71,244 research outputs found

    Computational Biology and Chemistry

    Get PDF
    The use of computers and software tools in biochemistry (biology) has led to a deep revolution in basic sciences and medicine. Bioinformatics and systems biology are the direct results of this revolution. With the involvement of computers, software tools, and internet services in scientific disciplines comprising biology and chemistry, new terms, technologies, and methodologies appeared and established. Bioinformatic software tools, versatile databases, and easy internet access resulted in the occurrence of computational biology and chemistry. Today, we have new types of surveys and laboratories including “in silico studies” and “dry labs” in which bioinformaticians conduct their investigations to gain invaluable outcomes. These features have led to 3-dimensioned illustrations of different molecules and complexes to get a better understanding of nature

    Systems biology in inflammatory bowel diseases

    Get PDF
    Purpose of review: Ulcerative colitis (UC) and Crohn’s Disease (CD) are the two predominant types of inflammatory bowel disease (IBD), affecting over 1.4 million individuals in the US. IBD results from complex interactions between pathogenic components, including genetic and epigenetic factors, the immune response and the microbiome through an unknown sequence of events. The purpose of this review is to describe a system biology approach to IBD as a novel and exciting methodology aiming at developing novel IBD therapeutics based on the integration of molecular and cellular "omics" data. Recent Findings: Recent evidence suggested the presence of genetic, epigenetic, transcriptomic, proteomic and metabolomic alterations in IBD patients. Furthermore, several studies have shown that different cell types, including fibroblasts, epithelial, immune and endothelial cells together with the intestinal microbiota are involved in IBD pathogenesis. Novel computational methodologies have been developed aiming to integrate high - throughput molecular data. Summary: A systems biology approach could potentially identify the central regulators (hubs) in the IBD interactome and improve our understanding of the molecular mechanisms involved in IBD pathogenesis. The future IBD therapeutics should be developed on the basis of targeting the central hubs in the IBD network

    Exploiting network topology for large-scale inference of nonlinear reaction models

    Full text link
    The development of chemical reaction models aids understanding and prediction in areas ranging from biology to electrochemistry and combustion. A systematic approach to building reaction network models uses observational data not only to estimate unknown parameters, but also to learn model structure. Bayesian inference provides a natural approach to this data-driven construction of models. Yet traditional Bayesian model inference methodologies that numerically evaluate the evidence for each model are often infeasible for nonlinear reaction network inference, as the number of plausible models can be combinatorially large. Alternative approaches based on model-space sampling can enable large-scale network inference, but their realization presents many challenges. In this paper, we present new computational methods that make large-scale nonlinear network inference tractable. First, we exploit the topology of networks describing potential interactions among chemical species to design improved "between-model" proposals for reversible-jump Markov chain Monte Carlo. Second, we introduce a sensitivity-based determination of move types which, when combined with network-aware proposals, yields significant additional gains in sampling performance. These algorithms are demonstrated on inference problems drawn from systems biology, with nonlinear differential equation models of species interactions

    Evolutionary genomics : statistical and computational methods

    Get PDF
    This open access book addresses the challenge of analyzing and understanding the evolutionary dynamics of complex biological systems at the genomic level, and elaborates on some promising strategies that would bring us closer to uncovering of the vital relationships between genotype and phenotype. After a few educational primers, the book continues with sections on sequence homology and alignment, phylogenetic methods to study genome evolution, methodologies for evaluating selective pressures on genomic sequences as well as genomic evolution in light of protein domain architecture and transposable elements, population genomics and other omics, and discussions of current bottlenecks in handling and analyzing genomic data. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of detail and expert implementation advice that lead to the best results. Authoritative and comprehensive, Evolutionary Genomics: Statistical and Computational Methods, Second Edition aims to serve both novices in biology with strong statistics and computational skills, and molecular biologists with a good grasp of standard mathematical concepts, in moving this important field of study forward

    The idea of evolution in digital architecture: Toward united ontologies?

    Get PDF
    Humans have always sought to grasp nature’s working principles and apply acquired intelligence to artefacts since nature has always been the source of inspiration, solution and creativity. For this reason, there is a comprehensive interrelationship between the philosophy of nature and architecture. After Charles Darwin’s revolutionary work, living beings have started to be comprehended as changing, evolving and developing dynamic entities. Evolution theory has been accepted as the interpretive power of biology after several discussions and objections among scientists. In time, the working principles of evolutionary mechanisms have begun to be explained from genetic code to organism and environmental level. Afterwards, simulating nature’s evolutionary logic in the digital interface has become achievable with computational systems’ advancements. Ultimately, architects have begun to utilise evolutionary understanding in design theories and methodologies through computational procedures since the 1990s. Although several studies about technical and pragmatic elements of evolutionary tools in design, there is still little research on the historical, theoretical and philosophical foundations of evolutionary understanding in digital architecture. This paper fills this literature gap by critically reviewing the evolutionary understanding embedded in digital architecture theories and designs since the beginning of the 1990s. The original contribution is the proposed intellectual framework seeking to understand and conceptualise how evolutionary processes were defined in biology and philosophy, then represented through computational procedures, to be finally utilised by architectural designers. The network of references and concepts is deeply connected with the communication between natural processes and their computational simulations. For this reason, another original contribution is the utilisation of theoretical limits and operative principles of computation procedures to shed light on the limitations, shortcomings and potentials of design theories regarding their speculations on the relationship between natural and computational ontologies

    Evolutionary Genomics

    Get PDF
    This open access book addresses the challenge of analyzing and understanding the evolutionary dynamics of complex biological systems at the genomic level, and elaborates on some promising strategies that would bring us closer to uncovering of the vital relationships between genotype and phenotype. After a few educational primers, the book continues with sections on sequence homology and alignment, phylogenetic methods to study genome evolution, methodologies for evaluating selective pressures on genomic sequences as well as genomic evolution in light of protein domain architecture and transposable elements, population genomics and other omics, and discussions of current bottlenecks in handling and analyzing genomic data. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of detail and expert implementation advice that lead to the best results. Authoritative and comprehensive, Evolutionary Genomics: Statistical and Computational Methods, Second Edition aims to serve both novices in biology with strong statistics and computational skills, and molecular biologists with a good grasp of standard mathematical concepts, in moving this important field of study forward

    What’s next for computational systems biology?

    Get PDF
    Largely unknown just a few decades ago, computational systems biology is now a central methodology for biological and medical research. This amazing ascent raises the question of what the community should do next. The article outlines our personal vision for the future of computational systems biology, suggesting the need to address both mindsets and methodologies. We present this vision by focusing on current and anticipated research goals, the development of strong computational tools, likely prominent applications, education of the next-generation of scientists, and outreach to the public. In our opinion, two classes of broad research goals have emerged in recent years and will guide future efforts. The first goal targets computational models of increasing size and complexity, aimed at solving emerging health-related challenges, such as realistic whole-cell and organ models, disease simulators and digital twins, in silico clinical trials, and clinically translational applications in the context of therapeutic drug development. Such large models will also lead us toward solutions to pressing issues in agriculture and environmental sustainability, including sufficient food availability and life in changing habitats. The second goal is a deep understanding of the essence of system designs and strategies with which nature solves problems. This understanding will help us explain observed biological structures and guide forays into synthetic biological systems. Regarding effective methodologies, we suggest efforts toward automated data pipelines from raw biomedical data all the way to spatiotemporal mechanistic model. These will be supported by dynamic methods of statistics, machine learning, artificial intelligence and streamlined strategies of dynamic model design, striking a fine balance between modeling realistic complexity and abstracted simplicity. Finally, we suggest the need for a concerted, community-wide emphasis on effective education in systems biology, implemented as a combination of formal instruction and hands-on mentoring. The educational efforts should furthermore be extended toward the public through books, blogs, social media, and interactive networking opportunities, with the ultimate goal of training in state-of-the-art technology while recapturing the lost art of synthesis

    Cyclin-dependent kinases as drug targets for cell growth and proliferation disorders. A role for systems biology approach in drug development. Part II - CDKs as drug targets in hypertrophic cell growth. Modelling of drugs targeting CDKs

    Get PDF
    Cyclin-dependent kinases (CDKs) are key regulators of cell growth and proliferation. Impaired regulation of their activity leads to various diseases such as cancer and heart hypertrophy. Consequently, a number of CDKs are considered as targets for drug discovery. We review the development of inhibitors of CDK2 as anti-cancer drugs in the first part of the paper and in the second part, respectively, the development of inhibitors of CDK9 as potential therapeutics for heart hypertrophy. We argue that the above diseases are systems biology, or network diseases. In order to fully understand the complexity of the cell growth and proliferation disorders, in addition to experimental sciences, a systems biology approach, involving mathematical and computational modelling ought to be employed
    • …
    corecore