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Largely unknown just a few decades ago, computational systems biology is now a
central methodology for biological and medical research. This amazing ascent
raises the question of what the community should do next. The article outlines our
personal vision for the future of computational systems biology, suggesting the
need to address both mindsets and methodologies. We present this vision by
focusing on current and anticipated research goals, the development of strong
computational tools, likely prominent applications, education of the next-
generation of scientists, and outreach to the public. In our opinion, two classes
of broad research goals have emerged in recent years and will guide future efforts.
The first goal targets computational models of increasing size and complexity,
aimed at solving emerging health-related challenges, such as realistic whole-cell
and organ models, disease simulators and digital twins, in silico clinical trials, and
clinically translational applications in the context of therapeutic drug
development. Such large models will also lead us toward solutions to pressing
issues in agriculture and environmental sustainability, including sufficient food
availability and life in changing habitats. The second goal is a deep understanding
of the essence of system designs and strategies with which nature solves
problems. This understanding will help us explain observed biological
structures and guide forays into synthetic biological systems. Regarding
effective methodologies, we suggest efforts toward automated data pipelines
from raw biomedical data all the way to spatiotemporal mechanistic model. These
will be supported by dynamic methods of statistics, machine learning, artificial
intelligence and streamlined strategies of dynamic model design, striking a fine
balance between modeling realistic complexity and abstracted simplicity. Finally,
we suggest the need for a concerted, community-wide emphasis on effective
education in systems biology, implemented as a combination of formal instruction
and hands-on mentoring. The educational efforts should furthermore be
extended toward the public through books, blogs, social media, and interactive
networking opportunities, with the ultimate goal of training in state-of-the-art
technology while recapturing the lost art of synthesis.
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Introduction

It’s tough to make predictions, especially about the future.
Yogi Berra (1925-2015)

Like so many other bon mots, this quote by the famous baseball
player is almost a tautology, but it is particularly pithy because we
have seen time and again how expert predictions have gone awry.
Who would have predicted that junk DNA and futile cycles are not
so junky and futile after all? Why are we not yet flying around with
individual jet packs, as many science fiction writers prognosticated?
And what happened to the prediction—made allegedly in the early
1950s by Thomas John Watson, the president of IBM—that the
world would perhaps need a total of five computers, or by the Club of
Rome that the world would run out of copper, given the rapid rise in
telephone lines in the 1970s, before optical fibers had been invented?

Predictions regarding a new field of endeavor are especially
treacherous. Over the past few decades, the parent disciplines of
systems biology have moved with lightning speed from entire
doctoral dissertations describing the sequencing of a single gene to
microarrays with thousands of short DNA sequences, spotted by robots,
and to large-scale gene editing with methods such as CRISPR-Cas9. In
some sense, biology thereby started to become an “information science”
(Baltimore and Denning, 2001). During the same time period,
computing not only became many times more powerful than in the
1970s, but also much more widely available and accessible. Thus, any
attempt to anticipate the global trajectory of systems biology is clearly
fraught with risks. Then again, a few trends have been emerging that are
likely to continue into the near future at least, and they are the topics of
this perspective. It is impossible to portray all current and arising trends
in experimental aspects of systems biology, and wewill therefore focus in
this article on the mathematical and computational aspects of systems
biology, as well as on aspects related to the future of this field from the
point of view of educating the next-generation.

Predicting the future of computational systems biology is further
confounded by the fact that this scientific discipline does not yet have a
generally accepted definition. Most working definitions include the
terms “complexity” and “emergence” which, almost paradoxically,
have no clear-cut definitions themselves. It is not difficult to list
features of complexity, such as large numbers of components and
processes, nonlinear interactions, feedbacks, threshold phenomena,
and multi-scale operation, but a crisp definition is challenging.
Similarly, it is often stated that systems can possess emergent
properties, that is, properties that cannot be explained by
examining system components in isolation, but the immediate
question arises where these new features originate and how they
materialize. How can we get something for nothing? Is emergence
“illegitimate magic” (Bedau and Tomberlin, 1998; Voit, 2016)? The
famous biochemist J.B.S. Haldane agreed with this view in 1932, when
he wrote that “the doctrine of emergence . . . is radically opposed to the
spirit of science” (Haldane, 1932). One should add that, 10 years later,
Haldane expressed doubts that one could ever fully answer the
question of what life is. Different thoughts on emergence have been
proposed for engineered systems (Soria Zurita and Tumer, 2017), but
the situation for biological systems is more complicated as we often do
not even know all pertinent components and their interactions. The
contemporary American philosopher Mark Bedau proposed as a
partial solution to the dilemma the concept of “weak emergence,”
according to which the high-level macro-state of a system has macro-

properties that are determined and explained exclusively by interacting
micro-states at lower levels and inputs from the environment. The
emergence of new features can then be explained with computer
simulations, although not by intuition (Bedau and Tomberlin, 1998).

At the very minimum, we can say that systems biology
encompasses the assessment of as broad as possible a set of
biological processes with a view toward synthesis and the
extraction of novel insights. That definition is both aspirational
and goal-oriented, and as such necessitates not only technological
development but also a systems mindset that, in turn, requires a
concerted effort encompassing three fundamental pillars: research,
teaching and mentoring, and outreach to the world outside
academic silos. Within each area, we discuss the current state as
well as opportunities and challenges.

Research goals

When discussing the future of a field, it is beneficial to revisit its
current goals and, along the way, to take account of its status at the
present time.

Intriguingly, computational systems biology has developed over
the past two decades in a somewhat uncoordinated fashion, driven
by research into a smorgasbord of topics. This almost uninhibited
opportunity to advance in novel areas made the field very attractive
(Androulakis, 2022). Beyond the application of systems biology to
challenging problems in biology, medicine, agriculture,
environmental stewardship and other areas of great societal
importance, the goals of computational systems biology fall into
three very broad categories, the first two of which, intriguingly, point
in opposite directions. One thrust targets ever larger, more detailed
models, whereas the other tries to strip as many distracting details as
feasible from a system in order to focus on core features that simplify
analysis without disrupting the system’s integrity, and to understand
fundamental design and operating principles. The third goal is the
efficacious and widespread translation of systems biology into
solutions to challenging problems in biology and medicine.
Below, we discuss the first two thrusts in greater detail and
return to the third in the section on applications.

Toward realism

The desire to increase the realism of models is not simply a matter
of conceptually organizing large systems into well-integrated
subsystems, but often entails severe computational challenges in
terms of solving systems of equations and, particularly, instantiating
the models with adequate parameter values. It will therefore be very
beneficial, if notmandatory, to develop simplified surrogatemodels that
retain the most pertinent information buried in highly detailed models.

Notwithstanding the technical issues, the pursuit of
computational modeling of ever-larger systems is intuitively
understandable, as the inclusion of more detail obviously has a
good chance of making a model more realistic. This trend is logical,
given the desire to obtain highly detailed, quantitative insights and
predictions. It also creates an obvious paradox, namely, that, if taken
to the extreme, the final product would be a 1:1-scale model that
retains the full complexity of the original system whose intractable
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complexity triggered the need to generate a computational model in
the first place. The situation is reminiscent of a short story by author
J.L. Borges (Borges, 1946), who imagined an empire where the
science of cartography became so exact that only a map on the same
scale as the empire itself would suffice. An intermediate objective
toward the lofty goal of a perfect one-to-one mapping between the
real world and computational models has been the design of
moderately complicated, reliable models of whole cells that
permit interrogations at a much higher rate and at much lower
costs than laboratory experiments. The prominent Japanese systems
biologist Masaru Tomita called this goal of a reliable whole-cell
model a “grand challenge for the 21st Century” (Tomita et al., 1999).
Carrera and Covert (2015) explain the benefits of such a model as a
tool for integrating heterogeneous datasets, identifying gaps in our
knowledge, interpreting complex responses of cells, making
predictions regarding different phenotypes of a cell, suggesting
new experiments, and providing a safe and efficient framework
for the design of genetically modified organisms with methods of
synthetic biology.

As a first step in this direction, a model of arguably the simplest
cell, the bacterium Mycoplasma genitalium, was assembled (Karr
et al., 2012). Even though the task required enormous effort in terms
of time and resources, the authors caution that the model is only a
“first draft and that extensive effort is required before the model can
be considered complete” (Karr et al., 2012). Since then, numerous
scientists have expanded on these ideas and targeted other, more
complicated cells. Of course, once reliable whole-cell models are
feasible, the next targets will be models of tissues, organs, and even
entire organisms, which will be discussed later in greater detail.
Indeed, there is much excitement about “digital twins,” which are
envisioned as computational analogs of individuals that will be so
realistic that reliable experiments can be done computationally
before the real-world individual is treated for a disease (Li et al.,
2008; Shah et al., 2023). This aspect of the future is already
underway, and various computational platforms have been
proposed, including the Virtual Liver (Virtual_Liver, 2011),
Virtual Brain (Virtual_Brain, 2023), Virtual Rat (University of
Michigan, 2019), and ELIXIR (Martins dos Santos et al., 2022).
The oldest of such efforts, the Physiome project (Physiome, 2011),
has already generated very sophisticated models of the heart and
other organs. These heart models are so accurate that they permit
the recreation of myocardial infarctions and possible treatments.

At an even higher level of healthcare, the organization of
hospitals, and healthcare in general, has long been compared to
the complex organization of the human body—healthcare is
composed of multiple pseudo-independently functioning teams of
individuals, akin to organ systems of the body, who work together to
triage, treat, and maintain homeostasis of the population, analogous
to illnesses that affect individuals, at large. But what happens when
an individual, hospital system, or nation is hit with a multi-system
syndrome such as critical illness or COVID-19? These problems can
be modeled in the same manner as a disease. Indeed, analogous to
digital twins of COVID-19 patients (Day et al., 2021; Kim et al.,
2021), digital twins of entire hospital systems have been leveraged
during the COVID-19 pandemic to model how hospital capacity,
stressed by patients ill with this disease, and patient vitals could
affect a patient’s wellbeing in the hospital (Khan et al., 2022).

Whole-organism modeling platforms have by and large been
applied to organisms relevant to human health and disease.
Nonetheless, they are also important topics in agriculture and
ecosystem management (Marshall-Colon et al., 2017). As specific
examples, the Soybean Growth Simulation Model SoySim
(University of Nebraska, 2022) simulates the growth of soy bean
plants based on user-supplied input and makes management
recommendations in terms of water use and fertilization.
Another example is WIMOVAC (Windows Intuitive Model of
Vegetation response to Atmosphere and Climate Change) (Song
et al., 2017), which exploits biochemical and biophysical knowledge
regarding photosynthesis to predict the responses of vegetation to
environmental alterations or changes in light, temperature, CO2,
humidity and other factors.

Toward the quintessence of systems and a
theory of biology

In stark contrast to increasingly larger models, the second major
thrust of computational systems biology is to identify, characterize,
and fully explain the most fundamental design and operating
features governing biological systems (Mesarović et al., 2004;
Savageau, 1985). Driving this pursuit is the assumption that
nature has been testing, altering, and fine-tuning biological
systems since their appearance 3.7 billion years ago. The
optimization process is presumably not complete. However,
biological systems we encounter today are, at least to some
extent, better than alternative possibilities because evolution
would probably have selected against particular designs if better
alternatives had been available. The question of efficient—or
possibly optimal—designs is not only of academic interest, but
also offers strong guidance as we are beginning to create
biomolecular systems and de novo organisms in synthetic
biology, the sister field of systems biology (Bartley et al., 2017;
Choi et al., 2019).

The search for optimal designs has involved the investigation of
motifs (Alon, 2019), which are fundamental patterns or structures
that we encounter time and again, efficacious regulatory patterns,
and superior operating procedures. A typical motif is the so-called
bifan, a signaling system that converts two inputs into two outputs; a
generic illustration is shown in Figure 1A. The so-called Boolean
gatesG1 and G2 receive signals from S1 and S2 and transmit them (or
not) to the targets T1 and T2 according to Boolean rules. For
instance, if G1 is an AND-gate, it only passes on a signal if both
S1 and S2 are firing. If G2 is an OR-gate, a signal is transmitted if
either S1, S2, or both are firing. This type of motif can be found as the
mechanism of “crosstalk” in numerous signal transduction systems.

A question of optimal design is illustrated in Figure 1B. Three
linear pathways are shown, where material is leaving compound A at
a branch point. Suppose the system’s role is to regulate its responses
to changes in the demand for product B4 in the most efficacious
manner. If so, what is the best manner of regulation? Many options
are theoretically possible, but under most realistic circumstances,
inhibition by the end-product can be proven to be optimal
(Savageau, 1976; Alves and Savageau, 2000), and this is indeed a
very common natural design.
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Finally, consider the control of compound X in Figure 1C as an
example for devising efficient operating strategies. If the demand for
X increases from time to time, is it better to increase production
(dashed arrow) or to decrease its degradation (blunted signal)? In
this case, criteria outside the pathway dictate which strategy is better
(Lee et al., 2011).

Explorations of motifs, design principles, and operating
strategies are initial steps toward a deeper understanding of
optimal functioning in biology. They are important as they
inspire us to look for suitable building blocks of a theoretical
foundation of biology. The Prussian philosopher and psychologist
Kurt Lewin once said, “there is nothing so practical as a good theory”
(Lewin, 1997: p. 288). To see the truth of this intriguing statement we
must only look at physics. Its strong laws have made engineering
possible and enabled the creation of machinery that functions well
without a lot of trial and error. A stellar example is the exploration of
space, where knowledge of physics has allowed us, for instance, to
use a gravitational boost from Jupiter to let spacecraft like the twin
Voyagers escape the Sun’s gravity on their way to Saturn, Uranus
and Neptune (Mehta, 2018). Obviously, using Jupiter as a slingshot
had never been tested experimentally, but the laws of physics stated
that the strategy would work, and it did. It is hard to imagine what
we could do with a similarly strong theory of biology, but it seems
evident that the possible applications would be tremendous.

At this point, we are far from understanding biology sufficiently to
formulate one or more theories. We don’t even know whether such
theories might be crisp and deterministic, as in physics, or fuzzy in a
sense that all statements would be probabilistic. It is also a question
whether biological lawswould be rather (or entirely) general or limited to
small niches or subdisciplines. A first step to exploring potential theories
is the systematic study of motifs and design patterns (Savageau, 1976;
Savageau, 1985; Alon, 2019) as described above, along with the
identification of recurring strategies with which nature has been
solving problems for millions of years. One might think of the
theory of evolution as an example (Voit, 2009). One could also point
to the general principles of the genetic code, which is of enormous
importance and by and large without exceptions.Without this “law,”we

would have to start from scratch every time we wanted to determine the
molecular machinery of a so-far unstudied species or even organism. A
rather small portion of current research is trying to address issues of
theories, and much more needs to be done.

While exploring potential theories, all our underlying assumptions
must be examined carefully and objectively. For example, we presently
do not know whether our current mathematics is appropriate and must
ask whether other approaches would be better suited to handle, e.g.,
heterogeneous data or capture the essence of large-scale networks and
systems. A pertinent, although tangential, issue is the expectation that
any biological theories will likely be based on sophisticated mathematics
and could therefore be quite intimidating to many traditional biologists.
An early example in this pursuit is Chemical Reaction Network Theory
[CRNT; (Horn and Jackson, 1972; Feinberg, 1987; Arceo et al., 2015)],
which aims to identify properties of biochemical pathway systems
independent of specific parameter values and thereby to discover
design principles. As one might expect, CRNT is based on axioms
and definitions that are formulated in an abstract mathematical manner
and lead to theorems that follow from the axioms through sophisticated
mathematical logic.

Research tools and methodologies

To help coalesce data and modeling-based insights into theory,
there is a need for the concomitant development of new tools,
techniques, and methods. Experience has shown that new
applications often spawn new tools and innovative tools make
new applications possible. Both are often the consequence of
blue-sky (“crazy”) ideas. Some emerging methodological research
needs are sketched below.

Data pipelines

Traditionally, experimental biologists were those who
generated data and statisticians and mathematicians analyzed

FIGURE 1
Illustrations of Questions of Design. Panel (A) shows a typical network motif in the form of a bifan, which integrates and transmits signals S1 and S2 to
targets T1 and T2 according to rules governing the gates G1 and G2. Panel (B) displays three of many possible options for regulating the flux split at
branchpoint A. In typical cases, the bottom design of feedback inhibition by the end-product is superior to other options. Panel (C) contains a simple
input-output system where the question is whether an increase in production or a decrease in degradation is more effective if the demand for X is
increased.
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these data afterwards. The larger and more complicated the
datasets have become, though, the more this division of labor
has blurred. Even the generation and handling of raw data has
become more complicated, as many experimental designs now
involve robotic and computational support. This trend strongly
suggests the benefits of creating semi-automated, carefully
curated pipelines of analytical methods from raw data to
static or dynamic models. These methods will likely hail
from bioinformatics, statistics, mathematics, and computer
science. Important tools at the intersection of data
generation and analysis are machine learning (ML) and
artificial intelligence (AI), which can greatly aid the
extraction of core information from noisy datasets in an
essentially unbiased manner. Along with such pipelines, it
will eventually be beneficial to develop generally accepted
standard operating procedures (“SOPs”).

A typical pipeline might contain the following phases.

1 Read typical raw data efficiently into a conveniently designed
database

2 Use up-to-date methods for warehousing and accessing these
databases

3 “Clean” the data by removing errors and flag perceived outliers,
based on solid statistical principles

4 Extract significant information from the datasets, thereby
distinguishing signal from noise

5 Convert simple and complex associations among the data into
hypothesized chains of causes and effects, recognizing that
feedbacks and other nonlinearities may feed effects back into
causes

6 Create diagrams reflecting the hypothesized web of causes and
effects

7 Convert these diagrams into symbolic models
8 Facilitate the choice of appropriate functional representations
for these models

9 Infer values of model parameters from data
10 Implement the model with parameter values into computational

structures and analyze these structures with analytical and
simulation methods.

Some of these steps may appear to be straightforward but, in
reality, pose significant technical challenges, with which the
fields of bioinformatics and data science have been struggling
for some while. For instance, the first step of depositing data
may sound almost trivial but requires much thought, especially
in the context of clinical data. In the case of proteomics by mass
spectrometry, as another example, decisions regarding post-
translational modifications, the numbers of peptides per
protein and permitted missed cleavages, as well as numerous
other aspects must be made before any measurement can be
validly interpreted as novel information at the protein level.
While numerous challenges remain, many tools useful for some
phases of such pipelines have already been elaborated and
utilized. An example is an effort by the European Research
Infrastructure for Biological Data that aims to strengthen the
infrastructure underlying systems biology (Martins dos Santos
et al., 2022). Others are not so obvious; some are outlined
below.

From data toward models, using traditional
statistics and machine learning

Rather than attempting to capture data directly withmechanistic
models based on assumptions, which may or may not be correct, ML
algorithms utilize clustering, segmentation, as well as stochastic and
probabilistic architectures to predict outcome variables of interest
directly from data (Angermueller et al., 2016). This type of modeling
approach can either be supervised or unsupervised, depending on
whether the architecture corrects itself with training based on the
accuracy of the intended prediction or not, respectively
(Angermueller et al., 2016). While ML algorithms are, in
principle, apt for big datasets, many applications of ML in the
field of systems biology have so far been hampered by overfitting,
because they were applied inappropriately by violating the rule-of-
thumb that a dataset must have roughly 10 times as many datapoints
as there are independent variables (Chicco, 2017). This standard is
quite problematic for any type of model in systems biology, as
almost all data are sparse and corrupted by some level of noise. As an
illustration, to use an ML algorithm responsibly, say in the
prediction of survival or non-survival of patients with sepsis
based on an assay of 20 different inflammatory mediators in the
plasma, 200 patients worth of data would be necessary. While
200 patients may not seem like a lot, the necessary careful data
collection would require substantial resources.

That said, there are challenges in systems biology for which ML
algorithms are well suited. One application is the analysis of
genomics data, which inherently qualify as “big-data,” given that
they often assay hundreds of genes across multiple tissues and
thousands of cells (Koumakis, 2020). However, if these thousands
of cells come from a handful of patients (small sample size), as they
often do, then ML algorithms for the analysis of -omics data should
be used with caution (Koumakis, 2020). Even in large datasets, such
as nationally aggregated data regarding the COVID-19 status of
patients presenting to the emergency departments at four different
hospitals in the United Kingdom, ML models performed best at
predicting COVID-19 in patients when the parameters were tuned
specifically to each hospital site (Yang et al., 2022). Lack of
generalizability of trained ML algorithms and inadequately sized
datasets, especially if they are sparse, make ML algorithms difficult
to utilize in systems biology and particularly challenging to use in the
context of developing computational models of human responses to
disease.

Dynamic hypergraphs

One solution to overcoming the sometimes limiting nature of
ordinary differential equations (ODEs), which are typically used in
mechanistic models (Edelstein-Keshet, 1988; Clermont et al., 2007),
as well as the overfit models often generated via ML algorithms, lies
at the intersection of basic science experimentation, traditional
statistics, and dynamic and stochastic modeling. As an example,
traditional experimentation targeting the in vitro and in vivo nature
of pathologies provides granular data characterizing those
components of the human body that lead to macroscopic
outcomes such as fever, shock, and morbidity. Modeling
macroscopic outcomes alone may oversimplify the state of the
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body, whereas modeling the cellular and molecular underpinnings
of disease alone may lead to findings that are often irrelevant at the
clinical scale. The need to augment in vitro data with in vivo data
from both healthy and diseased animals and patient models across
all systems biological projects will be critical as we trend toward
developing digital twin models of pathologic states (Shah et al., 2023;
Vodovotz, 2023). Traditional statistics will provide the core tools for
rigorously testing the validity of experimentally inferred differences
across time, patients, and datasets. Nonetheless, the utilization of
ML algorithms will still be challenging as the size of the available
datasets will often be much smaller than required based on the
number of independent variables assessed.

Dynamic hypergraphs, a permutation of the traditional
hypergraph formalism, provide an opportunity to utilize both
traditional statistics and rate-of-change models to interpolate the
behavior of a biological system across tissues over time (Shah et al.,
2022; Shah et al., 2023). Hypergraphs are defined by increased
geometric flexibility in comparison to a traditional graph mode;
namely, an edge in a hypergraph can connect any number of nodes
(Schwob et al., 2019; Feng et al., 2021). As such, it is possible to
define a multi-compartment model in which graph nodes represent
tissue compartments (Shah et al., 2022). The edges can be defined in
several ways and creatively leverage dynamic statistics. For instance,
an edge can be defined by the correlation of an inflammatory
mediator with itself across two time points, as the rate-of-change
in expression of a gene within a tissue, by an ODE, or the correlation
between two inflammatory mediators over time (Shah et al., 2023).
Such models harness the strengths of traditional graph models and
traditional statistics. Future extensions may seek to use the graph
architecture suggested by hypergraphs as nodal structure for a feed-
forward ML algorithm. By designing the ML algorithm, utilizing an
architecture rooted in vitro data and traditional statistics, the

predicted clinical outcomes of disease pathologies have a better
chance of capturing the dynamics of a complex biological multi-
compartment system (Figure 2).

Harnessing the power ofmachine learning in
computational systems biology

To explore potential generic advancements of ML and AI with
respect to systems biology, it might be useful to branch out and
explore fields in which ML and AI have been particularly successful
in the recent past. One such field is the gaming industry, boosted by
abundant resources and an estimated global worth of over
$160 billion in the second quarter of 2021 (Bloom, 2021).
Combined with an enormous public interest, a highly
competitive ecosystem with accelerated evolution emerged within
this field in a short period of time.

A key trend underlying the success of the gaming industry is the
rise of game engines, which serve as toolboxes for game creation.
These engines provide a comprehensive suite of development tools
within an integrated development environment, enabling simplified
and rapid game creation. Typical game engines include a rendering
engine that enhances 2D models into 3D constructs, an engine
creating physically realistic structures, scripting capabilities, sound
integration, artificial intelligence, networking, streaming, memory
management, threading, localization support, scene graphs, and
video support for cinematics. Some examples of popular game
engines are Unreal, Unity, Construct, Game Maker, and Godot
(unreal_engine, 2023; Unity, 2023; Construct, 2023; GameMaker,
2023; Godot, 2023).

Applying similar concepts to the field of systems biology would
address several challenges. Experimental biologists at present need

FIGURE 2
The future role of dynamic hypergraphs for a systemic assessment of disease. Rigorous statistics applied to in vitro and in vivo data can inform the
development of ML architectures as the field trends towards the development of “digital twins” to model pathologic responses in the human body.
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to acquire numerous skills to conduct modern research, ranging
from molecular chemistry and physics to statistics and
computational sciences. It would greatly simplify their
involvement in systems biology if they had access to a user-
friendly, reliable set of tools for dealing with the technical aspects
of computational modeling. In other words, the creation of an
effective “bioengine,” analogous to game engines, could establish
a standard for model construction and facilitate easier comparisons
of models and their integration into more comprehensive, higher-
level models. Such a standard could also serve as a reference point
for the development of more effective future tools by providing
creators with a baseline for performance comparisons. While some
attempts have beenmade in this direction, such as SBML, (2023) and
OpenWorm, (2023), they pale in comparison to what the gaming
industry has achieved.

As an example illustrating some of the advantages of this
strategy, consider the quest for designing a reliable whole-cell
model. If an adequate physics engine were available that could
accurately simulate the physics of a cell at the molecular scale,
constructing a whole-cell model would become almost
straightforward. One would start with the necessary raw
materials and the DNA sequence of the investigated cell, create a
transcription and translation process to convert the genetic
information into proteins, and let the physics engine take its
course. Obviously, the substantial challenge lies in developing
such a physics engine. While this challenge appears to be
overwhelming, one should note that progress has already been
made toward its construction. For instance, AlphaFold (2023) is
capable of predicting the 3D structure of proteins from their amino
acid sequences with some reliability, thereby eliminating the need to
simulate individual atoms. Furthermore, again gleaning successes of
the gaming industry, game engines can already calculate the
behavior of individual photons through ray tracing and animate
characters with an astonishing resolution that allows intricate hair
motion. Thus, by bringing together biologists, biophysicists,
computer scientists, and game developers, fascinating possibilities
could arise. Obviously, this type of effort would require significant
funding, but the project is precisely of the type of high-risk, high-
reward projects that are the mainstay of funding agencies such as the
U.S. Defense Advanced Research Projects Agency (DARPA) or the
newly established U.S. Advanced Research Projects Agency for
Health (ARPA-H).

Connecting snapshots through dynamic
modeling

By nature, almost all experimental data consist of results
obtained at one or several time points. In many cases, intuition is
sufficient literally “to connect the dots,” but oftentimes intuition is
overwhelmed, especially if the experimental findings are multi-
dimensional, surprising, or even counterintuitive. One important
role of mathematical and computational models in stems biology is
the weaving of isolated results into cohesive trajectories that can
explain how a system converts particular inputs into the outputs we
observe. Ideally, the models capture the full dynamics of the system
under the investigated conditions and are sophisticated enough to
establish chains of causes and effects, which can be studied through

detailed simulations. As an example, a fully dynamic model was able
to explain how the bacterium Lactococcus lactis stops glycolysis just
before environmental glucose, its substrate, runs out. This strategic
stoppage is crucial for survival of the organism, as the downstream
glycolytic intermediate phosphoenolpyruvate is needed for
upstream glucose utilization (Voit et al., 2006; Dolatshahi et al.,
2016a; Dolatshahi et al., 2016b).

Interestingly, even static models can yield new insights in both
the static and dynamic nature of experimental observations. As an
example, network modeling is now a fairly common means of
visualizing cross-correlated data, with the underlying hypothesis
being that such cross-correlations imply the presence of an
organized biological program (Asthagiri and Lauffenburger, 2000;
Neves and Iyengar, 2002; Sauro and Kholodenko, 2004; Janes and
Yaffe, 2006). Most network modeling in the past has been static, i.e.,
the data used to visualize the network were derived from a single
time point or were treated as a single unit if they were comprised of
multiple time points. When trying to explain a dynamic process, an
initial step might be to create a “punctate” series of networks from
data at individual time points, especially when the data available are
sparse or comprised of only a few time points (Vodovotz et al., 2017;
Sachdev et al., 2018). A conceptually similar but more sophisticated
approach uses piecewise linearization of a dynamic process via
assessment of cross-correlation across discrete time intervals (Mi
et al., 2011). In the context of the inflammatory response, for
example, methods such as Dynamic Network Analysis (DyNA)
(Mi et al., 2011) were used to assess how inflammatory
mediators are correlated with each other in individual tissue
compartments over time (Vodovotz et al., 2008; Mi et al., 2011;
Vodovotz and Billiar, 2013; Ziraldo et al., 2013; Namas et al., 2015;
Zamora et al., 2021). This approach helped define novel, early
mediators associated with hemorrhagic shock in experimental
models of trauma (Mi et al., 2011) and mortality in the human
context (Abboud et al., 2016), and also assisted in the definition of
novel aspects of toll-like receptor 4-associated cross-tissue
inflammation in experimental models of endotoxemia (Zamora
et al., 2021; Zamora et al., 2023).

Dynamic Network Analysis is useful for defining, in a granular
fashion, the time evolution of intercorrelated variables, but it does
not highlight potential feedback nodes that might be relevant when
thinking about how a complex system might be regulated.
Topological Data Analysis and Dynamic Bayesian Network
(DyBN) inference can address this deficiency by depicting time
courses of variables as a network in which nodes are interconnected
based on the algorithmically inferred likelihood that a given node
impacts the appearance or decay of another (or the same) node
(Grzegorczyk and Husmeier, 2011; Azhar et al., 2013a; Skaf and
Laubenbacher, 2022). DyBN inference has been used to define
potential feedback structures that regulate inflammatory
programs (Namas et al., 2015; Azhar et al., 2021). In the context
of blunt trauma, DyBN of circulating inflammatory mediators
assessed within the first 24 h following severe injury suggested
that HMGB1 and IL-23 exhibited positive self-feedback in non-
survivors (Abboud et al., 2016). More recently, this method was used
to infer the presence of a novel, chemokine-centered mechanism of
inflammation control (Azhar et al., 2021).

Despite these advances in dynamic network inference using
purely data-driven methods, the exploration of causality and
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regulation in complex systems still requires the construction of
dynamic models. One challenge to their design is the fact that nature
has not provided guidance regarding the most appropriate
functional representations (Voit, 2017). However, powerful
assistance to the envisioned automation of this step is provided
by nonlinear canonical models, which are always constructed
according to same rules, yet are flexible enough to permit
capturing all relevant nonlinearities. Such canonical models
prominently include Lotka-Volterra systems for straightforward
analyses of interacting populations [e.g., (May 1973; Peschel and
Mende, 1986; Voit and Savageau, 1986)] and power-law systems that
are at the core of Biochemical Systems Theory [e.g., (Savageau and
Voit, 1987; Savageau, 1996; Voit, 2013)].

Applications

The scientific community and the public will ultimately judge
the successes and failures of systems biology in terms of novel
insights into the complexity of the living world and of applications to
challenging problems. Examples of success stories of the past
include, among many others, Eric Davidson’s work on regulatory
networks governing body plan development (Peter and Davidson,
2011; Peter and Davidson, 2017), Denise Kirschner’s work on
tuberculosis (Wigginton and Kirschner, 2001; Segovia-Juarez
et al., 2004), and work by Gregory Stephanopoulos’ group on
model-driven improvements of amino acid yield in
Corynebacterium glutamicum approaching the theoretical limit
(Vallino and Stephanopoulos, 1993). Also, we already mentioned
model-based insights into inflammation and critical illness (An,
2004; Clermont et al., 2004; Vodovotz et al., 2008). It is to be
expected that future applications of systems biology will often align
with new trends in the experimental biomedical sciences and that
they will address issues throughout the biological spectrum. Which
of these applications will attract the attention of systems biologists is
impossible to forecast. Nonetheless, some trends are emerging as
potentially very powerful, as we discuss now.

Translational systems biology and systems
medicine

Many important applications will clearly fall into the general
category of improving human health. An example will be a
comprehensive collection of dynamic models of physiological
systems that will not only be useful for education but also permit
simulations of diseases and treatments for research questions. In
fact, some realistic disease simulators already exist, and companies
such as Entelos (Entelos, 2023), Immunetrics (Brown et al., 2015),
Applied_Biomath (2023), and Nova_Discovery (2023) have for over
two decades been developing realistic simulation platforms of utility
to the pharmaceutical industry, which in turn uses these platforms to
test the efficacy and safety profiles of drug candidates; many
pharmaceutical and biotechnology companies now have internal
groups carrying out this type of modeling as well. An exceptional
example is an FDA approved simulator for insulin administration
(Visentin et al., 2018), which can be used validly in lieu of
experimental or clinical dosing studies.

More generically, new health-related fields are in the process of
developing as spin-offs or extensions of systems biology. They come
under the rubrics of Translational Systems Biology (Li et al., 2008;
An, 2014), Systems Medicine (Apweiler et al., 2018; Wolkenhauer,
2021), Network Medicine (Chan and Loscalzo, 2012), Quantitative
Systems Pharmacology (QSP) (Rogers et al., 2013) or similar terms
and attempt to define means by which systems approaches might be
used to improve all aspects of healthcare delivery, from disease
models, to rational design of novel drugs or devices, to patient-
specific models (digital twins), and ultimately to closed-loop,
dynamic modulation of disease (Day et al., 2018; Vodovotz, 2023;
Laubenbacher et al., 2022).

These applications of computational modeling grew out of the
early days of systems biology, as enthusiasm for emerging data-driven
and mechanistic modeling approaches to simple and simplified model
systems began to gain acceptance. For example, the initial use of
Principal Component Analysis to define cell signaling programs based
on extensive time course data on cell signaling intermediates (Janes
et al., 2005) led to applications regarding the inflammatory response in
human disease states such as critical illness and acute liver failure
(Azhar et al., 2013b; Namas et al., 2016; Schimunek et al., 2021). Early
mechanistic modeling of the responses of inflammatory cells to
infection (Alt and Lauffenburger, 1987) progressed to simulated
clinical trials in the context of sepsis (An, 2004; Clermont et al.,
2004). More generally, virtual clinical trials became accepted by
regulatory agencies as beneficial, if not even necessary (FDA, 2011;
Musuamba et al., 2021). Digital twin applications of mechanistic
models in the context of inflammation followed thereafter (Li et al.,
2008; Brown et al., 2015; Laubenbacher et al., 2022). In this regard, the
field of QSP, which is aimed at drug development via disease models
and virtual patients (Musante et al., 2002; Ekins et al., 2007;
Allerheiligen, 2010; An et al., 2011; Iyengar et al., 2012; Visser
et al., 2014; Klinke, 2015; Zhang et al., 2018), is a direct and
important translational application of systems biology. Other
specific applications of QSP target the translation of experimental
or computational results from one species to another, in particular,
from mice or rats to humans (Brubaker et al., 2020). The same goals
have been pursued with physiologically based pharmacokinetic
(PBPK) models for some while (Sager et al., 2015). As a recent
example, preclinical data in swine were linked with clinical data
from trauma patients via a 3-compartment ODE model of
inflammation and coagulation. The model accurately predicted
physiologic, inflammatory, and laboratory measures in both swine
and patients, as well as predicting outcome and time of death in trauma
patients. Furthermore, these studies suggested benefits of specific
hemorrhagic shock resuscitation strategies (Cannon et al., in revision).

Multi-scale models

The organization of biological systems as distinct but connected
layers poses one of the grand challenges for biomathematical
modeling, because processes occurring at the various layers often
have different time scales and almost always focus on different types
of variables. The higher layers usually correspond to a “big picture”
of physiological events, whereas the lower levels account for
increasing granularity and detail. When investigating a system at
a high level, it is usually infeasible to carry along all details from
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lower levels, partly for technical reasons, but also because they would
overwhelm insights at the higher level due to their sheer numbers
and the fact that they typically run on much faster time scales. For
instance, the growth of an embryo from a fertilized oocyte
throughout the phases of blastula, gastrula, and further
development may span several weeks, during which uncounted
metabolic and cellular processes occur at a much more rapid
pace. It has been argued [e.g., (Savageau, 1979; Kokotovic et al.,
1980)] that the processes at lower levels are so fast that they are
essentially always in a steady state, which permits their conversion
from ordinary differential equation representations to explicit
algebraic equations that may be entered as constraints in a much
smaller set of governing equations. While separation of time scales is
certainly an option for processes with time constants at different
orders of magnitude, a sufficiently clear separation is not always
feasible if the layers of biological organization are not all that distant.
Consider two examples. The first is the clouding of the human lens,
which constitutes an extremely slow, life-long process that is caused
by clearly identifiable biochemical reactions occurring on an
ongoing basis at the scale of parts of seconds (Ferreira et al.,
2003). In this case, a timescale separation seems feasible, even
though both processes occur simultaneously. Namely, on the fast
scale, the responsible Maillard pathway is analyzed in sufficient
detail, but only the overall accumulation of advanced glycation end
products is retained for informing the slow-scale clouding process.
In stark contrast, the heart beats with a frequency of approximately
1 Hz, which corresponds to a similar time scale as cardiomyocyte
signaling. In this case, time-scale separation of the involved macro-
physiological and molecular processes is problematic. Several
reviews have outlined the challenges of modeling biological
processes at multiple scales [e.g., (Schnell et al., 2007; Sloot and
Hoekstra, 2009; Fletcher and Osborne, 2021)], but so far, no general,
entirely satisfactory solutions have emerged.

One crucial aspect of multiscale modeling is the reliable
information sharing among subsystems at different scales. As an
illustration, suppose we could create an exceptional cell
simulator, possibly with methods inspired by a game engine,
as discussed before. How could we utilize knowledge from
simulations at this subcellular level to infer events at the
tissue or organ level? One approach could be the use of
agent-based models at the lower scales if randomness is
important for the behavior of individual cells or even smaller
important modules (An, 2001; An, 2005; An, 2010; Glen et al.,
2019). As we move to larger scales, grouping individual cells into
aggregates could possibly allow application of the law of large
numbers, which often permits valid model representation in the
format of differential equations; as an alternative, one could
again employ an agent-based approach with rules governing the
behavior of these aggregates. At an even higher level, the
aggregates could be merged into tissues, organoids, organs
(Norfleet et al., 2020). A substantial challenge would still be
the correspondence between levels, with an appropriate transfer
of information. For instance, to move up to a higher level,
information would have to be represented in a collective yet
simplified manner, otherwise the higher-level models would be
overwhelmed by detail. Similar issues would pertain to moving
in the opposite direction (An, 2010). As a specific, practical
example, moving down from an organ to an agent-based model

focusing on its cells, should one initiate the latter all in the same
state or in different states? A starting point might be a mean-field
approximation, as it has been proposed (Kirschner et al., 2014),
but much remains to be done. Indeed, the movement between
scales will be a ubiquitous challenge for systems biology
throughout the foreseeable future.

Models of single-cell data

In the study of phenomena like cancer, it had long been assumed
that, for instance, all breast cancers were more or less alike. This view
had to be amended during the past two decades when it turned out
that some breast cancers responded to some drugs, but other breast
cancers, which appeared to be of the same type, did not. We now
know that tumors and other cellular assemblies are often highly
heterogeneous and that bulk experiments may yield misleading
results (Di Carlo and Lee, 2006).

The possibility of studying single cells is particularly powerful
for capturing rare events which, in the context of cancer, for
example, may lead to metastasis. When studied in bulk, such
events are often dismissed as noise or measurement error,
although they may in truth contain very valuable hints regarding
the organization and functioning of biomedical systems. Future
work in this arena will require new methods for identifying and
characterizing such rare events (see further comments in the
Conclusions).

Current approaches to dealing with single-cell data often use
methods of statistics, machine learning, and bioinformatics, but it is
to be expected that systems biology will increasingly shed light on
the dynamics of heterogeneous cell groupings. As a recent example,
consider signaling processes during the epithelial mesenchymal
transition (EMT), a process that drives the spread of tumors.
EMT involves cells in morphologically and physiologically
distinct states, and it had been assumed that the changes
required different wiring modalities of the responsible signaling
networks. However, a careful dynamic analysis of single-cell data
demonstrated that rewiring is not necessary and that a constant
network structure with minor parametric adaptations suffices to
capture the signaling process throughout EMT (Wade et al., 2020).
Another example is the extensive application of single-cell omics in
the context of systems immunology (See et al., 2018). While many
insights have been derived from this methodology, a key limitation is
that the primary approach is that of pattern recognition and pattern-
based classification based on clustering-based approaches such as
t-distributed stochastic neighbor embedding (tSNE) and uniform
manifold approximation and projection (UMAP) are extensions of
older hierarchical clustering methods and are used to define the
pattern of cells or molecules in any given experimental or clinical
condition (See et al., 2018). As in the foregoing discussion of
microbiome models, heterogeneity is a major challenge when
attempting to glean mechanistic insights from pattern-based
single-cell ‘omics data (An, 2014).

Dynamic statistical methods, including the dynamic
hypergraphs mentioned before, are slowly emerging to address
the heterogeneity of cell assemblies (Hasenauer et al., 2014; Loos
et al., 2018; Wade, 2020; Vodovotz, 2023), but the field is still wide
open for advancements.
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Models of microbiota

All organisms live in communities, and while macroscopic
populations have been studied for a long time, recent interest has
been shifting to mixed microbial communities, microbiota, or
microbiomes, as they are alternatively referred to. Of direct
importance for human health are microbiomes in and on our
bodies, which are all different, depending on their location. Even
our mouth microbiome varies in different niches (Deo and
Deshmukh, 2019). The mammalian gut microbiome has received
the most attention, given that it is critical for healthy digestion and
metabolic wellbeing, but also for mental health, with dysfunction
possibly leading to depression (Shoubridge et al., 2022). It has been
estimated that our body is home to approximately 40 trillion bacteria
(Sender et al., 2016).

Outside human health, microbial communities are directly
associated with the health of ecosystems. A single Gram of soil
can contain enough microbial DNA to stretch nearly 1,000 miles
(Trevors, 2010). Lakes and rivers are often inhabited by ten to twenty
thousand operational taxonomic units (OTUs), which cleanse the
water of many types of pollutants (Dam et al., 2016; Callieri and
Fath, 2019). Due to the enormous numbers of participants, their
often-large diversity of species, and the fact that they can change
dramatically over time, microbial communities are too complicated
to permit intuitive assessments and are therefore an important
application for computational systems biology. The specific quest
is usually to characterize the interactions among different OTUs and
to predict their future dynamics. The task has been approached in
the past with network analyses or dynamic models. In the former
case, correlation networks are constructed based on the presence,
absence, or abundance of different species across multiple locations
or time points (Ruan et al., 2006; Barberan et al., 2012; Faust et al.,
2012; Friedman and Alm, 2012; Gilbert et al., 2012). More complex
relationships have been derived from rule-based networks or
regression analysis (Chaffron et al., 2010; Faust and Raes, 2012).
Static correlation networks are well suited to address large and
complex communities of thousands of species (Chaffron et al., 2010;
Barberan et al., 2012), but they typically ignore the asymmetry of
relationships between species and do not capture dynamic trends,
which require dynamic systems models (Mounier et al., 2008; Stein
et al., 2013; Berry and Widder, 2014; Marino et al., 2014; Dam et al.,
2020). The inference of interactions for these dynamic systems is the
subject of ongoing investigation (Davis et al., 2022; Olivença et al.,
2022).

Other key challenges that remain for microbiome analysis
center on the integration of proteomic and metabolomic data
that could permit inferences beyond the simple distinction
between the presence or absence of a given taxon. Additional
goals include a better grasp of the large heterogeneity in
microbiome composition among individuals, the impact of
phenomena like circadian rhythms, and factors impacting
microbiome dynamics in individuals and populations (Gilbert
et al., 2018). Finally, a new approach to analyzing microbiomes
that presents great potential is metagenomic enzyme discovery,
which attempts to predict biocatalytic function directly from
sequencing data. Although this strategy is still quite challenging
to implement, some efforts are on their way (Robinson et al.,
2021; Jia et al., 2022).

Other microbial applications

Modeling microbial systems has become important in synthetic
biology and metabolic engineering. Systems biology can be
considered the theoretical framework for synthetic biology, and
the two fields will probably share many applications in the future
(Hanczyc, 2020; Ezzamouri et al., 2021). Most of the past and
current efforts of synthetic biology have been focusing on
microbial models, due to their relative simplicity, and this
preference will most likely dominate the future, although
mammalian stem cells have gained much interest in recent times.
Similarly, computational models addressing microbial pathway
systems will eventually become the standard for rational
metabolic engineering (Alvarez-Vasquez et al., 2000; Harder
et al., 2016; Gudmundsson and Nogales, 2021; Palsson et al.,
2021). Applications in this field are manifold. Just one example is
the manipulation of hydrogen production by bacteria, based on
computational models and the manipulation of their molecular
inventory. Promising approaches are direct mutagenesis and
high-throughput screening assays (King et al., 2022), as well as
the generation of hydrogen in a cell-free system (Hodgman and
Jewett, 2012). These approaches are expected to gain from
computational modeling support. Even more intriguing, oceanic
cyanobacteria of the genus Synechococcus fix carbon and convert it
into sugar within spatially well-placed internal structures, called
carboxysomes, and the introduction of mutations of a gene
responsible for the organization of the carboxysome could lead to
higher photosynthesis and, subsequently, hydrogen (Savage et al.,
2010).

More broadly, society must explore different stable states of
coexistence between humans and complex microbial communities,
on earth as well as possibly on other planets. These explorations,
both experimental and model-based, must address not only
environmental issues and food production, but also parasites. Beyond
the well-known challenges of understanding host-pathogen interactions
(Gutierrez et al., 2015; Garcia et al., 2008), the recent pandemic has
implicitly suggested yet another application of systems biology to
microbial problems. Namely, it will be more difficult in the future to
obtain funding for gain-of-function research, due to its inherent danger
(Board-of-Life-Sciences, 2015), which has become abundantly evident
during the pandemic. A potentially powerful alternative to experimental
studies might eventually consist of realistic simulations based on tools of
computational systems biology.

Both research into newmethodologies and theoretical advances and
the application of these methods to challenging real-world problems
require the involvement of new cohorts of students and postdoctoral
fellows. Some of these may come from any of the parent disciplines of
systems biology, but there are so many genuine features of the field that
the education of new generations of scientists must be a high priority for
our community. We will describe some of the needs and challenges of
this aspect of systems biology next.

Education

Before systems biology became accepted and appreciated, the
dominant paradigm of biological research was reductionism. In
coarse terms, this approach means that to understand an organism,
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we need to understand its organs; to understand these, we need to
understand the tissues in the organ; to understand these, we need to
understand the cells in these tissues, and so on, thus mandating a
chain of investigations down to the basic building blocks of life. This
approach has been tremendously successful, and we now have
comprehensive molecular inventories of cells. While systems
biology absolutely needs the knowledge derived from this modus
operandi, it has become clear that reductionism is not entirely
sufficient and that we need tools to reassemble the pieces into
functioning entities. Indeed, this integration is at the heart of
systems biology, and one significant achievement of systems
biologists has been their emphasis on convincing traditional
biologists to look at nature through the lens of connectedness
and systemic regulation.

Given the importance of this new world view, what exactly do we
need to teach and at what level? It is clear that an often-reinforced
emphasis must be on core concepts such as complexity, dynamics,
regulation, nonlinearities, threshold effects, and emergence. But
what will be the most effective manner of conveying these
concepts within relevant contexts? The educational community
within systems biology has been struggling with these questions,
without having found a perfect answer. The reason is that the
genuine interdisciplinarity of systems biology creates four unique
challenges for teaching and for the development of academic
curricula (Voit and Kemp, 2011). First, it requires successful
students to gain diverse skills from data generation to
computational system manipulation, which entails at least basic
knowledge of the core concepts of the biological sciences, chemistry,
physics, computing, mathematics, and engineering, as well as
mastery of a wide span of techniques. It is quite evident that no
student can acquire as much knowledge in all these fields as a
student concentrating on any one of them, which implies the need
for careful consideration of which topics are truly necessary for
understanding the inner workings of a biological systems. The
second, associated challenge is the diversity of backgrounds and
academic experiences among students possibly interested in systems
biology. Some will hail from more traditional biology, while others
may have backgrounds in mathematics, physics, or computing, with
corresponding deficiencies in areas outside their major fields of
study. The third challenge is the intrinsic complexity of biomedical
phenomena, which is genuinely difficult to comprehend and even
more difficult to teach. One aspect of this complexity is the often-
cited emergence of systems behaviors that cannot be explained in
terms of any of the components in isolation. While practitioners are
well aware of examples of emergence, crisp definitions and
conclusive explanations do not really exist. To put it bluntly, two
core concepts of the new field of systems biology, namely,
complexity and emergence, elude simple explanations, which
creates a rather difficult starting point for education in the field.
The fourth challenge is that many biologists and engineers are
convinced that learning occurs best in a research lab, while
coursework should be minimized. It seems that students retain
knowledge better through hands-on learning, but it also appears
that some formal classroom instruction is needed.

Educational programs in systems biology may take distinctly
different formats. The lowest level of effort is the creation of a
module within an introductory biology class. As an example, such a
module was created on the topic of homeostasis, exemplified with

the regulation of oxygen in the blood stream, and successfully
implemented it in a first-year biology course at Spelman College
(Ayalew et al., 2022). The same topic will be revisited in introductory
math and computer science classes at Spelman, with domain-
specific spins. For instance, the math module will look at the
stability of steady states, the mathematical formulation of
feedback inhibition, and other mathematical aspects, while the
computer science module will focus on model coding, numerical
methods for solving differential equations, and means of
visualization. It is obvious that such cross-disciplinary training
requires genuine buy-in from all instructors, as well as close
coordination.

The creation of modules within existing classes exposes students
to systems thinking in a very important, but minimal fashion. The
next higher level of exposure is achieved with a semester-long course
dedicated to so-called STEM (science, technology, engineering, and
math) concepts. Ideally, such a course lets students experience the
art of systems analysis and simulation with hands-on computer
exercises. Outside the acquisition of techniques, a goal of this
approach is to instill in students a “feel” for systems and their
dynamics (Voit et al., 2012). Because systems biology is applicable to
numerous problem spaces, it offers the opportunity to custom tailor
a course to a specific topic or home department. Examples include a
course dedicated to analyzing the systemic nature of a specific
disease of interest (Voit et al., 2012) and a systems biology
course with emphasis on quantitative systems pharmacology
(Androulakis, 2022).

A typical critique of this educational strategy is that the
computational exercises are necessarily relatively simple “sand-
box problems” that lack relevance for the complicated, messy real
world. While that might be so, one should remember that we learn
geometry on the basis of ideal circles, triangles and perfectly straight
lines, which do not exist in actuality, with the exception of construed
examples.

Even a semester-long course can only address the tip of the
iceberg. Amore comprehensive experience with biological systems is
obviously gained through an entire program that touches on fields
tangential to biology and mathematics, such as computer coding,
bioinformatics, data science, and possibly biophysics, and integrates
knowledge from these fields into systems approaches. In the end,
such a program must address the necessary basics of the parent
disciplines but, at the same time, allow the student to gain true
expertise in one subspecialty, both through classes and projects, as
well as a thesis or dissertation (Figure 3).

In addition to strictly technical skills, aspiring systems biologists
should be made aware that the scientific method underlying the new
field is different from the typicalmethod of posing, testing, and accepting
or refuting hypotheses. Namely, the scientific method of systems biology
spans two distinct worlds: reality and the domain of mathematics (Voit,
2019). In the process of using models to analyze biological systems, a
piece of reality is transferred to the mathematical domain, where all
analyses are executed, and the results are subsequently transferred back
to the world of reality. The act of transferring information between the
two worlds requires specific correspondence rules that govern
simplification, abstraction, and mathematical formulation in the
beginning of the modeling effort and the translation and
interpretation of results, for example, from eigenvalues to biologically
understandable concepts like stability, at the end.
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As an important part of teaching the students about this
conceptual difference, the students need to realize that different
disciplines use their own languages, which must be translated in
order to communicate among practitioners from the different fields
(Voit, 2016). The necessary skills for this aspect may be learned by
involving the students in consulting projects where, for instance,
experimental biologists are aided in the development of a supporting
model. It is also necessary to train students in the art of collaboration
in large, multidisciplinary projects that might span several
institutions with different scientific cultures and languages.
Furthermore, aspiring systems biologists need to be made aware
of the rapid evolution of the field of biology in general. For example,
the nature of biological data is constantly changing, thus requiring
systems biologists to become familiar with a spectrum of new
technologies. Not long ago, microarrays were the frontier of
genetic research, but they have by now been made almost
obsolete by next-generation sequencing (Slatko et al., 2018).

Traditional teachingmethods will continue to be important, but one
should also mention new methods like notebooks such as Jupyter,
Google Colab or Noteable. These applications facilitate the
interpretation of code and explain text and program output, which
decreases the user’s effort to understand the details of computer code. Of
particular note, Open AI made a ChatGPT plug-in available in July
2023 that can read files and analyze them by running code (Franzen,
2023). This facility allows users to analyze data, create charts and data
visualizations, perform math, create interactive HTML files, clean
datasets, and perform other tasks, thereby greatly decreasing the
effort to perform data analysis and enabling individuals with
rudimentary training to engage in the interpretation of new
information. It is not hard to imagine that similar developments in
the field of systems biology might follow soon. If so, the new trend will
catalyze a shift in the teaching of systems biology and change the present
focus on technical skills to a more conceptual emphasis on the
possibilities the tools of system biology allow.

Whichever format of formal education in systems biology is
chosen, it will greatly benefit from the support of strong textbooks.

Although the field is still young, it is a sign of its importance that
several introductory books have entered the market in recent years.
Examples include (Edelstein-Keshet, 1988; Kaneko, 2006; Sauter and
Albrecht, 2012; Kremling, 2013; Robeva, 2015; Klipp et al., 2016;
Voit, 2017; Alon, 2019). These books are designed to support
classroom education but could also be used for self-learning by
students as well as the interested public. Indeed, the latter group
should not be underestimated as it is of great importance, as we will
discuss next.

Outreach

Systems biology has matured to a point where it is widely
accepted among biologists. While this acceptance is without
doubt a major achievement, we cannot rest but must share our
excitement about the new field with the outside world (Voit, 2022).
Over the time horizon of the next decade or two, this publicity will
not be a luxury but an absolute necessity, because it is not our peers
but the public, represented by politicians, that is funding our work
through taxes. By tradition, few scientists are truly equipped—or
interested in—communicating outside their chosen silos, and
publications in non-scientific magazines are not only
undervalued among hard-core scientists and tenure committees,
but they are also often considered distractions from “real work.” In
truth, it is quite as hard, if not harder, to convey to non-experts what
a new scientific endeavor attempts to do than to communicate a
technical advance to peers from the same field. The reluctance of
practicing scientists to engage in publicity is therefore
understandable but must ultimately not be allowed as an excuse.

Informing the public can take many forms. It is indeed possible
to write “popular” books on complex scientific questions, if tone and
style are adjusted without compromising the truth. But the time
must be ripe, as books on topics that are too unfamiliar do not tend
to fare well, whereas books published too late may be considered as
not providing any new perspectives. Examples of well-written and

FIGURE 3
Educational target of achieving broad interdisciplinary knowledge combined with specific expertise in one niche. Because systems biology spans
several disciplines, every studentmust acquire basic knowledge and expertise in the parent disciplines. At the same time, it is mandatory that each student
becomes an expert in some limited area within the field.
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well-selling books include Chaos by James Gleick, (1997) and
Linked: The New Science of Networks by Albert-László Barabási
(Barabási, 2002). We have tried to share systems biology with the
public in a similar manner, but with considerably less success (An,
2014; Voit, 2016; Voit, 2020), arguably because of premature timing.
Nonetheless, the public must be informed in a positive, exciting
fashion, lest general interest in systems biology is likely to fade.

Alternatives to books are interviews on radio or TV and
articles in daily newspapers, now supplemented with exposure
via podcasts and social media. For instance, it can be effective to
use iTunes, Spotify, LinkedIn, or Twitter (X) as a platform for
sharing academic successes, although the latter is not necessarily
effective for discourse because of its short format. However, new
alternatives such as Mastodon (Mastodon, 2023) are beginning
to emerge. Other options are short video blogs (“vlogs”) on
YouTube, such as Kurzgesagt (2023) and CrashCourse
(CrashCourse, 2023). As noted above, podcasts might be
effective ways of sharing information. Examples include
TWIM (TWIM, 2023), Science for the People (SOP, 2023) or
Nature’s podcasts (Nature_Podcast s, 2023). These are often in
the format of late-night talk shows where the host brings on a
guest to talk about her/his recent study or book. If the guest is
able to present the new work in an enjoyable fashion that is easy
to understand, this mechanism might be the best venue for
amplifying the impact of scientific research. It is clear that it
takes skill to explain a complex subject and make it enjoyable to
the public. While scientists sometimes lack this skill, a class of
science communicators is emerging, who specialize in exactly
this translation of scientific jargon into easily digestible news. It
will be important to inform these communicators well.

Another option may be the organization and hosting of
open-access online symposia, for instance, led by Frontiers in
Systems Biology. This mechanism would target students first but
might be extended to the public later. It would bring students
interested in systems biology together to foster networking and
the exchange of knowledge. While many scientific meetings have
symposia dedicated to trainees at various levels, there is
currently no established venue for students of systems
biology. Moreover, given that many students, especially those
in developing nations, simply do not have the means to travel to
such meetings, we envision one or a series of online systems
biology meetings that would be organized by and aimed at
students. The meetings would feature student-led systems and
computational biology research in both basic and translational
science. At these meetings, senior faculty mentors may be invited
to present their perspectives on systems biology and be available
to discuss questions and concerns brought up by the students.
Frontiers in Systems Biology has pioneered a series of Research
Topics entitled Emerging Talents in Systems Biology, and this
conference would be an ideal opportunity to connect to that
topic with regard to student-led publications.

Conclusions and outlook

In this perspective, we have laid out one particular vision of
how systems biology might develop in the near future. While
there was reason for us to focus on the presented topics, the

future is always uncertain, of course. The main cause for
predictions to fail is the human nature of extrapolating trends
from the recent past toward the future in a smooth monotonic
fashion, which by default is linear. In many cases, this
underlying assumption is correct, at least qualitatively, and
predictions not too far into the future have a good chance of
coming true. However, history has made it clear beyond doubt
that technology, science, and society develop gradually for some
time, while then being dramatically changed by strong discrete
perturbations, which one may call singularities (Ulam, 1958),
punctuated equilibria (Eldredge et al., 1972) or black swans
(Taleb, 2017). These events disrupt gradual trends and put
technology, science, and society onto drastically different
trajectories. It is quite obvious that these disruptive events are
impossible to predict, both in terms of time and even their
nature. For systems biology, it could be, for instance, that a truly
new math would be developed, as speculated by Leroy Hood
(pers. comm.) and others. More likely seem to be new
experimental techniques that all of the sudden might
overcome some of the current obstacles of systems biology,
such as extracting sufficient high-quality parameter values
from observation data. Another likely suspect could be the
increased and refined use of artificial intelligence which
could, for instance, be trained to design large mathematical
or data-driven models without error, perhaps in the context
of Large Language Models (LLMs) such as Generative Pretrained
Transformers (GPT). One challenge for the latter would be the
choice of appropriate mathematical representations, but this
challenge could be overcome, at least as a default, by using so-
called nonlinear canonical models that are constructed
according to strict rules, which would be perfect for
automation, yet are flexible enough to permit capturing all
relevant nonlinearities (e.g., (Savageau, 1996; Voit, 2013)).
Other “blue-sky” ideas may change the face of systems
biology in ways we simply cannot foresee.

Whatever the future may bring, systems biology has emerged
from very humble beginnings (Mesarović,2004; Mesarović, 1968) to
become a major force of biomedical research, and it will be exciting
to experience where it might lead.

Author contributions

All authors listed havemade a substantial, direct, and intellectual
contribution to the work and approved it for publication.

Funding

The work in this article was supported in part by NIEHS
HERCULES grant P30ES019776-05 (PI: Carmen Marsit). The
funding agency is not responsible for the content of this article.

Acknowledgments

The following colleagues offered input regarding the future of
systems biology: Rui Alves, Sepideh Dolatshahi, Melissa Kemp,

Frontiers in Systems Biology frontiersin.org13

Voit et al. 10.3389/fsysb.2023.1250228

https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2023.1250228


Denise Kirschner, Andreas Kremling, Reinhard Laubenbacher,
Alberto Marin-Sanguino, Albert Sorribas, Olaf Wolkenhauer. The
authors are very grateful for their insightful suggestions.

Conflict of interest

YV is a co-founder of, and stakeholder in, Immunetrics, Inc.
The remaining authors declare that the research was

conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict
of interest.

The author YV declared that he was an editorial board member
of Frontiers, at the time of submission. This had no impact on the
peer review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Abboud, A. N., Namas, R. A., Ramadan, M., Mi, Q., Almahmoud, K., Abdul-Malak,
O., et al. (2016). Computational analysis supports an early, type 17 cell-associated
divergence of blunt trauma survival and mortality. Crit. Care Med. 44, e1074–e1081.
doi:10.1097/CCM.0000000000001951

Allerheiligen, S. R. (2010). Next-generation model-based drug discovery and
development: quantitative and systems pharmacology. Clin. Pharmacol. Ther. 88 (1),
135–137. doi:10.1038/clpt.2010.81

Alon, U. (2019). An introduction to systems biology: Design principles of biological
circuits. London, U.K.: Chapman and Hall.

AlphaFold (2023). AlphaFold protein structure database. Available at: https://
alphafold.com/.

Alt, W., and Lauffenburger, D. A. (1987). Transient behavior of a chemotaxis system
modelling certain types of tissue inflammation. J. Math. Biol. 24 (6), 691–722. doi:10.
1007/BF00275511

Alvarez-Vasquez, F., Gonzalez-Alcon, C., and Torres, N. V. (2000). Metabolism of
citric acid production by Aspergillus Niger: model definition, steady-state analysis and
constrained optimization of citric acid production rate. Biotechnol. Bioeng. 70 (1),
82–108. doi:10.1002/1097-0290(20001005)70:1<82::aid-bit10>3.0.co;2-v
Alves, R., and Savageau, M. A. (2000). Extending the method of mathematically

controlled comparison to include numerical comparisons. Bioinformatics 16 (9),
786–798. doi:10.1093/bioinformatics/16.9.786

An, G. (2001). Agent-based computer simulation and sirs: building a bridge between
basic science and clinical trials. Shock 16 (4), 266–273. doi:10.1097/00024382-
200116040-00006

An, G., Bartels, J., and Vodovotz, Y. (2011). In silico augmentation of the drug
development pipeline: examples from the study of acute inflammation. Drug Dev. Res.
72, 187–200. doi:10.1002/ddr.20415

An, G. (2010). Closing the scientific loop: bridging correlation and causality in the
petaflop age. Sci. Transl. Med. 2 (41), 41ps34. doi:10.1126/scitranslmed.3000390

An, G. (2004). In-silico experiments of existing and hypothetical cytokine-directed
clinical trials using agent based modeling. Crit. Care Med. 32, 2050–2060. doi:10.1097/
01.ccm.0000139707.13729.7d

An, G. (2005). Multi-hierarchical agent-based modeling of the inflammatory aspects
of the gut. J. Crit. Care 20, 383. doi:10.1016/j.jcrc.2005.09.018

An, G. V. Y. (2014). Translational systems biology: Concepts and practice for the future
of biomedical research. New York, NY: Elsevier.

Androulakis, I. P. (2022). Teaching computational systems biologywith an eye on quantitative
systems pharmacology at the undergraduate level: why do it, whowould take it, andwhat should
we teach? Front. Syst. Biol. 2, 1044281. doi:10.3389/fsysb.2022.1044281

Angermueller, C., Pärnamaa, T., Parts, L., and Stegle, O. (2016). Deep learning for
computational biology. Mol. Syst. Biol. 12 (7), 878. doi:10.15252/msb.20156651

Applied_Biomath (2023).Model-informed drug discovery and development. Available
at: https://www.appliedbiomath.com/.

Apweiler, R., Beissbarth, T., Berthold, M. R., Blüthgen, N., Burmeister, Y., Dammann,
O., et al. (2018). Whither systems medicine? Exp. Mol. Med. 50 (3), e453. doi:10.1038/
emm.2017.290

Arceo, C. P. P., Jose, E. C., Marin-Sanguino, A., and Mendoza, E. R. (2015). Chemical
reaction network approaches to biochemical systems theory. Math. Biosci. 269,
135–152. doi:10.1016/j.mbs.2015.08.022

Asthagiri, A. R., and Lauffenburger, D. A. (2000). Bioengineering models of cell
signaling. Annu. Rev. Biomed. Eng. 2, 31–53. doi:10.1146/annurev.bioeng.2.1.31

Ayalew, M., Hylton, D., Sistrunk, J., Melton, J., Johnson, K., and Voit, E. (2022).
Integration of biology, mathematics and computing in the classroom through the

creation and repeated use of transdisciplinary modules. Primus 32 (3), 367–385. doi:10.
1080/10511970.2020.1861140

Azhar, N., et al. (2013a). “Integrating data driven and mechanistic models of the
inflammatory response in sepsis and trauma,” in Complex systems and computational
biology approaches to acute inflammation. Editors Y. Vodovotz and G. An (New York:
Springer).

Azhar, N., Namas, R. A., Almahmoud, K., Zaaqoq, A., Malak, O. A., Barclay, D., et al.
(2021). A putative "chemokine switch" that regulates systemic acute inflammation in
humans. Sci. Rep. 11 (1), 9703. doi:10.1038/s41598-021-88936-8

Azhar, N., Ziraldo, C., Barclay, D., Rudnick, D. A., Squires, R. H., Vodovotz, Y., et al.
(2013b). Analysis of serum inflammatory mediators identifies unique dynamic
networks associated with death and spontaneous survival in pediatric acute liver
failure. PLoS ONE 8, e78202. doi:10.1371/journal.pone.0078202

Baltimore, D. (2001). “How biology became an information science,” in The invisible
future. Editor P. J. Denning (New York, NY: McGraw-Hill), 43–55.

Barabási, A.-L. (2002). Linked: The new science of networks. New York NY: Perseus
Publishing.

Barberan, A., Bates, S. T., Casamayor, E. O., and Fierer, N. (2012). Using network
analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6 (2),
343–351. doi:10.1038/ismej.2011.119

Bartley, B. A., Kim, K., Medley, J. K., and Sauro, H. M. (2017). Synthetic biology:
engineering living systems from biophysical principles. Biophys. J. 112 (6), 1050–1058.
doi:10.1016/j.bpj.2017.02.013

Bedau, M. A. (1998). “Weak emergence,” in Philosophical perspectives: Mind,
causation, and world. Editor J. Tomberlin (Malden, MA: Blackwell), 375–399.

Berry, D., and Widder, S. (2014). Deciphering microbial interactions and detecting
keystone species with co-occurrence networks. Front. Microbiol. 5, 219. doi:10.3389/
fmicb.2014.00219

Bloom, D. (2021). Video game industry wins record investment.M&A Second Quart.
Forbes 28, 2021.

Board-of-Life-Sciences (2015). Potential risks and benefits of gain-of-function
research: Summary of a workshop. Available at: https://www.ncbi.nlm.nih.gov/books/
NBK285579/.

Borges, J. L. P. B. L. D. (1946). On Rigor in Science (short story within the piece
"Museo"). Los An. Buenos Aires 1 (3).

Brown, D., Namas, R. A., Almahmoud, K., Zaaqoq, A., Sarkar, J., Barclay, D. A., et al.
(2015). Trauma in silico: individual-specific mathematical models and virtual clinical
populations. Sci. Transl. Med. 7, 285ra61. doi:10.1126/scitranslmed.aaa3636

Brubaker, D. K., Kumar, M. P., Chiswick, E. L., Gregg, C., Starchenko, A., Vega, P. N.,
et al. (2020). An interspecies translation model implicates integrin signaling in
infliximab-resistant inflammatory bowel disease. Sci. Signal 13 (643), eaay3258.
doi:10.1126/scisignal.aay3258

Callieri, C. (2019) “Microbial communities” in Encyclopedia of ecology. Editor B. Fath
Second Edition (Oxford: Elsevier), 126–134.

Carrera, J., and Covert, M. W. (2015). Why build whole-cell models? Trends Cell Biol
25 (2), 719–722. doi:10.1016/j.tcb.2015.09.004

Chaffron, S., Rehrauer, H., Pernthaler, J., and vonMering, C. (2010). A global network
of coexisting microbes from environmental and whole-genome sequence data. Genome
Res. 20 (7), 947–959. doi:10.1101/gr.104521.109

Chan, S. Y., and Loscalzo, J. (2012). The emerging paradigmof networkmedicine in the study
of human disease. Circ. Res. 111 (3), 359–374. doi:10.1161/CIRCRESAHA.111.258541

Chicco, D. (2017). Ten quick tips for machine learning in computational biology.
BioData Min. 10 (1), 35. doi:10.1186/s13040-017-0155-3

Frontiers in Systems Biology frontiersin.org14

Voit et al. 10.3389/fsysb.2023.1250228

https://doi.org/10.1097/CCM.0000000000001951
https://doi.org/10.1038/clpt.2010.81
https://alphafold.com/
https://alphafold.com/
https://doi.org/10.1007/BF00275511
https://doi.org/10.1007/BF00275511
https://doi.org/10.1002/1097-0290(20001005)70:1<82::aid-bit10>3.0.co;2-v
https://doi.org/10.1093/bioinformatics/16.9.786
https://doi.org/10.1097/00024382-200116040-00006
https://doi.org/10.1097/00024382-200116040-00006
https://doi.org/10.1002/ddr.20415
https://doi.org/10.1126/scitranslmed.3000390
https://doi.org/10.1097/01.ccm.0000139707.13729.7d
https://doi.org/10.1097/01.ccm.0000139707.13729.7d
https://doi.org/10.1016/j.jcrc.2005.09.018
https://doi.org/10.3389/fsysb.2022.1044281
https://doi.org/10.15252/msb.20156651
https://www.appliedbiomath.com/
https://doi.org/10.1038/emm.2017.290
https://doi.org/10.1038/emm.2017.290
https://doi.org/10.1016/j.mbs.2015.08.022
https://doi.org/10.1146/annurev.bioeng.2.1.31
https://doi.org/10.1080/10511970.2020.1861140
https://doi.org/10.1080/10511970.2020.1861140
https://doi.org/10.1038/s41598-021-88936-8
https://doi.org/10.1371/journal.pone.0078202
https://doi.org/10.1038/ismej.2011.119
https://doi.org/10.1016/j.bpj.2017.02.013
https://doi.org/10.3389/fmicb.2014.00219
https://doi.org/10.3389/fmicb.2014.00219
https://www.ncbi.nlm.nih.gov/books/NBK285579/
https://www.ncbi.nlm.nih.gov/books/NBK285579/
https://doi.org/10.1126/scitranslmed.aaa3636
https://doi.org/10.1126/scisignal.aay3258
https://doi.org/10.1016/j.tcb.2015.09.004
https://doi.org/10.1101/gr.104521.109
https://doi.org/10.1161/CIRCRESAHA.111.258541
https://doi.org/10.1186/s13040-017-0155-3
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2023.1250228


Choi, K. R., Jang, W. D., Yang, D., Cho, J. S., Park, D., and Lee, S. Y. (2019). Systems
metabolic engineering strategies: integrating systems and synthetic biology with
metabolic engineering. Trends Biotechnol. 37 (8), 817–837. doi:10.1016/j.tibtech.
2019.01.003

Clermont, G., Bartels, J., Kumar, R., Constantine, G., Vodovotz, Y., and Chow, C.
(2004). In silico design of clinical trials: A method coming of age. Crit. Care Med. 32,
2061–2070. doi:10.1097/01.ccm.0000142394.28791.c3

Clermont, G., Vodovotz, Y., and Rubin, J. (2007). “Equation-based models of
dynamic biological systems,” in Endothelial biomedicine. Editor W. C. Aird
(Cambridge, MA: Cambridge University Press), 1780–1785.

Construct (2023). Construct, Making games with construct 3. Available at: https://
www.construct.net/en.

CrashCourse (2023). CrashCourse. Available at: https://www.youtube.com/watch?v=
qPix_X-9t7E.

Dam, P., Fonseca, L. L., Konstantinidis, K. T., and Voit, E. O. (2016). Dynamic models
of the complex microbial metapopulation of Lake Mendota. Nat. PJ Sys. Biol. Appl. 2,
16007. doi:10.1038/npjsba.2016.7

Dam, P., Rodriguez-R, L. M., Luo, C., Hatt, J., Tsementzi, D., Konstantinidis, K. T.,
et al. (2020). Model-based comparisons of the abundance dynamics of bacterial
communities in two lakes. Sci. Rep. 10 (1), 2423. doi:10.1038/s41598-020-58769-y

Davis, J. D., Olivença, D. V., Brown, S. P., and Voit, E. O. (2022). Methods of
quantifying interactions among populations using Lotka-Volterra models. Front. Syst.
Biol. 2. doi:10.3389/fsysb.2022.1021897

Day, J. D., Cockrell, C., Namas, R., Zamora, R., and Vodovotz, Y. (2018).
Inflammation and disease: modelling and modulation of the inflammatory response
to alleviate critical illness. Curr. Opin. Syst. Biol. 12, 22–29. doi:10.1016/j.coisb.2018.
08.008

Day, J. D., Park, S., Ranard, B. L., Singh, H., Chow, C. C., and Vodovotz, Y. (2021).
Divergent COVID-19 disease trajectories predicted by a DAMP-centered immune
network model. Front. Immunol. 12, 754127. doi:10.3389/fimmu.2021.754127

Deo, P. N., and Deshmukh, R. (2019). Oral microbiome: unveiling the fundamentals.
J. Oral Maxillofac. Pathol. 23 (1), 122–128. doi:10.4103/jomfp.JOMFP_304_18

Di Carlo, D., and Lee, L. P. (2006). Dynamic single-cell analysis for quantitative
biology. Anal. Chem. 78 (23), 7918–7925. doi:10.1021/ac069490p

Dolatshahi, S., Fonseca, L. L., and Voit, E. O. (2016a). New insights into the complex
regulation of the glycolytic pathway in Lactococcus lactis. I. Construction and diagnosis
of a comprehensive dynamic model. Mol. Biosyst. 12 (1), 23–36. doi:10.1039/
c5mb00331h

Dolatshahi, S., Fonseca, L. L., and Voit, E. O. (2016b). New insights into the complex
regulation of the glycolytic pathway in Lactococcus lactis. II. Inference of the precisely
timed control system regulating glycolysis. Mol. Biosyst. 12 (1), 37–47. doi:10.1039/
c5mb00726g

Edelstein-Keshet, L. (1988).Mathematical models in biology. New York, NY: Random
House.

Ekins, S., Mestres, J., and Testa, B. (2007). In silico pharmacology for drug discovery:
methods for virtual ligand screening and profiling. Br.J Pharmacol. 152 (1), 9–20. doi:10.
1038/sj.bjp.0707305

Eldredge, N., and Gould, S. J. (1972). “Punctuated equilibria: an alternative to phyletic
gradualism,” in Models in paleobiology. Editor T. J. M. Schopf (San Francisco, CA:
Freeman Cooper), 82–115.

Entelos (2023). Entelos. Available at: www.Entelos.com.

Ezzamouri, B., Shoaie, S., and Ledesma-Amaro, R. (2021). Synergies of systems
biology and synthetic biology in human microbiome studies. Front. Microbiol. 12,
681982. doi:10.3389/fmicb.2021.681982

Faust, K., and Raes, J. (2012). Microbial interactions: from networks to models. Nat.
Rev. Microbiol. 10 (8), 538–550. doi:10.1038/nrmicro2832

Faust, K., Sathirapongsasuti, J. F., Izard, J., Segata, N., Gevers, D., Raes, J., et al. (2012).
Microbial Co-occurrence relationships in the human microbiome. Plos Comput. Biol. 8
(7), e1002606. doi:10.1371/journal.pcbi.1002606

FDA (2011). Advancing regulatory science at FDA. A strategic plan. Available at:
http://www.bioin.or.kr/InnoDS/data/upload/system/1314939565875.PDF.

Feinberg, M. (1987). Chemical reaction network structure and the stability of complex
isothermal reactors—I. The deficiency zero and deficiency one theorems. Chem. Eng.
Sci. 42 (10), 2229–2268. doi:10.1016/0009-2509(87)80099-4

Feng, S., Heath, E., Jefferson, B., Joslyn, C., Kvinge, H., Mitchell, H. D., et al.
(2021). Hypergraph models of biological networks to identify genes critical to
pathogenic viral response. BMC Bioinforma. 22 (1), 287–321. doi:10.1186/
s12859-021-04197-2

Ferreira, A. E., Ponces Freire, A. M., and Voit, E. O. (2003). A quantitative model of
the generation of N(epsilon)-(carboxymethyl)lysine in the Maillard reaction between
collagen and glucose. Biochem. J. 376 (1), 109–121. doi:10.1042/BJ20030496

Fletcher, A. G., and Osborne, J. M. (2021). Seven challenges in the multiscale
modeling of multicellular tissues. WIREs Mech. Dis. 14 (1), e1527. doi:10.1002/
wsbm.1527

Franzen, C. (2023). Code interpreter comes to all ChatGPT plus users. Available at:
https://venturebeat.com/ai/code-interpreter-comes-to-all-chatgpt-plus-users-anyone-
can-be-a-data-analyst-now/(July 7, 2023).

Friedman, J., and Alm, E. J. (2012). Inferring correlation networks from genomic
survey data. PLoS Comput. Biol. 8 (9), e1002687. doi:10.1371/journal.pcbi.1002687

GameMaker (2023). The ultimate 2D game engine. Available at: https://gamemaker.
io/en.

Garcia, J., Shea, J., Alvarez-Vasquez, F., Qureshi, A., Luberto, C., Voit, E. O., et al.
(2008). Mathematical modeling of pathogenicity ofCryptococcus neoformans.Molecular
Systems Biology 4, 183. doi:10.1038/msb.2008.17

Gilbert, J. A., Blaser, M. J., Caporaso, J. G., Jansson, J. K., Lynch, S. V., and Knight, R.
(2018). Current understanding of the human microbiome. Nat. Med. 24 (4), 392–400.
doi:10.1038/nm.4517

Gilbert, J. A., Steele, J. A., Caporaso, J. G., Steinbrück, L., Reeder, J., Temperton, B.,
et al. (2012). Defining seasonal marine microbial community dynamics. ISME J. 6 (2),
298–308. doi:10.1038/ismej.2011.107

Gleick, J. (1997). Chaos: Making a new science. London, U.K.: Penguin Books.

Glen, C. M., Kemp, M. L., and Voit, E. O. (2019). Review: Agent-based modeling of
morphogenetic systems: advantages and challenges. PLoS Comp. Biol. 15 (3), e1006577.
doi:10.1371/journal.pcbi.1006577

Godot (2023). The game engine you have been waiting for. Available at: https://
godotengine.org/.

Grzegorczyk, M., and Husmeier, D. (2011). Improvements in the reconstruction of
time-varying gene regulatory networks: dynamic programming and regularization by
information sharing among genes. Bioinformatics 27 (5), 693–699. doi:10.1093/
bioinformatics/btq711

Gudmundsson, S., and Nogales, J. (2021). Recent advances in model-assisted
metabolic engineering. Curr. Opin. Syst. Biol. 28, 100392. doi:10.1016/j.coisb.2021.
100392

Gutierrez, J. B., Galinski, M. R., Cantrell, S., and Voit, E. O. (2015). From within host
dynamics to the epidemiology of infectious disease: scientific overview and challenges.
Math. Biosci. 270, 143–155. doi:10.1016/j.mbs.2015.10.002

Haldane, J. B. S. (1932). The causes of evolution. London, U.K.: Longmans, Green
and Co.

Hanczyc, M. M. (2020). Engineering life: A review of synthetic biology. Artif. Life 26
(2), 260–273. doi:10.1162/artl_a_00318

Harder, B. J., Bettenbrock, K., and Klamt, S. (2016). Model-based metabolic
engineering enables high yield itaconic acid production by Escherichia coli. Metab.
Eng. 38, 29–37. doi:10.1016/j.ymben.2016.05.008

Hasenauer, J., Hasenauer, C., Hucho, T., and Theis, F. J. (2014). ODE constrained
mixture modelling: A method for unraveling subpopulation structures and dynamics.
PLoS Comput. Biol. 10 (7), e1003686. doi:10.1371/journal.pcbi.1003686

Hodgman, C. E., and Jewett, M. C. (2012). Cell-free synthetic biology: thinking
outside the cell. Metab. Eng. 14 (3), 261–269. doi:10.1016/j.ymben.2011.09.002

Horn, F., and Jackson, R. (1972). General mass action kinetics. Archive Ration. Mech.
Analysis 47 (2), 81–116. doi:10.1007/bf00251225

Iyengar, R., Zhao, S., Chung, S. W., Mager, D. E., and Gallo, J. M. (2012). Merging
systems biology with pharmacodynamics. Sci. Transl. Med. 4 (126), 126ps7. doi:10.
1126/scitranslmed.3003563

Janes, K. A., Albeck, J. G., Gaudet, S., Sorger, P. K., Lauffenburger, D. A., and Yaffe, M.
B. (2005). A systems model of signaling identifies a molecular basis set for cytokine-
induced apoptosis. Science 310 (5754), 1646–1653. doi:10.1126/science.1116598

Janes, K. A., and Yaffe, M. B. (2006). Data-driven modelling of signal-transduction
networks. Nat.Rev.Mol.Cell Biol. 7 (11), 820–828. doi:10.1038/nrm2041

Jia, B., Han, X., Kim, K. H., and Jeon, C. O. (2022). Discovery and mining of enzymes
from the human gut microbiome. Trends Biotechnol. 40 (2), 240–254. doi:10.1016/j.
tibtech.2021.06.008

Kaneko, K. (2006). Life: An introduction to complex systems biology. Berlin: Springer.

Karr, J. R., Sanghvi, J. C., Macklin, D. N., Gutschow, M. V., Jacobs, J. M., Bolival, B.,
et al. (2012). A whole-cell computational model predicts phenotype from genotype. Cell
150, 389–401. doi:10.1016/j.cell.2012.05.044

Khan, A., Milne-Ives, M., Meinert, E., Iyawa, G. E., Jones, R. B., and Josephraj, A. N.
(2022). A scoping review of digital twins in the context of the covid-19 pandemic.
Biomed. Eng. Comput. Biol. 13, 11795972221102115. doi:10.1177/11795972221102115

Kim, K. S., Ejima, K., Iwanami, S., Fujita, Y., Ohashi, H., Koizumi, Y., et al. (2021). A
quantitative model used to compare within-host SARS-CoV-2, MERS-CoV, and SARS-
CoV dynamics provides insights into the pathogenesis and treatment of SARS-CoV-2.
PLoS Biol. 19 (3), e3001128. doi:10.1371/journal.pbio.3001128

King, S. J., Jerkovic, A., Brown, L. J., Petroll, K., and Willows, R. D. (2022). Synthetic
biology for improved hydrogen production in Chlamydomonas reinhardtii. Microb.
Biotechn. 15 (7), 1946–1965. doi:10.1111/1751-7915.14024

Kirschner, D. E., Hunt, C. A., Marino, S., Fallahi-Sichani, M., and Linderman, J. J.
(2014). Tuneable resolution as a systems biology approach for multi-scale, multi-

Frontiers in Systems Biology frontiersin.org15

Voit et al. 10.3389/fsysb.2023.1250228

https://doi.org/10.1016/j.tibtech.2019.01.003
https://doi.org/10.1016/j.tibtech.2019.01.003
https://doi.org/10.1097/01.ccm.0000142394.28791.c3
https://www.construct.net/en
https://www.construct.net/en
https://www.youtube.com/watch?v=qPix_X-9t7E
https://www.youtube.com/watch?v=qPix_X-9t7E
https://doi.org/10.1038/npjsba.2016.7
https://doi.org/10.1038/s41598-020-58769-y
https://doi.org/10.3389/fsysb.2022.1021897
https://doi.org/10.1016/j.coisb.2018.08.008
https://doi.org/10.1016/j.coisb.2018.08.008
https://doi.org/10.3389/fimmu.2021.754127
https://doi.org/10.4103/jomfp.JOMFP_304_18
https://doi.org/10.1021/ac069490p
https://doi.org/10.1039/c5mb00331h
https://doi.org/10.1039/c5mb00331h
https://doi.org/10.1039/c5mb00726g
https://doi.org/10.1039/c5mb00726g
https://doi.org/10.1038/sj.bjp.0707305
https://doi.org/10.1038/sj.bjp.0707305
http://www.Entelos.com
https://doi.org/10.3389/fmicb.2021.681982
https://doi.org/10.1038/nrmicro2832
https://doi.org/10.1371/journal.pcbi.1002606
http://www.bioin.or.kr/InnoDS/data/upload/system/1314939565875.PDF
https://doi.org/10.1016/0009-2509(87)80099-4
https://doi.org/10.1186/s12859-021-04197-2
https://doi.org/10.1186/s12859-021-04197-2
https://doi.org/10.1042/BJ20030496
https://doi.org/10.1002/wsbm.1527
https://doi.org/10.1002/wsbm.1527
https://venturebeat.com/ai/code-interpreter-comes-to-all-chatgpt-plus-users-anyone-can-be-a-data-analyst-now/
https://venturebeat.com/ai/code-interpreter-comes-to-all-chatgpt-plus-users-anyone-can-be-a-data-analyst-now/
https://doi.org/10.1371/journal.pcbi.1002687
https://gamemaker.io/en
https://gamemaker.io/en
https://doi.org/10.1038/msb.2008.17
https://doi.org/10.1038/nm.4517
https://doi.org/10.1038/ismej.2011.107
https://doi.org/10.1371/journal.pcbi.1006577
https://godotengine.org/
https://godotengine.org/
https://doi.org/10.1093/bioinformatics/btq711
https://doi.org/10.1093/bioinformatics/btq711
https://doi.org/10.1016/j.coisb.2021.100392
https://doi.org/10.1016/j.coisb.2021.100392
https://doi.org/10.1016/j.mbs.2015.10.002
https://doi.org/10.1162/artl_a_00318
https://doi.org/10.1016/j.ymben.2016.05.008
https://doi.org/10.1371/journal.pcbi.1003686
https://doi.org/10.1016/j.ymben.2011.09.002
https://doi.org/10.1007/bf00251225
https://doi.org/10.1126/scitranslmed.3003563
https://doi.org/10.1126/scitranslmed.3003563
https://doi.org/10.1126/science.1116598
https://doi.org/10.1038/nrm2041
https://doi.org/10.1016/j.tibtech.2021.06.008
https://doi.org/10.1016/j.tibtech.2021.06.008
https://doi.org/10.1016/j.cell.2012.05.044
https://doi.org/10.1177/11795972221102115
https://doi.org/10.1371/journal.pbio.3001128
https://doi.org/10.1111/1751-7915.14024
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2023.1250228


compartment computational models. Wiley Interdiscip. Rev. Syst. Biol. Med. 6 (4),
289–309. doi:10.1002/wsbm.1270

Klinke, D. J. (2015). Enhancing the discovery and development of immunotherapies
for cancer using quantitative and systems pharmacology: interleukin-12 as a case study.
J. Immunother. Cancer 3, 27. doi:10.1186/s40425-015-0069-x

Klipp, E., et al. (2016). Systems biology: A textbook. Weinheim: Wiley VCH.

Kokotovic, P. V., Allemong, J. J., Winkelman, J. R., and Chow, J. H. (1980). Singular
perturbation and iterative separation of time scales. Automatica 16 (1), 23–33. doi:10.
1016/0005-1098(80)90083-7

Koumakis, L. (2020). Deep learning models in genomics; are we there yet? Comput.
Struct. Biotechnol. J. 18, 1466–1473. doi:10.1016/j.csbj.2020.06.017

Kremling, A. (2013). Systems biology: Mathematical modeling and model analysis.
Boca Raton: FL CRC Press.

Kurzgesagt (2023). In a nutshell-kurzgesagt. Available at: https://kurzgesagt.org/.

Laubenbacher, R., Niarakis, A., Helikar, T., An, G., Shapiro, B., Malik-Sheriff, R. S.,
et al. (2022). Building digital twins of the human immune system: toward a roadmap.
NPJ Digit. Med. 5 (1), 64. doi:10.1038/s41746-022-00610-z

Lee, Y., Chen, P. W., and Voit, E. O. (2011). Analysis of operating principles with
S-system models. Math. Biosci. 231 (1), 49–60. doi:10.1016/j.mbs.2011.03.001

Lewin, K. (1997). Resolving social conflicts and field theory in social science.
Washington, DC: American Psychological Association, v+422.

Li, N. Y. K., Verdolini, K., Clermont, G., Mi, Q., Rubinstein, E. N., Hebda, P. A., et al.
(2008). A patient-specific in silico model of inflammation and healing tested in acute
vocal fold injury. PLoS ONE 3, e2789. doi:10.1371/journal.pone.0002789

Loos, C., Moeller, K., Fröhlich, F., Hucho, T., and Hasenauer, J. (2018). A hierarchical,
data-driven approach to modeling single-cell populations predicts latent causes of cell-
to-cell variability. Cell Syst. 6 (5), 593–603. doi:10.1016/j.cels.2018.04.008

Marino, S., Baxter, N. T., Huffnagle, G. B., Petrosino, J. F., and Schloss, P. D. (2014).
Mathematical modeling of primary succession of murine intestinal microbiota. Proc.
Natl. Acad. Sci. U. S. A. 111 (1), 439–444. doi:10.1073/pnas.1311322111

Marshall-Colon, A., Long, S. P., Allen, D. K., Allen, G., Beard, D. A., Benes, B., et al.
(2017). Crops in silico: generating virtual crops using an integrative and multi-scale
modeling platform. Front. Plant Sci. 8, 786. doi:10.3389/fpls.2017.00786

Martins dos Santos, V., Anton, M., Szomolay, B., Ostaszewski, M., Arts, I., Benfeitas,
R., et al. (2022). Systems biology in ELIXIR: modelling in the spotlight. F1000Res 11
(1265). doi:10.12688/f1000research.126734.1

Mastodon (2023). Mastodon. Available at: https://www.youtube.com/watch?v=
lXfEK8G8CUI.

May, R. M. (1973). Stability and complexity in model ecosystems. United States:
Princeton University Press.

Mehta, J. (2018). The simple physics trick that’s allowed us to venture deeper into
space. Sci. (The Wire) 30.

Mesarović, M. D., Sreenath, S. N., and Keene, J. D. (2004). Search for organising
principles: understanding in systems biology. Syst.Biol.(Stevenage.) 1 (1), 19–27. doi:10.
1049/sb:20045010

Mesarović, M. D. (1968). “Systems theory and biology—View of a theoretician,” in
Systems theory and biology. Editor M. D. Mesarović (Berlin: Springer-Verlag), 59–87.

Mi, Q., Constantine, G., Ziraldo, C., Solovyev, A., Torres, A., Namas, R., et al. (2011).
A dynamic view of trauma/hemorrhage-induced inflammation in mice: principal
drivers and networks. PLoS ONE 6, e19424. doi:10.1371/journal.pone.0019424

Mounier, J., Monnet, C., Vallaeys, T., Arditi, R., Sarthou, A. S., Hélias, A., et al. (2008).
Microbial interactions within a cheese microbial community. Applied and
Environmental Microbiology 74 (1), 172–181. doi:10.1128/AEM.01338-07

Musante, C. J., Lewis, A. K., and Hall, K. (2002). Small- and large-scale biosimulation
applied to drug discovery and development. Drug Discov.Today 7 (20), S192–S196.
doi:10.1016/s1359-6446(02)02442-x

Musuamba, F. T., Skottheim Rusten, I., Lesage, R., Russo, G., Bursi, R., Emili, L., et al.
(2021). Scientific and regulatory evaluation of mechanistic in silico drug and disease
models in drug development: building model credibility. CPT Pharmacometrics Syst
Pharmacol 10 (8), 804–825. doi:10.1002/psp4.12669

Namas, R., Almahmoud, K., Mi, Q., Ghuma, A., Zaaqoq, A., et al. (2016). Individual-
specific principal component analysis of circulating inflammatory mediators predicts
early organ dysfunction in trauma patients. J Crit Care 36, 146–153. doi:10.1016/j.jcrc.
2016.07.002

Namas, R., Mi, Q., Almahmoud, K., Zaaqoq, A. M., Abdul-Malak, O., et al. (2015).
Insights into the role of chemokines, damage-associated molecular patterns, and
lymphocyte-derived mediators from computational models of trauma-induced
inflammation. Antiox. Redox Signaling 10, 1370–1387. doi:10.1089/ars.2015.6398

Nature_Podcasts (2023). Nature_Podcasts. Available at: https://www.nature.com/
nature/articles?type=nature-podcast.

Neves, S. R., and Iyengar, R. (2002). Modeling of signaling networks. Bioessays 24
(12), 1110–1117. doi:10.1002/bies.1154

Norfleet, D. A., Park, E., and Kemp, M. (2020). Computational modeling of organoid
development. Curr. Opin. Biomed. 13, 113–118. doi:10.1016/j.cobme.2019.12.014

Nova_Discovery (2023). Conquer the complexity of biology with clinical trial
simulations. Available at: https://www.novadiscovery.com/.

Olivença, D. V., Davis, J. D., and Voit, E. O. (2022). Inference of dynamic interaction
networks: A comparison between lotka-volterra andmultivariate autoregressive models.
Front Bioinform 2, 1021838. doi:10.3389/fbinf.2022.1021838

OpenWorm (2023). Open worm. Available at: https://github.com/openworm/
OpenWorm.

Palsson, B. O. (2021). “Genome-scale models,” in Metabolic engineering: Concepts
and applications. Editors J. Nielsen, G. Stephanopoulos, and S. Y. Lee (Weinheim,
Germany: Wiley VCH).

Peschel, M., and Mende, W. (1986). The predator-prey model: Do we live in a volterra
world? Berlin: Akademie-Verlag.

Peter, I. S., and Davidson, E. H. (2017). Assessing regulatory information in
developmental gene regulatory networks. Proc Natl Acad Sci U. S. A. 114 (23),
5862–5869. doi:10.1073/pnas.1610616114

Peter, I. S., and Davidson, E. H. (2011). Evolution of gene regulatory networks
controlling body plan development. Cell 144 (6), P970–P985. doi:10.1016/j.cell.2011.
02.017

Physiome (2011). The Physiome project. Available at: http://www.physiome.org/
Links/websites.html.

R. Robeva (Editor) (2015). Algebraic and discrete mathematical methods for modern
biology (London, U.K: Academic Press).

Robinson, S. L., Piel, J., and Sunagawa, S. (2021). A roadmap for metagenomic enzyme
discovery. Nat Prod Rep 38 (11), 1994–2023. doi:10.1039/d1np00006c

Rogers, M., Lyster, P., and Okita, R. (2013). NIH support for the emergence of
quantitative and systems pharmacology. CPT Pharmacometrics and Systems
Pharmacology 2 (4/37), 377–e43. doi:10.1038/psp.2013.13

Ruan, Q., Dutta, D., Schwalbach, M. S., Steele, J. A., Fuhrman, J. A., and Sun, F. (2006).
Local similarity analysis reveals unique associations among marine bacterioplankton
species and environmental factors. Bioinformatics 22 (20), 2532–2538. doi:10.1093/
bioinformatics/btl417

Sachdev, U., Vodovotz, L., Bitner, J., Barclay, D., Zamora, R., Yin, J., et al. (2018).
Suppressed networks of inflammatory mediators characterize chronic venous
insufficiency. J Vasc Surg Venous Lymphat Disord 6 (3), 358–366. doi:10.1016/j.jvsv.
2017.11.009

Sager, J. E., Yu, J., Ragueneau-Majlessi, I., and Isoherranen, N. (2015). Physiologically
based pharmacokinetic (PBPK) modeling and simulation approaches: A systematic
review of published models, applications, and model verification. Drug Metab Dispos 43
(11), 1823–1837. doi:10.1124/dmd.115.065920

Sauro, H. M., and Kholodenko, B. N. (2004). Quantitative analysis of signaling
networks. Prog.Biophys.Mol.Biol 86 (1), 5–43. doi:10.1016/j.pbiomolbio.2004.03.002

Sauter, T., and Albrecht, M. (2012). An introduction to systems biology.
United Kingdom: Open Book Publishers.

Savage, D. F., Afonso, B., Chen, A. H., and Silver, P. A. (2010). Spatially ordered
dynamics of the bacterial carbon fixation machinery. Science 327 (5970), 1258–1261.
doi:10.1126/science.1186090

Savageau, M. A. (1985). A theory of alternative designs for biochemical control
systems. Biomed Biochim Acta 44 (6), 875–880.

Savageau, M. A. (1979). Allometric morphogenesis of complex systems: derivation of
the basic equations from first principles. Proc Natl Acad Sci U. S. A. 76 (12), 6023–6025.
doi:10.1073/pnas.76.12.6023

Savageau, M. A. (1976). Biochemical systems analysis: A study of function and design in
molecular biology. Reading, Mass: Addison-Wesley Pub. Co. Advanced Book Program,
379. (reprinted 2009).

Savageau, M. A. (1996). “Power-law formalism: A canonical nonlinear approach to
modeling and analysis,” in World congress of nonlinear analysts (Berlin, Germany:
Walter de Gruyter Publishers).

Savageau, M. A., and Voit, E. O. (1987). Recasting nonlinear differential equations as
S-systems: A canonical nonlinear form. Mathem Biosci 87, 83–115. doi:10.1016/0025-
5564(87)90035-6

SBML (2023). The systems biology markup language. Available at: https://synonym.
caltech.edu/.

Schimunek, L., Lindberg, H., Cohen, M., Namas, R. A., Mi, Q., Yin, J., et al. (2021).
Computational derivation of core, dynamic human blunt trauma inflammatory
endotypes. Frontiers in Immunology 11 (3481), 589304. doi:10.3389/fimmu.2020.
589304

Schnell, S., Grima, R., andMaini, P. (2007). Multiscale modeling in biology. American
Scientist 95 (2), 134. doi:10.1511/2007.64.134

Schwob, M. R., Zhan, J., and Dempsey, A. (2019). Modeling cell communication with
time-dependent signaling hypergraphs. IEEE/ACM transactions on computational
biology and bioinformatics 18 (3), 1151–1163. doi:10.1109/TCBB.2019.2937033

Frontiers in Systems Biology frontiersin.org16

Voit et al. 10.3389/fsysb.2023.1250228

https://doi.org/10.1002/wsbm.1270
https://doi.org/10.1186/s40425-015-0069-x
https://doi.org/10.1016/0005-1098(80)90083-7
https://doi.org/10.1016/0005-1098(80)90083-7
https://doi.org/10.1016/j.csbj.2020.06.017
https://kurzgesagt.org/
https://doi.org/10.1038/s41746-022-00610-z
https://doi.org/10.1016/j.mbs.2011.03.001
https://doi.org/10.1371/journal.pone.0002789
https://doi.org/10.1016/j.cels.2018.04.008
https://doi.org/10.1073/pnas.1311322111
https://doi.org/10.3389/fpls.2017.00786
https://doi.org/10.12688/f1000research.126734.1
https://www.youtube.com/watch?v=lXfEK8G8CUI
https://www.youtube.com/watch?v=lXfEK8G8CUI
https://doi.org/10.1049/sb:20045010
https://doi.org/10.1049/sb:20045010
https://doi.org/10.1371/journal.pone.0019424
https://doi.org/10.1128/AEM.01338-07
https://doi.org/10.1016/s1359-6446(02)02442-x
https://doi.org/10.1002/psp4.12669
https://doi.org/10.1016/j.jcrc.2016.07.002
https://doi.org/10.1016/j.jcrc.2016.07.002
https://doi.org/10.1089/ars.2015.6398
https://www.nature.com/nature/articles?type=nature-podcast
https://www.nature.com/nature/articles?type=nature-podcast
https://doi.org/10.1002/bies.1154
https://doi.org/10.1016/j.cobme.2019.12.014
https://www.novadiscovery.com/
https://doi.org/10.3389/fbinf.2022.1021838
https://github.com/openworm/OpenWorm
https://github.com/openworm/OpenWorm
https://doi.org/10.1073/pnas.1610616114
https://doi.org/10.1016/j.cell.2011.02.017
https://doi.org/10.1016/j.cell.2011.02.017
http://www.physiome.org/Links/websites.html
http://www.physiome.org/Links/websites.html
https://doi.org/10.1039/d1np00006c
https://doi.org/10.1038/psp.2013.13
https://doi.org/10.1093/bioinformatics/btl417
https://doi.org/10.1093/bioinformatics/btl417
https://doi.org/10.1016/j.jvsv.2017.11.009
https://doi.org/10.1016/j.jvsv.2017.11.009
https://doi.org/10.1124/dmd.115.065920
https://doi.org/10.1016/j.pbiomolbio.2004.03.002
https://doi.org/10.1126/science.1186090
https://doi.org/10.1073/pnas.76.12.6023
https://doi.org/10.1016/0025-5564(87)90035-6
https://doi.org/10.1016/0025-5564(87)90035-6
https://synonym.caltech.edu/
https://synonym.caltech.edu/
https://doi.org/10.3389/fimmu.2020.589304
https://doi.org/10.3389/fimmu.2020.589304
https://doi.org/10.1511/2007.64.134
https://doi.org/10.1109/TCBB.2019.2937033
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2023.1250228


See, P., Lum, J., Chen, J., and Ginhoux, J. (2018). A single-cell sequencing guide for
immunologists. Front Immunol. 9, 2425. doi:10.3389/fimmu.2018.02425

Segovia-Juarez, J. L., Ganguli, S., and Kirschner, D. (2004). Identifying control
mechanisms of granuloma formation during M. tuberculosis infection using an
agent-based model. J Theor Biol 231 (3), 357–376. doi:10.1016/j.jtbi.2004.06.031

Sender, R., Fuchs, S., and Milo, R. (2016). Revised estimates for the number of human
and bacteria cells in the body. PLoS Biol 14 (8), e1002533. doi:10.1371/journal.pbio.
1002533

Shah, A. M., Zamora, R., Korff, S., Barclay, D., Yin, J., El-Dehaibi, F., et al. (2022).
Inferring tissue-specific, TLR4-dependent type 17 immune interactions in experimental
trauma/hemorrhagic shock and resuscitation using computational modeling. Frontiers
in Immunology 13, 908618. doi:10.3389/fimmu.2022.908618

Shah, A. M., Zamora, R., and Vodovotz, Y. (2023). Interleukin-17 as a
spatiotemporal bridge from acute to chronic inflammation: novel insights
from computational modeling. WIREs Mechanisms of Disease 15, e1599.
doi:10.1002/wsbm.1599

Shoubridge, A. P., Choo, J. M., Martin, A. M., Keating, D. J., Wong, M. L.,
Licinio, J., et al. (2022). The gut microbiome and mental health: advances in
research and emerging priorities.Mol Psychiatry 27 (4), 1908–1919. doi:10.1038/
s41380-022-01479-w

Skaf, Y., and Laubenbacher, R. (2022). Topological data analysis in biomedicine: A
review. Biomed Inform. 130, 104082. doi:10.1016/j.jbi.2022.104082

Slatko, B. E., Gardner, A. F., and Ausubel, F. M. (2018). Overview of next-generation
sequencing technologies. Curr Protoc Mol Biol 122 (1), e59. doi:10.1002/cpmb.59

Sloot, P. M. A., and Hoekstra, A. G. (2009). Multi-scale modelling in computational
biomedicine. Briefings in Bioinformatics 11 (1), 142–152. doi:10.1093/bib/bbp038

Song, Q., Chen, D., Long, S. P., and Zhu, X. G. (2017). A user-friendly means to scale
from the biochemistry of photosynthesis to whole crop canopies and production in time
and space – development of Java WIMOVAC. Plant, Cell and Environment 40, 51–55.
doi:10.1111/pce.12816

SOP (2023). Science for the People. Available at: http://www.scienceforthepeople.ca/
episodes/our-friend-the-wasp.

Soria Zurita, N. F., and Tumer, I. Y. (2017). “A survey: towards understanding
emergent behavior in complex engineered systems,” in ASME 2017 International
Design Engineering Technical Conferences and Computers and Information in
Engineering Conference, Cleveland, Ohio, August 6-9, 2017.

Stein, R. R., Bucci, V., Toussaint, N. C., Buffie, C. G., Rätsch, G., Pamer, E. G., et al.
(2013). Ecological modeling from time-series inference: insight into dynamics and
stability of intestinal microbiota. PLoS Comput. Biol 9 (12), e1003388. doi:10.1371/
journal.pcbi.1003388

Taleb, N. N. (2017). The black swan: The impact of the highly improbable. New York,
NY: Random House.

Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T. S., Matsuzaki, Y., Miyoshi, F.,
et al. (1999). E-CELL: software environment for whole-cell simulation. Bioinformatics
15 (1), 72–84. doi:10.1093/bioinformatics/15.1.72

Trevors, J. T. (2010). One gram of soil: A microbial biochemical gene library. Antonie
Van Leeuwenhoek 97 (2), 99–106. doi:10.1007/s10482-009-9397-5

TWIM (2023). Twim . Available at: https://www.youtube.com/watch?v=
tOzrUl5AZqk.

Ulam, S. (1958). John von Neumann 1903-1957. Bull. Amer. Math. Soc. 64 (3), 1–49.
doi:10.1090/s0002-9904-1958-10189-5

Unity (2023). Unity, game-changing tools. Available at: https://unity.com/.

University of Michigan (2019). Project overview. Available at: https://virtualrat.org/.

University of Nebraska (2022). SoySim-soybean growth simulation model. Available
at: https://soysim.unl.edu/.

unreal_engine (2023). unreal_engine. Available at: https://www.unrealengine.com/
en-US/.

Vallino, J. J., and Stephanopoulos, G. (1993). Metabolic flux distributions in
Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol
Bioeng 41 (6), 633–646. doi:10.1002/bit.260410606

Virtual_Brain (2023). Virtual_Brain. Available at: www.thevirtualbrain.org.

Virtual_Liver (2011). The virtual liver network. Available at: https://www.h-its.org/
projects/virtual-liver/.

Visentin, R., Campos-Náñez, E., Schiavon, M., Lv, D., Vettoretti, M., Breton, M., et al.
(2018). The UVA/padova type 1 diabetes simulator goes from single meal to single day.
J Diabetes Sci Technol 12 (2), 273–281. doi:10.1177/1932296818757747

Visser, S. A. G., de Alwis, D. P., Kerbusch, T., Stone, J. A., and Allerheiligen, S. R. B.
(2014). Implementation of quantitative and systems pharmacology in large pharma.
CPT Pharmacometrics and Systems Pharmacology 3 (10), e142. doi:10.1038/psp.2014.40

Vodovotz, Y., and Billiar, T. R. (2013). In silicomodeling: methods and applications to
trauma and sepsis. Critical Care Medicine 41 (8), 2008–2014. doi:10.1097/CCM.
0b013e31829a6eb4

Vodovotz, Y., Csete, M., Bartels, J., Chang, S., and An, G. (2008). Translational
systems biology of inflammation. PLoS.Comput.Biol. 4, e1000014–e1000016. doi:10.
1371/journal.pcbi.1000014

Vodovotz, Y., Simmons, R. L., Gandhi, C. R., Barclay, D., Jefferson, B. S., Huang, C.,
et al. (2017). Thinking vs. Talking: differential autocrine inflammatory networks in
isolated primary hepatic stellate cells and hepatocytes under hypoxic stress. Frontiers in
Physiology 8 (1104), 1104. doi:10.3389/fphys.2017.01104

Vodovotz, Y. (2023). Towards systems immunology of critical illness at scale: from single
cell ’omics to digital twins. Trends Immunol 44, 345–355. doi:10.1016/j.it.2023.03.004

Voit, E. O., and Savageau, M. A. (1986). Equivalence between S-systems and volterra-
systems. Mathem. Biosci. 78, 47–55. doi:10.1016/0025-5564(86)90030-1

Voit, E. O., Neves, A. R., and Santos, H. (2006). The intricate side of systems biology.
Proc Natl Acad Sci U. S. A. 103 (25), 9452–9457. doi:10.1073/pnas.0603337103

Voit, E. O. (2009). A systems-theoretical framework for health and disease. Mathem.
Biosc. 217, 11–18. doi:10.1016/j.mbs.2008.09.005

Voit, E. O., and Kemp, M. L. (2011). So, you want to be a systems biologist?
Determinants for creating graduate curricula in systems biology. IET Systems Biol 5
(1), 70–79. doi:10.1049/iet-syb.2009.0071

Voit, E. O., Newstetter, W. C., and Kemp, M. L. (2012). A feel for systems. Mol. Syst.
Biol. 8, 609. doi:10.1038/msb.2012.41

Voit, E. O. (2013). Biochemical systems theory: A review. ISRN – Biomathematics
2013, 1–53. doi:10.1155/2013/897658

Voit, E. O. (2016). “The inner workings of life,” in Vignettes in systems biology
(Cambridge, U.K: Cambridge University Press).

Voit, E. O. (2017). The best models of metabolism. WIREs Syst. Biol. Med. 9 (6),
e1391. doi:10.1002/wsbm.1391

Voit, E. O. (2017). A first course in systems biology. 2nd Ed. New York, NY: Garland
Science.

Voit, E. O. (2019). Perspective: dimensions of the scientific method. PLoS Comp. Biol.
15 (9), e1007279. doi:10.1371/journal.pcbi.1007279

Voit, E. O. (2020). Systems biology. Very short introductions. Oxford, U.K.: Oxford
University Press.

Voit, E. O. (2022). Perspective: Systems biology beyond biology. Front. Systems
Biology 2, 987135. doi:10.3389/fsysb.2022.987135

Wade, J. D. (2020). Inference of continuous single-cell signaling responses from
multiplex snapshot measurements. bioRxiv.

Wade, J. D., Lun, X. K., Zivanovic, N., Voit, E. O., and Bodenmiller, B. (2020).
Mechanistic model of signaling dynamics across an epithelial mesenchymal transition.
Front Physiol 11, 579117. doi:10.3389/fphys.2020.579117

Wigginton, J. E., and Kirschner, D. (2001). A model to predict cell-mediated immune
regulatory mechanisms during human infection with Mycobacterium tuberculosis.
J Immunol 166 (3), 1951–1967. doi:10.4049/jimmunol.166.3.1951

Wolkenhauer, O. E. (2021). Systems medicine. Integrative, qualitative and
computational approaches. Amsteerdam: Elsevier Inc.

Yang, J., Soltan, A. A., and Clifton, D. A. (2022). Machine learning generalizability
across healthcare settings: insights from multi-site COVID-19 screening. npj Digital
Medicine 5 (1), 69. doi:10.1038/s41746-022-00614-9

Zamora, R., Chavan, S., Zanos, T., Simmons, R. L., Billiar, T. R., and Vodovotz, Y.
(2021). Spatiotemporally specific roles of TLR4, TNF, and IL-17A in murine endotoxin-
induced inflammation inferred from analysis of dynamic networks.Molecular Medicine
27 (1), 65. doi:10.1186/s10020-021-00333-z

Zamora, R., Forsberg, J. A., Shah, A.M., Unselt, D., Grey, S., Lisboa, F. A., et al. (2023). Central
role for neurally dysregulated IL-17A in dynamic networks of systemic and local inflammation
in combat casualties. Scientific Reports 13 (1), 6618. doi:10.1038/s41598-023-33623-z

Zhang, Q., Li, J., Middleton, A., Bhattacharya, S., and Conolly, R. B. (2018). Bridging
the data gap from in vitro toxicity testing to chemical safety assessment through
computational modeling. Front. Public Health 6, 261. doi:10.3389/fpubh.2018.00261

Ziraldo, C., Mi, Q., An, G., and Vodovotz, Y. (2013). Computational modeling of
inflammation and wound healing. Advances in Wound Care 2 (9), 527–537. doi:10.
1089/wound.2012.0416

Frontiers in Systems Biology frontiersin.org17

Voit et al. 10.3389/fsysb.2023.1250228

https://doi.org/10.3389/fimmu.2018.02425
https://doi.org/10.1016/j.jtbi.2004.06.031
https://doi.org/10.1371/journal.pbio.1002533
https://doi.org/10.1371/journal.pbio.1002533
https://doi.org/10.3389/fimmu.2022.908618
https://doi.org/10.1002/wsbm.1599
https://doi.org/10.1038/s41380-022-01479-w
https://doi.org/10.1038/s41380-022-01479-w
https://doi.org/10.1016/j.jbi.2022.104082
https://doi.org/10.1002/cpmb.59
https://doi.org/10.1093/bib/bbp038
https://doi.org/10.1111/pce.12816
http://www.scienceforthepeople.ca/episodes/our-friend-the-wasp
http://www.scienceforthepeople.ca/episodes/our-friend-the-wasp
https://doi.org/10.1371/journal.pcbi.1003388
https://doi.org/10.1371/journal.pcbi.1003388
https://doi.org/10.1093/bioinformatics/15.1.72
https://doi.org/10.1007/s10482-009-9397-5
https://www.youtube.com/watch?v=tOzrUl5AZqk
https://www.youtube.com/watch?v=tOzrUl5AZqk
https://doi.org/10.1090/s0002-9904-1958-10189-5
https://unity.com/
https://virtualrat.org/
https://soysim.unl.edu/
https://www.unrealengine.com/en-US/
https://www.unrealengine.com/en-US/
https://doi.org/10.1002/bit.260410606
http://www.thevirtualbrain.org
https://www.h-its.org/projects/virtual-liver/
https://www.h-its.org/projects/virtual-liver/
https://doi.org/10.1177/1932296818757747
https://doi.org/10.1038/psp.2014.40
https://doi.org/10.1097/CCM.0b013e31829a6eb4
https://doi.org/10.1097/CCM.0b013e31829a6eb4
https://doi.org/10.1371/journal.pcbi.1000014
https://doi.org/10.1371/journal.pcbi.1000014
https://doi.org/10.3389/fphys.2017.01104
https://doi.org/10.1016/j.it.2023.03.004
https://doi.org/10.1016/0025-5564(86)90030-1
https://doi.org/10.1073/pnas.0603337103
https://doi.org/10.1016/j.mbs.2008.09.005
https://doi.org/10.1049/iet-syb.2009.0071
https://doi.org/10.1038/msb.2012.41
https://doi.org/10.1155/2013/897658
https://doi.org/10.1002/wsbm.1391
https://doi.org/10.1371/journal.pcbi.1007279
https://doi.org/10.3389/fsysb.2022.987135
https://doi.org/10.3389/fphys.2020.579117
https://doi.org/10.4049/jimmunol.166.3.1951
https://doi.org/10.1038/s41746-022-00614-9
https://doi.org/10.1186/s10020-021-00333-z
https://doi.org/10.1038/s41598-023-33623-z
https://doi.org/10.3389/fpubh.2018.00261
https://doi.org/10.1089/wound.2012.0416
https://doi.org/10.1089/wound.2012.0416
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2023.1250228

	What’s next for computational systems biology?
	Introduction
	Research goals
	Toward realism
	Toward the quintessence of systems and a theory of biology

	Research tools and methodologies
	Data pipelines
	From data toward models, using traditional statistics and machine learning
	Dynamic hypergraphs
	Harnessing the power of machine learning in computational systems biology
	Connecting snapshots through dynamic modeling

	Applications
	Translational systems biology and systems medicine
	Multi-scale models
	Models of single-cell data
	Models of microbiota
	Other microbial applications
	Education
	Outreach

	Conclusions and outlook
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


