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Targeting CDK9 for cardiac hypertrophy drug 
development
Unlike CDK2, CDK9 is not directly involved in cell cycle 
regulation but promotes RNA synthesis and thus controls cell 
growth, differentiation and viral pathogenesis. CDK9 inhibition 
contributes to the anticancer activity of most CDK inhibitors 
currently under clinical investigation (25, 33, 46). In addition, 
the activity of CDK9 is up-regulated in myocardial hypertrophy. 
The latter constitutes a common clinical finding as well as a 
prominent risk factor in congestive heart failure. Thus, CDK9 
inhibitors may find therapeutic application in cardiology. 

CDK has been shown to be successfully readily inhibited by 
Roscovitine and flavopiridol in vitro as well as in vivo (1, 4, 28, 29, 
40). Novel selective CDK9 inhibitors have been reported recently 
(48). In addition, in order to test the effect of transcriptional 
inhibition on cardiac hypertrophy, a highly reproducible animal 
model has been developed and characterized (18, 37, 38, 39). A 
simple technique such as abdominal aorta binding is applied so 
as to cause left ventricular hypertrophy (LVH) in male Wistar 
rats and subsequently echocardiography is used as a non-
invasive method for evaluation of cardiac function. The main 
advantage of this model is that it is technically uncomplicated 
and undemanding as it may be performed in the most commonly 
used laboratory animals (Wistar rats). Since the technique does 
not call for thoracotomy it has the additional advantage that the 
model animals do not need a long recovery period.

Role of modelling in developing drugs targeting CDKs 
The process of developing drugs for diseases of the cell 
cycle and predicting the effect in vitro and in vivo requires an 
analysis and comprehensive study of their targets including 
concentration levels, activities, interactions and involvement 
in biochemical networks. Nowadays it is becoming clear 
that a disease of the cell cycle is a systems biology disease, 
or a network disease. This means that it is the regulatory 
network that is dysfunctional so that the cell escapes normal 
growth control by its multicellular environment. To fully 
understand the complexity of the problem, mathematical and 
computational modelling can be utilized in ways which will add 
value to the data obtained from the experimental sciences such 
as biochemistry and molecular and cell biology. The results 
may be surprising. For example, for the last two decades, the 
common condition of insulin resistance has been identified to 
have an inflammatory pathogenesis. Only in 2005 it has been 
reported that at least some of the cases of severe diabetes 
type 2 in animals and humans were related to deficiency of 
the master transcription HMGA1 (17). During the transition 
between S and G2 in the cell cycle, in non-cancerous cells 
CDK2 phosphorylates HMGA1, decreasing its DNA-binding 
activity and facilitating its habitual shuttling from the nucleus 
to the mitochondria, and then back by M phase (7, 14, 34). 
Since very low expression of ‘normal’ HMGA is associated 
with insulin resistance and perhaps with premalignant states 
(9, 17, 33), it is possible that inhibition of CDK2 could be 
used as a therapeutic option in other diseases and conditions 
apart from cancer. It has already been demonstrated that CDK 
inhibitors such as Roscovitine are capable of reducing the 
pro-inflammatory response in chronic inflammation via down-
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ABSTRACT
Cyclin-dependent kinases (CDKs) are key regulators of cell growth and proliferation. Impaired regulation of their activity 
leads to various diseases such as cancer and heart hypertrophy. Consequently, a number of CDKs are considered as targets 
for drug discovery. We review the development of inhibitors of CDK2 as anti-cancer drugs in the first part of the paper and in 
the second part, respectively, the development of inhibitors of CDK9 as potential therapeutics for heart hypertrophy. We argue 
that the above diseases are systems biology, or network diseases. In order to fully understand the complexity of the cell growth 
and proliferation disorders, in addition to experimental sciences, a systems biology approach, involving mathematical and 
computational modelling ought to be employed.
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regulation of NF-kappaB (15, 23). It is possible that the anti-
inflammatory properties of Roscovitine and CDK inhibitors 
as a whole may find a significant clinical application. There 
has already been some experimental proof that the inhibition 
of CDK5 by Roscovitine enhances the induction of insulin 
secretion and exerts a protective effect against glucotoxicity 
in pancreatic beta cells (25, 41, 50). Therefore, inflammatory 
diseases such as diabetes type 2 turn out to be network diseases 
as well, which opens new vistas of therapeutic opportunities as 
well as of potential downsides.

Establishing an appropriate cell cycle model is a purpose-
driven process, which in particular is focused on the key 
questions of the investigation. The demands for novel analytic 
computational and modelling strategies that keep up with the 
ever-increasing supply of minable time series data are rising all 
the time. In this respect, robust dynamic modelling techniques 
are useful for the simulating and analysing biomarker data. 

The dynamics of a complex network of regulatory 
proteins that govern cell cycle progression, involved with 
biochemical switches that initiate cell-cycle events can 
be modelled by nonlinear ordinary differential equations 
describing the essential network responses to internal signals 
among regulatory proteins. The progression through the cell 
cycle system can be predicted using modelling approaches 
for capturing the relevant molecular processes and suited 
for easing the process of estimating kinetic parameters. To 
avoid additional complexity, some researchers often consider 
experimenting and modelling cell cycle regulation based on 
single cell studies.

Mathematical modelling of biological phenomena, 
involving biochemical networks (44, 45) analysis of clinical 
or biomolecular data (8, 24) spanning genetics (6, 16, 36) and 
personalised medicine (31, 32) may be used to describe and 
represent complex systems. Usually this involves formulating 
appropriate functions that describe the behaviour of interacting 
constituents of the system. 

Identification of components of interest with their symbolic 
names with (directional) arrows showing which components 
modulate the flows of signal and materials into, between, and 
out of components (44) may involve similar methods such 
as method of gene network reconstruction from microarray 
data identification of unknown targets of drug candidates 
from gene products (5, 8). Bansal et al. (2, 3) inferred gene 
regulatory networks from time course gene expression profiles 
using an algorithm they developed called time-series network 
identification (TSNI). Also, Gardner et al. used network 
identification by multiple regression (NIR) method to infer 
genetic networks and identify compound mode of action 
via expression profiling (10, 19). Wang et al. developed and 
presented a linear programming framework for inferring gene 
regulatory networks by integrating multiple perturbation 
expression datasets (20, 49). Likewise, modelling and 
network inference procedures have been used in all different 
types of networks: metabolomics, protein-interaction, signal-
transduction networks, and genetic regulatory networks. 
Examples include the use of graphical networks, nonlinear 

differential equations and bifurcation theory for the description 
of the regulation of cell cycle protein interactions (11, 12, 
13). Novak and Tyson (18, 27, 30) offered a generic wiring 
diagram of the CDK network by explaining the various signal 
and response mechanisms that can occur as part of a biological 
control system, including sigmoid response, positive and 
negative feedback, and oscillations with a description of the 
mathematical structures in each case.

In the search for appropriate mathematical representations 
of biological processes, e.g. using rational functions of the 
Michaelis-Menten rate law as ordinary differential equation 
(ODE) fundamental descriptions, it is essential to bear in mind 
the importance of keeping to absolute minimum variables and 
parameters that traditionally cannot be directly measured (44). 
Although many biological processes, including those involved 
in the control and coordination of cell-cycle can be described 
with such formalism, its inability to easily articulate the dynamic 
model structure and the problematic nature of estimating its 
kinetic parameters have made it unattractive. For example, 
the Michaelis-Menten formalism is not consistent enough in 
demonstrating some fractal kinetics observed at the system’s 
molecular level. Rather than constraining model structure to 
occasional restrictions imposed by the Michaelis-Menten 
formalism, others have adopted a more flexible formalism 
called Power-Law, which is based on a general Biochemical 
Systems Theory (BST) (42, 44, 46). Idowu et al. (22) proposed 
a novel data-driven approach using a combination of analytical 
methods and Power-law formalism based on the requirement 
that these alternative mathematical forms, based on time series 
data, are amenable to analytical and numerical evaluation (44).

Experimental time series data of the system are obtained 
and assumed to be snapshots of time-evolutionary dynamics 
of the underlying activities of the biological processes. The 
modelling challenge is to accurately capture and represent 
the majority of the system dynamics in a data-consistent 
manner without adopting a model that is mathematically too 
complex and without making a priori assumptions about the 
underlying network. Power-law models are good examples 
of mathematically and logistically convenient models (44). 
Another much simpler alternative that is backed up by strong 
theoretical support and justification is the data-consistent 
Jacobian model proposed by Idowu and Bown (21) which 
offers system identification and parameter estimation solutions 
through two new algorithms, namely the transposive and 
repressive regression techniques.

Viewing the modelling strategies of the cell cycle control 
system as an investigative science, it is often necessary to 
critically evaluate common intellectual contributions that are 
influential or detrimental to their outcome. Simple manual 
processes involving predetermination of network topology 
and formulation of model structure with preconfigured 
kinetic parameters are very common. Though they often yield 
additional benefits to the modeller’s experience in the process, 
if they are introduced too early at the stage of model design, 
the spectrum of all potential possibilities and outcomes may be 
hugely affected with negative consequences. The notion that 
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the relevant informative aspect of modelling should be driven 
by a secure process rather than subverting towards existing 
biological knowledge should be appreciated (11, 12, 43).

A lot has changed in recent times compared to lack of 
cohesion of computational, mathematical, and experimental 
approach to modelling observed many years ago: quantitative 
data are rapidly becoming more and more available; the rate 
at which experimental data is shared is growing; there is 
increasing awareness about the importance of interdisciplinary 
collaborative work and an increasing number of qualified 
researchers from computational, physics, mathematics and 
engineering areas now engage in systems biology projects. 
Vast amount of funds are invested into academic research and 
development, both at local as well as at international level.

However, the requirement to develop new and sophisticated 
mathematical techniques for modelling the molecular 
concentration dynamics of key proteins (e.g. CDKs and 
cyclins) of the cell cycle control system continues to be on 
high demand due to the increasing amount of quantitative 
data. Accommodating the rising trend in data supply requires 
a shift of mind set towards dealing and coping with the huge 
costs of carrying out biological experiments. Not only that, 
circumventing the systemic problems commonly associated 
with system identification and model parameter estimation 
processes may require some level of thinking ‘outside the box’.

A combinatorial approach that merges creative thinking, 
science and research into traditional and unconventional 
modelling methods may help in identifying and validating 
protein targets. Understanding diseases of the cell cycle requires 
new unconventional methods targeted towards creating generic 
modelling techniques, an optimised modelling strategy for data 
consumption and utilization and a development of effective 
and robust network reconstruction procedures. Expectation 
to see more data-mining-powered modelling tactics being 
established across multidisciplinary areas continues to rise.

In the immediate future, more demand will be placed on 
network inference algorithms to uncover the underlying network 
of interactions among interrelated components. As growth and 
development of research into understanding network complexity, 
model assessment, system identification, parameter estimation, 
stability and sensitivity analyses and robustness measurement 
reach maturity, the performances of these network inference 
methods would improve. Application of generic data-driven and 
data-consistent dynamic could potentially become common and 
useful in harnessing information hidden in data. However, since 
the cell cycle control system involves a complex and highly 
nonlinear dynamics, the type of modelling framework used 
should be flexible to a degree of accommodating different types 
of data sets.

Validating CDKs as targets for disease of the cell cycle 
involves evaluating and understanding some of the key 
roles that CDKs play in cell cycle regulation. One way of 
demonstrating this might be to run in simulations of data-
consistent and individualised models of non-treated and treated 
cells with comparison tests. The results of these analyses 

should seek to identify changes in response behaviour in CDKs 
which may result in toxicity after drug treatment. Alterations 
in levels of CDKs may vary from time to time, both before and 
after treatment and from cell to cell.

In summary, involvement of modelling may assist in 
creating robust (self-organizing and self-calibrating in terms 
of data set variation and unit of measurement) models in 
order to demonstrate the extent to which personalised model 
kinetic parameters may vary between normal and cancer 
data set, before and after treatment. The resultant changes in 
regulatory network topology after treatment should enrich the 
current understanding of a system’s response and sensitivity 
to drugs. Individualised and data-consistent models of time 
series measurements obtained from the same tissue sample 
may then be viewed as dissociated building blocks of a much 
bigger compartmentalised model of all the associative data 
sets. However, it is unclear how to go about reorganising and 
integrating all the parts into one coherent and reliable working 
unit. Having said that, the complex behavioural patterns and 
complex oscillations and chaos often exhibited in cell-cycle 
control systems complicates the difficulty of grasping the full 
understanding of key roles that protein targets play in cell cycle 
regulation. Although some theoretical methodologies capable 
of tackling these may be available in the literature, a lot still 
depends on the ingenuity of the modellers. Each modelling 
approach adopted by the modeller should be considered on the 
basis of the set of vital questions that are being addressed.

Conclusions
Investigating the essential mechanisms by which the cell 
cycle control system operates is an important step in drug 
discovery, which may help reveal vital information to support 
and facilitate new drug target identification. Based on a good 
understanding of the key protein functions and their roles in 
cell cycle control, new and effective drugs may be developed.
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