)
�

,

‖U − UHM M‖0 ≤ C
�

Hk+1 + e(HM M)
�

.

It should be noted that there is no assumption of periodicity of aε in

Theorem 3.3.1, and U could refer to a solution to an arbitrary partial differen-

tial equation of the form (3.2.2). However, in order to enforce UHM M → U as

e(HM M)→ 0, the function U is chosen to be the unique solution to the homog-

enized equation.

For periodic homogenization problems, as described in the previous chap-
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ter, the error introduced by an HMM discretization can be quantified by

e(HM M) ≤
¨

Cε Iδ(x l) = x l + εI

C( ε
δ
+ δ) otherwise.

Example 1. Here the FEM-HMM solution is computed using a macroscopic trian-

gulation TH . The local cell problem with Dirichlet boundary conditions is solved

on subdomains using an O(h)microscopic computational domain Th. The model

problem is (3.2.1) with aε defined by

aε(x) = 1+ .5 sin(2πx2/ε).

The explicit form of the homogenized coefficient is known as

A=

�〈aε〉T2 0

0 〈(aε)−1〉−1
T2

�

,

where the averaging operator is denoted 〈·〉Y , 〈g〉Y = 1

|Y |
∫

Y
g(y)d y. Direct com-

putation of U , the solution to the homogenized equation (3.2.2), is done using

the finite element method on ΩH . Then, the HMM solution UHM M and the true

homogenized solution U can be compared. In Figures 3.2 and 3.3 the quantity

‖UHM M − U‖ is plotted as the cell size and macroscopic mesh size are varied.
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Figure 3.2: Error from varying cell size. The HMM error is computed for

varying microscopic cell sizes δ. The plot describes the error for each cell size

ratio δ/ε using both the Dirichlet and Neumann formulations of the cell problem

(3.2.4).
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Figure 3.3: Error from varying H. The error in the HMM solution UHM M for

the effective solution of the multiscale problem (3.2.1) is plotted against the

macroscopic mesh size H > ε. The HMM solution is compared with U , the

solution to the homogenized problem (3.2.2).

HMM error ‖UHM M − U‖

Macroscopic mesh size H
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Chapter 4

Nonuniform sampling and multiscale computation

Multiscale modeling and computation has recently been a very active re-

search field. A major computational challenge is that in direct numerical simula-

tion the smallest important scales must be resolved over the length of the largest

scales in each dimension. This can lead to a prohibitively high computational

cost. A number of different numerical frameworks have been proposed to han-

dle this problem and we will here focus on the heterogeneous multiscale method

(HMM) [1, 32]. The purpose of this work is to study multiscale modeling from

the point of view of information theory.

Even the basic cost of direct numerical simulation can be understood

from information theory. The classical Shannon sampling theorem states that

in order to represent the solution, at least two unknowns per wavelength is

required [76]. If the size of the computational domain is 1 and 0 < ε ≪ 1 is

the smallest important wave length, then at least 2ε−1 unknowns are required

in each dimension. The computational complexity in d dimensions must then

be at least O(ε−d).

If this is too much for the available computational resources then some

special features of the original problem must be exploited. Scale separation is
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assumed in homogenization theory, [4, 15, 51, 69], and in convergence analysis

of HMM. The functions involved are typically of the form,

f ε(x) = f (x , x/ε), f (x , y) is 1-periodic in y, 0 < ε≪ 1. (4.0.1)

With equidistant sampling points the rate must still be the same as above

O(ε−d) in order to recover the function. Different sampling strategies are re-

quired to exploit the special structure of the functions. This corresponds to

strategies for numerical computational grids in multiscale simulations. It will

be seen that some techniques of multiscale computations actually are optimal if

seen via information theory.

For g ∈ L2(Rd) the Fourier transform, denoted ĝ ∈ L2(Rd), is defined by

ĝ(ξ) =

∫

Rd

g(x)e2πi x ·ξd x .

Here we will let x , y be points in Rd , x = (x1, . . . , xd), y = (y1, . . . , yd). We will

think of x , y as spatial variables, and think of ξ = (ξ1, . . . ,ξd) as a frequency

variable. The dot product is defined as

〈ξ, x〉 = x1ξ1 . . . xdξd .

Functions whose Fourier transforms have bounded support are called bandlim-

ited functions.

The class of multiscale functions f ε(x) defined by (4.0.1) possess scale

separation between the O(1) “slow” oscillations and O(ε−1) “fast” oscillations
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when f (x , y) is a bandlimited function in both variables. In the following, we

make the assumption

f (x , y) is Ω×M− bandlimited, (4.0.2)

where Ω ⊂ Rd and M ⊂ Zd are bounded, measurable sets. We will see later that

these conditions follow naturally from the periodicity assumption.

The spectrum of the function f ε ∈ L2(R) defined by (4.0.1) is supported

on a finite union of intervals

f̂ ε(ξ) = 0 for all ξ 6∈
⋃

m∈M

�

Ω+
m

ε

�

. (4.0.3)

This representation combines the two notions of “scale” used in information

theory and in multiscale computation. The gaps between the spectral bands are

a result of the scale separation assumptions on f ε and f .

The spectral support of a one-dimensional signal that satisfies the above

properties is illustrated in Figure 4.1. These functions are of much interest to

the multiscale modeling community. A useful characteristic of these functions,

that will be shown in the sequel, is that explicit knowledge of the locations of

the frequency bands allows for the design of a sampling strategy to reconstruct

f ε using an optimal sampling rate. Specifically, for each fixed k in the bounded

set K = {k1, k2, . . . , kP} ⊂ Zd , the sampling sets Xk are given by

Xk = { j∆x + kδx | j ∈ Zd}, k ∈ K, (4.0.4)

where ∆x > ε is the uniform gap between samples in the set Xk and δx < ε is

a small perturbation.
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Figure 4.1: Multiband spectrum and nonuniform sampling set (d = 1).

The diagram below represents the spectral support of a one-dimensional func-

tion satisfying (4.0.3) (top) and nonuniform sampling points in the set M =

{0,±1, , . . . ,±M} (bottom).

ξ. . . . . .

ΩΩ− M
ε Ω+ M

ε

∆x

δx

We will now state the main nonuniform sampling theorem for multiscale

functions. The proof will be given in later sections.

Theorem 4.0.1. For d = 1 let Ω ⊂ R be a bounded interval and let M ⊂ Z be

bounded set of frequencies. Suppose that f ε is a function of the form (4.0.1), for

a function f satisfying (4.0.2). Let ∆x satisfy 0 < ∆x < 1
|Ω| and let δx satisfy

0< δx < ε/M, where M ≥ supm∈M |m|.

Given a bounded set K ⊂ Z, define the shifted uniform sampling sets Xk

for k ∈ K by (4.0.4). If the number of elements in K is equal to the number

of elements in M, then the function f ε can be uniquely reconstructed from the

samples f ε(z), z ∈ ∪kXk. Moreover, there is a positive constant C = C(δx/ε) such
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that the following stability estimate holds

‖ f ε‖2
L2 ≤ C
∑

y∈∪kXk

| f ε(y)|2. (4.0.5)

The sampling strategy in the theorem above, illustrated in Figure 4.1, is

very well matched with the grids used in multiscale methods. As an example,

HMM provides a framework for capturing large scale features on coarse grids by

incorporating local simulations on grids with much finer resolution, see [1, 32]

and §4.1.

In the next section, we give a brief background to relevant issues in mul-

tiscale computation and information theory.

4.1 Multiscale representations in theory and computation

The goal of this work is to make a connection between computational

grid practice in multiscale modeling and information theory, and to formulate

sampling strategies for a class of continuous signals that includes cases where

the sampling rate may result in aliasing.

Representation of multiscale functions

Fourier analysis is a standard way of representing signals g ∈ L2(Rd) in

terms of components on different scales. This representation extends to more

general decompositions of signals in terms of a sequence {φn}n∈Z ⊂ L2(Rd)

g(x) =

∞
∑

n=−∞
〈g,φn〉φn(x) (4.1.1)
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where 〈·, ·〉 defines an inner product on the space. The vectors {φn} can form an

orthonormal basis of, for example, trigonometric functions or wavelets.

Here we connect the two: starting with a bandlimited function f (x , y)

that has Fourier decomposition (4.1.1) given by

f (x , y) =

∞
∑

n=−∞
fn(x)φn(y),

and then including a “fast” variable through the transformation y → x/ε. The

resulting functions f ε given by (4.0.1) have a multiscale representation in the

viewpoints of both Fourier analysis and periodic homogenization.

Multiscale computation

Classical results from information theory are often cited as motivation for

selecting the mesh size in the numerical analysis of a linear or nonlinear system

that is discretized on a uniform grid X = {x j | 0 ≤ j ≤ N} with spacing ∆x =

x j−x j−1. In order to ensure that the solution to the discretized problem, {u j}Nj=0
,

is consistent with the solution to the true problem and the approximation is

stable, the grid X must be sufficiently dense.

In order to approximate uε, the solution of a multiscale system, the uni-

form grid spacing ∆x is chosen to be much smaller than the smallest scale in

order to fully resolve the ε-scale. Multiscale algorithms exist that achieve a close

approximation to uε on much coarser grids. They do this by exploiting the spe-

cial properties of uε such as periodicity, scale separation, and bounded spectral

support.
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For example, in [1, 36] HMM is used for the solution of stiff ordinary

differential equations (ODEs) of the form

¨

duε

d t
= f (uε, vε, t),

dvε

d t
= 1

ε
g(uε, vε, t),

(4.1.2)

where vε is a solution that oscillates on the time scale of O(ε), 0 < ε≪ 1, and

uε has variations mainly on the O(1) time scale.

Assume that as ε→ 0, uε→ U ∈ C1(R) and that U is given by

d

d t
U = f̄ (U , t). (4.1.3)

This “effective” system can be solved using HMM even if the form of f̄ is not

explicitly known. The right hand side of (4.1.3) can be approximated using

averaged solutions to the full system.

Figure 4.2 represents an HMM-type scheme for approximating the solu-

tion U of (4.1.3). The top directed axis represents the coarse grid that holds

values of U . In the lower axis, local solutions uε, vε to (4.1.2) are computed us-

ing an initial condition determined by U(tn). Then, f̄ is evaluated by averaging

the solutions with a compactly supported kernel. This procedure is summarized

below.

1. Reconstruction: at T = tn set the initial conditions for uε
n
, vε

n
using U n.

2. Microscale evolution: solve (4.1.2) in a local domain t ∈ [tn, tn+η] and

use an averaging kernel K to compute f̄ (tn) ∼ f̃ (tn) = K ∗ f ε(uε
n
, vε

n
).
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Figure 4.2: HMM for ordinary differential equations. The diagram represents

the macro-micro coupling in an HMM scheme for ODEs. Here, the solution is

calculated on a local microscopic mesh in order to approximate the solution on

the macroscopic grid.

T = tn

tn+ηT = tn

T = tn+1

3. Macroscale evolution: compute U n+1 at T = tn+1 using the values {U j}n
j=0

and { f̃ (t j)}nj=0
.

Consider the following simple example of the type studied in [36],







d x
d t
= y2, x(0) = 0

d y

d t
= 1

ε
z, y(0) = 1

dz
d t
= 1

ε
y, z(0) = 0.

(4.1.4)

The solutions are x(t) = t

2
+ ε

4
sin(2t

ε
), y = cos( t

ε
), and z(t) = sin t

ε
. The slow

variable x(t) is of the form given in (4.0.3).

Nonuniform discretizations are also used in approximation schemes for

partial differential equations (PDEs), for example,

¨

−∇ · (aε(x)∇uε(x)) = f (x) x ∈ Ω ⊂ Rd ,

uε(x) = 0, x ∈ ∂Ω.
(4.1.5)
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Here, ε is a parameter satisfying 0 < ε ≪ 1 that represents the ratio between

the large and small scales in the multiscale coefficient aε(x) := a(x , x/ε), where

a(x , y) is assumed to be periodic in y.

For aε ∈ L∞(Rd) the solution uε of (4.1.5) contains a high frequency

component of O(ε−1) and a low frequency component of O(1). The problem

(4.1.5) is well studied in homogenization theory [4, 15, 51, 69], and it demon-

strates the application of these homogenization techniques in multiscale com-

putation.

Numerical methods such as the finite element heterogeneous multiscale

method [1, 32] approximate the solution to an effective problem using grids

with macroscale spacing ∆x > ε.

The functions involved in homogenization theory and multiscale compu-

tation are often of lower regularity. In order to connect to information theory,

we will approximate them by bandlimited functions. The rich theory of sam-

pling for bandlimited functions, summarized in the next section, will aid us in

the design of a suitable discretization.

Classical sampling theory for bandlimited signals

In 1765, Lagrange proved that periodic functions with trigonometric se-

ries expansions can be expressed as a linear combination of n sine and n co-

sine terms. In addition, he proved that such functions can be uniquely recon-

structed from 2n + 1 uniform samples of the function taken within a period.

In 1841, Cauchy proved an interpolation formula for periodic functions with
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limited wave-number using Lagrange interpolation in the proof [21].

Theorem 4.1.1 (Cauchy, 1841). Let

f (t) =
∑

|n|≤M

cne2πi tn (4.1.6)

and set N = 2M + 1. Then,

f (t) = sin(πtN)

N−1
∑

m=0

1

N
f

�

m

N

�

(−1)m

sinπ(t − m
N
)
.

Theorem 4.1.1 is a sampling theorem that allows us to express f in terms

of its samples { f
�

m
N

�

}N−1
m=0

. The functions that satisfy (4.1.6) belong to a broader

class of functions that have a bounded spectrum, called bandlimited functions.

Definition 4.1.1. Let F ⊂ Rd be a bounded set. The set of F−bandlimited

functions is denoted

B(F) = {g ∈ L2(Rd) | ĝ(ξ) = 0 for all ξ 6∈ F}.

If f ∈ B (F), we refer to f as a bandlimited or, more precisely, F−bandlimited

function.

The celebrated sampling theorem that Shannon used in his theory of

communication, see [77, 76], provides a characterization of one-dimensional

bandlimited signals.

Theorem 4.1.2 (Shannon Sampling Theorem). If a function f ∈ L2(R) contains

no frequencies higher than W cycles per second it is completely determined by giving

its ordinates at a series of points spaced (1/2W ) s apart.
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Though Shannon is credited with introducing this theorem to informa-

tion theory, he was aware that the result was widely known in communication

theory [66]. Equivalent theorems existed in the mathematical literature, includ-

ing the work of both E.M. and J.T. Whittaker [91, 92, 93] and Kotel’nikov [55].

We shall now state the Classical Sampling Theorem adapted to our math-

ematical framework.

Theorem 4.1.3 (Classical Sampling Theorem). Let W > 0 and choose ∆x to be a

fixed constant that satisfies 0< 2W∆x ≤ 1. Then

∀ f ∈ B ([−W, W ]) , f (x) =

∞
∑

n=−∞
f (n∆x)

sinπ(x − n∆x)

π(x − n∆x)
, (4.1.7)

where the convergence of the sum is in the L2−norm and uniformly on R.

The set {n∆x}n∈Z in (4.1.7) is called a uniform sampling set because it

consists of equidistant sampling points with spacing ∆x . The sampling rate is

the number of samples taken per second. Theorem 4.1.3 states that a sampling

rate 1
∆x
≥ 2W is needed in order to guarantee the unique reconstruction of a

[−W, W ]−bandlimited function from its uniform samples. The minimum sam-

pling rate of 2W is known as the Nyquist rate.

Uniform sampling theory has been developed in more general contexts,

including sampling of bandpass signals f ∈ B ([−W +W0, W +W0]) [54], the

d−dimensional uniform sampling theorem of Middleton and Peterson [71], and

the sampling theorem for locally compact abelian groups [53].
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Nonuniform sampling theory

In this work, we are interested in sampling signals that arise in important

applications, including image processing, geophysics, and optical tomography.

Due to the nature of the acquisition of measurements, it is not always possible

to sample a function uniformly. Therefore, it is important to study the theory of

nonuniform or irregular sampling.

Irregular sampling involves the reconstruction of a bandlimited function

from nonuniformly spaced samples. For a review of the nonuniform sampling

literature, see [62], and for theoretical and numerical aspects of nonuniform

sampling, see [14, 40, 46]. An example is multivariate sampling, where Shan-

non’s theory is extended to the recovery of signals from the responses of m linear

shift-invariant systems sampled at 1/m times the reconstruction rate [68]. Sam-

pling in this way allows us to use prior knowledge of the representation of a

signal to design a sampling strategy that simplifies the reconstruction process.

An example of multivariate sampling of interest is periodic nonuniform

sampling, where the sampling set is the collection of sampling sets of the form

{ j∆x + kδx | j ∈ Zd} for k in Zd . This type of sampling is well studied in the

signal processing literature [59, 74, 87, 90, 95]. One major challenge in the

design of nonuniform sampling strategies from a practical point of view is the

stability of the reconstruction [60].

Definition 4.1.2. Let F ⊂ R be a bounded set. For a given sampling strategy, a

sampling set X = {x j} is a set of stable sampling for B(F) if there exists a constant
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C > 0 such that

∫ ∞

−∞
|g(x)|2d x ≤ C
∑

j

|g(x j)|2 for all g ∈ B(F).

Uniqueness and stability results for the nonuniform sampling of bandlim-

ited functions are provided by Beurling and Landau [16, 58, 57]. In these works,

a bound is obtained on the minimum sampling density required for the stable re-

construction of a bandlimited function. This density, called the Beurling-Landau

density is determined by the sum of the bandwidths of a function. For multiband

functions with large spectral gaps, the Beurling-Landau density allows for stable

sampling at a rate that is much lower than the Nyquist rate. The main result in

this paper produces a stable set of sampling for a class of multiscale functions

with a sampling density that attains the Landau bound.

There is an enormous volume of literature on sampling theory and its

various generalizations and extensions [13, 50, 61, 67, 68, 86, 88]. Irregular

sampling of bandlimited functions has been extensively studied in the context

of frame theory of [30] that motivated the development of iterative methods for

reconstruction using the frame-method [14, 40, 39, 94]. There are very similar

nonuniform sampling theorems using bunched samples to reconstruct functions

that have spectral gaps [12, 68, 87, 89]. The result presented here differs from

these results in terms of conditions on the spectral gaps or the notion of stability.
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4.2 Spectral properties of bandlimited multiscale functions

This section describes properties of functions that are studied in multi-

scale analysis. We begin with an example from [34] of basic multiscale functions

in one dimension that satisfy (4.0.1), and derive the spectral property (4.0.3).

Example 2 (d = 1). Consider functions with scaling law representation

f ε(x) = f (x , x/ε)

where f (x , y) is (Ω ×M)−bandlimited and 1-periodic in both variables. The

spectrum of f is therefore supported in the discrete set Ω ×M, where Ω =

{0, 1, . . . N} and M= {0, 1, . . . M}. These assumptions allow for the representa-

tion of f (x , y) by a finite Fourier series:

f (x , y) =

N
∑

n=0

M
∑

m=0

fn,me2πi(nx+my). (4.2.1)

The multiscale function f̂ ε has Fourier transform

f̂ ε(k) =

N
∑

n=0

M
∑

m=0

fn,mδ(k− n− m

ε
),

where δ(x) is the Dirac delta function. Then, the support of the spectrum of f̂

can be computed,

f̂ ε(k) = 0, k 6∈
⋃

m∈M

�

Ω+
m

ε

�

.

Now, removing the assumption that f (x , y) is periodic in x , tools from

Fourier analysis can be applied to construct multiscale functions from locally
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periodic functions of two variables. This construction will allow us to derive the

spectral property (4.0.3).

The next lemma provides the specific structure of the spectrum of ban-

dlimited multiscale functions.

Lemma 4.2.1. The Fourier transform of f ε ∈ L2(Rd) defined by (4.0.1) − (4.0.2)

satisfies

f̂ ε(ξ) = 0, ξ 6∈
⋃

m∈M

�

Ω+
m

ε

�

.

Proof. Set Y = Td . For every fixed x ∈ Rd , the Fourier series expansion of

f (x , y) has the form

f (x , y) =
∑

m∈M
cm (x) e

2πi〈m,y〉; cm (x) =

∫

Y

f (x , y) e−2πi〈m,y〉d y. (4.2.2)

It is readily seen that the Fourier coefficients cm(x) lie in the space B (Ω) by

taking the Fourier transform,

ĉm (ξ) =

∫

Rd

�∫

Y

f (x , y) e−2πi〈m,y〉d y

�

e−2πi〈ξ,x〉d x

=

∫

Y

∫

Rd

f (x , y) e−2πi(〈m,y〉+〈ξ,x〉)d xd y

= f̂ (ξ, m) = 0 for all ξ 6∈ Ω.

Substituting
�

x , x

ε

�

for (x , y) in (4.2.2) results in the representation

f ε (x) =
∑

m∈M
cm (x) e

2πi〈m,x/ε〉; cm ∈ B (Ω) . (4.2.3)
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For ξ ∈ Rd , the Fourier transform f̂ (ξ) can be expressed as

f̂ ε (ξ) =
∑

m∈M
ĉm

�

ξ− m

ε

�

,

and since ĉm(ξ− m
ε
) = 0 for ξ 6∈ Ω+ m

ε
, it follows that

f̂ ε(ξ) = 0, ξ 6∈
⋃

m∈M

�

Ω+
m

ε

�

.

The special structure of the spectral support of multiscale functions given

by Lemma 4.2.1 will allow for the design of nonuniform sampling schemes as in

[34]. Our aim is to find a sampling scheme that is sub-Nyquist, that is, if W is

the intersection of connected sets containing the support of f̂ ε, we will design

stable sampling sets for f̂ ε that have spacing ∆x > 1
|W | .

4.3 Nonuniform sampling strategy

For the sampling sets Xk defined by (4.0.4), the aim is to derive sufficient

conditions on ∆x and δx so that the function f ε can be uniquely and stably

recovered from the nonuniform samples f ε(z), z ∈ ∪kXk. In general, when

sampling at a sub-Nyquist rate, the unique recovery of f ε is not guaranteed. We

can, however, describe the function reconstructed from undersampling.

Example 3. Let f ε(x) be a function defined in Example 2 and assume, for sim-

plicity, that ε = 1/L1 for a positive integer L1. According to Theorem 4.1.3, the

stable reconstruction of f ε from uniform samples requires a sampling rate of

O(ε−1).
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In the nonuniform sampling set used in [34], the sampling points {x j,k}

are clustered in groups with ∆x = 1/L2, for L2, L1/L2 positive integers,

x j,k = j∆x + kδx 1≤ j ≤ J , 1 ≤ k ≤ K (δx ≪∆x).

Evaluating the expression (4.2.1) at each sampling point results in a system of

equations
N
∑

n=0

M
∑

m=0

fn,me2πi(nx j,k+mx j,k/ε) = f ε(x j,k).

This system is invertible when J > N and K > M and the conditions δx < ε/M

and ∆x < 1/N are satisfied. This shows that it is possible to take advantage of

the special structure of f ε and uniquely reconstruct the function from samples

taken from nonuniform sampling set with O(N) density.

In the following we assume that f ε ∈ L2(Rd) defined by (4.0.1)− (4.0.2).

In this case, f ε ∈ B
�

∪m∈M(Ω+
m
ε )
�

. The proof involves a modification of argu-

ments from [12] that assume that the uniform sampling lattices have spacing

∆x that is an integer multiple of ε. Instead, we will prove results using vec-

tors Lm and αm, where (Lm)i are integers and (αm)i ∈ [0, 1/∆x) are the unique

constants that satisfy

m

ε
=

Lm

∆x
+αm.

For these more general classes of functions and sampling sets, a sampling

operator is needed that constructs functions using a Shannon-type reconstruc-

tion formula from uniform samples taken at sub-Nyquist sampling rate.
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Lemma 4.3.1. For a bounded set Ω ⊂ Rd and a multiscale function g(x) satis-

fying the assumptions of Lemma 4.2.1, the function SXk
g(x) corresponding to the

sampling set

Xk = { j∆x + kδx | j ∈ Zd}, ∆x <
1

|Ω| ,

defined by the formula

SXk
g(x) =
∑

y∈Xk

g(y)ϕs(x − y), ϕs(z) =
1

|Ωs|

∫

Ωs

e2πi〈z,ξ〉dξ, (4.3.1)

where Ωs = [− 1
2∆x

, 1
2∆x
]d , is square-integrable and satisfies

SXk
g(y) = g(y) for all y ∈ Xk. (4.3.2)

Proof. Due to (4.2.3), g has a representation

g(x) =
∑

m∈M
gm(x)e

2πi〈m,x/ε〉, gm ∈ B (Ω) for m ∈M.

Applying the sampling operator to each gm results in

�

SXk
gme2πi〈m,·/ε〉� (x) =

∑

y∈Xk

gm(y)e
2πi〈m,y〉/εϕs(x − y). (4.3.3)

The function defined by g̃m = gm(x + kδx) also lies in the space B (Ω), and we

can bound the magnitude of the terms in the sum (4.3.3) by

∑

y∈Xk

|gm(y)e
2πi〈m/ε,y〉ϕs(x − y)| =

∑

y∈X0

|gm(y + kδx)e2πi〈m/ε,y+kδx〉ϕs(x − y − kδx)|

≤
�

∑

y∈X0

| g̃m(y)|2
�1/2

<∞.
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The last statement holds because of the Cauchy Schwartz inequality and the

square integrability of g̃m. Therefore the series (4.3.3) is uniformly absolutely-

convergent and

‖SXk
gme2πi〈m,·/ε〉‖2

L2(Ω)
≤
�

∑

y∈X0

| g̃m(y)|2
�

‖ϕs‖2
L2(Ω)

<∞.

Summing over m in the set M,

∑

m∈M

�

SXk
gme2πi〈m,·/ε〉� (x) =

∑

m∈M

∑

y∈Xk

gm(y)e
2πi〈m,y〉/εϕs(x − y)

=
∑

y∈Xk

∑

m∈M
gm(y)e

2πi〈m,y〉/εϕs(x − y)

=
∑

y∈Xk

g(y)ϕs(x − y) = SXk
g(x).

Since M is a finite set, the function SXk
g(x) is a finite sum of square-integrable

functions, and is therefore also square-integrable.

Also, we can show that ϕs(0) = 1 and ϕs(y) = 0 for y ∈ X0, y 6= 0. Let

y = n∆x , n 6= 0.

ϕs(0) =
1

|Ωs|

∫

Ωs

dξ = 1,

ϕs(y) =
1

|Ωs|

∫

Ωs

e2πi〈n∆x ,ξ〉dξ,

=

∫

[−1
2 , 1

2 ]
d

e2πi〈n,ξ′〉dξ′ = 0.

Therefore, we have shown that (4.3.2) holds.
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The next lemma provides the explicit form of the function reconstructed

from sub-Nyquist sampling of f ε.

Lemma 4.3.2. Let f ε satisfy (4.2.3). The function SXk
f ε defined by (4.3.1) is

square integrable and has the explicit form

SXk
f ε(x) =
∑

m∈M
cm(x)e

2πi(〈αm,x〉+〈Lm/∆x ,kδx〉). (4.3.4)

Moreover, the reconstruction of SXk
f ε is stable,

‖SXk
f ε‖2

L2(Ω)
<

1

|Ω|
∑

y∈Xk

| f ε(y)|2. (4.3.5)

Proof. By Lemma 4.3.1, the function SXk
f ε is well defined and square-integrable.

The sampled function can be expressed in terms of its sampled Fourier coeffi-

cients

SXk
f ε(x) =
∑

m∈M
SXk

cε
m
(x), (4.3.6)

where cε
m
(x) = cm(x)e

2πi〈m/ε,x〉 is a function in the space B
�

Ω+ m
ε

�

.

Define the shifted function dm(x) = cm(x + kδx)e2πi〈m/ε,kδx〉. Then, for
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each m in M,

SXk
cε

m
(x) =
∑

y∈Xk

cm(y)e
2πi〈m/ε,y〉ϕs(x − y)

=
∑

y∈X0

dm(y)e
2πi〈αm,y〉 1

|Ωs|

∫

Ωs

e2πi〈x−y−kδx ,ξ〉dξ

=

∫

Ωs

�

1

|Ωs|
∑

y∈X0

dm(y)e
−2πi〈y,ξ−αm〉
�

e2πi〈x−kδx ,ξ〉dξ

=

∫

Ωs





∑

z∈Ω−1
s

d̂m (ξ−αm + z)



 e2πi〈x−kδx ,ξ〉dξ (4.3.7)

=

∫

Ωs

d̂m(ξ−αm)e
2πi〈x−kδx ,ξ〉dξ

= dm(x − kδx)e2πi〈αm,x−kδx〉

= cm(x)e
2πi(〈αm,x〉+〈Lm/∆x ,kδx〉). (4.3.8)

Here, the set Ω−1
s
= {k/∆x | k ∈ Zd} is called the reciprocal lattice.

Since the functions cm and ϕs are both square integrable, the sums con-

verge uniformly and the exchange between sum and integral is justified. The

Poisson summation formula in Rd is used for (4.3.7) [72]. Then, substituting

(4.3.8) in (4.3.6) proves the reconstruction formula. For stability,

‖SXk
f ε‖2

L2(Ω)
≤ 1

|Ωs|
∑

y∈Xk

‖ f ε(y)ϕs(· − y)‖2
L2(Ω)

<
1

|Ω|
∑

y∈Xk

| f ε(y)|2.

The expression (4.3.1) will be used in the proof of the main result.
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Proof of Theorem 4.0.1

For simplicity, we set M= {0, 1, . . . , M} and K = {0, 1, . . . , K}. The stable

reconstruction formula for multiscale functions f ε is proved using an approach

similar to [34].

We will use a result from [45], concerning the estimation of the norm of

the inverse of Vandermonde matrices.

Theorem 4.3.1 (Gautschi, 1990). For arbitrary wl ∈ C, with wl 6= wl ′ if l 6= l ′,

there holds

max
l

∏

l ′ 6=l

max(1, |wl ′|)
|wl −wl ′ |

≤ ‖V−1‖∞ ≤max
l

∏

l ′ 6=l

1+ |wl ′ |
|wl −wl ′ |

, (4.3.9)

where V is a Vandermonde matrix with elements w0, . . . wM ∈ C. The upper bound

is obtained if wl = |wl |eiθ , l = 0 . . . , M for some fixed θ ∈ R.

Proof. The set of equations from (4.3.4) form the linear system

SXk
f ε(x) =
∑

m∈M
cα

m
(x)e2πi〈Lm/∆x ,kδx〉.

where cα
m
(x) = cm(x)e

2πi〈αm,x〉. When K = M , the corresponding Vandermonde

matrix V contains the elements Vmk = wk
m

for wm = e2πi
Lm
∆x δx . The requirement

that w0, . . . wM are distinct elements results in an invertible system.

Since 0 < δx
ε
< 1

M+1
, the elements w0, . . . , wM are distinct nodes dis-

tributed on the upper half plane of the unit circle. This ensures the existence of
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V−1. As a result, the reconstruction formula for f ε is well defined:

f ε(x) =
∑

j∈M
cα

j
(x)e2πi

L j
∆x x (4.3.10)

=
∑

j∈M

�

∑

k∈K
(V−1) jkSXk

f ε(x)

�

e2πi
L j
∆x x . (4.3.11)

Using some properties of Vandermonde matrices, and the result from

Theorem 4.3.1, it can be shown that this formula is stable.

The upper bound on |wl −wl ′ | can be computed

|wl −wl ′ | ≤ |e2πiMδx/ε − 1|< |e2πi M
2M+1 − 1| < 2. (4.3.12)

Now we compute the smallest distance between adjacent nodes. In the first case,

for 0 ≤ l < M ,

|wl+1 −wl |= |e2πi( 1
ε−(αl+1−αl ))δx − 1|> |e2πi( 1

ε−∆x)δx − 1|.

The distance between adjacent nodes w0 and wM satisfy

|w0 −wM | ≥ |e2πiMδx/ε − 1| > |e2πiδx/ε − 1|> |e2πi( 1
ε−∆x)δx − 1|.

Since∆x < 1
ε
, the last term in both cases is nonzero. Then, we have the estimate

1

2M+1
< ‖V−1‖∞ ≤

1

|e2πi( 1
ε−∆x)δx − 1|M+1

.

A final stability estimate for the reconstruction of f ε from sampling sets

Xk, k ∈ K is

‖ f ε‖2
L2 ≤ ‖V−1‖∞‖
∑

k∈K
SXk

f ε(x)‖2
L2

< C(δx/ε)
∑

y∈∪kXk

| f ε(y)|2,
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where C(δx/ε) = M+1
|Ω|

�

|e2πi( 1
ε−∆x)δx − 1|−(M+1)

�

.

4.4 Some extensions and generalizations

Localized microscale

Multiscale models can be divided into different groups based on common

features of the problems. In [1, 32], type A problems are described as problems

that require microscale resolution with a microscale solver in a fixed number of

local domains. This could be in order to resolve isolated defects such as dislo-

cations, cracks, shocks, and contact lines. Outside of these local domains, the

macroscale solver is used. Type B problems require some microscale information

throughout the entire computational domain. Localized microscale simulations

are used to supply missing information to the microscale solver.

The sampling analysis in the earlier sections have referred to type B prob-

lems. There are also links to information theory for type A problems involving

functions of the following form

lim
|t|→∞

f (t) =

¨

f+(t), t > 0

f−(t), t < 0,
(4.4.1)

where f +, f − are branches of bandlimited function. We will assume the specific

form f (γ−1
ε
(t)), where the transformation γε models the behavior of the isolated

defect. Adaptive mesh refinement techniques are designed for these problems

to provide higher resolution near a singularity or a domain of strong variation.

These types of discretizations match well with the sampling results in [24, 52]

for time warped signals.
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In [24], the exact reconstruction of f from irregularly spaced samples

{tn} is guaranteed, provided that there exists a continuous, injective mapping

tn → γ(tn). The main result for time warped one dimensional signals is the

following theorem.

Theorem 4.4.1 (Clark, 1985). Let a function f (t) of one variable be sampled at

the points t = tn, n ∈ Z, where tn is not necessarily a sequence of uniformly spaced

numbers. If a 1-1 continuous mapping γ(t) exists such that n/2W = γ(tn), and if

h(τ) = f (γ−1(τ)) is bandlimited to [−W, W ], then the following equation holds

f (t) =

∞
∑

n=−∞
f (tn)

sin(2Wγ(t)− n)

2Wγ(t)− n
. (4.4.2)

As an example, we set f ε(t) = sin(t + 2arctan(t/ε)). Then, f+(t) =

sin(t +π) and f−(t) = sin(t −π). Define γ−1
ε

: R→ R by the transformation

γ−1
ε
(t) = t + arctan(t/ε).

Since γ−1
ε

is surjective and (γ−1
ε
)′(t) = 1+ ε−1p

1+(tε−1)2
> 0, it follows that γε(t) :=

(γ−1
ε
)−1(t) is well defined.

Then, there exists a set of sampling points tn, n ∈ Z such that γε(tn) = n.

The function h(τ) = f (γε(τ)) is a bandlimited function that can be reconstructed

from the uniform samples at points τn = γε(tn). Therefore, the original function

can recovered using the relation f (t) = h(γ−1
ε
(t)), and we have shown that

recovery of f is possible using the nonuniform sampling set γε(tn), n ∈ Z.

There are cases where the explicit form of the transformation γ is un-

known. In [52], a local estimate B(t) of the effective bandwidth of f is made
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using techniques such as the windowed Fourier transform. A disadvantage here

is that the “local” bandwidth cannot be extended globally.

We have that a signal with time varying bandwidth B(t) can be defined

as

f (t) = sin(2πφ(t)),

where the phase function φ(t) is defined in terms of the instantaneous signal

frequency by φ′(t) = B(t). The samples required for an exact reconstruction

are given implicitly

tn = n/(2B(tn)).

In the above example, this corresponds to a sampling set of the form

tn =
nπ

tn+ 2arctan(tn/ε)
.

Sampling in higher dimensions

The uniform sampling theorem in higher dimensions is described in [71],

along with an optimal sampling rate. We set basis vectors v1, v2 ∈ Rd, v1 6= kv2,

determined by points on the sampling set

x[l] = l1v1 + . . .+ ld vd, li = 0,±1,±2, . . . (4.4.3)

An example of (4.4.3) for d = 2 is a rectangular grid, where v1 = (∆x , 0), v2 =

(0,∆x).
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We will now state the higher dimensional sampling theory of Peterson

and Middleton [71].

Theorem 4.4.2 (Sampling theorem in d dimensions, Peterson, Mid-

dleton, 1962). A function f (x) whose Fourier transform f̂ vanishes

over all but a finite portion of wave-number space can be everywhere

reproduced from its sampled values taken at a lattice of points {l1v1 +

. . . ld vd}, li = 0,±1,±2, . . ., provided that the vectors {v j} are small

enough to ensure nonoverlapping of the spectrum f̂ with its images on

a periodic lattice defined by the vectors {u j} with 〈v j, uk〉 = 2πδ jk.

Extensions of the one-dimensional irregular sampling theory are pro-

vided in [38], for functions that are bandlimited to the set Ω = [−ω1,ω1] ×

[−ω2,ω2]. Reconstruction in these cases require assumptions about the prod-

uct structure of the sampling sets or the use of algorithms that are known to

converge [46]. For d ≥ 2, irregular sampling theorems are given that require a

sampling density equal to the Nyquist density in [40, 47]. Numerical algorithms

for irregular sampling are given in [81].

The theory for sub-Nyquist sampling of multiband functions in higher

dimensions is incomplete (to the best knowledge of the author). The case d = 2

for discrete-time signals is considered in [87]. In [12], a generalized sampling

theory for locally compact abelian groups is developed under assumptions on

the structure of the sampling sets.

The results in §4.3 allow us to adapt Theorem 4.0.1 for d ≥ 1.
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Corollary 4.4.1. Let f ε(x) satisfy (4.0.1)− (4.0.3) for a discrete set of frequencies

M = {m1, . . . , mP}. Then, f ε can be recovered uniquely from samples on the set

{ j∆x + kδx , | j, k ∈ Zd , k = k1, . . . kQ} if the matrix V with entries

Vmk = e2πi〈kδx ,Lm/∆x〉

is invertible. In particular, necessary conditions are Q ≥ P.

Proof. Lemma 4.3.2 provides the solution of the system of equations

SXk
f ε(x) =
∑

m∈M
cm(x)e

2πi(〈αm,x〉+〈kδx ,Lm/∆x〉). (4.4.4)

Invertibility of the system allows for the recovery of the shifted Fourier compo-

nents cm1
(x)e2πi〈αm1

,x〉, . . . , cmP
(x)e2πi〈αmP

,x〉. Multiplying each cm by a factor of

e2πi〈Lm,∆x〉 recovers the mth frequency component of f ε, and summing over all m

gives the result.

In the case of d = 1, we showed sufficient conditions on the sampling

sets that resulted in an invertible Vandermonde matrix V . In higher dimensions,

the fundamental theorem of algebra does not hold and the invertibility of the

system is not guaranteed. In [12], it is shown that stable recovery is possible

through iterative reconstruction when the sampling sets follow certain admissi-

bility conditions.
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Chapter 5

Numerical methods for multiscale inverse problems

Inverse problems for partial differential equations pose a huge computa-

tional challenge, in particular when the coefficients are of multiscale form. An

application is medical imaging, where high resolution reconstructions are ob-

tained using photo-acoustic effects of optical and ultrasonic waves [10, 11]. We

also consider examples in reflection seismology [82], where accurate models of

seismic wave propagation in the Earth’s sedimentary crust must account for a

wide spectrum of time and spatial scales. The mathematical formulation is as

follows.

For a bounded, connected domain, Ω ⊂ Rd , we will consider the problem

−∇ · (aε∇uε) + bεuε = f in Ω. (5.0.1)

Here, f ∈ H−1(Ω), bε ∈ L∞(Ω), and aε is a symmetric, uniformly positive defi-

nite matrix function with bounded elements. The constant 0< ε≪ 1 represents

the ratio of scales in the problem. When faced with balancing computational cost

with accuracy, most approaches only deal with scientific models of large scale

behavior and, for example, account for microscopic processes by using effective

or homogenized equations to simplify computations.
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Homogenization theory [15, 51] provides the form of the effective prob-

lem corresponding to the family of functions uε ∈ H1
0
(Ω) that satisfy (5.0.1); as

ε→ 0, the solutions converge weakly, uε* U in H1
0
(Ω), where U is the solution

to an equation of the form

−∇ · (A∇U) + bU = f in Ω. (5.0.2)

Here, A and b are called the effective or homogenized coefficients corresponding

to aε and bε respectively.

5.1 Inversion using PDE-constrained optimization

In the abstract framework, the inverse problem is to determine an un-

known parameter a ∈ X where a is typically a function lying in the Banach

space X . The given data is denoted d∗ ∈ Y , where Y is also a Banach space;

typically Y = RM . The observation operator G : X → Y is the forward mapping

from the unknown parameter to the data, and the prediction operatorF : X → Y

is the forward mapping from the unknown parameter to the prediction.

In our context of multiscale inverse coefficient problems for PDEs, G

maps the unknown parameter aε ∈ X to G(uε,∇uε, x) ∈ Y , where uε solves

the PDE (5.0.1), denoted by the state equation

c(aε, uε) = 0.

The prediction operator F maps an unknown macroscopic parameter A to the

function G0(U ,∇U , x) ∈ Y , where U solves the homogenized PDE (5.0.2), de-
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noted by the state equation

c0(A, U) = 0.

The functions G and G0 measure properties of the solution and its gradient taken

on the full domain or part of the domain, for example, on the boundary.

A common approach is to formulate the full inverse problem as a PDE-

constrained optimization problem of the form

minimize
aε,uε

J (aε, uε) :=
1

2
‖G(uε,∇uε, x)− d∗‖2 +αR(aε)

subject to c(aε, uε) = 0.

(5.1.1)

The constraint c(aε, uε) = 0 is satisfied when uε solves the state equation (5.0.1).

Full inversion has a high computational cost and is typically ill-posed;

a number of different sequences aε give the same homogenized solution U ,

limε→0 uε = U . In [70], the full inverse problem (5.1.1) is replaced with an

effective inverse problem, formulated as

minimize
A,U

J
0(A, U) :=

1

2
‖G0(U ,∇U , x)− d∗‖2 +αR(A)

subject to c0(A, U) = 0,

(5.1.2)

where the constraint c0(A, U) = 0 is satisfied when U solves the effective state

equation (5.0.2).

This paper explores the possibility of explicitly including the microscale

components of the forward model in the inversion process by assuming a priori

knowledge of the microstructure in the form of a low dimensional parametriza-

tion. This is achieved by imposing the additional constraint

aε(x) = a(x/ε, m(x)),
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where a is known and m is to be determined. It is assumed that m ∈ X ′ lies

in a lower dimensional Banach space X ′, allowing for a reduction in the search

space.

The problem (5.1.1) is then replaced by

minimize
m,uε

J (aε, uε)

subject to c(aε, uε) = 0,

aε(x) = a(x/ε, m(x)).

(5.1.3)

The following is a summary of the different numerical approaches for

microscale inversion.

I. Full inverse problem (Microscale inversion of the full model).

The full inverse problem (5.1.1) is ill-posed and computationally expensive.

Therefore, we omit this case from our computations.

II. a. Analytic solver (Microscale inversion of the effective model).

If the closed form of the effective coefficient A(x , m(x)) corresponding to

the parametrized coefficient aε(x) = a(x/ε, m(x)) is known, the effec-

tive inverse problem can also be formulated in terms of microstructure.

Here, macroscopic solvers for the effective equation are used to make

predictions of the forward model in the optimization problem

minimize
m,U

J
0(A, U) subject to c0(A, U) = 0, A= A(·, m). (5.1.4)

b. HMM (Microscale inversion of the effective model).
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Often, the explicit form of the homogenized coefficient corresponding

to aε is not known, and therefore the term A(·, m) in (5.1.4) cannot be

directly computed. This issue can be overcome numerically with the

heterogeneous multiscale method, or HMM, introduced by E and En-

gquist [32]. HMM provides a framework for the design of methods that

capture macroscale properties of a system using microscale information.

The HMM formulation of the minimization problem is

minimize
m,U

J
0(AHM M , UHM M )

subject to cHM M (aε, UHM M) = 0, aε(x) = a(x/ε, m(x)).
(5.1.5)

Here, the constraint cHM M (aε, UHM M) = 0 is satisfied when UHM M is the

HMM solution corresponding to (5.0.1). The use of HMM allows for

the ability to evaluate the functional J 0(AHM M , UHM M) without explicit

knowledge of AHM M .

III. Two-stage solver (Effective inversion coupled with microscale recovery).

Another option is to first solve the minimization problem (5.1.2) and then

determine the microscale parameter from the recovered effective coeffi-

cient. This idea is formulated as the two-stage procedure,

¨

(Â, Û) = argmin J
0(A, U) subject to c0(A, U) = 0,

minimize
m

‖A(·, m)− Â‖2.
(5.1.6)

Remark 5.1.1. The main objective of this work is to probe the effects of a mi-

croscale parametrization on the reconstructed coefficients. The choice of a regu-

larization functionalR and the constant α≥ 0 in (5.1.1) and (5.1.2) is a research
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topic on its own, and in this work we concentrate on issues concerning the data

fidelity term by setting α = 0.

5.2 Multiscale analysis for the inverse conductivity problem

In this section we provide analysis for the inverse coefficient problem

corresponding to (5.0.1) with bε = 0. Let Ω be an open, bounded region in

R
d , d ≥ 2, that has a sufficiently smooth boundary ∂Ω. In applications, Ω is

thought of as a conducting medium with spatially varying electrical properties.

The steady state voltage potential u solves the equation

−div (γ∇u) = 0 in Ω. (5.2.1)

The coefficient γ, referred to as the conductivity, is in general a uniformly pos-

itive definite, symmetric, d × d matrix; if γ is scalar we say that the conduc-

tivity is isotropic, in all other cases it is called anisotropic [84]. In the next

sections we will model multiscale and effective conductivities by γ(x) = aε(x)

and γ(x) = A(x) respectively.

The aim of inverse conductivity problems is to determine γ using multiple

boundary measurements.

Definition 5.2.1. For f , g ∈ H1/2(∂Ω) let u ∈ H1(Ω) be the weak solution to

(5.2.1) subject to u|∂Ω = f , and let v be an arbitrary function in H1(Ω) that

satisfies v|∂Ω = g.

The Dirichlet-to-Neumann map Λγ : H1/2(∂Ω) → H−1/2(∂Ω) is defined
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by

〈Λγ f , g〉 =
∫

Ω

γ(x)∇u(x) · ∇v(x)d x . (5.2.2)

We will summarize the proof in [84] that the Dirichlet-to-Neumann map

is well defined and bounded. Suppose v1, v2 are functions in H1(Ω) satisfying

v1|∂Ω = v2|∂Ω = g. Then,

∫

Ω

−div (γ∇u) (v1 − v2)d x =

∫

Ω

γ∇u · ∇(v1 − v2)d x = 0,

and therefore the right hand side of (5.2.2) is independent of the choice of the

function v satisfying v|∂Ω = g. For fixed u, the right hand side of (5.2.2) defines

a bounded linear operator on H1/2(∂Ω) since there exists a v ∈ H1(Ω) with

v|∂Ω = g and |v|H1(Ω) ≤ C |g|H1/2(∂Ω). This ensures existence and uniqueness of

the Dirichlet-to-Neumann map. The inequalities below prove that the Dirichlet-

to-Neumann map is a bounded map from H1/2(∂Ω)→ H−1/2(∂Ω):

∫

Ω

γ∇u · ∇vd x ≤ C‖u‖H1(Ω)‖v‖H1(Ω)

≤ C‖ f ‖H1/2(∂Ω)‖g‖H1/2(∂Ω).

The inverse boundary value problem of Calderón [19], also known as

the inverse conductivity problem or electrical impedance tomography, is to re-

cover γ from knowledge of the Dirichlet-to-Neumann map Λγ. For recent results

involving uniqueness and reconstruction, see [17, 22, 85]. In order to resolve

stability issues [2] some approaches replace a-priori regularity assumptions for

γ with different assumptions that are more suited for applications. These ideas
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are related to the current task of extracting microscale properties from effective

boundary measurements.

Conductivities with special anisotropy

Now we consider inverse conductivity problems for anisotropic conduc-

tivities, γ(x) = A, where A is a matrix function taking values in R2×2. We will

also include the prior knowledge of a parametrization A= A(x , m(x)) for a scalar

function m(x) ∈ L∞(Ω) and symmetric matrix A. Then, m→ A(·, m) is a matrix-

valued function with derivative DmA. Uniqueness and stability results for the

inverse conductivity problem are given in [3] for cases where the coefficient

satisfies admissibility conditions (Definition 2.2 in [3]).

Definition 5.2.2. For a measureable set D ⊂ Rd, we say A ∈ M(λ−1,λ, D) if

A∈ H1,p(D), and

λ−1|ξ|2 ≤ A(z)ξ · ξ≤ λ|ξ|2,

for any ξ ∈ Rd and a.e. z ∈ D.

Definition 5.2.3. We say A(·, ·) ∈H if the following conditions are satisfied:

A∈ H1,p(Ω, [λ−1,λ], Symn),

DmA∈ H1,p(Ω, [λ−1,λ], Symn),

supessm∈[λ−1,λ]

�

‖A(·, m)‖Lp(Ω) + ‖DxA(·, m)‖Lp(Ω),

+‖DmA(·, m)‖Lp(Ω) + ‖DmDxA(·, m)‖Lp(Ω)

�

≤ E,

λ−1|ξ|2 ≤ A(x , m)ξ · ξ≤ λ|ξ|2 for a.e. x ∈ Ω and all m ∈ [λ−1,λ],ξ ∈ Rd .

63



In addition, the following monotonicity condition must also be satisfied:

DmA(x , m)ξ ·ξ ≥ E−1|ξ|2 for a.e. x ∈ Ω and all m ∈ [λ−1,λ],ξ ∈ Rd . (5.2.3)

The following theorem, adapted to our context, is from [3]. It gives a

global uniqueness result for matrices A(·, ·) ∈H.

Theorem 5.2.1 (Adapted from Theorem 2.1 in Alessandrini, Gaburro, 2001).

Given p > d, let Ω be a bounded Lipschitz domain with constants L, r, h. Let

m1, m2 satisfy

λ−1 ≤ m1(x), m2(x)≤ λ for all x ∈ Ω, (5.2.4)

‖m1‖H1,p(Ω),‖m2‖H1,p(Ω) ≤ E, (5.2.5)

Let A be sufficiently bounded and monotone; then,

‖A(x , m1(x))− A(x , m2(x))‖L∞(∂Ω) ≤ C‖ΛA(x ,m1(x))
−ΛA(x ,m2(x))

‖∗.

Here C is a constant that depends only on d, p, L, r, diam(Ω),λ and E.

Theorem 5.2.2 (Adapted from Theorem 2.4 in Alessandrini, Gaburro, 2001).

Suppose m1, m2 satisfy (5.2.4) and (5.2.5). Suppose also that Ω can be partitioned

into a finite number of domains {Ω j} j≤N , with m1−m2 analytic on each Ω j. Then,

ΛA(·,m1)
= ΛA(·,m2)

implies that A(·, m1) = A(·, m2) in Ω.

This theorem will be used to determine whether microscale features de-

pend continuously on data from the homogenized model. The next section will

describe the related problem of inverse homogenization.
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Inverse homogenization

We consider inverse homogenization of the Dirichlet problem

−div (aε∇uε) = f in Ω, uε = 0 on ∂Ω. (5.2.6)

The goal of inverse homogenization is to recover the coefficient aε from macroscale

data d∗ of the form d∗ = G(U ,∇U , x), where U is the solution to an effective

problem of the form

−div (A∇U) = f in Ω, U = 0 on ∂Ω. (5.2.7)

In [28], the problem is re-cast using the geometric framework underlying

homogenization. Here, we will parametrize the conductivity itself in order to re-

formulate the problem as an optimization problem involving a low dimensional

search space.

Microscale Parametrization

Explicit solutions of the homogenized equation (5.2.6) can be found for

problems in the case d = 1, and also in certain higher dimensional models

that have a one-dimensional character, such as those describing layered media

[51]. We will use the following examples of models that include a microscale

parametrization, depicted in Figure 5.1.

Let m ∈ L∞(Ω) be a function taking values in an interval I = [λ−1,λ].

We consider functions a(y,η) that are Y− periodic in y, Y = [0,λ]2. Then, the
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multiscale conductivity aε is characterized by

aε(x) = a(x/ε, m(x)). (5.2.8)

A. Volume fraction. An example of a function that characterizes a two-phase

medium that takes values from the functions a1(y) = a1(y2) and a2(y) =

a2(y2) with the respective volume fractions
η

|Y | and
1−η
|Y | respectively.

a(y,η) =

¨

a1(y2) 0≤ y1 < η

a2(y2) η≤ y1 < λ
. (5.2.9)

B. Amplitude. Here we include a damping term η that restricts the oscillations

of a multiscale function. For a0 > 0 and a λ−periodic function a1 ∈ L∞(R),

a(y,η) = a0 +ηa1(y2). (5.2.10)

C. Angle. The assumption (5.2.8) is modified in the third case. Here, the con-

ductivity aε is characterized by a Y−periodic function â ∈ L∞(R2), and a

spatially varying rotation matrix σm(x),

aε(x) = â(σm(x)x/ε), ση =

�

cosη sinη

− sinη cosη

�

. (5.2.11)

In the following we will restrict our attention to functions a satisfying

λ−1 ≤ a(y,η) ≤ λ for all η in I and y ∈ Ω, and choose a0, a1 and a2 accordingly.

Effective coefficients

In this section we derive the closed form of the homogenized coefficient

matrix corresponding to parametrized functions aε defined in the previous sec-

tion. For the model problems we consider, the spatial dependence of effective
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Figure 5.1: Periodic microstructure model for layered materials. Oscillatory

conductivities with spatially varying microscale components. From left to right:

volume fraction, amplitude, and angle.

coefficient is determined only by m, that is, A(x , m(x)) = A(m(x)). The follow-

ing lemma describes the effective coefficient corresponding to almost periodic

functions. The averaging operator is denoted 〈 f 〉X = 1
|X |
∫

X
f (y)d y, where |X |

is the volume of the set X ⊂ R2.

Lemma 5.2.1. Suppose aε(x) = ã(x/ε, m(x)), where the function ã(y,η) ∈

M(λ−1,λ; Y × I) is isotropic, smooth in x and Y−periodic in y. If in addition the

equation ã(y,η) = ã(y2,η) holds for all η ∈ I , y ∈ Y , then the homogenized coef-

ficient corresponding to aε is a symmetric matrix A(x , m) = A(m) ∈M(λ−1,λ; I)

that has the form

A(m) = diag(〈ã(·, m)〉Y , 〈ã(·, m)−1〉−1
Y
). (5.2.12)

Proof. Homogenization theory for locally periodic functions [51, 69] provides

the explicit form of A, the homogenized coefficient corresponding to aε. For

m ∈ I ,

A(m) =
1

|Y |

∫

Y

(ã(y, m)Id + ã(y, m)∇yχ)d y, (5.2.13)
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where χ = (χ1,χ2) solves the cell problems:

−∇y · (ã(y, m)∇yχ) =∇y · ã(y, m)Id (5.2.14)

with the constraint χ(y, m) is Y−periodic in y and
∫

Y
χ(y, m)d y = 0. Since

we further assumed that ã is a function only of x and y2, ã = ã(y2, m), the

solutions to the cell problem (5.2.14) are of the form χ = (χ1(y2, m),χ2(y2, m)).

Therefore, (5.2.14) is equivalent to

− ∂

∂ y2

(ã(y2, m)
∂

∂ y2

χ1) = 0,

− ∂

∂ y2

(ã(y2, m)
∂

∂ y2

χ2) =
∂

∂ y2

ã(y2, m).

Integration from 0 to y2 gives

ã(y2, m)
∂ χ1

∂ y2

= c1, (5.2.15)

ã(y2, m)
∂ χ2

∂ y2

= −ã(y2, m) + d1, (5.2.16)

for some constant functions c1(m), d1(m). Since ã is strictly positive, we can

divide (5.2.15) and (5.2.16) by ã(y2, m) and integrate from 0 to y2 again

χ1 = c1

∫ y2

0

1

ã(ξ, m)
dξ+ c2, χ2 = −y2 + d1

∫ y2

0

1

ã(ξ, m)
dξ+ d2.

Now, using periodicity, χl(0, m) = χl(λ, m) it follows that that c1 = 0, and d1 =

〈ã(·, m)−1〉−1
Y

. Therefore (5.2.15) and (5.2.16) become

ã(y2, m)
∂ χ1

∂ y2

= 0,

ã(y2, m)
∂ χ2

∂ y2

= −ã(y2, m) + 〈ã(·, m)−1〉−1
Y

.
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Substituting these expressions into (5.2.13) results in the closed form for the

effective coefficient (5.2.12). As a result, A is a symmetric matrix function and

for ξ ∈ R2 and m ∈ I ,

λ−1|ξ|2 ≤ 〈ã(·, m)−1〉−1
Y
|ξ|2 ≤ (A(m)ξ,ξ),

|A(m)ξ| ≤ |〈ã(·, m)〉Yξ| ≤ λ|ξ|.

Now we can derive the homogenized coefficients corresponding to aε of

the form (5.2.9) and (5.2.10) and prove the main result using Theorem 5.2.2.

Theorem 5.2.2. Suppose m1, m2 satisfy (5.2.4) and (5.2.5). Suppose also that

m1 −m2 is piecewise analytic on Ω. Let aε
i
(x) = a(x/ε, mi(x)) be a multiscale co-

efficient of the form (5.2.9) or (5.2.10), and denote the corresponding homogenized

coefficient by A(mi), i = 1, 2. Then, ΛA(m1)
= ΛA(m2)

implies that m1 = m2 in Ω and

there is a constant C > 0 with

‖aε(m1)− aε(m2)‖ ≤ C‖ΛA(m1)
−ΛA(m2)

‖.

Proof. We can check the smoothness and monotonicity assumptions by directly

calculating the homogenized coefficients. Applying Lemma 5.2.1 results in

A(m) = diag(〈ã(·, m)〉Y , 〈ã(·, m)−1〉−1
Y
)

Therefore, the boundedness of ã implies the boundedness of A, and DmA(m) is

monotone in the sense of (5.2.3) if there is a constant E > 0 with

Dm〈ã(·, m)−1〉−1
Y
> E and Dm〈ã(·, m)〉Y > E.
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In other words, we require that the monotonicity of the function ã is preserved

after averaging and taking the harmonic mean. Monotonicity can be directly

verified in both cases (5.2.9) and (5.2.10). Therefore, the assumptions of The-

orem 5.2.2 and 5.2.1 are satisfied and m1 = m2 for a.e. x in Ω, along with the

stability result.

We also will describe the effective coefficient corresponding to an angular

parametrization.

Lemma 5.2.3. Suppose aε is of the form (5.2.11) with â(y) = â(y2) for all

y = (y1, y2). Also, suppose that m is a constant function, again denoted m. The

corresponding homogenized coefficient has the form

A(m) = 〈â〉Y Id +
�

〈â−1〉−1
Y
− 〈â〉Y
�

�

cos2 m cos m sin m

cos m sin m sin2 m

�

. (5.2.17)

Proof. Let σ = σm. The homogenized coefficient corresponding to â is a known

matrix Â = diag(〈â〉Y , 〈â−1〉−1
Y
). For a bounded set X ⊂ R2, consider the scalar

problems

∫

X

∇ψ · â(x/ε)∇uεd x = 0, ∀ψ ∈ H1
0
(X ) for uε ∈ H1

0
(X ),

∫

X

∇ψ · Â∇Ud x = 0, ∀ψ ∈ H1
0
(X ) for U ∈ H1

0
(X ).

Now consider the change of variables x = σy where σ is an orthogonal
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transformation from R2 to R2. We obtain the Dirichlet problems for X ′ = σ−1X

∫

X ′
∇yψ · â(σy/ε)∇yuε(σy)d y = 0,

∫

X ′
∇yψ ·σÂσ−1∇yU(σy)d y = 0.

Since uε(σy)* U(σy) in H1
0
(X ′), it follows that the homogenized coef-

ficient for aε(x) is σÂσ−1.

Remark 5.2.1. In this case, the derivative matrix function

DmA=
�

〈â−1〉−1
Y
− 〈â〉Y
�

�− sin 2m cos2m

cos2m sin2m

�

has eigenvalues ±1. Therefore, the monotonicity assumption of Theorem 5.2.2

cannot be directly applied. However, our numerical results (see §5.3 and §5.4)

indicate that a microscale parametrization of the angle is also determined from

the effective Dirichlet-to-Neumann map.

Homogenization of periodic cell structures

In two dimensions, the homogenized form of aε is generally not known

explicitly. We will consider two examples that can be used to model periodic

cell structures. A typical cell is modeled by the set Y = [0,λ]2, λ > 1. For

η′ ∈ I = [λ−1,λ], we denote the interior of a cell by the set Y ′ = {(y1, y2) ∈ Y |

y1 < η
′, y2 < η

′} and let a1, a2 be positive constants.

D. Cell wall thickness. In the first example we again consider a spatially vary-
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Figure 5.2: Microscale model for periodic cell structures. Piecewise constant

functions are used to model cell structures that have spatially varying membrane

thickness (left) and interior properties (right).

ing parameter that determines the thickness of the cell walls,

aε(x) = a(x/ε, m(x)), a(y,η) =

¨

a1 y ∈ η

|Y |Y

a2 otherwise
. (5.2.18)

E. Interior diffusivity. In the second consider a configuration of cells with a

fixed geometry that possess spatially varying diffusivity on the interior of the

cell,

aε(x) = a(x/ε, m(x)), a(y,η) =

¨

ηa1 y ∈ Y ′

a2 otherwise
. (5.2.19)

Lemma 5.2.4. Suppose aε is of the form (5.2.18) or (5.2.19). Then, the homog-

enized coefficient corresponding to aε is an isotropic matrix function A defined by

A(m) = ā(m)Id, (5.2.20)

ā(m) =
1

|Y |

∫ λ

0

�∫ λ

0

1

a(y, m)
d y1

�−1

d y2. (5.2.21)
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Proof. Homogenization theory for locally periodic functions [51, 69] provides

the explicit form of A(η), the homogenized coefficient corresponding to a(y,η).

For η ∈ I ,

A(η) =
1

|Y |

∫

Y

(a(y,η)Id + a(y,η)∇yχ)d y, (5.2.22)

where χ = (χ1,χ2) solves the cell problems

−∇y · (a(y,η)∇yχ) =∇y · a(y,η)Id, (5.2.23)

with the constraint χi(y,η) is Y−periodic in the second variable and
∫

Y

χi(y,η)d y = 0.

The solutions to the cell problems (5.2.23) are equivalent to

∂

∂ yi

�

a(y,η)
∂ χk

∂ yi

�

= − ∂
∂ yi

a(y,η), i = 1, 2, k = i, (5.2.24)

∂

∂ yi

�

a(y,η)
∂ χk

∂ yi

�

= 0, i = 1, 2, k 6= i.

Furthermore, the function a(y,η) satisfies the condition of cubic symmetry (see

[51]), and therefore the effective coefficient is isotropic; that is, (5.2.20) holds

for a function ā to be determined. As a consequence, ā can be calculated using

only the solution to (5.2.24) for i = k = 1. Integration from 0 to y1 gives

a(y,η)
∂ χ1

∂ y1

= −a(y,η) + c1, (5.2.25)

where c1 is a function of only η and y2. Since a is positive, we can divide by a

and integrate from 0 to y1 again, giving

χ1 = −y1 + c1

∫ y1

0

1

a(y,η)
d y1 + c2,
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where c2 is also a function of only η and y2. Applying the periodic boundary

conditions χ1|y1=0 = χ1|y1=1 results in the determination of c1 as

c1(y2,η) =

�∫ λ

0

1

a(y,η)
d y1

�−1

.

Therefore (5.2.25) becomes

a(y,η)
∂

∂ y1

χ1 = −a(y,η) +

�∫ λ

0

1

a(y,η)
d y1

�−1

.

Substituting these expressions into (5.2.22) results in the closed form for the

effective coefficient (5.2.21).

We can now show that the homogenized cell structures are monotone in

the sense of (5.2.3) and prove the next result.

Theorem 5.2.5. Theorem 5.2.2 also holds for aε(x) = a(x/ε, m(x)) of the form

(5.2.18) or (5.2.19) with a1, a2 chosen such that


∂ a
∂m
(·, m)
�

Y
> λ−4E > 0 for all

m ∈ I .

Proof. Applying Lemma 5.2.4 results in A(m) = ā(m)Id, for ā in (5.2.21). The

boundedness of ā is a direct consequence of the boundedness of a. Defining the
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function ϕ ∈ L∞([0,λ]× I) by ϕ(y2, m) = λ−1
∫ λ

0

1

a(y,m)
d y1, it follows that

Dmā(m) = λ−1

∫ λ

0

∂

∂m

�

(ϕ(y2, m))
−1
�

d y2

= −λ−1

∫ λ

0

�

(ϕ(y2, m))
−2
� ∂ ϕ

∂m
(y, m)d y2

= λ−2

∫ λ

0

∫ λ

0

∂ a
∂m
(y, m)

(ϕ(y2, m)a(y, m))
2
d y1d y2

≥ λ−4

­

∂ a

∂m
(·, m)

·

Y

.

Therefore, the requirement that


∂ a
∂m
(·, m)
�

Y
> λ−4E ensures that the

monotonicity condition Dmā(y, m) > E > 0 is satisfied for every m ∈ I and

y ∈ Ω.

Remark 5.2.2. So far, we have only considered the parametrization of one mi-

croscale parameter (e.g., angle or amplitude). Our numerical results in §5.3 also

include the parametrization of multiple features using the map

(m, n)→ A(m, n).

In cases where the effective coefficient is not known, a numerical approx-

imation of the effective problem can be estimated with multiscale methods such

as HMM, described in Chapter 3. Our numerical results indicate that microscale

details can be gleaned from macroscopic boundary measurements.
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5.3 Computational methods for inversion

For the optimization problems (5.1.4) and (5.1.5), predictions of the ef-

fective model are simulated using an analytic forward solver and FEM-HMM

(see IIa and IIb in Section 5.1). The inversion results also include errors pro-

duced using a two-stage solver (III in Section 5.1) for the minimization problem

(5.1.6). The forward problems (5.0.1) and (5.0.2) are solved for f = 0, and

imposed Dirichlet boundary conditions g(1), . . . g(K).

Forward solvers

Let Th be a regular triangulation of Ω with microscopic resolution h< ε,

and let Xh be the corresponding piecewise linear finite element space. The finite

element solution u
(k)

h
∈ g(k) + Xh to the full problem (5.2.6) has the variational

formulation

∫

Ω

∇v(x) · aε(x)∇u
(k)

h
(x)d x +

∫

Ω

bε(x)u
(k)

h
(x)d x = 0, (5.3.1)

for all v ∈ Xh. Let TH be a regular triangulation of Ω with macroscopic reso-

lution H > ε, and let XH be the corresponding piecewise linear finite element

space. The macroscopic finite element solution U (k) ∈ g(k) + XH to the effective

problem (5.2.7) satisfies

∫

Ω

∇V (x) · A(x)∇U (k)(x)d x +

∫

Ω

b(x)U (k)(x)d x = 0, (5.3.2)
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for all V ∈ XH . From the previous section, we have that for all V ∈ XH , the

FE-HMM solution U
(k)

HM M ∈ g(k) + XH satisfies

∫

Ω

∇V (x) · AHM M (x)∇U
(k)

HM M(x)d x +

∫

Ω

b(x)U
(k)

HM M(x)d x = 0, (5.3.3)

where AHM M is estimated by microscale solvers on local subdomains.

Discrete inverse problem

We will now describe the computation of the discrete observations and

predictions. The function G = G(u,∇u, x) will be common to both the observa-

tion and prediction operators. We denote by Gh the restriction of G to discrete

solutions that are resolved on an O(h) microscopic mesh, and similarly we de-

note by GH(U ,∇U , x) the restriction of G to discrete solutions that are resolved

on a macroscopic mesh of O(H).

I. The synthetic data is created in two steps. First, the full solution discretized

on a microscopic mesh Th is used to compute Gh(uε,∇uε, x). Then, the

observed data is set to be

G (m) = d∗ = Π
H
G

h(uε,∇uε, x); c(aε(·, m), uε) = 0,

where ΠH is a projection operator from Th onto TH .

II. Predictions take the form

F (m̂) = G
H(U ,∇U , x); c0(A(m̂), U) = 0
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where the solutions are computed using a forward solver on the macroscale

mesh TH . In the case where A(m̂) is unknown, the state equation c0(A, U) =

0 is replaced by the state equation cHM M (aε(·, m̂), UHM M) = 0 correspond-

ing to the HMM solution (5.3.3). In the case of the inverse conductivity

problems, observed data and predictions are set to be the discrete Dirichlet-

to-Neumann maps determined by the Dirichlet conditions and solutions of

the forward model.

a. The discrete problem corresponding to the effective inverse problem

(5.1.4) is
minimize

m,U
‖GH(U ,∇U , x)− d∗‖

subject to c0(A, U) = 0,

A= A(·, m),

(5.3.4)

where C0 is satisfied when U solves (5.3.2).

b. The HMM-reduced model (5.1.5) becomes

minimize
m,UHM M

‖GH(UHM M ,∇UHM M , x)− d∗‖

subject to cHM M (aε, UHM M) = 0,

aε = a(·/ε, m),

(5.3.5)

where cHM M is satisfied when UHM M solves (5.3.3).

III. Finally, the two-stage procedure (5.1.6) is discretized as









(Â, Û) = argmin ‖GH(U ,∇U , x)− d∗‖
subject to c0(A, U) = 0,

minimize
m

‖A(·, m)− Â‖.
(5.3.6)
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Remark 5.3.1. We emphasize that the synthetic data is simulated by first solving

the full problem (5.3.1) on a fine mesh Th. The fully resolved solution is then

projected onto a coarse grid TH using a smoothing operator, e.g., windowed

averaging or interpolation. This provides a framework for microscale inversion

that avoids the major pitfalls of committing an “inverse crime.”

5.4 Numerical Results

In §5.2, the parameter m is chosen to be a scalar function that satisfies

the requirements of Theorem 5.2.2. In our numerical experiments, the unknown

microscale parameter m is a vector with N components, m ∈ (0, 1)N . This vector

is used to determine the coefficients of a piecewise constant function defined on

a partition of the domain {Ωk} ⊂ Ω, 1≤ k ≤ N , ∪kΩk = Ω.

The inversion errors are calculated using the least squared distance be-

tween the true parameter m∗ and a predicted parameter m̂. Since 0 < m < 1,

we choose to use the absolute error.

Inverse conductivity (bε= 0)

The problems (5.0.1), (5.0.2) are discretized on the domain Ω= [0, 2]×

[0, 2]. We set f = 0 and prescribe the Dirichlet boundary conditions, G =

{g1, . . . gK}. The coefficient aε is defined for a given vector m∗ ∈ (0, 1)N by (??)

using the partition Ωk = [
2(k−1)

N
, 2k

N
)× [0, 2), 1 ≤ k ≤ N .

In the following numerical experiments we use the K = 4 boundary con-
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ditions {x2, y2, x y, (x y)2}, and the constants ε = 1/60, H = 1/12, h = 1/256.

The microscale cell problems in HMM (equation (3.2.4) in Chapter 3) are solved

on the subdomains Iδ(x l) = x l + 3εId. The projection operator ΠH is set to

be convolution with a smoothing kernel. The optimization problems (5.3.4)

− (5.3.6) are performed using the MATLAB lsqnonlin function. The error is

computed as ‖m∗ − m̂‖.

Table 5.1 shows that the analytic and HMM solver perform similarly for

all three microstructure models. Inversion using the two-stage solver results

in an error that grow linearly with N , the degrees of freedom of the unknown

parameter m. This can be attributed to first stage of the two stage solver, where

the unknown effective coefficient A has 4N degrees of freedom.

Remark 5.4.1. The results in Table 5.2 demonstrate the need for a carefully

designed microscale parameters. In certain cases, the solutions to cell prob-

lems corresponding to different microscale coefficients aε are indistinguishable.

In particular, for a fixed m, there exists a m̃ such that the homogenized co-

efficients corresponding to a parametrized volume fraction m → aε
V F
(m) are

equal to the homogenized coefficients corresponding to a parametrized ampli-

tude m̃→ aε
AM P
(m̃).

These results for the inverse conductivity problem are important to other

applications where surface measurements of a medium are used to describe char-

acteristics of the interior. Similar models work in a variety of other areas, includ-

ing exploration geophysics, mine and rock detection, and reservoir modeling.
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Table 5.1: Error in parameter inversion of the multiscale electrical impedance

tomography model.

A. Volume Fraction

N Analytic HMM Two-stage

1 0.01654417 0.02539143 0.10816459

2 0.09828509 0.08513511 0.16240264

3 0.10929754 0.10148560 0.27615110

4 0.11633237 0.10527977 0.32224688

5 0.17736705 0.15733702 0.42772383

6 0.42557205 0.18798622 0.38027366

B. Amplitude

N Analytic HMM Two-stage

1 0.03621115 0.04599242 0.04225760

2 0.05374923 0.06188072 0.14315285

3 0.07829441 0.09554321 0.26518266

4 0.06354117 0.06750427 0.24979234

5 0.26919343 0.28371626 1.39133602

6 0.48579157 0.49334067 0.70127957

C. Angle

N Analytic HMM Two-stage

1 0.03577476 0.02663165 0.13256423

2 0.10950838 0.11083198 0.31558807

3 0.19553649 0.16093081 0.72582859

4 0.27517537 0.23496116 0.94267985

5 0.45800627 0.43427778 0.81128416

6 0.66105576 0.41827901 0.38349101

81



Table 5.2: Error in two-component parameter inversion of the multiscale elec-

trical impedance tomography model.

Angle/ Angle/ Amplitude/

N Volume Fraction Amplitude Volume Fraction

1 0.026535 0.020459 0.185492

2 0.101729 0.075323 0.264703

3 0.267094 0.184916 0.369400

In the next sections we will explore numerical results corresponding to medical

imaging and geophysics.

Medical imaging (bε > 0)

The modeling of wave propagation in heterogeneous media is an impor-

tant problem in many areas of science and engineering. Current approaches

attempt to design methods that account for variations in material microstruc-

tures when solving equations of motion in an effective medium [42]. Diffusion

in random heterogeneous media is studied in [44, 56].

We will consider a medical imaging technique that uses a combination

of optical and ultrasonic waves to determine properties of a medium from sur-

face measurements. In Quantitative Photoacoustic Tomography, (qPAT), optical

coefficients are reconstructed from knowledge of the absorbed radiation map

[10, 11].

Let Ω ⊂ R2 represent a medium of interest and Λ ⊂ R+ a set of wave-

lengths included in the experiment. The density of photons at wavelength λ,
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denoted by u(x ,λ), solves the second-order elliptic equation

¨

−∇ · (a(x ,λ)∇u(x ,λ)) +σ(x ,λ)u(x ,λ) = 0 x ∈ Ω
u(x ,λ) = g(x ,λ) x ∈ ∂Ω . (5.4.1)

Here, a and σ are diffusion and absorption coefficients that are depen-

dent on the wavelength λ. The ultrasound generated by the absorbed radiation

is quantified by the Grüneisen coefficient, Γ (x ,λ). The objective of qPAT is to

recover (a,σ, Γ ) using the measured data from photoacoustic experiments cor-

responding to an illumination pattern g(x ,λ).

We will modify the numerical examples from [11] by considering the

forward model (5.4.1) with diffusion coefficients that have variations on mul-

tiple spatial scales, a = aε. For simplicity, we will assume that the absorption,

diffusion, and Grüneisen coefficients can be expressed as

σ(x ,λ) =

2
∑

i=1

βi(λ)σi(x), aε(x ,λ) = α(λ)aε(x), Γ (x ,λ) = Γ (x).

The measured data takes the form

G(u,∇u, x ,Λ) = Γ (x ,λ)σ(x ,λ)u(x ,λ), x ∈ Ω, λ ∈ Λ. (5.4.2)

In the numerical experiments, we set Ω = (0, 2)2. The measured data

(5.4.2) involves the solutions to (5.4.1) for each wavelength in the set Λ =

{.2, .3, .4}. Four illuminations are used for each wavelength. The wavelength

dependent components of the coefficients are set to be

β1(λ) =
λ

λ0

, β2(λ) =
λ0

λ
, α(λ) = (λ/λ0)

3/2
,
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Figure 5.3: Spatial components of the QPAT model. Left to right: Grüneisen

coefficient Γ (x), and absorption component functions σ1(x) and σ2(x).

where the wavelength λ0 = .3 normalizes the amplitude of the coefficients. The

spatial components of the coefficients are given as

Γ (x) = .8+ .4 tanh(4x − 4), aε(x) from (5.2.18) and (5.2.19),

σ1(x) = .2− .1e−2π|x−x0|2 , σ2(x) = .2+ .1e−2π|x−x0|2 , x0 = (1, 1).

Figure 5.3 contains plots of the spatial components of Γ and σ.

As in [11], the reconstruction errors are given for synthetic data with

no noise added. However, errors are introduced from averaging the multiscale

solution and projection onto the coarse grid. The parameters used are ε = 1/60

H = 1/12, h= 1/256.

In Table 5.3 we see that parameter inversion using HMM forward solvers

is comparable to parameter inversion using an analytic forward solver.

Seismic waveform inversion (bε < 0)

In exploration geophysics, scientists attempt to determine the geological

properties of the Earth’s crust that govern the propagation of acoustic waves (see
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Table 5.3: Error in parameter inversion of the multiscale quantitative photoa-

coustic tomography model.

D. Cell Wall Thickness

N Analytic HMM Two-stage

1 0.04466877 0.09868047 0.07346082

2 0.12342225 0.16340499 0.28872537

3 0.29242901 0.29662820 0.30774954

4 0.67723276 0.35198509 0.23976186

5 0.90352620 0.53385607 0.41982687

6 0.87852824 0.62635822 0.39595585

E. Interior Diffusivity

N Analytic HMM Two-stage

1 0.06043366 0.01263081 0.05863142

2 0.10660937 0.03593268 0.10662896

3 0.12042071 0.02412268 0.22820132

4 0.11998803 0.08022306 0.23446521

5 0.29099160 0.26758991 0.16583567

6 0.43617281 0.35820571 0.33752105
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[82] for an overview). In full waveform inversion, the goal is to find a subsur-

face model that produces the best fit to reflection data recorded from seismic

surveys. Each prediction is simulated using the physics of the experiment. This

corresponds to an inverse problem for partial differential equations where the

unknown coefficients represent properties of the sedimentary layers, e.g. veloc-

ities, porosity, and saturation.

Full waveform inversion is the result of combining numerical methods for

the simulation of wave propagation with optimization techniques to minimize

the data misfit term (see [41] for a discussion of multiscale full waveform in-

version). Traditional finite element methods (FEM) or finite difference methods

(FDM) for wave propagation in the high frequency regime come with a con-

siderably high computational cost due to the highly oscillatory nature of the

propagating waves [49].

The forward problem can be modeled in both the time domain and the

frequency domain. In theory, both approaches are equivalent, however the

choice of model can influence the design of specific numerical methods to op-

timize performance. An advantage of the frequency domain model is that a

coarse discretization of the frequencies can be used to produce images that are

free from aliasing [9, 64, 78].

A major hurdle in full waveform inversion is the presence of local minima

in the least-squares functional for the data misfit. In [73], adjoint-state methods

are used to efficiently calculate the gradient of the least-squares functional and

speed up the optimization. We emphasize that in this work we use standard
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optimization routines in order to fully study the effects of microscale inversion

on the recovered parameter.

We provide numerical examples corresponding to problems that mimic

the models used in seismic waveform inversion. Here, the model parameters

represent the spatially varying volume fraction, angle, and amplitude of the lay-

ers. The forward model is the 2D variable coefficient Helmholtz equation on the

square Ω= [0, 2]2, formulated as

∇ · (a(x)∇u) +ω2u(x) = δ(x − xs) x ∈ Ω, (5.4.3)

where a is the model parameter that characterizes the density of the medium,

ω is the wave number, and u is the spatially varying pressure field arising from

a disturbance at a source located at xs ∈ Ω. We impose the absorbing boundary

condition

a∇u · n− iku = 0 on ∂Ω, (5.4.4)

where k = a−1/2ω. The seismic data is represented as the collections of solutions

measured on the sensor domain, G(u,∇u, x) = u|D for a set of frequencies ω.

In the numerical simulation, the parameters used are ε = 1/80, H =

1/30, h = 1/256, and wavelengths ω ∈ {π, 2π, 4π}. The Dirichlet data is mea-

sured on D = {(x1, x2) | x1 = 0, 2; x2 ∈ [0, 2]}. The following is a summary

of the errors in microscale inversion of the effective model corresponding to

(5.4.3).

Table 5.4 demonstrates the performance of microscale inversion of the

multiscale Helmholtz equation using macroscale forward solvers. For N = 1, all
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Table 5.4: Error in parameter inversion of the multiscale Helmholtz equation.

A. Volume fraction

N Analytic HMM Two-stage

1 0.05096522 0.06306604 0.03395456

2 0.07285428 0.04647223 0.23170495

3 0.07228700 0.05222681 0.36715450

4 0.17000688 0.18484829 0.33137285

5 0.39147898 0.36494049 0.35403502

6 0.25308301 0.23206174 0.4569

B. Amplitude

N Analytic HMM Two-stage

1 0.02164183 0.02564728 0.53395456

2 0.08266182 0.06451603 0.71182211

3 0.14964111 0.15981872 0.77197283

4 0.26047966 0.25863550 1.08147624

5 0.46285118 0.44164636 0.81757732

6 0.50891196 0.50168049 1.36508948

C. Angle

N Analytic HMM Two-stage

1 0.06595855 0.01329244 0.00491449

2 0.16913028 0.11690812 0.21323509

3 0.78174458 0.29604107 0.38340192

4 0.48785718 0.47404862 0.37318240

5 0.43459516 0.38184943 0.53843215

6 0.75404888 0.64028093 0.35335906
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Figure 5.4: Solutions to the multiscale Helmholtz equation. Real part of

solutions to the multiscale Helmholtz equation (5.4.3) for frequencies ω = π,

ω= 2π, ω = 4π (left to right) and a = aε in (5.2.10).

three solvers performed well. The modeled data included high frequency solu-

tions relative to the size of the coarse mesh; this resulted in poor performance

of all of the methods for N large.

Remark 5.4.2. These techniques can be applied to the recovery of a material

parameters with more general decompositions. In 5.5, the parameter m is rep-

resented using a spline basis decomposition.

Figure 5.5: Layered media example. Splines are used to model the angle,

amplitude, and thickness of the layers. The discontinuities can be used to model

faults in earths subsurface.
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Chapter 6

Conclusions

Multiscale computations aim at designing numerical algorithms for the

simulation of coupled models on different scales. In the theory of homogeniza-

tion of differential equations, multiscale processes are described by the combina-

tion of models on different scales. The relevant functions in the homogenization

of differential equations and in the theory of heterogeneous multiscale methods

(HMM) satisfy the scaling law f ε(x) = f (x , x/ε), where f (x , y) is periodic in

y and the parameter 0 < ε << 1 represents the ratio of scales in the problem.

We view these functions in the setting of information theory by making

the further assumption that f (x , y) belongs to the class of bandlimited functions

in x and y and thus has a Fourier decomposition

f (x , y) =

K
∑

k=0

fk(x)e
2πik y .

A numerical method containing both the macro and micro scales needs

to deal with the effective solution on a macroscale grid of size ∆x and direct

numerical simulation of the oscillatory problem on smaller, local fine scale grids

with spacing δx <∆x . We prove that a computational grid X designed to fully
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resolve f ε can be of the form

X = { j∆x + kδx | j ∈ Z, 0 ≤ k ≤ K},

which matches sampling strategies used in information theory when applied to

bandlimited signals.

The so called type A problem in HMM is also discussed. The microscale

is here only relevant in one or a few locations. For these problems, there is a

close connection between mesh refinement and information theory.

We also presented theoretical and numerical techniques for solving in-

verse problems corresponding to multiscale partial differential equations of the

form

−∇ · (aε∇uε) + bεuε = f ,

where 0 < ε≪ 1 and aε, bε are coefficients that oscillate on the ε−scale. Such

inverse problems are often reduced to well-posed problems through the use of ef-

fective forward models by standard averaging and homogenization techniques.

Obtaining these models can result in the loss of microscale information.

In our approach, we use effective forward models to make predictions

and then constrain the search space to a low dimensional parameter space m ∈

R
N based on prior knowledge of the structure of the microscale. We use generic

optimization routines in this proof of concept but for higher dimensional m,

other minimization techniques must be used, as for example, adjoint-state based

methods in geophysical applications [73].
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The main theoretical contribution is a proof that in cases where the map-

ping m → aε(m) is sufficiently monotone, the Dirichlet-to-Neumann map cor-

responding to the effective equation results in a unique recovery of aε. We

provided numerical justification that indicates that multiscale methods such as

HMM can be used to make forward predictions that prove useful in these mi-

croscale recovery problems, even when the explicit form of the effective equation

is not known.

We also provide numerical results that demonstrate the performance of

these techniques in scientific applications. If the absorption term bε is replaced

with a positive, slowly varying function σ, the resulting equation is a standard

model used in quantitative photoacoustic tomography (qPAT), a technique used

in medical imaging [11]. If instead bε replaced by a frequency term −ω2, we

have the multiscale Helmholtz equation used in seismic forward modeling.

In this dissertation, we applied the HMM philosophy to recover the pa-

rameter m from the microstructure constraint for the diffusion term, m→ aε(m),

given effective solution data that mimics the physical experiments. In future

research, we will consider a microscale parametrization using different basis

functions, such as wavelets, and moving toward using more realistic datasets

that will allow further validation of these methods. It will also be interesting to

study the stochastic effect of noise.

We are also interested in developing the HMM algorithm by designing

methods that adapt to prior microstructure knowledge. In [29], Du and Ming

prove error estimates for the finite element heterogeneous multiscale method
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for elliptic problems with nonsmooth microstructures. In order to calculate the

effective coefficients, a new estimate of the corrector arising from periodic and

Neumann cell problems is given. This raises the question of how to design a

method for microscale models of the form a(x ,σ(x)x/ε), where the cell geom-

etry depends on a transformation matrix σ. The effects of cell geometry are not

well understood, and future research will probe the effects of σ on bounds of

the error induced by HMM.
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