8 research outputs found

    Использование набора диаграмм UML для построения моделей производительности

    Get PDF
    Рассматривается возможность генерации моделей производительности программного обеспечения на основе диаграмм в нотации UML как одна из базовых составляющих методологии интеграции анализа производительности в процесс разработки. Предложен подход, основанный на методологии Software Performance Engineering (SPE), использующий в качестве исходных данных стандартные элементы UML и ряд расширений

    Taguchi approach for performance evaluation of service-oriented software systems.

    Get PDF
    Service-oriented software systems are becoming increasingly common in the world today as big companies such as Microsoft and IBM advocate approaches focusing on assembly of system from distributed services. Although performance of such systems is a big problem, there is surprisingly an obvious lack of attention for evaluating the performance of enterprise-scale, service-oriented software systems. This thesis investigates the application of statistical tools in performance engineering domain for total quality management. In particular, the Taguchi approach is used as an efficient and systematic way to optimize designs for performance, quality, and cost. The aim is to improve the performance of software systems and to reduce application development cost by assembling services from known vendors or intranet services. The focus of this thesis is on the response time of service-oriented systems. Nevertheless, the developed methodology also applies to other performance issues, such as memory management and caching. The interaction problems of those issues are preserved for future work.Dept. of Computer Science. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .L585. Source: Masters Abstracts International, Volume: 43-01, page: 0240. Adviser: Xiaobu Yuan. Thesis (M.Sc.)--University of Windsor (Canada), 2004

    SALSA: A Formal Hierarchical Optimization Framework for Smart Grid

    Get PDF
    The smart grid, by the integration of advanced control and optimization technologies, provides the traditional grid with an indisputable opportunity to deliver and utilize the electricity more efficiently. Building smart grid applications is a challenging task, which requires a formal modeling, integration, and validation framework for various smart grid domains. The design flow of such applications must adapt to the grid requirements and ensure the security of supply and demand. This dissertation, by proposing a formal framework for customers and operations domains in the smart grid, aims at delivering a smooth way for: i) formalizing their interactions and functionalities, ii) upgrading their components independently, and iii) evaluating their performance quantitatively and qualitatively.The framework follows an event-driven demand response program taking no historical data and forecasting service into account. A scalable neighborhood of prosumers (inside the customers domain), which are equipped with smart appliances, photovoltaics, and battery energy storage systems, are considered. They individually schedule their appliances and sell/purchase their surplus/demand to/from the grid with the purposes of maximizing their comfort and profit at each instant of time. To orchestrate such trade relations, a bilateral multi-issue negotiation approach between a virtual power plant (on behalf of prosumers) and an aggregator (inside the operations domain) in a non-cooperative environment is employed. The aggregator, with the objectives of maximizing its profit and minimizing the grid purchase, intends to match prosumers' supply with demand. As a result, this framework particularly addresses the challenges of: i) scalable and hierarchical load demand scheduling, and ii) the match between the large penetration of renewable energy sources being produced and consumed. It is comprised of two generic multi-objective mixed integer nonlinear programming models for prosumers and the aggregator. These models support different scheduling mechanisms and electricity consumption threshold policies.The effectiveness of the framework is evaluated through various case studies based on economic and environmental assessment metrics. An interactive web service for the framework has also been developed and demonstrated

    UML extensions for the specification and evaluation of latency constraints in architectural models

    No full text

    Prédiction de performance d'algorithmes de traitement d'images sur différentes architectures hardwares

    Get PDF
    In computer vision, the choice of a computing architecture is becoming more difficult for image processing experts. Indeed, the number of architectures allowing the computation of image processing algorithms is increasing. Moreover, the number of computer vision applications constrained by computing capacity, power consumption and size is increasing. Furthermore, selecting an hardware architecture, as CPU, GPU or FPGA is also an important issue when considering computer vision applications.The main goal of this study is to predict the system performance in the beginning of a computer vision project. Indeed, for a manufacturer or even a researcher, selecting the computing architecture should be done as soon as possible to minimize the impact on development.A large variety of methods and tools has been developed to predict the performance of computing systems. However, they do not cover a specific area and they cannot predict the performance without analyzing the code or making some benchmarks on architectures. In this works, we specially focus on the prediction of the performance of computer vision algorithms without the need for benchmarking. This allows splitting the image processing algorithms in primitive blocks.In this context, a new paradigm based on splitting every image processing algorithms in primitive blocks has been developed. Furthermore, we propose a method to model the primitive blocks according to the software and hardware parameters. The decomposition in primitive blocks and their modeling was demonstrated to be possible. Herein, the performed experiences, on different architectures, with real data, using algorithms as convolution and wavelets validated the proposed paradigm. This approach is a first step towards the development of a tool allowing to help choosing hardware architecture and optimizing image processing algorithms.Dans le contexte de la vision par ordinateur, le choix d’une architecture de calcul est devenu de plus en plus complexe pour un spécialiste du traitement d’images. Le nombre d’architectures permettant de résoudre des algorithmes de traitement d’images augmente d’année en année. Ces algorithmes s’intègrent dans des cadres eux-mêmes de plus en plus complexes répondant à de multiples contraintes, que ce soit en terme de capacité de calculs, mais aussi en terme de consommation ou d’encombrement. A ces contraintes s’ajoute le nombre grandissant de types d’architectures de calculs pouvant répondre aux besoins d’une application (CPU, GPU, FPGA). L’enjeu principal de l’étude est la prédiction de la performance d’un système, cette prédiction pouvant être réalisée en phase amont d’un projet de développement dans le domaine de la vision. Dans un cadre de développement, industriel ou de recherche, l’impact en termes de réduction des coûts de développement, est d’autant plus important que le choix de l’architecture de calcul est réalisé tôt. De nombreux outils et méthodes d’évaluation de la performance ont été développés mais ceux-ci, se concentrent rarement sur un domaine précis et ne permettent pas d’évaluer la performance sans une étude complète du code ou sans la réalisation de tests sur l’architecture étudiée. Notre but étant de s’affranchir totalement de benchmark, nous nous sommes concentrés sur le domaine du traitement d’images pour pouvoir décomposer les algorithmes du domaine en éléments simples ici nommées briques élémentaires. Dans cette optique, un nouveau paradigme qui repose sur une décomposition de tout algorithme de traitement d’images en ces briques élémentaires a été conçu. Une méthode est proposée pour modéliser ces briques en fonction de paramètres software et hardwares. L’étude démontre que la décomposition en briques élémentaires est réalisable et que ces briques élémentaires peuvent être modélisées. Les premiers tests sur différentes architectures avec des données réelles et des algorithmes comme la convolution et les ondelettes ont permis de valider l'approche. Ce paradigme est un premier pas vers la réalisation d’un outil qui permettra de proposer des architectures pour le traitement d’images et d’aider à l’optimisation d’un programme dans ce domaine

    EARLY ASSESSMENT OF SERVICE PERFORMANCE USING SIMULATION

    Get PDF
    The success of web services is changing the way in which software is designed, developed, and distributed. The increasing diffusion of software in the form services, available as commodities over the Internet, has en- abled business scenarios where processes are implemented by composing loosely-coupled services chosen at runtime. Services are in fact continuously re-designed and incrementally developed, released in heterogeneous and distributed environments, and selected and integrated at runtime within external business processes. In this dynamic context, there is the need of solutions supporting the evaluation of service performance at an early stage of the software development process, or even at design time, to support users in an a priori evaluation of the impact, a given service might have when integrated in their business process. A number of useful performance verification and validation techniques are proposed to test and simulate web services, but they assume the availability of service code or at least of reliable information (e.g., collected by testing) on service behavior. Among these approaches, simulation-based techniques are mostly used to assess the behavior of the service and predict its behavior using historical data. Despite the benefits of such solutions, few proposals have addressed the problem of how service performance can be assessed at design time and how historical data can be replaced by simulation data for performance evaluation at early stage of development cycle. In this thesis, the notion of simulation is fully integrated within early phases of the software development process in order to predict the behavior of services. We propose model-based approaches that rely on the amount of information available for the simulation of the performance of service operations. We distinguish full-knowledge, partial-knowledge and zero-knowledge scenarios. In a full-knowledge scenario, the total execution times for each operation and the internal distributions of delays are known and used for performance evaluation. In a partial-knowledge scenario, partial testing results (i.e., the lower and upper bounds to the operation execution times) are used to simulate a service performance. In the zero-knowledge scenario, no testing results are considered; only simulation results are used for performance evaluation. The main contributions of this thesis can be summarized as follows. Firstly, we proposed a model-based approach that relies on Symbolic Transition System (STS) to describe the web services as finite state automata and evaluate their performance. This model was extended for testing and simulation. The testing model annotates model transitions with performance idioms, which allow to evaluate the behavior of the service. The simulation model extends the standard STS-based model with transition probabilities and delay distributions. This model is used to generate a simulation script that allows to simulate the service behavior. Our methodology used simulation along the design and pre-deployment phases of the web service lifecycle to preliminarily assess web service performance using coarse-grained information on the total execution time of each service operation derived by testing. We used testing results and provided some practical examples to validate our methodology and the quality of the performance measurements computed by simulation considering the full-knowledge and partial-knowledge scenarios. The results obtained showed that our simulation gives accurate estimation of the execution times. Secondly, the thesis proposed an approach that permits service developers and software adopters to evaluate service performance in a zero-knowledge scenario, where testing results and service code are not yet available. Our approach is built on expert knowledge to estimate the execution time of the service operation. It evaluates the complexity of the service operation using the input and output Simple Object Access Protocol (SOAP) messages, and the Web Service Description Language (WSDL) interface of the service. Then, the operation interval of execution times is estimated based on profile tables providing the time overhead needed to parse and build SOAP messages, and the performance inferred from the testing of some reference service operations. Our simulation results showed that our zero-knowledge approach gives an accurate approximation of the interval of execution times when compared with the testing results at the end of the development. Thirdly, the thesis proposed an application of our previous approaches to the definition of a framework that allows to negotiate and monitoring the performance Service Level Agreement (SLA) of the web service based on the simulation data. The solution for SLA monitoring is based on the STS-based model for testing and the solution for SLA negotiation is based on the service model for simulation. This work provides an idea about the SLA of the service in advance and how to handle the violations of the SLA on performance after the service deployment.Le succ\ue8s des services Web est entrain de changer la fa\ue7on dont le logiciel est con\ue7u, d\ue9velopp\ue9 et distribu\ue9. La diffusion croissante des logiciels sous forme de services, disponibles en tant que produits sur Internet, a permis la d\ue9finition de sc\ue9narios d\u2019entreprise o\uf9 les processus sont mis en \u153uvre par la composition de services faiblement coupl\ue9s, choisis au moment de l\u2019ex\ue9cution. Les services sont en effet en permanence re-con\ue7us et d\ue9velopp\ue9s progressivement, publi\ue9s dans des environnements h\ue9t\ue9rog\ue8nes et distribu\ue9s, et s\ue9lectionn\ue9s et int\ue9gr\ue9s \ue0 l\u2019ex\ue9cution dans les processus externes d\u2019entreprise. Dans ce contexte dynamique, il est n\ue9cessaire d\u2019avoir des solutions permettant l'\ue9valuation de la performance du service \ue0 un stade pr\ue9coce du processus de d\ue9veloppement des logiciels, ou encore au moment de la conception, afin de permettre aux utilisateurs de faire une \ue9valuation \u201ca priori\u201d de l\u2019impact qu\u2019un service donn\ue9 peut avoir quand il est int\ue9gr\ue9 dans leur processus d\u2019entreprise. Un certain nombre de techniques de v\ue9rification et de validation des performances utiles sont propos\ue9es pour tester et simuler les services web, mais elles requi\ue8rent la disponibilit\ue9 du code source du service ou au moins d\u2019informations fiables (par exemple, recueillies par test) sur le comportement du service. Parmi ces approches, les techniques bas\ue9es sur la simulation sont principalement utilis\ue9es pour \ue9valuer le comportement du service et pr\ue9dire son comportement en utilisant des donn\ue9es obtenues par test. Malgr\ue9 les avantages de ces solutions, peu de propositions ont abord\ue9 le probl\ue8me li\ue9 \ue0 la mani\ue8re dont la performance du service peut \ueatre \u301\ue9valu\ue9e au moment de la conception et comment les donn\ue9es de test peuvent \ueatre remplac\ue9es par les donn\ue9es de simulation en vue de l\u2019\ue9valuation de la performance \ue0 un stade pr\ue9coce du cycle de d\ue9veloppement. Dans cette th\ue8se, la notion de simulation est enti\ue8rement int\ue9gr\ue9e dans les premi\ue8res phases du processus de d\ue9veloppement des logiciels afin de pr\ue9dire le comportement des services. Nous proposons des approches bas\ue9es sur l\u2019utilisation de mod\ue8les s\u2019appuyant sur la quantit\ue9 d\u2019informations disponibles pour la simulation de la performance des op\ue9rations du service web. Nous distinguons les sc\ue9narios full-knowledge, partial-knowledge et zero-knowledge. Dans un sc\ue9nario full-knowledge, les temps d\u2019ex\ue9cution total de chaque op\ue9ration et les distributions internes des d\ue9lais sont connus et utilis\ue9s pour l\u2019\ue9valuation des performances. Dans un sc\ue9nario partial-knowledge, les r\ue9sultats des tests partiels (par exemple, les bornes inf\ue9rieures et sup\ue9rieures des temps d\u2019ex\ue9cution de l\u2019op\ue9ration) sont utilis\ue9s pour simuler la performance du service web. Dans le sc\ue9nario zero-knowledge, aucun r\ue9sultat de test n\u2019est consid\ue9r\ue9, seuls les r\ue9sultats de simulation sont utilis\ue9s pour l\u2019\ue9valuation des performances. Les principales contributions de cette th\ue8se peuvent \ueatre r\ue9sum\ue9es comme suit. Premi\ue8rement, nous avons propos\ue9 une approche bas\ue9e sur l\u2019utilisation de mod\ue8le qui s\u2019appuie sur le Syst\ue8me de Transition Symbolique ( STS ) pour d\ue9crire les services web comme des automates \ue0 \u301\ue9tats finis et \ue9valuer leur performance. Ce mod\ue8le a \u301\ue9t\ue9 \ue9tendu pour les tests et la simulation. Le mod\ue8le de test ajoute aux transitions du mod\ue8le STS standard des idiomes de performance, qui permettent d\u2019\ue9valuer le comportement du service. Cependant, le mod\ue8le de simulation \ue9tend le mod\ue8le STS standard avec des probabilit\ue9s de transition et les distributions de d\ue9lais. Ce mod\ue8le est utilis\ue9 pour g\ue9n\ue9rer un script de simulation permettant de simuler le comportement du service. Notre m\ue9thodologie utilise la simulation tout au long des phases de conception et de pr\ue9-d\ue9ploiement du cycle de vie des services web pour une \ue9valuation pr\ue9liminaire de la performance des services web en utilisant les informations brutes sur le temps total d\u2019ex\ue9cution de chaque op\ue9ration du service web provenant des tests. Nous avons utilis\ue9 les r\ue9sultats des tests et fourni des exemples concrets pour valider notre m\ue9thodologie et la qualit\ue9 des mesures de performance obtenues par simulation en consid\ue9rant les sc\ue9narios full-knowledge et partial-knowledge. Les r\ue9sultats obtenus ont montr\ue9 que notre simulation donne une estimation pr\ue9cise des temps d\u2019ex\ue9cution. Deuxi\ue8mement, notre th\ue8se a propos\ue9 une approche qui permet aux d\ue9veloppeurs de services web et aux utilisateurs des logiciels d\u2019\ue9valuer la performance des services en consid\ue9rant le sc\ue9nario zero-knowledge , o\uf9 les r\ue9sultats des tests et le code source des services ne sont pas encore disponibles. Notre approche est fond\ue9e sur les connaissances des experts pour estimer le temps d\u2019ex\ue9cution de l\u2019op\ue9ration du service web. Il \ue9value la complexit\ue9 de l\u2019op\ue9ration en utilisant les messages SOAP (Simple Object Access Protocol) d\u2019entr\ue9e et de sortie et l\u2019interface de description WSDL (Web Service Description Language) du service. Ensuite, l\u2019intervalle du temps d\u2019ex\ue9cution de l\u2019op\ue9ration est estim\ue9 sur la base des tables de profils fournissant le temps n\ue9cessaire pour parser et construire les messages SOAP, et la performance d\ue9duite \ue0 partir du test de certaines op\ue9rations de web services de r\ue9f\ue9rence. Nos r\ue9sultats de simulation ont montr\ue9 que notre sc\ue9nario zero-knowledge donne une bonne approximation de l\u2019intervalle du temps d\u2019ex\ue9cution par rapport aux r\ue9sultats des tests obtenus \ue0 la fin du d\ue9veloppement. Troisi\ue8mement, cette th\ue8se propose une application de nos pr\ue9c\ue9dentes approches pour la mise en place d\u2019un framework qui permet de n\ue9gocier et de surveiller le contrat de niveau de service (SLA) sur la performance du service web en se basant sur les donn\ue9es de simulation. La solution pour le suivi du contrat de niveau de service est bas\ue9e sur le mod\ue8le STS \ue9tendu pour le test et la solution de n\ue9gociation du niveau de service est bas\ue9e sur le mod\ue8le de service \ue9tendu pour la simulation. Ce travail fournit \ue0 l\u2019avance une id\ue9e sur le contrat de performance du service et la fa\ue7on dont les violations du contrat sont trait\ue9es apr\ue8s le d\ue9ploiement du service web

    A survey on elasticity management in PaaS systems

    Full text link
    [EN] Elasticity is a goal of cloud computing. An elastic system should manage in an autonomic way its resources, being adaptive to dynamic workloads, allocating additional resources when workload is increased and deallocating resources when workload decreases. PaaS providers should manage resources of customer applications with the aim of converting those applications into elastic services. This survey identifies the requirements that such management imposes on a PaaS provider: autonomy, scalability, adaptivity, SLA awareness, composability and upgradeability. This document delves into the variety of mechanisms that have been proposed to deal with all those requirements. Although there are multiple approaches to address those concerns, providers main goal is maximisation of profits. This compels providers to look for balancing two opposed goals: maximising quality of service and minimising costs. Because of this, there are still several aspects that deserve additional research for finding optimal adaptability strategies. Those open issues are also discussed.This work has been partially supported by EU FEDER and Spanish MINECO under research Grant TIN2012-37719-C03-01.Muñoz-Escoí, FD.; Bernabeu Aubán, JM. (2017). A survey on elasticity management in PaaS systems. Computing. 99(7):617-656. https://doi.org/10.1007/s00607-016-0507-8S617656997Ajmani S (2004) Automatic software upgrades for distributed systems. PhD thesis, Department of Electrical and Computer Science, Massachusetts Institute of Technology, USAAjmani S, Liskov B, Shrira L (2006) Modular software upgrades for distributed systems. In: 20th European Conference on Object-Oriented Programming (ECOOP), Nantes, France, pp 452–476Alhamad M, Dillon TS, Chang E (2010) Conceptual SLA framework for cloud computing. In: 4th International Conference on Digital Ecosystems and Technologies (DEST), Dubai, pp 606–610Almeida S, Leitão J, Rodrigues LET (2013) ChainReaction: a causal+ consistent datastore based on chain replication. In: 8th EuroSys Conference, Prague, Czech Republic, pp 85–98Araujo J, Matos R, Maciel PRM, Matias R (2011) Software aging issues on the Eucalyptus cloud computing infrastructure. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), Anchorage, Alaska, USA, pp 1411–1416Arief LB, Speirs NA (2000) A UML tool for an automatic generation of simulation programs. In: Worshop on Software and Performance (WOSP), Ottawa, Canada, pp 71–76Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, Konwinski A, Lee G, Patterson DA, Rabkin A, Stoica I, Zaharia M (2010) A view of cloud computing. Commun ACM 53(4):50–58Bailis P, Ghodsi A (2013) Eventual consistency today: limitations, extensions, and beyond. Commun ACM 56(5):55–63Bailis P, Ghodsi A, Hellerstein JM, Stoica I (2013) Bolt-on causal consistency. In: Intnl Conf Mgmnt Data (SIGMOD). NY, USA, New York, pp 761–772Balsamo S, Marco AD, Inverardi P, Simeoni M (2004) Model-based performance prediction in software development: a survey. IEEE Trans Softw Eng 30(5):295–310Barham P, Dragovic B, Fraser K, Hand S, Harris TL, Ho A, Neugebauer R, Pratt I, Warfield A (2003) Xen and the art of virtualization. In: 19th ACM Symposium on Operating Systems Principles (SOSP), Bolton Landing, NY, USA, pp 164–177Bennani MN, Menascé DA (2005) Resource allocation for autonomic data centers using analytic performance models. In: 2nd Intnl Conf Auton Comput (ICAC), Seattle, WA, USA, pp 229–240Birman KP (1996) Building Secure and Reliable Network Applications. Manning Publications Co., ISBN 1-884777-29-5Bloom T (1983) Dynamic module replacement in a distributed programming system. PhD thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, USABloom T, Day M (1993) Reconfiguration and module replacement in Argus: theory and practice. Softw Eng J 8(2):102–108Caballer M, Segrelles Quilis JD, Moltó G, Blanquer I (2015) A platform to deploy customized scientific virtual infrastructures on the cloud. Concurr Comput Pract E 27(16):4318–4329Calatrava A, Romero E, Moltó G, Caballer M, Alonso JM (2016) Self-managed cost-efficient virtual elastic clusters on hybrid cloud infrastructures. Future Gener Comp Syst 61:13–25Calcavecchia NM, Caprarescu BA, Nitto ED, Dubois DJ, Petcu D (2012) DEPAS: a decentralized probabilistic algorithm for auto-scaling. Computing 94(8–10):701–730Casalicchio E, Silvestri L (2013) Mechanisms for SLA provisioning in cloud-based service providers. Comput Netw 57(3):795–810Casalicchio E, Menascé DA, Aldhalaan A (2013) Autonomic resource provisioning in cloud systems with availability goals. In: ACM Cloud Autonomic Computing Conference (CAC), FL, USA, Miami, pp 1–10Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE (2008) Bigtable: a distributed storage system for structured data. ACM Trans Comput Syst 26(2):4Copil G, Trihinas D, Truong HL, Moldovan D, Pallis G, Dustdar S, Dikaiakos MD (2014) ADVISE—A framework for evaluating cloud service elasticity behavior. In: 12th International Conference on Service-Oriented Computing (ICSOC), France, Paris, pp 275–290Cotroneo D, Natella R, Pietrantuono R, Russo S (2014) A survey of software aging and rejuvenation studies. ACM J Emerg Technol 10(1):8:1–8:34Coutinho EF, de Carvalho Sousa FR, Rego PAL, Gomes DG, de Souza JN (2015) Elasticity in cloud computing: a survey. Ann Telecommun 70(15):289–309Dawoud W, Takouna I, Meinel C (2011) Elastic VM for cloud resources provisioning optimization. In: 1st International Conference on Advances in Computing and Communications (ACC), Kochi, India, pp 431–445de Juan-Marín R, Decker H, Armendáriz-Íñigo JE, Bernabéu-Aubán JM, Muñoz-EscoíFD (2015) Scalability approaches for causal multicast: a survey. Computing (in press)de Miguel M, Lambolais T, Hannouz M, Betgé-Brezetz S, Piekarec S (2000) UML extensions for the specification and evaluation of latency constraints in architectural models. In: Workshop on Software and Performance (WOSP), Ottawa, Canada, pp 83–88Demers AJ, Greene DH, Hauser C, Irish W, Larson J, Shenker S, Sturgis HE, Swinehart DC, Terry DB (1987) Epidemic algorithms for replicated database maintenance. In: 6th ACM Symposium on Principles of Distributed Computing (PODC), Vancouver, Canada, pp 1–12Dustdar S, Guo Y, Satzger B, Truong HL (2011) Principles of elastic processes. IEEE Internet Comput 15(5):66–71Emeakaroha VC, Brandic I, Maurer M, Dustdar S (2013) Cloud resource provisioning and SLA enforcement via LoM2HiS framework. Concurr Comput Pract E 25(10):1462–1481Felter W, Ferreira A, Rajamony R, Rubio J (2015) An updated performance comparison of virtual machines and Linux containers. In: IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), Philadelphia, PA, USA, pp 171–172Fox A, Brewer EA (1999) Harvest, yield and scalable tolerant systems. In: 7th Workshop on Hot Topics in Operating Systems (HotOS), Rio Rico, Arizona, USA, pp 174–178Galante G, De Bona LCE (2012) A survey on cloud computing elasticity. In: 5th International Conference on Utility and Cloud Computing (UCC), Chicago, IL, USA, pp 263–270Galante G, De Bona LCE, Mury AR, Schulze B, Righi RR (2016) An analysis of public clouds elasticity in the execution of scientific applications: a survey. J Grid Comput 14(2):193–216Gambi A, Hummer W, Truong HL, Dustdar S (2013) Testing elastic computing systems. IEEE Internet Comput 17(6):76–82Garg S, van Moorsel APA, Vaidyanathan K, Trivedi KS (1998) A methodology for detection and estimation of software aging. In: 9th International Symposium on Software Reliability Engineering (ISSRE), Paderborn, Germany, pp 283–292Gey F, Landuyt DV, Joosen W (2015) Middleware for customizable multi-staged dynamic upgrades of multi-tenant SaaS applications. In: 8th IEEE/ACM International Conference on Utility and Cloud Computing (UCC), Limassol, Cyprus, pp 102–111Gilbert S, Lynch NA (2002) Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services. SIGACT News 33(2):51–59Gong Z, Gu X, Wilkes J (2010) PRESS: PRedictive Elastic reSource Scaling for cloud systems. In: 6th International Conference on Network and Service Management (CNSM), Niagara Falls, Canada, pp 9–16Grozev N, Buyya R (2014) Inter-cloud architectures and application brokering: taxonomy and survey. Softw Pract Exp 44(3):369–390Hammer M (2009) How to touch a running system. reconfiguration of stateful components. PhD thesis, Facultät für Mathematik, Informatik und Statistik, Ludwig-Maximilians-Universität München, Munich, GermanyHasan MZ, Magana E, Clemm A, Tucker L, Gudreddi SLD (2012) Integrated and autonomic cloud resource scaling. In: IEEE Network Operations and Management Symposium (NOMS), Maui, HI, USA, pp 1327–1334Herbst NR, Kounev S, Reussner R (2013) Elasticity in cloud computing: What it is, and what it is not. In: 10th International Conference on Autonomic Computing (ICAC), San Jose, CA, USA, pp 23–27Hermanns H, Herzog U, Katoen J (2002) Process algebra for performance evaluation. Theor Comput Sci 274(1–2):43–87Horn P (2001) Autonomic computing: IBM’s perspective on the state of information technology. Tech. rep. IBM PressHuebscher MC, McCann JA (2008) A survey of autonomic computing—degrees, models, and applications. ACM Comput Surv 40(3):7Hwang J, Zeng S, Wu F, Wood T (2013) A component-based performance comparison of four hypervisors. In: International Symposium on Integrated Network Management (IM), Ghent, Belgium, pp 269–276IBM (2006) An architectural blueprint for autonomic computing. White paper, 4th edIosup A, Ostermann S, Yigitbasi N, Prodan R, Fahringer T, Epema DHJ (2011) Performance analysis of cloud computing services for many-tasks scientific computing. IEEE Trans Parallel Distrib Syst 22(6):931–945Ivanovic D, Carro M, Hermenegildo MV (2013) A sharing-based approach to supporting adaptation in service compositions. Computing 95(6):453–492Jiang Y, Perng C, Li T, Chang RN (2011) ASAP: A self-adaptive prediction system for instant cloud resource demand provisioning. In: 11th International Conference on Data Mining (ICDM), Vancouver, Canada, pp 1104–1109Johnson PR, Thomas RH (1975) The maintenance of duplicate databases. RFC 677, Network Working Group, Internet Engineering Task ForceKephart JO, Chess DM (2003) The vision of autonomic computing. IEEE Comput 36(1):41–50Kiviti A, Laor D, Costa G, Enberg P, Har’El N, Marti D, Zolotarov V (2014) OSv—Optimizing the operating system for virtual machines. In: USENIX Annual Technical Conference (ATC), Philadelphia, PA, USA, pp 61–72Knauth T, Fetzer C (2011) Scaling non-elastic applications using virtual machines. In: IEEE International Conference on Cloud Computing (CLOUD), Washington, DC, USA, pp 468–475Knauth T, Fetzer C (2014) DreamServer: truly on-demand cloud services. In: International Conference on Systems and Storage (SYSTOR), Haifa, Israel, pp 1–11Kramer J, Magee J (1990) The evolving philosophers problem: dynamic change management. IEEE Trans Softw Eng 16(11):1293–1306Lakshman A, Malik P (2010) Cassandra: a decentralized structured storage system. Oper Syst Rev 44(2):35–40Lang W, Shankar S, Patel JM, Kalhan A (2014) Towards multi-tenant performance SLOs. IEEE Trans Knowl Data Eng 26(6):1447–1463Langner F, Andrzejak A (2013) Detecting software aging in a cloud computing framework by comparing development versions. In: IFIP/IEEE International Symposium on Integrated Network Management (IM), Ghent, Belgium, pp 896–899Lazowska ED, Zahorjan J, Graham GS, Sevcik KC (1984) Quantitative system performance. Computer system analysis using queueing network models. Prentice Hall, Upper Saddle RiverLeitner P, Michlmayr A, Rosenberg F, Dustdar S (2010) Monitoring, prediction and prevention of SLA violations in composite services. In: IEEE International Conference on Web Services (ICWS), Florida, USA, Miami, pp 369–376Li W (2011) Evaluating the impacts of dynamic reconfiguration on the QoS of running systems. J Syst Softw 84(12):2123–2138Lim HC, Babu S, Chase JS, Parekh SS (2009) Automated control in cloud computing: challenges and opportunities. In: 1st ACM Workshop Automated Control Datacenters Clouds (ACDC), Barcelona, Spain, pp 13–18Liu J, Zhou J, Buyya R (2015) Software rejuvenation based fault tolerance scheme for cloud applications. In: 8th IEEE International Conference on Cloud Computing (CLOUD), New York City, NY, USA, pp 1115–1118Lorido-Botran T, Miguel-Alonso J, Lozano JA (2014) A review of auto-scaling techniques for elastic applications in cloud environments. J Grid Comput 12(4):559–592Massie M, Li B, Nicholes B, Vuksan V, Alexander R, Buchbinder J, Costa F, Dean A, Josephsen D, Phaal P, Pocock D (2012) Monitoring with Ganglia. O’Reilly Media, Tracking Dynamic Host and Application Metrics at Scale. ISBN 978-1-4493-2970-9Matias R Jr, Andrzejak A, Machida F, Elias D, Trivedi KS (2014) A systematic differential analysis for fast and robust detection of software aging. In: 33rd IEEE Symposium on Reliable Distributed Systems (SRDS). Nara, Japan, pp 311–320Medina V, García JM (2014) A survey of migration mechanisms of virtual machines. ACM Comput Surv 46(3):30Mell P, Grance T (2011) The NIST definition of cloud computing. Recommendations of the National Institute of Standards and Technology, Special Publication 800-145Menascé DA, Bennani MN (2006) Autonomic virtualized environments. In: International Conference on Autonomic and Autonomous Systems (ICAS), Silicon Valley, California, USA, p 28Menascé DA, Ngo P (2009) Understanding cloud computing: Experimentation and capacity planning. In: 35th International Computer Measurement Group Conference, Dallas, TX, USAMenascé DA, Ruan H, Gomaa H (2007) QoS management in service-oriented architectures. Perform Eval 64(7–8):646–663Miedes E, Muñoz-Escoí FD (2010) Dynamic switching of total-order broadcast protocols. In: International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA), Las Vegas, Nevada, USA, pp 457–463Mohamed M (2014) Generic monitoring and reconfiguration for service-based applications in the cloud. PhD thesis, Université d’Evry-Val d’Essonne, FranceMohamed M, Amziani M, Belaïd D, Tata S, Melliti T (2015) An autonomic approach to manage elasticity of business processes in the cloud. Future Gener Comp Sys 50(C):49–61Mohd Yusoh ZI (2013) Composite SaaS resource management in cloud computing using evolutionary computation. PhD thesis, Sc Eng Faculty, Queensland University of Technology, Brisbane, AustraliaMontero RS, Moreno-Vozmediano R, Llorente IM (2011) An elasticity model for high throughput computing clusters. J Parallel Distrib Comput 71(6):750–757Morabito R, Kjällman J, Komu M (2015) Hypervisors vs. lightweight virtualization: a performance comparison. In: IEEE International Conference on Cloud Engineering (IC2E), Tempe, AZ, USA, pp 386–393Najjar A, Serpaggi X, Gravier C, Boissier O (2014) Survey of elasticity management solutions in cloud computing. In: Mahmood Z (ed) Continued rise of the cloud: advances and trends in cloud computing. Springer, Berlin, pp 235–263Naskos A, Gounaris A, Sioutas S (2015) Cloud elasticity: a survey. In: 1st International Workshop on Algorithmic Aspects of Cloud Computing (ALGOCLOUD), Patras, Greece, pp 151–167Neamtiu I, Dumitras T (2011) Cloud software upgrades: challenges and opportunities. In: IEEE International Workshop on the Maintenance and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA), Williamsburg, VA, USA, pp 1–10Neuman BC (1994) Scale in distributed systems. In: Singhal M, Casavant TL (eds) Readings in Distributed computing systems. IEEE-CS Press, Los Alamitos, pp 463–489Padala P, Shin KG, Zhu X, Uysal M, Wang Z, Singhal S, Merchant A, Salem K (2007) Adaptive control of virtualized resources in utility computing environments. In: EuroSys Conference Lisbon, Portugal, pp 289–302Parnas DL (1994) Software aging. In: 6th International Conference on Software Engineering (ICSE), Sorrento, Italy, pp 279–287Parzen E (1960) A survey on time series analysis. Tech. rep., n. 37, Applied Mathematics and Statistics Laboratory, Stanford University, Stanford, CA, USAPascual-Miret L, González de Mendívil JR, Bernabéu-Aubán JM, Muñoz-Escoí FD (2015) Widening CAP consistency. Tech. rep., IUMTI-SIDI-2015/003, Univ. Politècnica de València, Valencia, SpainPopek GJ, Goldberg RP (1974) Formal requirements for virtualizable third generation architectures. Commun ACM 17(7):412–421Potter S, Nieh J (2005) AutoPod: Unscheduled system updates with zero data loss. In: 2nd International Conference on Autonomic Computing (ICAC), Seattle, WA, USA, pp 367–368Rajagopalan S (2014) System support for elasticity and high availability. PhD thesis, The University of British Columbia, Vancouver, CanadaReinecke P, Wolter K, van Moorsel APA (2010) Evaluating the adaptivity of computing systems. Perform Eval 67(8):676–693Rolia JA, Sevcik KC (1995) The method of layers. IEEE Trans Softw Eng 21(8):689–700Roy N, Dubey A, Gokhale AS (2011) Efficient autoscaling in the cloud using predictive models for workload forecasting. In: 4th IEEE International Conference on Cloud Computing (CLOUD), Washington, DC, USA, pp 500–507Ruiz-Fuertes MI, Muñoz-Escoí FD (2009) Performance evaluation of a metaprotocol for database replication adaptability. In: 28th IEEE Symposium on Reliable Distributed Systems (SRDS), Niagara Falls, New York, USA, pp 32–38Saito Y, Shapiro M (2005) Optimistic replication. ACM Comput Surv 37(1):42–81Seifzadeh H, Abolhassani H, Moshkenani MS (2013) A survey of dynamic software updating. J Softw Evol Process 25(5):535–568Sharma U, Shenoy PJ, Sahu S, Shaikh A (2011) A cost-aware elasticity provisioning system for the cloud. In: International Conference on Distributed Computing Systems (ICDCS), Minneapolis, Minnesota, USA, pp 559–570Shen M, Kshemkalyani AD, Hsu TY (2015) Causal consistency for geo-replicated cloud storage under partial replication. In: International Parallel and Distributed Processing Symposium (IPDPS) Workshop, Hyderabad, India, pp 509–518Shen Z, Subbiah S, Gu X, Wilkes J (2011) CloudScale: elastic resource scaling for multi-tenant cloud systems. In: ACM Symposium on Cloud Computing (SOCC), Cascais, Portugal, p 5Simoes R, Kamienski CA (2014) Elasticity management in private and hybrid clouds. In: 7th IEEE International Conference on Cloud Computing (CLOUD), Anchorage, AK, USA, pp 793–800Singh S, Chana I (2015) QoS-aware autonomic resource management in cloud computing: a systematic review. ACM Comput Surv 48(3):42:1–42:46Smith CU (1980) The prediction and evaluation of the performance of software from extended design specifications. PhD thesis, Department of Computer Science, The University of Texas at Austin, USASmith CU, Williams LG (2003) Software performance engineering. In: Lavagno L, Martin G, Selic B (eds) UML for real. Design of embedded real-time systems, chap 16. Springer, Berlin, pp 343–365Solarski M (2004) Dynamic upgrade of distributed software components. PhD thesis, Fakultät IV Elektronik und Informatik, Technischen Universität Berlin, Berlin, GermanySoltesz S, Pötzl H, Fiuczynski ME, Bavier AC, Peterson LL (2007) Container-based operating system virtualization: a scalable, high-performance alternative to hypervisors. In: European Conference, Lisbon, Portugal, pp 275–287Soules CAN, Appavoo J, Hui K, Wisniewski RW, Silva DD, Ganger GR, Krieger O, Stumm M, Auslander MA, Ostrowski M, Rosenburg BS, Xenidis J (2003) System support for online reconfiguration. In: USENIX Annual Technical Conference. San Antonio, Texas, USA, pp 141–154Sridharan S (2012) A performance comparison of hypervisors for cloud computing. Master Thesis (paper 269), School of Computing, University of North Florida, USAStonebraker M (1986) The case for shared nothing. IEEE Database Eng Bull 9(1):4–9Sun D, Guimarans D, Fekete A, Gramoli V, Zhu L (2015) Multi-objective optimisation of rolling upgrade allowing for failures in clouds. In: 34th IEEE Symposium on Reliable Distributed Systems (SRDS). Montreal, QC, Canada, pp 68–73Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. The MIT Press, CambridgeToosi AN, Calheiros RN, Buyya R (2014) Interconnected cloud computing environments: challenges, taxonomy, and survey. ACM Comput Surv 47(1):7:1–7:47Vaquero González LM, Rodero-Merino L, Cáceres J, Lindner MA (2009) A break in the clouds: towards a cloud definition. Comput Commun Rev 39(1):50–55Varrette S, Guzek M, Plugaru V, Besseron X, Bouvry P (2013) HPC performance and energy-efficiency of Xen, KVM and VMware hypervisors. In: 25th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD). Porto de Galinhas, Pernambuco, Brazil, pp 89–96Vasic N, Novakovic DM, Miucin S, Kostic D, Bianchini R (2012) DejaVu: accelerating resource allocation in virtualized environments. In: 17th nternational Conference on Architectural Support for Programing Languages and Operating Systems (ASPLOS), London, UK, pp 423–436Vaughan-Nichols SJ (2006) New approach to virtualization is a lightweight. IEEE Comput 39(11):12–14Vogels W (2009) Eventually consistent. Commun ACM 52(1):40–44Wada H, Suzuki J, Yamano Y, Oba K (2011) Evolutionary deployment optimization for service-oriented clouds. Softw Pract Exp 41(5):469–493Whitaker A, Cox RS, Shaw M, Gribble SD (2005) Rethinking the design of virtual machine monitors. IEEE Comput 38(5):57–62Wishart DMG (1969) A survey of control theory. J R Stat Soc Ser A-G 132(3):293–319Yataghene L, Amziani M, Ioualalen M, Tata S (2014) A queuing model for business processes elasticity evaluation. In: International Workshop on Advanced Information Systems for Enterprises (IWAISE), Tunis, Tunisia, pp 22–28Zawirski M, Preguiça N, Duarte S, Bieniusa A, Balegas V, Shapiro M (2015) Write fast, read in th

    Coupled model transformations for QoS enabled component-based software design

    Get PDF
    This thesis presents the Palladio Component Model and its accompanying transformations for component-based software design with predictable performance attributes. The use of transformations results in a deterministic relationship between the model and its implementation. The introduced Coupled Transformations method uses this relationship to include implementation details into predictions to get better predictions. The approach is validated in several case studies showing the increased accuracy
    corecore