264 research outputs found

    Solving composed quantified constraints from discrete-time robust control

    No full text
    International audienceThis paper deals with a problem from discrete-time robust control which requires the solution of constraints over the reals that contain both universal and existential quantifiers. For solving this problem we formulate it as a program in a (fictitious) constraint logic programming language with explicit quantifier notation. This allows us to clarify the special structure of the problem, and to extend an algorithm for computing approximate solution sets of first-order constraints over the real to exploit this structure. As a result we can deal with inputs that are clearly out of reach for current symbolic solvers

    On the Uncertainty in Active SLAM: Representation, Propagation and Monotonicity

    Get PDF
    La localización y mapeo simultáneo activo (SLAM activo) ha recibido mucha atención por parte de la comunidad de robótica por su relevancia en aplicaciones de robot móviles. El objetivo de un algoritmo de SLAM activo es planificar la trayectoria del robot para maximizar el área explorada y minimizar la incertidumbre asociada con la estimación de la posición del robot. Durante la fase de exploración de un algoritmo de SLAM, donde el robot navega en una región previamente desconocida, la incertidumbre asociada con la localización del robot crece sin límites. Solo después de volver a visitar regiones previamente conocidas, se espera una reducción en la incertidumbre asociada con la localización del robot mediante la detección de cierres de bucle. Esta tesis doctoral se centra en la importancia de representar y cuantificar la incertidumbre para calcular correctamente la confianza asociada con la estimación de la localización del robot en cada paso de tiempo a lo largo de su recorrido y, por lo tanto, decidir la trayectoria correcta de acuerdo con el objetivo de SLAM activo.En la literatura, se han propuesto fundamentalemente dos tipos de modelos de representación de la incertidumbre: absoluta y diferencial. En representación absoluta, la información sobre la incertidumbre asociada con la localización del robot está representada por una función de distribución de probabilidad, generalmente gausiana, sobre las variables de localización absoluta con respecto a una referencia base elegida. La estimación de la posición del robot está dada por la esperanza de las variables asociadas con la localización y la incertidumbre por su matriz de covarianza asociada. La representación diferencial utiliza una representación local de la incertidumbre, la posición estimada del robot se representa mediante la mejor aproximación de la posición absoluta y el error de estimación se representa localmente mediante un vector diferencial. Este vector generalmente también está representado por una función de distribución de probabilidad gausiana. Representaciones equivalentes al modelo diferencial han utilizado las herramientas de Grupos de Lie y Álgebras de Lie para representar la incertidumbre. Además de estos modelos, existen diferentes formas de representar la posición y orientación de la posición del robot, ángulos de Euler, cuaterniones y transformaciones homogéneas.Los enfoques más comunes para cuantificar la incertidumbre en SLAM se basan en criterios de optimalidad con el objetivo de cuantificar el mapa y la incertidumbre de la posición del robot: A-opt (traza de la matriz de covarianza, o suma de sus autovalores), D-opt (determinante de la matriz de covarianza, o producto de sus autovalores) y E-opt (criterio del mayor autovalor). Alternativamente, otros algoritmos de SLAM activo, basados en la Teoría de la Información, se basan en el uso de la entropía de Shannon para seleccionar acciones que lleven al robot al objetivo seleccionado. En un escenario de SLAM activo, garantizar la monotonicidad de estos criterios en la toma de decisiones durante la exploración, es decir, cuantificar correctamente que la incertidumbre encapsulada en una matriz de covarianza está aumentando, es un paso esencial para tomar decisiones correctas. Como ya se ha mencionado, durante la fase de exploración la incertidumbre asociada con la localización del robot aumenta. Por lo tanto, si no se preserva la monotonicidad de los criterios considerados, el sistema puede seleccionar trayectorias o caminos que creen falsamente que conducen a una menor incertidumbre de la localización del robot.En esta tesis, revisamos el trabajo relacionado sobre representación y propagación de la incertidumbre de la posición del robot en los diferentes modelos propuestos en la literatura. Además, se lleva a cabo un análisis de la incertidumbre representada localmente con un vector diferencial y la incertidumbre representada usando grupos de Lie. Investigamos la monotonicidad de diferentes criterios para la toma de decisiones, tanto en 2D como en 3D, dependiendo de la representación de la incertidumbre y de la representación de la orientación del robot. Nuestra conclusión fundamental es que la representación de la incertidumbre sobre grupos de Lie y usando un vector diferencial son similares e independientes de la representación utilizada para la parte rotacional de la posición del robot. Esto se debe a que la incertidumbre se representa localmente en el espacio de las transformaciones diferenciales que se corresponde con el álgebra de Lie del grupo euclidiano especial SE(n). Sin embargo, en el espacio tridimensional, la estimación de la localización del robot depende de las diferentes formas de representación de la parte rotacional. Por lo tanto, una forma adecuada de manipular conjuntamente la estimación y la incertidumbre del robot es utilizando la teoría de grupos de Lie debido a que es una representación que garantiza propiedades tales como una representación mínima y libre de singularidades en los ángulos de rotación. Analíticamente, demostramos que, utilizando representaciones diferenciales para la propagación de la incertidumbre, la monotonicidad se conserva para todos los criterios de optimalidad, A-opt, D-opt y E-opt y para la entropía de Shannon. También demostramos que la monotonicidad no se cumple para ninguno de ellos en representaciones absolutas usando ángulos Roll-Pitch-Yaw y Euler. Finalmente, mostramos que al usar cuaterniones unitarios en representaciones absolutas, los únicos criterios que preservan la monotonicidad son D-opt y la entropía de Shannon.Estos hallazgos pueden guiar a los investigadores de SLAM activo a seleccionar adecuadamente un modelo de representación de la incertidumbre, de modo que la planificación de trayectorias y los algoritmos de exploración puedan evaluar correctamente la evolución de la incertidumbre asociada a la posición del robot.Active Simultaneous Localization and Mapping (Active SLAM) has received a lot of attention from the robotics community for its relevance in mobile robotics applications. The objective of an active SLAM algorithm is to plan ahead the robot motion in order to maximize the area explored and minimize the uncertainty associated with the estimation, all within a time and computation budget. During the exploration phase of a SLAM algorithm, where the robot navigates in a previously unknown region, the uncertainty associated with the robot's localization grows unbounded. Only after revisiting previously known regions a reduction in the robot's localization uncertainty is expected by detecting loop-closures. This doctoral thesis focuses on the paramount importance of representing and quantifying uncertainty to correctly report the associated confidence of the robot's location estimate at each time step along its trajectory and therefore deciding the correct course of action in an active SLAM mission. Two fundamental types of models of probabilistic representation of the uncertainty have been proposed in the literature: absolute and dfferential. In absolute representations, the information about the uncertainty in the location of the robot's pose is represented by a probability distribution function, usually Gaussian, over the variables of the absolute location with respect to a chosen base reference. The estimated location is given by the expected location variables and the uncertainty by its associated covariance matrix. Differential representations use a local representation of the uncertainty, the estimated location of the robot is represented by the best approximation of the absolute location and the estimation error is represented locally by a differential location vector. This vector is usually also represented by a Gaussian probability distribution function. Equivalent representations to differential models have used the tools of Lie groups and Lie algebras to represent uncertainties. In addition to uncertainty models, there are different ways to represent the position and orientation of the robot's pose, Euler angles, quaternions and homogeneous transformations. The most common approaches to quantifying uncertainty in SLAM are based on optimality criteria which aim at quantifying the map and robot's pose uncertainty, namely A-opt (trace of the covariance matrix, or sum of its eigenvalues), D-opt (determinant of the covariance matrix, or product of its eigenvalues) and E-opt (largest eigenvalue) criteria. Alternatively, other active SLAM algorithms, based on Information Theory, rely on the use of the Shannon's entropy to select courses of action for the robot to reach the commanded goal location. In an active SLAM scenario, guaranteeing monotonicity of these decision making criteria during exploration, i.e. quantifying correctly that the uncertainty encapsulated in a covariance matrix is increasing, is an essential step towards making correct decisions. As already mentioned, during exploration the uncertainty associated with the robot's localization increases. Therefore, if monotonicity of the criteria considered is not preserved, the system might select courses of action or paths that it falsely believes lead to less uncertainty in the robot. In this thesis, we review related work about representation and propagation of the uncertainty of robot's pose and present a survey of different types of models proposed in the literature. Additionally, an analysis of the uncertainty represented with a differential uncertainty vector and the uncertainty represented on Lie groups is carried out. We investigate the monotonicity of different decision making criteria, both in 2D and 3D, depending on the representation of uncertainty and the orientation of the robot's pose. Our fundamental conclusion is that uncertainty representation over Lie groups and using differential location vectors are similar and independent of the representation used for rotational part of the robot's pose. This is due to the uncertainty is represented locally in the space of differential transformations for translation and rotation that correspond with the Lie algebra of special Euclidean group SE(n). However, in 3-dimensional space, the homogeneous transformation associated to the approximation of the real location depend on the different ways of representation the rotational part. Therefore, a proper way to jointly manipulating the estimation and uncertainty of the pose is to use the theory of Lie groups due to it is a representation to guarantee properties such as a minimal representation and free of singularities in rotation angles. We analytically show that, using differential representations to propagate spatial uncertainties, monotonicity is preserved for all optimality criteria, A-opt, D-opt and E-opt and for Shannon's entropy. We also show that monotonicity does not hold for any of them in absolute representations using Roll-Pitch-Yaw and Euler angles. Finally, we show that using unit quaternions in absolute representations, the only criteria that preserve monotonicity are D-opt and Shannon's entropy. These findings can guide active SLAM researchers to adequately select a representation model for uncertainty, so that path planning and exploration algorithms can correctly assess the evolution of location uncertainty.<br /

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Fuzzy Logic

    Get PDF
    Fuzzy Logic is becoming an essential method of solving problems in all domains. It gives tremendous impact on the design of autonomous intelligent systems. The purpose of this book is to introduce Hybrid Algorithms, Techniques, and Implementations of Fuzzy Logic. The book consists of thirteen chapters highlighting models and principles of fuzzy logic and issues on its techniques and implementations. The intended readers of this book are engineers, researchers, and graduate students interested in fuzzy logic systems

    ISIPTA'07: Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and Applications

    Get PDF
    B

    Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems

    Full text link
    Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural sciences. Today, AI has started to advance natural sciences by improving, accelerating, and enabling our understanding of natural phenomena at a wide range of spatial and temporal scales, giving rise to a new area of research known as AI for science (AI4Science). Being an emerging research paradigm, AI4Science is unique in that it is an enormous and highly interdisciplinary area. Thus, a unified and technical treatment of this field is needed yet challenging. This work aims to provide a technically thorough account of a subarea of AI4Science; namely, AI for quantum, atomistic, and continuum systems. These areas aim at understanding the physical world from the subatomic (wavefunctions and electron density), atomic (molecules, proteins, materials, and interactions), to macro (fluids, climate, and subsurface) scales and form an important subarea of AI4Science. A unique advantage of focusing on these areas is that they largely share a common set of challenges, thereby allowing a unified and foundational treatment. A key common challenge is how to capture physics first principles, especially symmetries, in natural systems by deep learning methods. We provide an in-depth yet intuitive account of techniques to achieve equivariance to symmetry transformations. We also discuss other common technical challenges, including explainability, out-of-distribution generalization, knowledge transfer with foundation and large language models, and uncertainty quantification. To facilitate learning and education, we provide categorized lists of resources that we found to be useful. We strive to be thorough and unified and hope this initial effort may trigger more community interests and efforts to further advance AI4Science

    Optimal Control and Synchronization of Dynamic Ensemble Systems

    Get PDF
    Ensemble control involves the manipulation of an uncountably infinite collection of structurally identical or similar dynamical systems, which are indexed by a parameter set, by applying a common control without using feedback. This subject is motivated by compelling problems in quantum control, sensorless robotic manipulation, and neural engineering, which involve ensembles of linear, bilinear, or nonlinear oscillating systems, for which analytical control laws are infeasible or absent. The focus of this dissertation is on novel analytical paradigms and constructive control design methods for practical ensemble control problems. The first result is a computational method %based on the singular value decomposition (SVD) for the synthesis of minimum-norm ensemble controls for time-varying linear systems. This method is extended to iterative techniques to accommodate bounds on the control amplitude, and to synthesize ensemble controls for bilinear systems. Example ensemble systems include harmonic oscillators, quantum transport, and quantum spin transfers on the Bloch system. To move towards the control of complex ensembles of nonlinear oscillators, which occur in neuroscience, circadian biology, electrochemistry, and many other fields, ideas from synchronization engineering are incorporated. The focus is placed on the phenomenon of entrainment, which refers to the dynamic synchronization of an oscillating system to a periodic input. Phase coordinate transformation, formal averaging, and the calculus of variations are used to derive minimum energy and minimum mean time controls that entrain ensembles of non-interacting oscillators to a harmonic or subharmonic target frequency. In addition, a novel technique for taking advantage of nonlinearity and heterogeneity to establish desired dynamical structures in collections of inhomogeneous rhythmic systems is derived
    corecore