research

Reliability-Based Design of Thermal Protection Systems with Support Vector Machines

Abstract

The primary objective of this work was to develop a computationally efficient and accurate approach to reliability analysis of thermal protection systems using support vector machines. An adaptive sampling approach was introduced informs a iterative support vector machine approximation of the limit state function used for measuring reliability. The proposed sampling approach efficient adds samples along the limit state function until the reliability approximation is converged. This methodology is applied to two samples, mathematical functions to test and demonstrate the applicability. Then, the adaptive sampling-based support vector machine approach is applied to the reliability analysis of a thermal protection system. The results of all three problems highlight the potential capability of the new approach in terms of accuracy and computational saving in determining thermal protection system reliability

    Similar works