33,608 research outputs found

    Reliability-Based Design of Thermal Protection Systems with Support Vector Machines

    Get PDF
    The primary objective of this work was to develop a computationally efficient and accurate approach to reliability analysis of thermal protection systems using support vector machines. An adaptive sampling approach was introduced informs a iterative support vector machine approximation of the limit state function used for measuring reliability. The proposed sampling approach efficient adds samples along the limit state function until the reliability approximation is converged. This methodology is applied to two samples, mathematical functions to test and demonstrate the applicability. Then, the adaptive sampling-based support vector machine approach is applied to the reliability analysis of a thermal protection system. The results of all three problems highlight the potential capability of the new approach in terms of accuracy and computational saving in determining thermal protection system reliability

    Star-galaxy separation in the AKARI NEP Deep Field

    Get PDF
    Context: It is crucial to develop a method for classifying objects detected in deep surveys at infrared wavelengths. We specifically need a method to separate galaxies from stars using only the infrared information to study the properties of galaxies, e.g., to estimate the angular correlation function, without introducing any additional bias. Aims. We aim to separate stars and galaxies in the data from the AKARI North Ecliptic Pole (NEP) Deep survey collected in nine AKARI / IRC bands from 2 to 24 {\mu}m that cover the near- and mid-infrared wavelengths (hereafter NIR and MIR). We plan to estimate the correlation function for NIR and MIR galaxies from a sample selected according to our criteria in future research. Methods: We used support vector machines (SVM) to study the distribution of stars and galaxies in the AKARIs multicolor space. We defined the training samples of these objects by calculating their infrared stellarity parameter (sgc). We created the most efficient classifier and then tested it on the whole sample. We confirmed the developed separation with auxiliary optical data obtained by the Subaru telescope and by creating Euclidean normalized number count plots. Results: We obtain a 90% accuracy in pinpointing galaxies and 98% accuracy for stars in infrared multicolor space with the infrared SVM classifier. The source counts and comparison with the optical data (with a consistency of 65% for selecting stars and 96% for galaxies) confirm that our star/galaxy separation methods are reliable. Conclusions: The infrared classifier derived with the SVM method based on infrared sgc- selected training samples proves to be very efficient and accurate in selecting stars and galaxies in deep surveys at infrared wavelengths carried out without any previous target object selection.Comment: 8 pages, 8 figure

    PhysicsGP: A Genetic Programming Approach to Event Selection

    Full text link
    We present a novel multivariate classification technique based on Genetic Programming. The technique is distinct from Genetic Algorithms and offers several advantages compared to Neural Networks and Support Vector Machines. The technique optimizes a set of human-readable classifiers with respect to some user-defined performance measure. We calculate the Vapnik-Chervonenkis dimension of this class of learning machines and consider a practical example: the search for the Standard Model Higgs Boson at the LHC. The resulting classifier is very fast to evaluate, human-readable, and easily portable. The software may be downloaded at: http://cern.ch/~cranmer/PhysicsGP.htmlComment: 16 pages 9 figures, 1 table. Submitted to Comput. Phys. Commu

    Learning to Prevent Monocular SLAM Failure using Reinforcement Learning

    Full text link
    Monocular SLAM refers to using a single camera to estimate robot ego motion while building a map of the environment. While Monocular SLAM is a well studied problem, automating Monocular SLAM by integrating it with trajectory planning frameworks is particularly challenging. This paper presents a novel formulation based on Reinforcement Learning (RL) that generates fail safe trajectories wherein the SLAM generated outputs do not deviate largely from their true values. Quintessentially, the RL framework successfully learns the otherwise complex relation between perceptual inputs and motor actions and uses this knowledge to generate trajectories that do not cause failure of SLAM. We show systematically in simulations how the quality of the SLAM dramatically improves when trajectories are computed using RL. Our method scales effectively across Monocular SLAM frameworks in both simulation and in real world experiments with a mobile robot.Comment: Accepted at the 11th Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP) 2018 More info can be found at the project page at https://robotics.iiit.ac.in/people/vignesh.prasad/SLAMSafePlanner.html and the supplementary video can be found at https://www.youtube.com/watch?v=420QmM_Z8v

    Regularizing Portfolio Optimization

    Get PDF
    The optimization of large portfolios displays an inherent instability to estimation error. This poses a fundamental problem, because solutions that are not stable under sample fluctuations may look optimal for a given sample, but are, in effect, very far from optimal with respect to the average risk. In this paper, we approach the problem from the point of view of statistical learning theory. The occurrence of the instability is intimately related to over-fitting which can be avoided using known regularization methods. We show how regularized portfolio optimization with the expected shortfall as a risk measure is related to support vector regression. The budget constraint dictates a modification. We present the resulting optimization problem and discuss the solution. The L2 norm of the weight vector is used as a regularizer, which corresponds to a diversification "pressure". This means that diversification, besides counteracting downward fluctuations in some assets by upward fluctuations in others, is also crucial because it improves the stability of the solution. The approach we provide here allows for the simultaneous treatment of optimization and diversification in one framework that enables the investor to trade-off between the two, depending on the size of the available data set
    corecore