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Abstract

The smart grid, by the integration of advanced control and optimization tech-
nologies, provides the traditional grid with an indisputable opportunity to
deliver and utilize the electricity more efficiently. Building smart grid appli-
cations is a challenging task, which requires a formal modeling, integration,
and validation framework for various smart grid domains. The design flow
of such applications must adapt to the grid requirements and ensure the
security of supply and demand. This dissertation, by proposing a formal
framework for customers and operations domains in the smart grid, aims at
delivering a smooth way for: i) formalizing their interactions and functional-
ities, ii) upgrading their components independently, and iii) evaluating their
performance quantitatively and qualitatively.

The framework follows an event-driven demand response program taking
no historical data and forecasting service into account. A scalable neighbor-
hood of prosumers (inside the customers domain), which are equipped with
smart appliances, photovoltaics, and battery energy storage systems, are con-
sidered. They individually schedule their appliances and sell/purchase their
surplus/demand to/from the grid with the purposes of maximizing their
comfort and profit at each instant of time. To orchestrate such trade rela-
tions, a bilateral multi-issue negotiation approach between a virtual power
plant (on behalf of prosumers) and an aggregator (inside the operations do-
main) in a non-cooperative environment is employed. The aggregator, with
the objectives of maximizing its profit and minimizing the grid purchase,
intends to match prosumers’ supply with demand. As a result, this frame-
work particularly addresses the challenges of: i) scalable and hierarchical
load demand scheduling, and ii) the match between the large penetration of
renewable energy sources being produced and consumed. It is comprised
of two generic multi-objective mixed integer nonlinear programming models
for prosumers and the aggregator. These models support different schedul-
ing mechanisms and electricity consumption threshold policies.

The effectiveness of the framework is evaluated through various case stud-
ies based on economic and environmental assessment metrics. An interactive
web service for the framework has also been developed and demonstrated.
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Resumé

Et smart grid, ved at integrere avancerede styrings- og optimeringsteknolo-
gier, giver det traditionelle net en ubestridelig mulighed for at levere og ud-
nytte el mere effektivt. Opbygning af smart grid applikationer er en udfor-
drende opgave, som kræver et formelt rammeværk for modellering-, integra-
tion og validering af forskellige domæner. Designflowet af sådanne applika-
tioner skal tilpasse sig netkravene og sikre forsynings- og efterspørgselssikker-
heden. Denne afhandling, ved at foreslå et formelt rammeværk for kunde-
og driftdomæner i smart grid, sigter mod at levere en smidig måde at: i)
formalisere deres interaktioner og funktionaliteter, ii) opgradere deres kom-
ponenter uafhængigt og iii) vurdere deres ydelse kvantitativt og kvalitativt.

Rammen følger et event-drevet demand response-program, hvor der ikke
tages hensyn til historiske data og prognoser. Et skalerbart nabolag af (inden
for kundedomænet), der er udstyret med intelligente apparater, solceller og
batteriladere, betragtes. Disse planlægger individuelt deres apparater og sæl-
ger/køber deres overskud/efterspørgsel til/fra nettet med det formål at mak-
simere deres komfort og fortjeneste hvert øjeblik. For at orkestrere sådanne
handelsmuligheder er der brugt en bilateral multilagsforhandlingsstrategi
mellem et virtuelt kraftværk (på vegne af prosumere) og en aggregator (in-
den for driftssdomænet) i et ikke-kooperativt miljø. Aggregatoren, der har til
formål at maksimere sin fortjeneste og minimere køb fra nettet, har til hensigt
at matche prosumers forsyning med efterspørgslen. Som følge heraf behan-
dler dette rammeværk især udfordringerne ved: i) skalerbar og hierarkisk
efterspørgselsplanlægning, og ii) matchet mellem produktion og forbrug fra
den store indtrængning af vedvarende energikilder. Den består af to gener-
iske multi-objectiv mixed integer ikke-lineære programmeringsmodeller til
prosumere og aggregatoren. Disse modeller understøtter forskellige skedu-
leringsmekanismer og politikker for en elforbrugstærskel.

Rammeværkets effektivitet evalueres gennem forskellige casestudier baseret
på økonomiske og miljømæssige metrikker til vurdering. En interaktiv webt-
jeneste for rammeværket er ligeledes udviklet og demonstreret.
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Chapter 1

Introduction

This chapter introduces the reader to the dissertation. This is done by first
motivating the need of investigation in this research field. Afterwards, re-
search hypotheses defined and methods followed during the PhD studies are
introduced. Next section introduces the EU FP7 SEMIAH project followed by
the list of the scientific publications. The chapter is finalized by describing
the reading guidelines and by outlining the structure of the document.

1.1 Research Motivation
In the last two decades, the demand for electricity has risen exponentially,
and it will continue to grow remarkably. In Europe, the electricity demand
in the residential sector is expected to rise on average 56% from its 2000
level until 2050 with an annual growth rate of 1.1% [12]. Advancement in
technologies and new services for the smart grid enable novel solutions for
energy system integration while respecting the stability and security needed
in the context of an increasing share of Renewable Energy Source (RES) in the
electricity grid. European countries are progressing towards the development
of smart grid concepts for the establishment of an efficient market for trading
flexibility in electricity consumption and production [13]. The concept is
based on a wholesale model, which determines the future roles of actors in
the electricity market.

With the advent of smart grids, new solutions are becoming available. Ma-
jor manufacturers have focused on the development of smart appliances, but
their large market uptake is not expected to occur in the short-term. Demand
Response (DR), defined as changes in electricity usage by customers from
their normal consumption patterns in response to price or other signals, in-
tends to improve energy efficiency and reduce peak demand [14]. However,
no automated DR programs have been implemented for European house-
holds despite the fact that households represented approximately 27% of the
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total energy consumption in Europe in 20101 and were responsible for 10%
of the CO2 emissions in 20072. Currently, DR is in its nascent stage in Europe
with the existing programs essentially aimed at large industrial customers,
which are easier to manage as one large client represents hundreds of house-
holds in terms of energy consumption. Until now, DR implementation has
been strongly inhibited by the following barriers:

1. System complexity: The management systems for customers and utili-
ties are proprietary and do not host a platform for 3rd party applications
such as DR. Hence, for the large deployment of smart grids, a single
and robust formal framework for formalizing equipment inside each
household as well as the outside world is required;

2. Lack of an interoperable energy optimization system and aggrega-
tors: Aggregation services are fundamental to efficiently balance sup-
ply and demand, and to ensure that both utility companies as well as
customers derive benefits. In order to support the large implemen-
tation of DR systems, a significant deployment of advanced load de-
mand optimization and control systems, including advanced aggrega-
tion, scheduling, and matching components, is required. The system
infrastructure must be scalable, easily expandable, provide functional-
ities in real-time, adapt to current hierarchy of power grid, integrate
large penetration of RESs, such as Photovoltaics (PVs), and Battery En-
ergy Storage Systems (BESSs) as well;

3. Lack of efficient negotiation models for DR: Currently, clear business
models for DR have not been defined yet, particularly due to a lack of
methodologies for the quantification of costs and benefits for energy
utilities as well as customers. In fact, the amount of flexibility of single
household’s appliances is too small for trading transactions of energy
and ancillary services. Therefore, the suggested aggregation and disag-
gregation of a huge number of devices is crucial and equally important.
Tools to estimate the financial benefits are also needed. Therefore, de-
veloping an approach, which is integrated with the DR, to enable the
negotiation between customers and aggregators [15] within a reason-
able time is inevitable.

1.2 Research Hypotheses
The aforementioned challenges must be overcome to: i) ensure the deploy-
ment of technologies to efficiently and securely manage energy consumption
in households; ii) significantly increase the substitution of conventional gen-
eration (fossil fuels-based) with RESs, and iii) reduce/shift peak loads. This

1Eurostat-Final energy consumption, by sector (see this link for more information)
2European Commission (2010) EU Energy Figures in 2010. CO2 emissions by sector
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1.3. Research Methods

dissertation, therefore, addresses the following research hypotheses:

Hypotheses:

• RH-1: Develop a generic and robust formal framework for smart grid,
to be automatically adaptable to various grid domains, actors, and their
interior entities, based on design principles in software engineering;

• RH-2: Introduce a novel Scalable Aggregation of Load Schedulable
Appliances (SALSA) system, derived from the formal framework, in-
cluding the implementation of: i) a decentralized Energy Management
System (EMS) for prosumers, to individually coordinate and control
their smart appliances, PVs, BESSs, and to trade their heterogeneous
flexibilities in the market through an aggregator; and ii) an efficient
Operating Management System (OMS) for the aggregator to match a
scalable number of prosumers’ demand with their supply in real-time;

• RH-3: Proposing a bilateral multi-issue negotiation approach, to enable
energy trading and matching between prosumers and the aggregator
in a non-cooperative environment, with guaranteed convergence to a
solution without sharing private information.

1.3 Research Methods
The research conducted in this dissertation has been carried out as an engi-
neering PhD study, where a significant amount of work have been performed
in collaboration with the EU FP7 Scalable Energy Management Infrastructure
for Aggregation of Households (SEMIAH) project. The aim of the research
has been to create usable solutions that address specific scopes and needs
(see the next section for more information). The hypotheses of this disserta-
tion have been broken down into several sub-hypotheses, which have been
addressed by two main scientific contribution levels: i) System Level Contri-
butions (SLCs) to enable a formal framework for smart grid application, and
ii) Application Level Contributions (ALCs) to develop a smart grid applica-
tion based on SLCs. The research method includes the following phases, as
Fig. 1.1 shows its design model:

1. Problem identification: This phase includes identification and formula-
tion of a research gap under a particular area of study. The research area
is typically triggered by a challenge identified in the SEMIAH project.

2. Background research: This phase carries out a literature survey on how
other researchers have tried to solve similar problems.

3. Sub-hypothesis construction: This phase builds a comprehensive and
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yet simple sub-hypothesis on how the identified problem can poten-
tially be solved. It specifies solution design goals and appropriate ap-
proaches to solve the problem. Existing state of the art technologies in
the area of study are examined and potential enhancements are inves-
tigated.

4. Implementation: This phase materializes the sub-hypothesis through
different means, such as simulations, co-simulations, discussions, etc.
The implementation also makes a system level verification and valida-
tion possible. For instance, without implementation it would be hard
to quantify the performance of e.g, different scheduling mechanisms.

5. Evaluation: This phase evaluates the results obtained from the imple-
mentations done against the constructed sub-hypothesis.

6. Dissemination: This phases, by publishing the findings, aims at shar-
ing the results with the scientific community.

It should be noted that the method followed has not been sequential, but
rather recursive: the completion of one phase may lead to go to a prior phase
(e.g., literature survey may lead to identification of new problems).

Problem 
identification

Background 
research

Sub-hypothesis
construction

Dissemination Evaluation Implementation

Fig. 1.1: Design model of the used research method.

1.4 The SEMIAH Project
The consortium behind SEMIAH project is interested in pursuing a major
technological and scientific breakthrough by developing a novel Information
and Communication Technology (ICT) infrastructure for the implementation
of DR programs in households [3]. The SEMIAH infrastructure enables the
shifting of energy consumption of high energy-consuming loads to off-peak
periods with high generation of electricity from RESs. The SEMIAH consor-
tium will develop a novel solution for households, where the central aggre-
gator system will simultaneously optimize and manage a large number of
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electricity consumption loads according to the generation of electricity from
RES (bulk or Distributed Energy Resources (DERs)). This will imply a step-
change innovation in the field where there are currently no similar solutions.
To validate this new infrastructure and for assessing the potential impacts, a
large-scale simulation of up to 200.000 households will be performed. The
SEMIAH concept will enable aggregation of all households connected to the
system and will act through direct load control to remotely shift or curtail
electrical loads in a secure manner taking the privacy and flexibility of cus-
tomers into account. Until now, implementation of DR has been strongly in-
hibited by the following barriers: System Cost and Complexity, Lack of ICT
infrastructure and aggregators, Lack of clear business models for DR systems.
These challenges must be overcome to ensure the deployment of technologies
to efficiently and securely manage energy consumption in households so as
to significantly increase the substitution of conventional generation (fossil
fuels-based) with RES and in order to reduce/shift peak loads.

The flexibility concept of SEMIAH aligns with the European mandate
M/490 [16]: "The flexibility [offering] concept assumes that parties connected
to the grid produce offerings of flexibility in load and (distributed) genera-
tion. Thereby, so-called flex-offers are issued indicating these power profile
flexibilities, e.g., shifting in time or changing the energy amount. In the
flex-offer approach, consumers and producers directly specify their demand
and supply power profile flexibility in a fine-grained manner (household and
SME level)." In SEMIAH, flexibility from home appliances are aggregated
in a coherent way to produce flex-offers that can be traded in the electricity
markets. The back-end infrastructure is built on a central server that registers
and manages the flexible electricity consumptions offered by the customers
at the front-end. It provides an interface towards the front-end and is the
engine of the system operations. Customers register electrical loads which
are subjected to load control. Load planning and scheduling are based on the
aggregation of electrical loads of customers in "DR ready" mode. When the
customer chooses to operate an appliance in "DR ready" mode the customer
is offering flexibility to the grid and allowing the SEMIAH Back-end system
to take control of the appliance, e.g., decide when to run the appliance. Re-
strictions from Distribution System Operator (DSO) grid management and
market energy prices are also taken into account. Since customers can decide
to shift between modes in real time, the optimization should also occur con-
tinuously. This leads to a rather complex optimization problem that has to
satisfy both the flexibility constraints of the customer as well as the needs or
offers of the DSO and which also has to be solved in real time. For further
investigations, the readers are referred to [1].

Fig. 1.2 demonstrates the SEMIAH technical architecture, which is char-
acterized by two back-end and front-end systems. This PhD project has
contributed to "SEMIAH Intelligence" and "DSO Grid Constraints" parts as
components of the back-end system [3]. The SEMIAH Intelligence aims at
scheduling the load requests received from the Home Energy Management
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Gateways (HEMGs) subject to grid constraints imposed by the DSO. It finally
forwards the scheduling decisions to the Generic Virtual Power Plant (GVPP).
This dissertation has contributed to the SEMIAH intelligence and DSO grid
constraints parts, which are reflected in various project deliverables.123

Fig. 1.2: SEMIAH technical architecture.

1.5 Scientific Publications
The research done during the three-year PhD study has led to nine pub-
lications: one journal article, seven peer-reviewed conference papers, and
one technical report. At the time of writing this dissertation, one journal
manuscript is under review. Furthermore, two journal and one conference
manuscripts are under preparation.

1.5.1 Published
[1] Armin Ghasem Azar, Rune Hylsberg Jacobsen, and Qi Zhang, "Aggre-

gated Load Scheduling for Residential Multi-Class Appliances: Peak
Demand Reduction," In IEEE International Conference on the European En-
ergy Market (EEM), 2015, pages 1-6, doi: 10.1109/EEM.2015.7216702

1D4.3: Demand response prototypes (not public)
2D5.1: Algorithms for demand response and load control (link to the deliverable)
3D5.4: Back-end system release (not public)
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[2] Rune Hylsberg Jacobsen, Armin Ghasem Azar, Qi Zhang, and Emad
Samuel Malki Ebeid, "Home Appliance Load Scheduling With SEMIAH,"
In Fourth International Conference on Smart Systems, Devices, and Technolo-
gies (SMART), 2015, pages 1-2, Link to paper

[3] Rune Hylsberg Jacobsen, Dominique Gabioud, Gillian Basso, Pierre-
Jean Alet, Armin Ghasem Azar, and Emad Samuel Malki Ebeid, "SEMIAH:
An Aggregator Framework for European Demand Response Programs,"
In IEEE Euromicro Conference on Digital System Design (DSD), 2015, pages
470-477, doi: 10.1109/DSD.2015.96

[4] Armin Ghasem Azar, "Demand Response Driven Load Scheduling in
Formal Smart Grid Framework," Technical Report Electronics and Com-
puter Engineering, Aarhus University, vol. 4, no 24, 2016, pages 1-35,
ISSN: 2245-2087, Link to report

[5] Armin Ghasem Azar and Rune Hylsberg Jacobsen, "Appliance Schedul-
ing Optimization for Demand Response," International Journal on Ad-
vances in Intelligent Systems, vol. 2, no 1&2, 2016, pages 50-64, Link to
paper

[6] Rune Hylsberg Jacobsen, Armin Ghasem Azar, and Emad Samuel Malki
Ebeid, "Design of an Event-Driven Residential Demand Response In-
frastructure," In IEEE Euromicro Conference on Digital System Design (DSD),
2016, pages 38-45, doi: 10.1109/DSD.2016.105

[7] Armin Ghasem Azar, Emad Samuel Malki Ebeid, and Rune Hylsberg
Jacobsen, "A Formal Framework for Modeling Smart Grid Applications:
Demand Response Case Study," In IEEE Euromicro Conference on Digital
System Design (DSD), 2016, pages 46-54, doi: 10.1109/DSD.2016.61

[8] Armin Ghasem Azar and Rune Hylsberg Jacobsen, "Agent-Based Charg-
ing Scheduling of Electric Vehicles," In IEEE Online Conference on Green
Communications (OnlineGreenComm), 2016, pages 64-69, doi: 10.1109/On-
lineGreenCom.2016.7805408

1.5.2 Under Review
[9] Armin Ghasem Azar, Hamidreza Nazaripouya, Behnam Khaki, Chi-

Cheng Chu, Rajit Gadh, and Rune Hylsberg Jacobsen, "A Non-Cooperative
Framework for Coordinating a Neighborhood of Distributed Prosumers,"
Submitted to IEEE Transactions on Smart Grid, 2017

1.5.3 In Preparation
• Armin Ghasem Azar and Rune Hylsberg Jacobsen, “SALSA: A Formal

Hierarchical Optimization Framework for Smart Grid"
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• Rune Hylsberg Jacobsen and Armin Ghasem Azar, “SEMIAH: Scalable
Energy Management Infrastructure for Aggregation of Households"

• Aisha Umair and Armin Ghasem Azar, “An Agent-Based Coordination
Approach for Large-Scale Demand Response Optimization"

1.6 Document Structure
This dissertation has two parts. Part I contains main contributions. Part II
consists of a chapter for each scientific publication.

Part I is divided into eight chapters. Each chapter in Part I starts with
a paragraph describing the content. This document should be read sequen-
tially as the comprehension of each chapter depends on the previous ones.
Reading these chapters, the scientific contributions1 of the dissertation are
described in a rectangular box as follows:

Contribution XXX-#. This is a contribution.

To ease the traceability, each contribution is know with "three letters" (ab-
breviation for the contribution level) followed by a number. One contribution
can be related to one or several publications. Overview of contributions and
their connections are provided in Chapter 8. This dissertation makes various
contributions to smart grid through SLCs and ALCs. The former targets re-
search hypothesis RH-1 while the latter addresses research hypotheses RH-2
and RH-3.

Chapter 1 introduces the reader to the dissertation. Chapter 2 provides
the common background information required for the comprehension of the
remaining of the document. All scientific contributions and discussions of
this dissertation are provided in Chapters 3-7. Chapter 3 describes a high-
level view of the proposed formal framework. Chapter 4 details all optimiza-
tion models and algorithms incorporated in the proposed SALSA system.
Chapter 5, using the optimization models proposed in the previous chap-
ter, defines the agent-based negotiation approach. Chapter 6 describes the
simulation setup and results. Chapter 7 presents the interactive web service
developed for the SALSA. Finally, Chapter 8 concludes the dissertation and
provides future work.

Part II is also divided into eight different chapters each of them contain-
ing the details of each publication. Full articles have been included when
re-print copyrights have been obtained. In each chapter, there is a brief de-
scription of the current state of the publication (published or under review),
a full citation and also a statement of the contribution of each co-author. The
authors’ contribution describes the work that each individual has done in
each manuscript.

1A contribution is seen as an achievement presented to the scientific community.
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Chapter 2

Background

This chapter, with respect to research hypotheses defined in Section 1.2, cat-
egorizes the state of the art into three sections followed by positioning the
contributions of this PhD dissertation accordingly.

2.1 Formalization of Smart Grid
In recent years, there has been an increasing interest in investigating concerns
about the inefficient structure of the current electrical grid for responding the
growing electricity demand [17,18]. Farhangi [17] examined different impacts
of transforming the current electrical grid to a complex system of systems
named the smart grid. Fang et al. [18] discussed that engaging ICT with the
smart grid could play a major role in enabling technologies for smart grid
data communications.

To handle these data communications, Godfrey et al. [19] presented a co-
simulation framework to model both the communication network and the
power system. They employed a baseline scenario and demonstrated the
responses to power fluctuations subject to considering any communication
efficiency (e.g., Quality of Service (QoS)). Afterwards, Schutte et al. [20] de-
livered the Mosaik framework for a co-simulation of various scenario descrip-
tions, grid topology, and control strategies using their semantic information.
The framework lacks precise details in the model description since it has just
considered a single naive life entity while current electrical infrastructure in-
cludes different varieties of entities such as cables, step-down transformers,
etc. Finally, Montenegro et al. [21] presented an Open Distribution System
Simulator (OpenDSS) for the smart grid. It is a simulation tool for the electri-
cal power system principally for the electricity distribution grid. However, it
failed in calculating mathematical models to develop a real-time simulation
for available devices in the power grid and for showing their real behavior
and communications.
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Chapter 2. Background

Before the smart grid becomes fully operational in managing the electric-
ity operations in a sustainable and reliable manner, it requires technological
advancements in a number of interdisciplinary perspectives. National Insti-
tute of Standards and Technology (NIST), by identifying main smart grid do-
mains, has developed a smart grid conceptual model describing their stake-
holders and feasible communication paths. Domains are customers, markets,
service providers, operations, bulk generation, transmission, and distribu-
tion [15]. Standardizing and formalizing a smart grid that has to meet deci-
sive requirements of its domains, is a challenging procedure, especially when
engineering approaches are concerned. To easily identify such requirements,
International Electrotechnical Commission (IEC) has proposed reliable and
reproducible standards. In the same context, Universal Smart Energy Frame-
work (USEF) has recently delivered a common standard clearly specifying
interactions and roles of the aforementioned domains [11].

The model-based design of the smart grid as a robust formal framework is
currently limited and not well supported. Andrén et al. [22] also recognized
this issue and proposed a semantically-driven design method using Common
Information Model (CIM) for transmission (IEC 61970-301) and distribution
(IEC 61968-11). These standards have been highly promoted for modeling
grid issues and the corresponding device/component communications. Ad-
ditionally, since the smart grid requires a specific standard for communi-
cation networks and power utility automation systems, IEC 61850 has been
launched in the course of an object-oriented information model. Nonetheless,
an ICT-driven formal framework is needed to overcome the major shortcom-
ing of the standards above, i.e., a limited number of covered domains beside
discarding grid physics, communication and control issues.

Smart Grid Architecture Model (SGAM) intended to present the design
of smart grid use cases in an architectural way [23]. To handle the model, it
introduced five interoperability layers allowing the representation of entities
and their relationships in the context of smart grid domains. This disserta-
tion, to build a more generic profile, maps the component, information, and
communication layers into hardware, software, and network aspects of the frame-
work, respectively. Although SGAM provides the structural design of the
smart grid applications in a high-level approach, however, it lacks the behav-
ioral part describing feasible actions and behaviors of each actor.

Unified Modeling Language (UML) is widely applied to software mod-
eling and the demonstration of its specifications based on hardware/soft-
ware/network co-designs [24–26]. De Miguel et al. [24] introduced UML ex-
tensions for the representation of temporal requirements and resource usage
of real-time systems. Their tools generated a model for the OPNET simulator.
Hennig et al. [25] described a UML-based simulation framework for perfor-
mance assessment of hardware/software systems described as sequence dia-
grams. The proposed simulator was based on the discrete event simulation
package OMNet++.
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2.2. Energy Management Systems and Scheduling Approaches

2.2 Energy Management Systems and Schedul-
ing Approaches

Recently, there has been an increasing amount of literature on incentivizing
consumers to shift their electricity consumption by varying the electricity
prices [27, 28]. Sou et al. [27] investigated the minimization of electricity bills
combined with enforcing uninterruptible and sequential operation model
constraints. Nonetheless, the utilized mixed integer linear programming ap-
proach to solve the scheduling problem is not scalable and the appliance
classification is limited to the interruptibility feature. In addition, [28] has
proposed an electricity load scheduling algorithm that controls the operation
time and energy consumption of appliances based on adapting time-of-use
pricing to minimize the total electricity bill. A serious weakness with this
argument, however, is that the authors have used solely one smart house as
the test-bed.

On the other hand, a solution to the problem of optimally scheduling a set
of residential appliances under the day-ahead variable peak pricing scheme
has been studied in [29]. Here, the objectives are minimizing the electricity
bills and spreading the electricity usage out in each time interval simultane-
ously. On the contrary, they have considered a limited number of appliances.
Finally, the focus in [30] is on applying the priority-based appliance method-
ology to quantify preferences of consumers for using appliances during peak
times based on the Knapsack problem approach. Nonetheless, in the pro-
posed mechanism, there is no consumption constraint to prevent consumers
from exceeding it.

Electrical grids increasingly depend on RES production that is weather-
dependent, often fluctuating and difficult (or impossible) to plan and con-
trol. To smoothen RES production, the use of physical storage (e.g., batteries
and electrical vehicles) and virtual storage (e.g., DR systems) are currently
being considered [31, 32]. As significant energy amounts are involved and
substantial flexibility (elasticity) is available to operate the devices within
the allowed bounds, and due to their broad availability, storage loads are
of great value [33] for different smart-grid applications, e.g., demand and
supply balancing [34], grid congestion problem solving [35], and electricity
market trading [36]. However, large storage systems are still considered to
be very costly and DR has been considered to a feasible way to provide a
cost-effect virtual storage.

Today, most commercial DR services in Europe are leveraged by large
consumers that e.g., find flexibility potentials in their production processes.
More recently, attention has shifted towards smaller consumers such as resi-
dential households. Consumers may be engaged in event-driven (also known
as incentive-based) DR programs [37]. In these programs, home appliances
can be invoked in response to a variety of trigger conditions, including envi-
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ronmental parameters (e.g., temperature); local or regional grid congestion;
economics; or operational reliability requirements. For DR programs that
foster an improved integration of renewable energy, aggregators can shift
consumption to periods with lower CO2 intensity or electricity prices.

Vardakas et al. [32] presented a survey on different DR schemes and pro-
grams according to their control mechanism, offered motivations, and de-
cision variable. The authors reviewed various optimization algorithms for
optimal operation of the smart grid. Di Giogio and Pimpinella [38] presented
the design of a smart home controller strategy providing efficient manage-
ment of electric energy in a domestic environment. Their work, to imple-
ment a pervasive control platform, provided an integration between ICT and
automation, which allowed consumers to automatically fulfill the terms of
previously subscribed contracts, while assuring cost-effective use of energy.
The deployed controller is event-driven by reacting to events from the envi-
ronment such as requests from the consumer for the execution of loads and
signals from a demand-side control.

Early forms of event-driven DR include the old-fashioned ripple control
acting as an emergency reserve [14]. Ripple control aims at protecting power
systems in the emergency conditions caused by critical contingencies. Wang
et al. [39] proposed an event-driven emergency DR scheme to improve the
stability of the power system from experiencing voltage collapse. The pro-
posed scheme was able to provide key setting parameters such as the amount
of demand reductions at various locations to prepare the DR infrastructure
and hereby act as a balancing asset for the grid in case of emergency.

Residential appliance load scheduling, to reduce the electricity bills fol-
lowing price fluctuations, has been explored by a number of researchers [40–
42]. A central energy management system, with the aim of minimizing the
grid purchase, is proposed in [40] and [41], where it controls households’
appliances based on their reputations in storing their surplus PV generation
in a shared BESS. A distributed version of such system is proposed in [42],
where under a dynamic pricing system, a coordination strategy fairly con-
trols the operation of appliances while respecting the transformer capacity
limits. Even though these models incentivize the households to modify their
consumption pattern to achieve lower electricity bills, they fail to study the
impact of the high penetration of households, with different ownership levels
of shiftable appliances and various flexibility types, on households’ economic
as well as on the distribution grid.

Coordinated charging scheduling of Electric Vehicles (EVs) is also a chal-
lenging problem, in which Mukherjee et al. [43] have reviewed the recent
contributions. They argued that considering only grid-to-EV power flows
could be a logical first step toward challenging more complex bidirectional
models. Rassaei et al. [44] studied the impact of a game-based DR framework
on shaping the aggregated charging profiles taking uncertain arrival times
into account. Although the work succeeded to minimize the peak, however,
the consumers’ comfort level was not considered. Mohsenian-Rad et al. [45]
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proved that the dependability of optimizing the charging scheduling of EVs
on the uncertain departure times is undeniable. They developed a closed-
form solution to this problem with respect to time-of-use electricity prices.

However, a majority of current unidirectional model-driven works made
centralized decisions for coordinating a high penetration of EVs, which, due
to the large number of decision-making processes and communications, were
computationally intractable to handle. Xu et al. [46] framed a distributed con-
cept into a hierarchical framework for coordinated charging of EVs. He et al. [47]
proposed a centralized charging scheduling framework for charging and dis-
charging of EVs, in which consumers could use it to minimize their energy
cost. Deilami et al. [48] proposed a charging load scheduling algorithm for
residential EVs using the amount of energy purchased in the day-ahead mar-
ket based on forecasting methods.

Veit et al. [49] provided a Multi-Agent System (MAS)-based framework to
the DR scheduling problem in response to the real-time supply. They for-
mulated the constraints of individual scheduable electrical devices under the
agent’s control. Hu et al. [50] proposed an agent-based centralized concept
for scheduling EVs including different layered agent types. Unda et al. [51]
also presented an agent-based method for managing the battery charging
problem of EVs in power distribution network according to electricity prices
and grid stability constraints.

2.3 Negotiation Approaches
Presently, most trading of flexibility takes place bilaterally between com-
panies that can interrupt their power consumption for some periods, and
power grid system operators, possibly through an electricity trading com-
pany. Rather than investing in grid expansions, the system operators in some
countries can pay, through market agreements, large electricity users to re-
duce the consumption in concerned hours so that the congestion in the grid
is avoided. To realize the potential of providing flexibility, aggregators are re-
quested to pool offers of reduced and shifted electricity demands into aggre-
gated offers to the electricity market or to system operators [52]. Upon mar-
ket acceptance, the aggregators actuate the flexible consumption according
to a defined schedule by shifting electricity demand to meet the contractual
obligations of the offer. Concurrent bilateral negotiations at each instant of
time in a non-cooperative environment enable the power exchange between
prosumers and the aggregator. The amount of power that each prosumer
intends to trade changes during the negotiation. There is a risk that such
fluctuations leads to an infeasible matching solution [53]. Furthermore, ne-
gotiating with increasing number of prosumers to reach an overall agreement
in a reasonable time is computationally expensive.

A very comprehensive review of scheduling problems of distributed en-
ergy resources, such as PVs, from various aspects is done in [53], where the
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authors propose considering microgrids and Virtual Power Plants (VPPs) as
two suitable potential solutions. Limited research has been conducted on de-
veloping a scalable real-time framework for coordinating scheduling, sharing,
and matching tasks engaged with a non-cooperative negotiation approach re-
specting negotiators’ private information [54–66].

In [54], a day-ahead demand-side management mechanism for prosumers
formulated as a non-cooperative game with a single objective of reducing
monetary expenses is proposed. It preserves prosumers’ privacy, limited
communication with the central unit is needed, and the peak is reduced by
12.6%. However, prosumers’ load demand scenarios should be known in ad-
vance and cannot change during the process. They should also commit to
follow strictly the resulting consumption pattern. In [55] and [56], a lead-
acid BESS coupled with PV is modeled through a home energy management
system. To quantify the self-consumption and self-sufficiency of the model,
load demands are satisfied first by the PV, then by the energy stored in the
BESS, and finally by the grid. The main challenge with this single-objective
system is that they simply consider the excess energy is injected to the grid
with a fixed rate without any negotiation. The challenges of rapid residential
PV installations in the recent years is discussed in [57], where the authors, to
overcome the difficulty in balancing supply and demand, propose three inde-
pendent centralized, decentralized, and distributed approaches using small-
scale distributed BESSs based on model predictive control methodologies.

In [58], given a real-time pricing scheme, a simple model for buildings
with the basic components of a generator, a BESS, and loads is proposed
allowing two-way energy trading via a broker based on differential game
theory. The convergence condition and time, however, are only character-
ized based on a limited number of buildings. A distributed power sharing
framework formulated as a repeated game between households in a micro-
grid is proposed in [59], where each household decides on amount of power
to trade with the grid. Households, by taking advantage of the variability
in their load consumption patterns, achieve cost savings up to 20%. How-
ever, they require to have a list of preferences of households, with which
they individually prefer to negotiate. A submission-based double auction
mechanism with linear functions for a set of prosumers, possessing PVs and
BESSs, is proposed in [60], where the mechanism is able to achieve an exact
demand supply balance in a day-ahead power market subject to having a full
information of consumption and generation profiles.

In [61], a set of computationally expensive off-line and on-line algorithms
for the real-time cooperative energy management of only two microgrids are
presented. These algorithms, however, assume that the renewable energy
generation offset, by the aggregated load of individual microgrids, is known
ahead of time. A similar double cooperative game to minimize the overall
costs of both the utility companies and the residential prosumers is formu-
lated in [62]. In [63], the authors develop a strategy including a heuristic
algorithm for optimizing decentralized energy exchange depending on pro-
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sumers’ involvement and physical constraints of distribution networks, in
which prosumers’ cost is averagely reduced by 66% and the proportion of
energy self-satisfaction reaches 98%.

In [64], a peer-to-peer energy sharing model with price-based demand
response for prosumer including PVs are introduced. Although an energy
sharing provider is defined to coordinate the power exchanges, however, no
method for ensuring the match between demand and supply is proposed.
Furthermore, peak demand reduction before and after using the proposed
model is only 2% while the computation time of the simulation is very high,
e.g., around 175 seconds for 25 prosumers. A similar work is also studied
in [65]. Recently, the authors in [66] propose a multi-agent system to col-
lectively optimize the energy flows of a neighborhood of prosumers with
private objective functions, which bilaterally negotiate with an aggregator
only to reduce their purchasing cost.

2.4 Contributions of the PhD Dissertation
This dissertation, to account for the gaps identified in [14,27–34,36–49,51–66],
makes the following key contributions:

• Far too little attention has been paid by smart grid application designers
to build a formal framework based on mentioned standards concerning
the scalability, interoperability, and updatability of domains. This dis-
sertation, to model smart grid applications, at the first stage, puts some
efforts into proposing a practical and robust formal framework. The
framework formally describes each domain and its actors on the ba-
sis of "separation of concerns" design principle. Such descriptions can
be trajected into formal models using UML techniques. These mod-
els can finally be converted into executable models, i.e., by following
the Model-to-Text transformation approach, such as Python or Matlab
code.

• As the second stage, this dissertation proposes the SALSA system de-
rived from the smart grid formal framework proposed in the first stage.
Fig. 2.1 shows a high-level view of its architecture. For the sake of
simplicity, the SALSA only relies on the interconnectivity of customers
and operations domains in the smart grid. It should be noted that the
SALSA system is open to be expanded with other domains. The former
domain enables electricity customers to manage their consumption be-
haviors while the latter domain supports grid operators to continuously
perform ongoing grid stabilization functions. SALSA defines a smart
grid, which is composed of a neighborhood of distributed prosumers
communicating with an aggregator [53]. Each prosumer includes a set
of smart appliances, a PV, a BESS, and has private consumption, gen-
eration, and storage flexibilities. To manage the resources within each
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prosumers following their subjective views on their available flexibili-
ties and the electricity prices adjusted by the market, SALSA develops
a Multi-Objective Mixed Integer Nonlinear Programming (MO-MINLP)
model [5] and solves it with the Non-dominated Sorting Genetic Algorithm-
III (NSGA-III) [67]. The model confronts the prosumers’ conflicting ob-
jectives of "maximizing the comfort level and profit" at the same time,
where they make decisions on offer packages declaring the amount of
"power" to sell/buy and "price" to trade it. To prevent any imbalance
between generation and demand in the grid, SALSA considers the ag-
gregator, which, by using a similar MO-MINLP model approached by
the NSGA-III, matches surplus power with demand. It receives "de-
mand with buying price" and "surplus with selling price" offer packages
from prosumers and intends to "maximize its profit" and "minimize the
grid purchase" simultaneously.

• This dissertation, at the third stage, incorporates a bilateral multi-issue
negotiation approach in the SALSA system and defines a VPP, which
on behalf of prosumers, negotiates with the aggregator on aggregated
power and price offer packages with no private information shared
between them [68]. The negotiation approach assumes that the VPP
and the aggregator (negotiators) have private nonlinear utility functions
and start the negotiation with an offer package providing the highest
possible utility value. Each offer package is quantified based on satis-
faction index, a novel evaluation metric to determine to which extend
the offer package is able to optimize the relevant objectives. To guar-
antee the convergence within a reasonable time, the approach follows
an alternating-offer production protocol and a utility value concession
strategy. Negotiators continuously concede to their pre-defined reser-
vation utility values (linked to their worst but feasible offer packages).
That is, they neither propose nor accept any offer package with utility
value lower than their reservation utility values.

Prosumer ��

Prosumer ��

Prosumer ��

…
…

VPP Aggregator
Negotiation

Grid

Power Exchange (Matching)

MO-MINLP
(by NSGA-III)

Electricity
Prices

Scheduling and Sharing Power

Logical

Internet

Fig. 2.1: System model of the SALSA [9].
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Chapter 3

Formal Smart Grid
Framework

Building multidisciplinary and interoperable smart grid applications requires
an efficient way to model, integrate, and validate different grid aspects and
components. To effectively design a formal and practical framework for the
smart grid: i) its infrastructure must be scalable and specified together with
its constituents; ii) its main model must be interoperable and supportive to
the grid’s future expansions; iii) its design must consider the grid’s topology
and its hardware/software/network aspects; and iv) its updating process
must perform independently of the grid’s aspects. This chapter proposes a
formal framework to model smart grid applications, as Fig. 3.1 presents its
top-down design methodology. This strategy helps the framework build reli-
able and self-healing smart grid applications. Moreover, it is entirely adapt-
able to various domains, their actors, and interior entities. The content of this
chapter originates and adapts from the following publication:

[7] Armin Ghasem Azar, Emad Samuel Malki Ebeid, and Rune Hylsberg
Jacobsen, "A Formal Framework for Modeling Smart Grid Applications:
Demand Response Case Study," In IEEE Euromicro Conference on Digital
System Design (DSD), 2016, pages 46-54, doi: 10.1109/DSD.2016.61

3.1 Aspects and Modeling
The framework is established according to the "separation of concerns" de-
sign principle [69]. This principle allows the re-usability, development, and
upgrading of the framework’s components independently. Therefore, the
framework orchestrates the smart grid system with respect to three most im-
portant aspects; i.e., hardware, software, and network.
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Fig. 3.1: Top-down design methodology of the proposed framework [7].

3.1.1 Aspects
Fig. 3.2 demonstrates an overview of the framework presenting these aspects.
For instance, a gateway inside the territory of a customer is a hardware in-
cluding a software, which communicates with other devices, such as an EV,
and other domains, such as a DSO, through the network aspect. The frame-
work is formalized using grid component definitions followed in architec-
tural guidelines of the future smart grid such as IEC standards [22, 70] and
SGAM [23]. They organize how application characteristics exchange data
model specifications among described aspects. The following parts explain
how these aspects are formalized.

3.1.1.1 Hardware Aspect
The smart grid comprises different hardware devices employed in various do-
mains. Devices can be digital, analog, or heterogeneous with discrete or con-
tinuous behavior. They are characterized based on different structures and
responsibilities. The hardware aspect defines the physical model of these
devices. To understand the general constituents of a device helps the for-
mal framework allocate appropriate responsibilities to each different device
from both computational and communicational points of view. For instance,
a HEMG can perform optimization techniques and message broadcasting op-
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Fig. 3.2: Overview of the hardware, software, and network aspects [7].

erations with certain specifications. Let

dev = [dig, ana] ∈ D, (3.1)
dig = [comp, comm], (3.2)
ana = [phy, mech], (3.3)

where each device dev is a member of a multiset of devices D including
digital dig and analog ana components. Investigating the latter component is
outside of the scope of this dissertation. A digital component consists of com-
putational comp and communication comm components. The computational
component, e.g., a CPU, performs computing operations. The communica-
tion component, e.g., a network interface, distributes the information to other
devices (using the network aspect). Let

comp = [r, q] , (3.4)
r = [ f1, f2, . . . , fn] ∈ app, (3.5)
q = [o1, o2, . . . , om] ∈ R≥0, (3.6)
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where the computational component comp includes computation r and over-
head q vectors. The former includes n ∈ N function elements. Each element
performs a specific procedure, for instance, actuating an appliance. This is
done as a software application app running in a hardware entity, e.g., CPU.
The latter contains m ∈N overhead elements. Each represents the processing
time of running a subset of function elements. The information, processed
in the computational component, is distributed to other devices through the
communication component using the network aspect nw. Let

comm = [b, z] , (3.7)
b = [elec, info] ∈ nw, (3.8)
z = [e1, e2, . . . , ev] ∈ R≥0, (3.9)

where the communicational component comm includes vectors of commu-
nication interfaces b and communication overheads z. The vector of com-
munication interfaces b, as a member of a network component nw, includes
electricity elec and information info elements. The former is responsible for
satisfying the electricity demand of the device through physical power lines.
The latter, to exchange the information with other devices, is performed on
top of a communication protocol. The vector of communication overheads z
comprises v ∈N communication overhead elements. Each element is caused
by characteristics of the communication media of each corresponding device.
Packet loss rate, latency, and throughput are some examples of communica-
tion overheads.

3.1.1.2 Software Aspect
The software aspect aims at developing platform-independent models of soft-
ware applications that are executable in hardware devices. Software applica-
tions can describe miscellaneous functionalities, ranging from the basic oper-
ation of an appliance (e.g., ON/OFF) to heterogeneous communication pro-
tocols (e.g., the Smart Energy Profile 2.0 (SEP2) [71]). The framework consid-
ers the software development from the object-oriented programming point of
view. Let

app = [sv, bv] ∈ Apps, (3.10)
sv = [en, re] ∈ SV, (3.11)
bv = [s, ι] ∈ BV, (3.12)

where application app is a member of a multiset of applications Apps con-
sisting of two correlated structural sv and behavioral bv views. The former
describes the structure of the application while the latter presents its dynam-
ics. The structural view sv, as a member of a multiset of structural views SV,
is a combination of entities en and relationships re. An entity, which can
be periodic or aperiodic, represents the functional part of an application. A
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relationship defines a logical connection between entities. The behavioral
view bv, as a member of a multiset of behavioral views BV, represents the
dynamical view of an application. An Extended Finite State Machine (EFSM)
can capture such behavior, where a set of states s describes the application’s
actions while a set of transitions ι provides conditional paths between them.
The detailed description of EFSM can be found in [72].

3.1.1.3 Network Aspect
The network aspect enables the communication between two or more devices
according to CIM in IEC 61970 standards series [70]. It defines the commu-
nication media that delivers the information broadcast between software and
hardware aspects. Its characteristics shape its performance, for instance, the
latency, throughput, and packet loss. Let

nw = [QoS, dist, mob] ∈ NW, (3.13)
QoS = [x1, x2, . . . , xy] ∈ R≥0, (3.14)

dist ∈ R≥0, mob ∈ B, (3.15)

where each network component nw is a member of a multiset of network
components NW. The QoS vector includes y ∈ N evaluation parameters x
representing the overall performance of the communication network. The
distance dist indicates the topological distance value between two connected
device entities dev. Finally, mobility mob represents the device’s mobility
type, i.e., wired or wireless.

3.1.2 Modeling
This section shows the trajection of the previously described mathematical
equations of the framework’s aspects into a formal model. Fig. 3.3 illustrates
a novel UML profile, in which aspects are labeled with red-dashed rounded
rectangles. The used UML meta-classes are:

1. Class: It is an extensible template for creating objects, providing initial
values for attributes and implementations of the behaviors. It is used
to model the Digital and Analog hardware aspects of the smart grid
applications.

2. Node: It is a physical object that represents a computational resource of
the system, such as servers. It is used to model the Digital hardware
aspect of the smart grid applications.

3. Device: It is a type of node that represents a physical computational
resource, such as a gateway. The device is used to model the Digital
and Analog hardware aspects of the smart grid applications.
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Fig. 3.3: UML profile diagram of aspects of the framework [7].

4. Artifact: It is a software component, such as an executable software
component, files or libraries, deployed inside the Node. It is used to
model the software Application aspect.

5. CommunicationPath: It defines the path between two nodes that are
able to exchange signals and messages such as a wired/wireless com-
munication channel. It is used to model the Network aspect of the smart
grid applications.

6. Interface: It is a collection of operation signature and attribute defi-
nitions that ideally defines a cohesive set of behaviors. It is used to
model the Network aspect of the smart grid applications in the sense of
connections between devices and the network.

The following section emphasizes how the UML profile is used to enrich
the semantics of the UML diagrams in representing smart grid applications.
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3.2 Formalization
This section first, describes the formal framework based on the aspects de-
fined in Section 3.1.1. Then, it models the framework mathematically using
a UML smart grid class diagram. The smart grid formalization requires a
high-level conceptual framework taking its domains into account. This work
intends to both identify the actors inside each smart grid domain and estab-
lish their possible communication routes appropriately. Let

sg = [w] ∈ Ψ, (3.16)
w ⊆ ω, (3.17)

where a smart grid entity sg is a member of a multiset of smart grids Ψ. A set
of smart grid domains w is a member of a multiset of smart grid domains ω.
A significant challenge about these domains is how to organize them to work
consistently focusing on delivering appropriate services to their relevant in-
terior actors. As the concept of the separation of concerns is employed, each
domain corresponds to an add-in feature to the framework. Hence, adding
or removing a domain will not affect the framework’s functionality, which
strengthens its robustness and flexibility.

This dissertation considers w = [C, O] as the first step in formalizing a
smart grid, where C and O correspond to Customers and Operations domains,
respectively [15].

3.2.1 Customers Domain
The Customers domain typically provides customers (or prosumers, as used
from the next chapter) with applications to manage their electricity consump-
tion behaviors. Let

C = [c1, c2, . . . , ch] , (3.18)
c = [SA, PV, B, ems, sm, gw] , (3.19)
SA ⊆ A, ems ∈ app, {PV, B, sm, gw} ∈ dev, (3.20)

where customers domain C includes h ∈ N customers. Each customer c has
an individual set of smart appliances SA, as a subset of a multiset of smart ap-
pliances A, a PV system PV , a BESS B, a smart meter sm, and a gateway gw.
Customers are interested in enhancing the efficiency and profitability of their
consumption, generation, and storage. This is done using an EMS, as a soft-
ware application, running on a hardware device. The smart meter measures
the electricity consumption of smart appliances and periodically sends them
to the electric utility via the power line communication. The gateway gw is re-
sponsible for routing different device-to-device communications. Since PVs,
BESSs, smart meters, and gateways are predefined entities, their descriptions
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are discarded. The following defines SA and ems precisely.

3.2.1.1 Smart Appliances
They are the main drivers of electricity demands. Let

SA = [sa1, sa2, . . . , saM] , (3.21)
sa = [sf, ctsa, lp] , (3.22)
sf = [shift, intr] ∈ B, (3.23)
ctsa = [ζ1, ζ2, . . . , ζa] ∈ R≥0, (3.24)
lp = [ec, ∆τ], (3.25)
ec ∈ R≥0, ∆τ ∈ R>0, (3.26)

where each customer c possesses M ∈ N smart appliances. Each smart
appliance sa ∈ dev has a smart feature pair sf including two dependent
Boolean functions of shiftability shift and interruptibility intr [5]. Shiftabil-
ity allows smart appliances to shift their operating start times to the fu-
ture. For instance, refrigerator and lighting systems are non-shiftable ap-
pliances whereas washing machine and the electric vehicle are shiftable ap-
pliances. Interruptibility allows smart appliances to interrupt their operating
cycles in the middle. For instance, the operating cycle of an electric vehi-
cle is both shiftable and interruptible. The dependency between these fea-
tures indicates that a shiftable appliance can either be interruptible, i.e., sf =
[TRUE, TRUE] or uninterruptible, i.e., sf = [TRUE, FALSE]. Nevertheless, if it
is non-shiftable, then, it is also uninterruptible, i.e., sf = [FALSE, FALSE]. In
addition, each smart appliance has a set of constraints ctsa including a ∈ N

constraint elements ζ. For instance, each appliance should finish its opera-
tion cycle in the defined period. The smart appliance sa follows a specific
load profile lp in each operating cycle. It is determined with respect to its
program predefined by the corresponding customer. Each lp is presented as
a vector of time-series electricity consumptions ec (kW) with a specific time
resolution ∆τ (min. or hrs.).

3.2.1.2 Energy Management System
It is a software application app running on a device dev. It can be a web service
in the cloud or an application installed on a server. Providing combination of
energy optimization and information processing functions, it integrates the
efficiency into advanced control and optimization strategies. Let

ems =
[
objC, prefM, evM, rspM

]
, (3.27)

objC = [σ1, σ2, . . . , σ] ∈ R≥0, (3.28)
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pref = [ost, opr, ofl] ∈ R≥0, (3.29)

ev =
[
est, ept, objC, pref, sf, ctsa, lp

]
, (3.30)

{est, ept} ∈ R≥0, (3.31)
rsp = [dec, rst], (3.32)
dec ∈ B, rst ∈ R≥0, (3.33)

where each customer, using an ems, adjusts its objective set objC includ-
ing  ∈ N distinct objectives. These objectives can be in conflict or in line
with each other, for instance, minimizing the electricity cost and CO2 emis-
sion, maximizing comfort level, minimizing appliance service delay, etc. In
addition, for each smart appliance sa in SA, the customer provides a vector of
operating preferences pref. It is a triple including customer’s interested oper-
ating start time ost, operating program opr, and operating flexibility ofl. As the
first element, customers adjust the time, at which they want to operate their
smart appliance. As the second element, customers set a specific program to
operate each smart appliance with (e.g., washing the clothes at 60 ◦C). This
program influences the load profile lp mentioned before. As the last element,
customers offer a voluntarily flexibility ofl. Two flexibility types, named dead-
line and temperature, are defined. Deadline flexibility is an additional time
to the required period of the main operating cycle of physically-controllable
smart appliances. Providing this flexibility, the corresponding smart appli-
ances can be shifted and interrupted until reaching the adjusted deadline
flexibility. Temperature flexibility is a feature of thermostatically-controllable
smart appliances, e.g., Heating, Ventilation, and Air Conditioning (HVAC).
It is notable that ost for these smart appliances equals to the operating set
temperature. Similarly, offering the temperature flexibility, the household’s
temperature can fluctuate over the operating set temperature.

Once customers set the objectives and preferences, the EMS sends events ev
to the OMS of the Operations domain (described later). Then, the EMS waits
to receive responses rsp of the events sent. Notation est refers to the time, at
which the event has been sent. The event pooling time ept defines a length of
time, at which each smart appliance waits to receive a response from the EMS
after sending the event. If no response arrives, another event is forwarded
after ept (sec., min., or hrs.). Each response is a pair including a Boolean
decision value dec and a time rst, at which the response has been sent. Deci-
sion dec indicates whether the corresponding smart appliance should operate
or wait. The network aspect is responsible for sending events from the EMS
and receiving the responses from the OMS. Finally, the EMS starts actuating
smart appliances in accordance with the received responses.

3.2.2 Operations Domain
This domain handles the transport of electricity. This is facilitated by con-
tracts traded in the energy market and fulfilled by the Operations Domain.
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DSOs are the main actors of this domain. Current shortcomings of the elec-
trical grid motivate them to employ the ICT to react upon the grid informa-
tion [3]. They facilitate the continuous grid management functions. Their
responsibilities include maintaining and operating the electricity distribution
infrastructure efficiently while delivering the electricity to customers securely.
Let

O = [oms, nms] , (3.34)
{oms, nms} ∈ app, (3.35)

where operations domain O includes two representative software applica-
tions Operating Management System (OMS) and Network Management Sys-
tem (NMS) derived from IEC 61970 [70]. The former, as an operational plan-
ning software, is responsible for performance monitoring and optimization
of the electrical grid, e.g., load balancing and matching. The latter, as a net-
work maintenance software, monitors the communication network of smart
grid domains, for instance, fault management, overhead and delay calcula-
tion, etc. (beyond the scope of this dissertation).

3.2.2.1 Operating Management System
An aggregator or a DSO has access to an OMS inside the operations domain.
Let

oms =
[
objO, ctdso, ep, drs

]
, (3.36)

objO = [ς1, ς2, . . . , ςg] ∈ R≥0, (3.37)

ctdso = [χ1, χ2, . . . , χl ] ∈ R≥0, (3.38)
ep = [P1, P2, . . . , Pd] ∈ R≥0, (3.39)

drs = [buf, sch, rspM], (3.40)
buf = [iw, is, do, dw] ∈ R≥0, (3.41)

sch = [objO, ctdso, ep, evM, λ], (3.42)
λ ∈ R>0, (3.43)

where oms has a set of objectives objO including g ∈ N distinguishable ob-
jectives ς. Flattening the aggregated electricity consumption, reducing the
outages, reducing the CO2 emission, etc. are some examples of objectives.
In addition, ctdso corresponds to a set of l ∈ N grid stability constraints χ.
For instance, hard and soft Electricity Consumption Thresholds (ECTs) in
the feeder/substation and household levels, active and reactive power flow
capacities, etc. are some of such examples. The DSO adjusts the set of elec-
tricity prices ep over d ∈ N time periods in different schemes, i.e., real-time
and day-ahead. Finally, the DSO employs a Demand Response System (DRS)
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to respond to the events received from the EMSs of customers. The DRS is
a software application app composing of a set of buffers buf, a scheduler sch,
and responses rsp. Once an event arrives, it is stored in the immediately wait
buffer iw. Then, the scheduler decides to relocate them to different buffers.
The scheduler sch, to make these decisions, follows a Load Demand Schedul-
ing (LDS) mechanism λ. Decisions are made based on the information stored
in the events. The scheduling approach can be either stochastic or determin-
istic applying single-objective or multi-objective optimization techniques.

3.3 UML Class Diagram
Fig. 3.4 shows a complete description of the proposed framework as a UML
class diagram combined with the profile diagram (see Fig. 3.3). The smartgrid
class is extended by the «digital» stereotype that contains the predefined
framework’s aspects (analog part is not considered). Objects can be instan-
tiated and linked together to compose a variety of smart grid applications.
Next part exemplifies such application as a case study.

3.4 Case Study
Figs. 3.5 and 3.6 show a "conceptual view" and "UML deployment diagram"
of objects of one instantiated customer communicating with a DSO through
a gateway, respectively. The customer has an EV and communicates with
the DSO through a gateway that handles its preferences via the EMS system.
On the other hand, the DSO receives events from the customer side and for-
wards the responses back including the decision about the load requests of
the EV over time. Decisions take place through various elements, i.e., objec-
tives, thresholds, and electricity prices. The DSO contains a server that has
an OMS, which runs a DR scheduling algorithm. The interactions between
the elements of the case study are presented in Fig. 3.7. Fig. 3.7(a) shows
the UML sequence and activity diagram. Fig. 3.7(b) demonstrates the behav-
ioral part of the DR scheduler elaborating how the scheduler decides about
the incoming events. UML diagrams, to validate these high level models,
have been manually mapped into a Matlab code. Table 3.1 shows the main
mapping patterns of the UML diagrams and the generated executable Matlab
code. In order to build an automatic synthesis tool, the developer needs to
use a model of computation to capture the UML models and generate the
corresponding code [72].
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Fig. 3.5: Conceptual view of the case study [7].

3.5 Conclusions
This chapter proposed a formal framework for modeling smart grid appli-
cations. It defined the main grid elements using three aspects: hardware,
software, and network. A UML profile was developed to integrate these as-
pects into a generic profile. Employing this profile, a formal framework for
modeling the main semantics of smart grid systems was defined and math-
ematically formalized with an emphasis on the customers and operations
domains. A novel UML profile and a class diagram were also developed to
support the implementation of the framework, reflect the mathematical for-
mulas, and create formal grid models. To prove the validity of the formal
framework, a case study was developed demonstrating how to synthesize
the formal framework into an executable code. Hence, this chapter has led to
the following System Level Contributions:

32



3.5. Conclusions

Fi
g.

3.
6:

U
M

L
de

pl
oy

m
en

t
di

ag
ra

m
of

th
e

in
st

an
ti

at
ed

ob
je

ct
s

[7
].

Fi
g.

3.
7:

(a
)

U
M

L
se

qu
en

ce
di

ag
ra

m
of

th
e

in
te

ra
ct

io
ns

of
th

e
in

st
an

ti
at

ed
ob

je
ct

s,
(b

)
U

M
L

ac
ti

vi
ty

di
ag

ra
m

of
th

e
sc

he
du

lin
g

al
go

ri
th

m
[7

].

33



Chapter 3. Formal Smart Grid Framework

SLC-1: Proposing a generic formal framework by providing a smooth way
to describe smart grid elements, domains, and their interactions;

SLC-2: Modeling and formulating three essential smart grid aspects,
i.e., hardware, software, and network, to demonstrate the formal frame-
work’s scalability, reusability, interoperability, and updatability;

SLC-3: Modeling, designing, and developing two novel UML smart grid
profiles to map the formal framework into various smart grid applications.

Next chapter, by using the proposed formal framework, develops a novel
hierarchical optimization system for smart grid targeting interactions be-
tween customers and operations domains.
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Chapter 4

Optimization Models and
Algorithms for the SALSA

This chapter aims at developing the Scalable Aggregation of Load Schedu-
lable Appliances (SALSA) system, which is formulated based on the formal
framework presented in Chapter 3. SALSA is modeled and implemented
based on an agent-based modeling approach. Agent-based modeling of real-
world problems leads to more flexibility since: i) different behavioral criteria
can be analyzed, and ii) it is possible to add more properties to agents or add
more distributed agents to the model [49, 51]. Fig. 4.1 displays the mind map
of the SALSA system. The content of this chapter originates and adapts from
the following publications:

[1] Armin Ghasem Azar, Rune Hylsberg Jacobsen, and Qi Zhang, "Aggre-
gated Load Scheduling for Residential Multi-Class Appliances: Peak
Demand Reduction," In IEEE International Conference on the European En-
ergy Market (EEM), 2015, pages 1-6, doi: 10.1109/EEM.2015.7216702

[2] Rune Hylsberg Jacobsen, Armin Ghasem Azar, Qi Zhang, and Emad
Samuel Malki Ebeid, "Home Appliance Load Scheduling With SEMIAH,"
In Fourth International Conference on Smart Systems, Devices, and Technolo-
gies (SMART), 2015, pages 1-2, Link to paper

[4] Armin Ghasem Azar, "Demand Response Driven Load Scheduling in
Formal Smart Grid Framework," Technical Report Electronics and Com-
puter Engineering, Aarhus University, vol. 4, no 24, 2016, pages 1-35,
ISSN: 2245-2087, Link to report

[5] Armin Ghasem Azar and Rune Hylsberg Jacobsen, "Appliance Schedul-
ing Optimization for Demand Response," International Journal on Ad-
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4.1 Prosumers
SALSA is represented by a set of prosumers (located in the customers do-
main), which are connected to the power grid distribution system. They com-
municate with an aggregator A (located in the operations domain), which
trades their flexibilities (in terms of power and price) in market (will be de-
scribed in Section 4.2). Prosumer ρi ∈ P = {ρ1, . . . , ρh}, where 1 ≤ i ≤ h,
consists of a set of smart appliances, a PV system, a BESS, and an EMS. It has
two main responsibilities: i) scheduling appliances, and ii) selling/buying
power to/from the grid. Fig. 4.2 shows the prosumer’s power actions at each
time interval t ∈ R>0.
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Fig. 4.2: Model diagram of power actions of prosumer ρi . The dotted red box conceptualizes
the prosumer’s physical equipment. “Load" points to the set of appliances. Exchanging power
between prosumers and the “Grid" is controlled by the aggregator. Notations are described in
Sections 4.1.1 to 4.1.3 [9].

4.1.1 Appliances
Appliances and main drivers of prosumers’ electricity consumptions. Let

SAi =





NS i︷ ︸︸ ︷
sa1,i, . . . , saj,i,

Si︷ ︸︸ ︷
saj+1,i, . . . , saMi ,i



 , (4.1)

where SAi is set of appliances of prosumer ρi, where each smart appliance
saj,i ∈ SAi, 1 ≤ j ≤ Mi ∈ N is a member of subsets of either non-shiftable
NS i ⊆ SAi or shiftable Si ⊆ SAi appliances. Shiftability feature provides the
prosumer with a flexibility degree to interrupt the operating cycle of appli-
ances (see Section 3.2.1.1 and [5, 73] for more information). Let

lpj,i =
{

ecj,i
(
ostj,i

)
, ecj,i

(
ostj,i + ∆τ

)
, . . . , ecj,i

(
β j,i
)}

, (4.2)

β j,i

∑
t=ostj,i

ecj,i (t)× decj,i =
∣∣∣lpj,i

∣∣∣ , (4.3)

Mi

∑
j=1

ecj,i (t)× decj,i (t) = ℵP2L
i (t) + ℵB2L

i (t) + ℵG2L
i (t) ≤ ectSi (t) , (4.4)

where appliance saj,i follows a specific load profile lpj,i during its operat-
ing cycle. It is determined with respect to the program preset by the pro-
sumer. ecj,i (t) ∈ R≥0 (kW) is the load demand of appliance saj,i at time
interval t specifying the amount of power it needs to operate between t
and t + ∆τ, where ∆τ is the time interval resolution. decj,i (t) ∈ B is the
binary decision variable of load demand ecj,i (t) at time interval t. ℵP2L

i (t) ,
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ℵB2L
i (t) ,ℵG2L

i (t) ∈ R≥0 (kW) denote the power transferred from the PV, the
BESS, and the grid to appliances, respectively. The prosumer aims at keep-
ing the aggregated load demands below a soft ECT ectSi (t) ∈ R≥0 (kW) at
time interval t. This threshold sometimes due to the provided deadline flex-
ibilities and non-shiftability feature of some appliances cannot be satisfied.
Therefore, it is only applied on shiftable appliances, which: i) have not started
yet, and ii) have started but still have enough flexibility. ECTs can follow
various strategies, such as: i) a fixed percentage of the peak demand in the
previous day, ii) a fixed percentage of the aggregated load demands at each
time interval, and iii) real-time electricity prices. Section 4.1.4.2 describes
these policies in more detail. Let

[
decj,i (t) = 1,
flexj,i (t) = 0, ∀saj,i ∈ NS i, (4.5)

{
decj,i (t) ∈ {0, 1} flexj,i (t) = 1, ∀saj,i ∈ Si,
decj,i (t) = 1 otherwise,

(4.6)

(Except HVAC) flexj,i (t) =

{
0
(

β j,i − ostj,i
)
≤
(

oflj,i − t
)

,
1 otherwise,

(4.7)

(Only HVAC)





flexj,i (t) =





0 h̄i (t− 1) ≥
(
˜̄hi + tspi

)
,

0 h̄i (t− 1) ≤
(
˜̄hi − tspi

)
,

1 otherwise,

h̄i (t) =
{

h̄i (t− 1) + ∆h̄i decj,i (t) = 1,
h̄i (t− 1)− ∆h̄i otherwise,

˜̄hi − tspi ≤ h̄i (t) ≤ ˜̄hi + tspi,

(4.8)

where flexj,i (t) ∈ B is the binary flexibility status of appliance saj,i. Deci-
sion variable for non-shiftable appliances always equals to one. These ap-
pliances operate uninterruptedly until their completion, since they are pro-
vided with no flexibility. For shiftable appliances, the prosumer can decide
to satisfy the load demand

(
decj,i (t) = 1

)
or postpone it to the next interval(

decj,i (t) = 0
)

[8,74]. The prosumer adjusts an operating deadline oflj,i ∈ R≥0

defining for how long the prosumer can wait to have the appliance’s opera-
tion completed after its normal end time β j,i ∈ R≥0. This flexibility depends
on the desired start time ostj,i ∈ R≥0 and the appliance’s load profile lpj,i
(see Section 3.2.1.1), which together adjust the appliance’s normal end time.
Fig. 4.3 illustrates how the concept of flexibility reshapes the load profile of
an appliance. Brown ovals, which their length depends on ∆τ, symbolize the
load demands. Thus, any appliance schedule that lies outside the desired
start time and the assigned flexibility deadline is considered invalid.
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The concept of flexibility varies according to the appliance type in charge.
For appliances, which their physical operations can be interrupted over time
(e.g., washing machine and EV), the flexibility is considered as a deadline (see
Equation (4.7)). This concept from the perspective of the HVAC is the com-
fortable temperature range [75, 76]. h̄i (t) , ˜̄hi, tspi ∈ R (°C) are the household
temperature at time interval t, the prosumer’s desired flexible temperature
range, and the temperature set point, respectively. Fig. 4.4 shows the tem-
perature fluctuation of a sample household with and without providing any
flexibility. Note that this dissertation for the sake of simplicity only considers
the heating part of the HVAC. When the temperature at time interval t− 1
equals to the maximum allowable temperature, i.e., ˜̄hi + tspi, the HVAC is
turned OFF and the temperature will gradually decrease by the fluctuation
degree of ∆h̄i ∈ R>0 (°C). It is turned ON whenever h̄i (t− 1) = ˜̄hi − tspi.
Otherwise, the temperature is within the preset comfort range and two pos-
sibilities of either turning it ON or OFF exist (see Equation (4.8)). The tem-
perature fluctuation of household of each prosumer at each time interval
depends on the capacity of the HVAC unit, and heat gains or losses of the
household [77].

Operating Period Idle Period

Operating Idle Operating Operating OperatingIdle Idle

��,� = ��,���,� ��,�

Flexibility Period

��,� ��,���,� ��,�

Flexibility Period

Fig. 4.3: Reshaping the operating cycle of a shiftable appliance saj,i through the concept of
flexibility. ε j,i ∈ R≥0 is its exact end time after scheduling [8, 9].
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Fig. 4.4: Temperature fluctuation of a sample household with (reshaped) and without (baseline)
using the proposed framework. The prosumer sets temperature set point tsp = 25 °C and the
flexibility ˜̄h = ±3 °C. The temperature fluctuation and the time resolution are ∆h̄ = 0.05 °C
and ∆τ = 1 min, respectively.

4.1.2 Photovoltaic
Each prosumer is equipped with a locally installed PV system (behind the
meter). Let

PVG
i (t) = ℵP2L

i (t) + ℵP2B
i (t) + ℵP2G

i (t) ≤ PVcap
i , (4.9)

where PVG
i (t) , PVcap

i ∈ R≥0 (kW) are the amount of power that the PV gen-
erates at time interval t and its maximum generating capacity, respectively.
ℵP2B

i (t) ,ℵP2G
i (t) ∈ R≥0 (kW) are the amounts of power transferred from the

PV into the BESS and the grid, respectively [9,55]. PVs are RESs with produc-
tion relying on external factors, such as weather condition [52]. Fig. 4.5 shows
how different weather conditions influence the PV production. Obviously,
the time when renewable energy is harvested and the time of prosumers’
power consumption do not necessarily overlap. As an effect, a mismatch oc-
curs between the local power generation and consumption, which reduces
the local RES utilization [9]. Next part describes how BESSs can alleviate
such challenge by storing the energy during off-peak and utilize it during
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peak periods.
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(b) Cloudy day.
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(c) Rainy day.

Fig. 4.5: PV production in different weather conditions. The data belong to the PVs installed at
UCLA Ackerman Union [10].

4.1.3 Battery Energy Storage System
Each prosumer owns a BESS. It accumulates excess energy created by the
local PV and stores it to be used when there is insufficient amount of energy
to supply the demands. Let

Be

i (t + 1) = Be

i (t) +
(

Bchg
i (t)× υ

chg
i (t)− Bd-chg

i (t)× υ
d-chg
i (t)

)
× ∆τ, (4.10)

Bchg
i (t) = ℵP2B

i (t) + ℵG2B
i (t) ≤ Bchg

i , (4.11)

Bd-chg
i (t) = ℵB2G

i (t) + ℵB2L
i (t) ≤ Bd-chg

i , (4.12)

υ
chg
i (t) + υ

d-chg
i (t) ≤ 1, (4.13)
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Be

i (0) = Bcap
i ×

BSOC
i + BSOC

i
2

, (4.14)

BSOC
i ≤ BSOC

i (t) ≤ BSOC
i , (4.15)

BSOC
i (t) =

Be

i (t)
Bcap

i
, (4.16)

where Be

i (t) , Bcap
i ∈ R>0 (kWh) are the amount of energy stored in the

BESS until time interval t and the BESS capacity, respectively. Notations
Bchg

i (t) , Bd-chg
i (t) ∈ R≥0 (kW) denote the amounts of power the battery is

"charged" and "discharged" with, respectively, subject to Bchg
i , Bd-chg

i ∈ R>0
(kW) as maximum charging and discharging power, respectively. Notations
ℵB2G

i (t) ,ℵG2B
i (t) ∈ R≥0 (kW) denote the amounts of power transferred from

the BESS to the grid and vice versa, respectively. υ
chg
i (t) , υ

d-chg
i (t) ∈ B are

binary charging and discharging variables, respectively. Concurrent charg-
ing and discharging are not allowed. The BESS at each time interval can
charge, discharge, or remain silent (see Equation (4.13)). Be

i (0) is the initial
available amount of energy. BSOC

i , BSOC
i , BSOC

i (t) ∈ [0, 1] are the lowest and
highest possible State of Charges (SOCs) of the BESS, and its value at time
interval t, respectively. Charging and discharging efficiencies, for clarity of
presentation, are assumed to be one [78].

4.1.4 Energy Management System
Fig. 4.6 shows the system model and connections of the EMS of a pro-
sumer. The prosumer interacts with its EMS through a Graphical User In-
terface (GUI). This GUI provides the prosumer with the possibility of adjust-
ing the operation of smart appliances, controling the flexibilities, and setting
the scheduling strategies. According to Section 3.2.1.2, the EMS proposed in
this dissertation is a software application running on a gateway (connected to
the Internet). EMSs through the Internet are provided with electricity prices
and negotiate with the grid about their demands and surplus energy (see
Chapter 5). Physical equipment are connected to the gateway through either
wired or wireless connections. The prosumer is able to adjust the ECT policy
according to the electricity prices captured from the market or the flexibil-
ity zone materialized through heterogeneous flexibilities provided. More-
over, the prosumer based on its own preferences and requirements choose a
LDS mechanism to apply on load demands of appliances over time. These
concepts form a MO-MINLP optimization model, which is solved using the
NSGA-III algorithm. Actuating smart appliances or forcing them to wait
is done through the load demand buffering sub-system (will be described
in Section 4.1.4.3). This sub-system handles events and responses of smart
appliances sent and received during their operation over time. Next parts
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elaborate the content of the EMS more precisely.

EMS Gateway

Internet
Appliances

PV

BESS
Prosumer

ECT

Algorithm

Optimization
Model

Buffers

Flexibility

LDS

GUI

Logical

Network

Fig. 4.6: System model and connections of the EMS of a prosumer. Power connections between
appliances, the PV, and the BESS are shown in Fig. 4.2.

4.1.4.1 Prosumer Flexibility Zone
Fig. 4.7 illustrates the feasible flexibility zone and flexibility point for a pro-
sumer. As described in Section 4.1, the following flexibility types are defined:

• Consumption: This type belongs to shiftable appliances (except HVAC),
in which their operating cycle, due to the provided operating flexibility
time, can continuously/discretely be interrupted.

• Temperature: This type corresponds to the HVAC, where it provides

the EMS with a temperature flexibility range
[
˜̄hi − tspi, ˜̄hi + tspi

]
.

• Generation: This type is related to the PV generation capacity.

• Storing: This type is associated with the desired lowest and highest
SOCs of the BESS.

Note that consumption and generation flexibilities have similar character-
istics (in terms of the power unit). Let

ℵi (t) = PVG
i (t)−

Mi

∑
j=1

ecj,i (t)− Bchg
i , (4.17)

ℵi (t) = PVG
i (t) + Bd-chg

i −∑
flexj,i(t)=0,
∀saj,i∈SAi

ecj,i (t), (4.18)
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Fig. 4.7: The feasible flexibility zone of a prosumer. Point Fi (t) reflects a feasible flexibility
triple.

where ℵi (t) ,ℵi (t) are the optimum values of maximizing the comfort level
and profit, respectively (will be described in Section 4.1.4.4). The electric
power generated by the PV and the energy stored in the BESS: i) in the
former, satisfy all demanding appliances, and ii) in the latter, supply only
appliances with no flexibility. The remaining is always sold to the grid. As a
result, let

=i (t) ,
{{
ℵi (t) , BSOC

i , ˜̄hi − tspi

}
, . . . ,

{
ℵi (t) , BSOC

i , ˜̄hi + tspi

}}
, (4.19)

Fi (t) ,
{
ℵi (t) , BSOC

i (t) , h̄i (t)
}
⊆ =i (t) , (4.20)

ℵi (t) ≤ ℵi (t) = ℵB2G
i (t) + ℵP2G

i (t)− ℵG2B
i (t)− ℵG2L

i (t) ≤ ℵi (t) , (4.21)

where =i (t) ,Fi (t) is the feasible flexibility zone and an arbitrary flexibility
point (triple) of prosumer ρi at time interval t. ℵi (t) ∈ R (kW) is the desired
amount of power the prosumer strives to exchange with the grid.

4.1.4.2 Electricity Consumption Threshold Policies
Many electricity producers are experiencing a deficit of electricity generation
capacity in consequence of load demands by prosumers. More accurately, the
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aggregated supply (either generated by electric utilities or surplus energy in-
jected by prosumers) cannot meet the aggregated demands of prosumers at
a specific time interval. SALSA defines the concept of ECT as a two-level
boundary. The first level, as described in Section 4.1.1, includes soft ECTs
belonging to prosumers. The second level includes hard ECTs, which are ad-
justed by the aggregator (will be described in Section 4.2.1.1). This two-level
concept complies with the smart grid operating regimes as defined by USEF
and is shown in Fig. 4.8 [11]. As the electricity demand increases the grid op-
eration moves gradually from the "Normal Operations" (first level) scheme to
the "Capacity Management" (second level) regime. At the same time, the reg-
ulating electricity markets start planning a significant role by providing peak
load reduction and power balancing between electricity supply and demand
through market mechanisms. Should the aggregator not be able to success-
fully manage capacity, there is a risk of hitting the second demarcation point,
in which the regime of "Graceful Degradation" starts. These demarcation
points are marked by the ECT in Fig. 4.8. When crossing this boundary the
aggregator may take action to curtail load regarding any Service Level Agree-
ment (SLA) promises just to secure the grid supply and to regain control of
the network (curtailment is outside of the scope of this dissertation).

Fig. 4.8: Adoption of the ECT concept to the USEF operating regimes [11].

The following defines three generic ECT policies for prosumers and the
aggregator. Table 4.1 compares these policies with respect to relevant pa-
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rameters in the framework. Each policy is followed by a figure displaying a
conceptual example of applying the corresponding policy on load demands
of a prosumer. Similar examples for the aggregator will be provided in Chap-
ter 6.

Table 4.1: Comparison of different ECT policies with respect to relevant parameters in the frame-
work. Last two parameters are adopted from the smart grid operating regimes defined by the
USEF.

ECT-P1 ECT-P2 ECT-P3

Day-ahead X – X
Real-time – X –
Price-driven – – X
Normal operations X X X
Capacity management X X X

4.1.4.2.1 ECT-P1

This policy aims at keeping the aggregated load demands below a constant
value at all time intervals. Let

ectSi (t) =

Previous day︷ ︸︸ ︷(
max
t≤T

Mi

∑
j=1

ecj,i (t)× decj,i (t)

)
×Xi (t) , (4.22)

Xi (1) = Xi (2) = . . . ,Xi (t) = . . . , (4.23)

where Xi (t) ∈ (0, 1] is a fraction value for the ECT of prosumer ρi at each
time interval t. This policy follows a day-ahead approach, since ECTs are a
percentage of the previous day’s peak demand [1]. Fig. 4.9 displays a con-
ceptual example of applying this policy on load demands of a prosumer.

4.1.4.2.2 ECT-P2

This policy, in contrast to ECT-P1, adjusts the ECT at each time interval with
the multiplication of the aggregation of load demands at that time and a fixed
constant percentage. Let

ectSi (t) =

(
Mi

∑
j=1

ecj,i (t)

)
×Xi (t) . (4.24)

Fig. 4.10 illustrates an example of applying this policy on load demands of
the random prosumer (assumed the same prosumer selected for Fig. 4.9).
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Fig. 4.9: A schematic view of applying ECT-P1 on load demands of a random prosumer.

4.1.4.2.3 ECT-P3

This policy follows the day-ahead normalized electricity prices over time. Let

ectSi (t) =

(
Mi

∑
j=1

ecj,i (t)

)
×

1−

PG (t)−min
t≤T

PG (t)

max
t≤T

PG (t)−min
t≤T

PG (t)


 , (4.25)

where PG (t) ∈ R>0 ($/kWh) is the day-ahead price that the grid announced
at time time interval t (assuming that no trading was happening between
prosumers and the grid). This policy follows the multiplication of the ag-
gregation of load demands and the normalized electricity price [8]. Fig. 4.11
shows how this policy influences the scheduling of a random prosumer’s
consumption over time (assumed the same prosumer selected for Fig. 4.9).

4.1.4.3 Load Demand Buffering Sub-System
This subsystem is composed of four various buffers named Immediately
Wait (IW), Immediately Start (IS), Decided to Operate (DO), and Decided
to Wait (DW). First, the sub-system stores all incoming load demands into
the IW buffer. The IS buffer is specialized for load demands of non-shiftable
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Fig. 4.10: A schematic view of applying ECT-P2 on load demands of a random prosumer.

appliances while the last two buffers are designed for shiftable appliances.
Then, a load demand is moved to the DO buffer if the EMS decides to op-
erate the corresponding appliance at that time interval. Otherwise, the load
demand will be moved to the DW buffer. At the next time interval, the buffer-
ing sub-system removes the load requests from the DW buffer and appends
them to the IW buffer. Indeed, the EMS will decide about appended and
newly arrived load demands simultaneously. At each time interval, the EMS
sends schedules to the gateway based on load demands located in the DO
and the DW buffers. Fig. 4.12 shows the flow process of handling a load
demand by the buffering sub-system.

4.1.4.4 Optimization Model
Multi-Objective Optimization (MOO) is an area of multiple criteria decision-
making, where mathematical optimization problems involving more than one
objective function are optimized simultaneously [79]. Optimal decisions need
to be taken in the presence of trade-offs between such conflicting objectives.
When decision making is emphasized, the purpose of solving a MOO prob-
lem is referred to support a decision maker in finding the most preferred non-
dominated solutions. The decision maker, in this work, is the EMS of each
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Fig. 4.11: A schematic view of applying ECT-P3 on load demands of a random prosumer.

prosumer and the OMS of the aggregator (will be described in Section 4.2).
The objective functions are said to be conflicting, whenever there exists an
infinite number of non-dominated solutions. A solution does not improve
for one objective unless it satisfies others. The main goal in MOO problems
is to find a finite number of diverse solutions in the objective space.

The following defines a MOO model for each prosumer, to schedule its
appliances and trade its surplus energy. Let

maximize
ℵi(t),Pi(t)

ℵi (t)× Pi (t)× ∆τ, (4.26)

maximize
{decj,i(t)}Mi

j=1,Bchg
i (t)

Mi

∑
j=1

ecj,i (t)× decj,i (t) + Bchg
i (t), (4.27)

subject to

(4.1)− (4.25),

Pl (t) ≤ Pi (t) ≤ Pu (t) , (4.28)

where Equation (4.26) intends to maximize the profit by increasing the sell-
ing amount while Equation (4.27), by satisfying as many load demands as
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Fig. 4.12: Flow process of handling a load demand by the buffering sub-system. À The load
demand is appended to a temp buffer, when it has enough flexibility. Functions inside the dashed
blue box are applied on all load demands stored in the temp buffer. These functions are de-
scribed in Section 4.1.4.6 and Chapter 5.

possible and charging the BESS as much as possible, aims at maximizing
the comfort level. These two objectives are in conflict with each other, since
trying to inject more power to the grid results in jeopardizing the comfort
level. Pi (t) ∈ R>0 ($/kWh) is a price offer selected between

[
Pl (t) , Pu (t)

]
∈

R>0 ($/kWh) as the minimum and maximum offerable price for trading en-
ergy, respectively. For each prosumer at each time interval, one of the follow-
ing cases can happen:

• The prosumer is a buyer, i.e., ℵi (t) ≤ ℵi (t) < 0: The prosumer, through
the electric power generated by the PV, the energy stored in the BESS,
and the amount intended to purchase externally, fully satisfies appli-
ances with zero flexibility. The profit, however, is always below zero.
To lower the cost, the prosumer strives to pay less by offering a buying
price close to Pl (t).

• The prosumer is a seller, i.e., 0 < ℵi (t) ≤ ℵi (t): Appliances with zero
flexibility, by the PV generation and energy stored in the BESS, are fully
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satisfied and the surplus power is injected to the grid. The prosumer, to
make the most beneficial contract, attempts to offer a selling price close
to Pu (t).

• The prosumer is flexible, i.e., ℵi (t) < 0 and ℵi (t) > 0: Both of the
previous cases can happen, which makes a trade-off between the com-
fort level and profit. In this case, the prosumer can also be silent, i.e.,
ℵi (t) = 0, where ℵG2B

i (t) = ℵG2L
i (t) = ℵP2G

i (t) = ℵB2G
i (t) = 0. Power

actions ℵB2L
i (t) ,ℵP2L

i (t) ,ℵP2B
i (t) are tuned so as to maximize the com-

fort level, where the profit is zero.

Prosumers are not allowed to buy and sell at the same time. If the pro-
sumer intends to buy electric power from the grid, i.e., ℵG2B

i (t) > 0 or
ℵG2L

i (t) > 0, then, ℵB2G
i (t) = 0 and ℵP2G

i (t) = 0. If the prosumer is a seller,
i.e., ℵB2G

i (t) > 0 or ℵP2G
i (t) > 0, then, ℵG2B

i (t) = 0 and ℵG2L
i (t) = 0. Pro-

sumers, besides fully satisfying appliances with zero flexibility, have the op-
tion to operate the remaining appliances. Synthesizing various LDS mecha-
nisms with the optimization model affects the prosumers’ behaviors in terms
of power actions over time [5, 9]. Such mechanisms are described in the fol-
lowing part.

4.1.4.5 Load Demand Scheduling Mechanisms
To produce a specific schedule for appliances of each prosumer at each time
interval based on the aforementioned objective and constraints, EMSs contin-
uously apply a LDS mechanism on load demands stored in their IW buffer [6].
Choosing a LDS mechanism depends on the prosumer’s preferences, which
will obviously, yield to different results. Apart from the ECT imposed, EMSs
permit: i) non-shiftable appliances, and ii) shiftable appliance without enough
flexibility [5]. Then, the LDS mechanism will schedule the remaining load de-
mands and forward the decisions back to EMSs. These decisions will be used
to update the load demand buffering sub-system. The following proposes
various mechanisms used in the framework.

4.1.4.5.1 0-1 Knapsack Problem

The 0-1 Knapsack problem is a traditional combinatorial optimization prob-
lem in computer science, where given M ∈ N items (each with a weight
and value), it tries to obtain the maximum total value out of the items be-
ing packed subject to knapsack’s limited capacity c ∈ R>0. This problem is
NP-Complete since the time complexity of solving it through the brute-force
method is O(2M) [80]. This method, in order to find the optimal solution
calculates, all feasible subsets. The load demand scheduling problem is NP-
complete by a reduction from the 0-1 Knapsack problem, since items are
equivalent to load demands, where their demanding power and cost reflect
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the weight and value, respectively [5, 29, 30]. The Knapsack procedure re-
ceives current load demands and calculates the fitness of produced feasible
subsets, where each subset comprises some load demands. The outcome of
this approach is a subset of load demands, which their corresponding ap-
pliances are either allowed to continue operating or forced to wait. In order
to decrease the computation time, a Dynamic Programming approach with
the time complexity of O(M× c) is applied. For more information about this
approach, the reader is referred to [1, 4].

4.1.4.5.2 Earliest Deadline First

The Earliest Deadline First (EDF) mechanism is an optimal scheduling al-
gorithm and derived from real-time systems theory, which is particularly
heuristic but presenting satisfactory scalability properties [8,81]. It is used in
real-time operating systems to place preemptive uniprocessors in a priority
queue. Whenever a scheduling event occurs (here load demands) the queue
will be searched for the event closest to its deadline. Hence, this mechanism
starts from a load demand with lowest flexibility oflj,i, ∀saj,i ∈ Si calculated at
each time interval and attempts to satisfy as many load demands as possible
subject to the current ECT.

4.1.4.5.3 Least Slack Time

The Least Slack Time (LST) scheduling mechanism is particularly practicable
in applications comprising aperiodic tasks (such as load demands), since no
prior assumptions on their rate of occurrence are made [82]. This mechanism,
by calculating oflj,i − t− lpj,i, ∀saj,i ∈ Si at each time interval t, ascendingly
sorts potential load demands. Note that lpj,i in this mechanism denote the
remaining load profile from time interval t.

4.1.4.5.4 Latest Release Time

In contrast to the EDF mechanism, the Latest Release Time (LRT) mechanism
is a time-reversed scheduling algorithm. It assigns the highest priority to a
load demand with the latest flexibility time. The same optimality claim holds
for the LRT mechanism. For more information about the proof, the reader is
referred to [83].

4.1.4.5.5 Rate-Monotonic Scheduling

The Rate-Monotonic Scheduling (RMS) mechanism at each interval assigns
priorities to the rate monotonic conventions. In other words, load demands
with shorter remaining load profiles are given higher priorities [81, 84].
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4.1.4.5.6 First In First Out

The First In First Out (FIFO) is one of the conventional scheduling mech-
anisms used in the theory of operating systems. This mechanism for each
prosumer sorts its load demands at each time interval according to their op-
erating start times ostj,i, ∀saj,i ∈ Si [85].

Comparison: Fig. 4.13 pictures a schematic view of applying various LDS
mechanisms on a set of sample load demands during three consecutive time
intervals. Table 4.2 compares these LDS mechanism with respect to relevant
parameters in the framework. Such parameters make a trade-off among LDS
mechanism. Choosing a proper mechanism depends on each prosumer’s
preferences toward operating its appliances and the aggregator’s require-
ments at each time interval.

Table 4.2: Comparison of different LDS mechanisms with respect to relevant parameters in the
framework.

Knapsack EDF LST LRT RMS FIFO

Current time interval X X X X – X
Load demand X – – – – X
Appliance load profile – – X – X –
Operating start time – – – – – X
Operating flexibility – X X X – –
Scalable ∗– X X X X X
Priority-based – X X X X X
ECT-driven X X X X X X
Price-driven X – – – – –
∗ Using evolutionary algorithms can be an option to schedule a scalable number of load
demands with the 0-1 Knapsack mechanism. However, this can be a computationally
expensive way. More discussion will follow in Chapter 6.

4.1.4.6 Optimization Algorithm
Algorithm 4.1 describes how the optimization model, presented in Section
4.1.4.4, is approached. This algorithm consists of three parts: i) load demand
buffering sub-system for handling incoming load demands and actuating the
appliances according to decisions made, ii) the NSGA-III algorithm to ad-
just power actions and schedule the appliances, and iii) communication with
the aggregator, through a VPP, to satisfy remaining demands/sell surplus
energy through the grid. The VPP, its definition, and responsibilities, along
with relevant notations are described in Chapter 5. In Algorithm 4.1, first,
all load demands stored in the IW buffer are controlled with respect to their
shiftability feature. Non-shiftable appliances and those, which hold insuffi-
cient flexibility, are allowed to operate. Then, the ECT is updated accordingly.
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4.1. Prosumers

Next, the NSGA-III generates a set of feasible solutions and forwards them
to the VPP. The VPP, after negotiating with the aggregator, returns the in-
dexes of load demands, which it has agreed with the aggregator on, to be
allowed to operate. The DO, IW, and ECT are updated accordingly. Next
part describes the NSGA-III algorithm and its mechanism in producing the
solutions.

Algorithm 4.1: The main optimization algorithm run by the EMS of each
prosumer ρi ∈ P at each time interval t [4, 5, 8].

1 Register each incoming load demand in the IW buffer (see Fig. 4.12);
2 while IW 6= {} do
3 foreach evj,i ∈ IW do
4 if evj,i.shift = 0∨ flexj,i = 0 then
5 IS = IS∪ evj,i;
6 IW = IW \

{
evj,i

}
;

7 ectSi (t) = ectSi (t)− evj,i.ec;
8 end
9 end

10 Run the NSGA-III to produce `i (t);
11 Determine the reservation behavior pair BP res

i (t);
12 Send `i (t) and BP res

i (t) to the VPP (see Algorithm 5.2);
13 ev{1,2,...},i ←Load demands agreed to be allowed at this time

interval;
14 DO = DO∪ ev{1,2,...},i;

15 IW = IW \
{

ev{1,2,...},i
}

;

16 ectSi (t) = ectSi (t)−∑ ev{1,2,...},i.ec;
17 end

4.1.4.6.1 The Overall Process of the NSGA-III

Multi-Objective Evolutionary Algorithms (MOEAs), due to their indepen-
dent search space structure, are among the most well-known meta-heuristic
search mechanisms utilized for the MOO problems [86]. MOEAs form a
subset of evolutionary computations, in which they generally involve tech-
niques and implementing mechanisms inspired by biological evolutions, such
as reproduction, mutation, recombination, natural selection, and survival of
the fittest. The main advantage of these algorithms, when applied to solve
MOO problems, is the fact that they typically generate sets of solutions,
allowing computation of the entire Pareto-front. This work, by employing
the evolutionary NSGA-III, generates a finite number of non-dominated so-
lutions to optimization problems. This algorithm, to guarantee the diver-
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sity among such solutions, uses a reference-point-based non-dominated sorting
approach. These points are all permutations of extreme values of power
(i.e., min

∀ρi∈P
ℵi (t) , max

∀ρi∈P
ℵi (t) , ∀t ≤ T) and price (i.e., Pl (t) , Pu (t) , ∀t ≤ T)

located on a normalized hyper-plane. Note that each of prosumers and the
aggregator (will be described in Section 4.2) at each time interval run the
NSGA-III independently. The framework for generating the first Pareto-front
is open to use other algorithms.

Algorithm 4.2 explains the procedures of the NSGA-III. The algorithm
starts by generating an initial parent population including Q ∈ N feasible
solutions. Section 4.1.4.6.2 for prosumers and Section 4.2.1.2.1 for the aggre-
gator propose a generic formulation describing the mechanism of producing
these solutions. The fitness value of each solution is a pair by the evaluation
through the relevant objective functions. It continues until the maximum
number of generations W ∈ N is reached. In each generation, the algorithm
produces new solutions (offspring) and updates the parent population. The
diversity of solutions in a population is an important factor in reaching a
near-optimal Pareto-front. To reach such diversity, the NSGA-III uses the
tournament selection, in which it disregards low and keeps solutions with
high fitness value found by then (elitism). To make (possibly better) new
offspring solutions, the algorithm benefits from the linear crossover and uni-
form mutation procedures [4]. Then, it creates reference sets according to
the reference points and associates each Pareto-solution a reference value. To
create new Pareto-fronts, it starts by determining the closest solutions (in the
combined parent and offspring populations) to the reference points using a
niche-preservation operation and places them in the fronts accordingly [67].

Although reaching an optimal balance between the tournament, crossover,
and mutation procedures is a challenging issue, it can, however, be man-
aged by some proper control parameter settings, such as probabilistic exe-
cution [87]. A majority of good solutions survive and the search space re-
mains unexplored when the probability of calling the tournament selection
procedure is very high. On the other hand, most of the objective space is
explored, but the probability of neglecting a majority of good solutions is
relatively high when the probability of calling linear crossover and uniform
mutation procedures is high [88]. To also ensure the satisfaction of all con-
straints described in the optimization models, the NSGA-III in each gener-
ation applies a constraint handling (repairing) procedure on infeasible solu-
tions produced [89]. For more information about this algorithm, the reader
is referred to [4, 9, 67, 89].
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4.1. Prosumers

Algorithm 4.2: The procedure of the NSGA-III.

1 Initialize Q feasible parent solutions (see Section 4.1.4.6.2 for
prosumers and Section 4.2.1.2.1 for the aggregator);

2 Evaluate the fitness pair of these Q parent solutions through the
relevant objective functions (see Equations (4.26) and (4.27) for
prosumers and Equations (4.32) and (4.33) for the aggregator);

3 for A = 1 toW do
4 Run the tournament selection to select U ∈N parent solutions

(elitism);
5 Run the linear crossover with the probability of pc ∈ (0, 1) to

produce C ∈N offspring solutions;
6 Run the uniform mutation with the probability of pm ∈ (0, 1) to

produce M ∈N offspring solutions;
7 Run the constraint handling (repairing) procedure on infeasible

C +M offspring solutions (in the worst case);
8 Evaluate the fitness value of these C +M offspring solutions (see

Line 2);
9 Create reference sets according to the reference points;

10 Associate each Pareto-solution (in Q+U + C +M solutions) a
reference value;

11 Determine the closest solutions to the reference points using a
niche-preservation operation and place them in the fronts
accordingly;

12 Replace the parent solutions with the first Q solutions out of the
sorted Q+U + C +M solutions;

13 end
14 Provide a set of feasible desired solutions existing on the first

Pareto-front;

4.1.4.6.2 Pareto-Solution Formulation for Prosumers

This section defines a generic formulation for Pareto-solutions of prosumers,
which is independent of the algorithm used to produce them. Let

`i (t) =



BP1

i (t) SI1
i (t)

...
...

BPK
i (t) SIK

i (t)


 , (4.29)

BP k
i (t) ,

(
ℵk

i (t) , Pk
i (t)

)
, (4.30)

SIk
i (t) ,





ℵk
i (t)
ℵi(t)

+
Pk

i (t)
Pu(t) ℵk

i (t) > 0,
ℵk

i (t)
ℵi(t)

+ Pl(t)
Pk

i (t)
ℵk

i (t) < 0,
(4.31)
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where `i (t) at each time interval is produced once and is comprised of fea-
sible behavior pairs BP k

i (t) , 1 ≤ k ≤ K. Fig. 4.14 shows how these behav-
ior pairs, according to Equations (4.1)-(4.25) and (4.28), are randomly gen-
erated. `i (t) is sorted descendingly by its second column. Satisfaction in-
dex SIk

i (t) ∈ (0, 2] is a measure of to which extent BP k
i (t) optimizes the

prosumer’s conflicting objectives [9, 40, 41].

Start

Generate a
random ℵk

i (t)
subject to

Equation (4.21)

ℵP2L
i (t) = min

{
∑ ecj,i (t), PVG

i (t)
}

ℵk
i (t) = 0ℵk

i (t) < 0

ℵB2L
i (t) = ∑ ecj,i (t)− ℵP2L

i (t)

ℵG2L
i (t) = min{∑ ecj,i (t)− ℵP2L

i (t) ,ℵk
i (t)}

ℵB2L
i (t) = ∑ ecj,i (t) − ℵP2L

i (t),

ℵP2G
i (t) = min

{
PVG

i (t)− ℵP2L
i (t) ,ℵk

i (t)
}

,

ℵB2G
i (t) = ℵk

i (t) − ℵP2G
i (t)

Run LDS and
update relevant
power actions

accordingly

Feasibility
validated?

Generate a
random Pk

i (t)
subject to

Equation (4.28)

End

Yes

No

Yes

No
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Fig. 4.14: Flow chart of generating a feasible behavior pair BP k
i (t). ∑ ecj,i (t) is the summation

of load demands of appliances with flexj,i (t) = 0. Note that the LDS mechanism is applied on
appliances with flexj,i (t) = 1. Choosing proper power actions to update after running the LDS

depends on ℵk
i (t) (see Section 4.1.4.4 for different power exchange scenarios) [9].
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4.2 Aggregator
The aggregator, which can also act as a balance responsible party [53], holds
no physical connection with the grid and is only responsible for, by trad-
ing prosumers’ flexibilities, making feasible and profitable contracts with
them [9].

4.2.1 Operating Management System
Fig. 4.15 shows the system model and connections of the OMS of the ag-
gregator. The aggregator interacts with its OMS through a GUI. This GUI
provides the aggregator with the possibility of adjusting the ECT policy and
negotiation functions (will be described in Chapter 5). Similar to the EMS
of prosumers, the OMS is a software application running on a gateway (con-
nected to the Internet). The OMS through the Internet communicates with
the grid operator and a VPP, which is acting on behalf of prosumers (will be
described in Chapter 5). The grid operator adjusts its own price offers and
indirectly influences the ECT policy. The aggregator’s MO-MINLP optimiza-
tion model, similar to prosumers’, is solved through the NSGA-III algorithm.
Next parts elaborate the content of the OMS more precisely.

OMS Gateway

Internet

Aggregator

ECT

Algorithm

Optimization
Model

Negotiation

GUI

Logical

Network

Prosumer

Grid 
Operator

VPP

Fig. 4.15: System model and connections of the OMS of the aggregator.
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4.2.1.1 Optimization Model
To enable the aggregator to make the decisions in response to prosumers’
load demands, it runs an optimization model. Let

maximize
{ℵ̃i(t),P̃i(t)}h

i=1

∆τ ×
h

∑
i=1




ℵ̃i (t)×

(
Pl

G (t)− P̃i (t)
)
ℵ̃i (t) > 0,

ℵ̃i (t)×
(

P̃i (t)− Pu

G (t)
)
ℵ̃i (t) < 0,

(4.32)

minimize
{ℵ̃i(t)}h

i=1

−
h

∑
i=1
ℵ̃i (t), (4.33)

subject to





 0 < ℵ̃i (t) ≤ max

∀ρi∈P
ℵi (t)

Pl (t) ≤ P̃i (t) ≤ Pl

G (t)
ℵi (t) > 0, ∀ρi ∈ P ,


 min
∀ρi∈P

ℵi (t) ≤ ℵ̃i (t) < 0

Pu

G (t) ≤ P̃i (t) ≤ Pu (t)
ℵi (t) < 0, ∀ρi ∈ P ,

(4.34)

h

∑
i=1
ℵ̃i (t) + ℵ̃A (t) = 0, (4.35)

∣∣∣∣∣
h

∑
i=1
ℵ̃i (t)

∣∣∣∣∣ ≤ ectHA (t) , (4.36)

where Equation (4.32), by matching the surplus energy with energy short-
age, attempts to maximize its profit while Equation (4.33) aims at mini-
mizing the grid purchase. These objectives are in conflict with each other,
since selling more to buyer prosumers and buying less from seller prosumers
lead to buying more from the grid. ℵ̃i (t) ∈ R (kW) is the amount of
power the aggregator trades with prosumer ρi coupled with a price offer
P̃i (t) ∈ R>0 ($/kWh). Note that Equation (4.34) prevents the aggregator
from requesting buyer prosumers to sell and vice versa. The aggregator has
to exchange ℵ̃A (t) ∈ R (kW) amount of electric power at time interval t with
the grid since, with respect to Equation (4.35), the supply and demand at
each time interval must match in the grid. Pl

G (t) , Pu

G (t) ∈ R>0 ($/kWh) are
grid’s prices for buying/selling energy from/to the aggregator, respectively.
ectHA (t) ∈ R>0 (kW) is the hard ECT (e.g., a substation’s capacity) adjusted
by the aggregator in collaboration with the grid operator.

4.2.1.2 Optimization Algorithm
Similar to prosumers, the aggregator, to randomly generate a set of feasi-
ble non-dominated solutions to its optimization problem, benefits from the
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NSGA-III (see Section 4.1.4.6 for more information about the algorithm).

4.2.1.2.1 Pareto-Solution Formulation for the Aggregator

This dissertation, similar to the generic formulation developed for producing
Pareto-solutions of prosumers, proposes an algorithm-independent model for
producing Pareto-solutions of the aggregator’s optimization model. Let

˜̀A (t) =




B̃M1
A (t) SI1

A (t)
...

...

B̃MK̃
A (t) SI K̃

A (t)


 , (4.37)

B̃Mk̃
A (t) ,




ℵ̃k̃
1 (t) P̃k̃

1 (t)
...

...
ℵ̃k̃

h (t) P̃k̃
h (t)


 , (4.38)

SI k̃
A (t) , 1

h
×

h

∑
i=1





ℵ̃k̃
i (t)

max
∀ρi∈P

ℵi(t)
+ Pl(t)

P̃k̃
i (t)

ℵ̃k̃
i (t) > 0,

ℵ̃k̃
i (t)

min
∀ρi∈P

ℵi(t)
+

P̃k̃
i (t)

Pu(t) ℵ̃k̃
i (t) < 0,

(4.39)

where ˜̀A (t) (produced once at each time interval) defines actions that the
aggregator makes regarding prosumers’ behaviors. Fig. 4.16 shows how be-

havior matrices B̃Mk̃
A (t), 1 ≤ k̃ ≤ K̃ are generated randomly according to

Equations (4.34)-(4.36). The tilde symbol in all notations are related to the ag-

gregator. ˜̀A (t) is sorted descendingly by satisfaction index SI k̃
A (t) ∈ (0, 2]

measuring to which extent the aggregator is satisfied with B̃Mk̃
A (t).

4.3 Conclusions
This chapter develops a holistic SALSA system, which is derived from the for-
mal framework proposed in the previous chapter. It targets two customers
and operations domain. In the first domain, prosumers, as the main actors,
own a set of smart appliances, a PV, and a BESS. To operate these equip-
ment, they interact with EMSs. The aggregator, by using its OMS, responds
requests of OMSs. Therefore, this chapter has led to the following Applica-
tion Level Contributions:
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Start i = 1 i ≤ h

Generate a random{
ℵ̃k̃

i (t) , P̃k̃
i (t)

}

subject to
Equation (4.34)

i = i + 1

Update
ℵ̃A (t) by

Equation (4.35)

Is ectHA (t)
satisfied?

End

Yes

No
No

Yes

Fig. 4.16: Flow chart of generating a feasible behavior matrix B̃Mk̃
A (t).

ALC-1: Design, implementation, and evaluation of the SALSA system con-
sisting of the following high-level features: i) conforming to the hierarchical
grid infrastructure; ii) operating using no forecasting services and historical
data; iii) performing in real-time (one minute to one hour); and iv) following
an easily expandable agent-based modeling design;

ALC-2: Design and support different LDS mechanisms to enable the
load shifting from peak to off-peak periods and develop a novel load
demand buffering sub-system to serve hundreds of thousands of prosumers
(including diverse appliance types);

ALC-3: Model, develop, and implement a novel concept of flexibility
zone for synthesizing diverse flexibility characteristics by the integration
of PVs with BESSs in two MO-MINLP models for prosumers to schedule
their appliances and share their surplus energy with the grid and for the
aggregator to efficiently match prosumers’ demands with surpluses;

ALC-4: Design and implement dynamic ECT policies for prosumers
and the aggregator (complied with the smart grid operating regimes defined
by the USEF) following day-ahead peak consumption, real-time aggregated
load demands, and day-ahead electricity prices.
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Chapter 5

Agent-Based Negotiation
Approach

Prosumers’ rational behaviors are more pronounced when their uncertainty
about the decision space of the aggregator increases. Due to the promising
outlook of introducing prosumers into the smart grid, this dissertation em-
ploys an approach to enable the concurrent negotiation on power and price
issues with packaged offers given that the negotiators have no prior knowledge
about the flexibility information and utility functions of each other [68]. To
model such approach, the following key elements are needed: i) notion of
a solution to the negotiation problem, and ii) negotiation protocol and strat-
egy. The negotiation protocol and strategy define how negotiators provide
and prepare offers, respectively. The content of this chapter originates and
adapts from the following publications:

[9] Armin Ghasem Azar, Hamidreza Nazaripouya, Behnam Khaki, Chi-
Cheng Chu, Rajit Gadh, and Rune Hylsberg Jacobsen, "A Non-Cooperative
Framework for Coordinating a Neighborhood of Distributed Prosumers,"
Submitted to IEEE Transactions on Smart Grid, 2017

5.1 Negotiators
Fig. 5.1 depicts the behavior of work-flow executions in the framework. The
negotiation procedure is conducted between time intervals t and t + ∆τ for
maximum T ∈N iterations (set arbitrarily).

5.1.1 Virtual Power Plant
The framework, to alleviate the challenges of h parallel bilateral negotiations
between prosumers and the aggregator, where each negotiation in the worst
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À

À

Á

Â
Ã

VPP

ρ1

...

ρh

Aggregator Grid

`1 (t),
BP res

1 (t)

k

`h (t),
BP res

h (t)

k′

OV ($)

OA ($)

ℵ̃A (t)

˜̀A (t),

B̃Mres
A (t)

Fig. 5.1: Behavior work-flow of the agents in the framework between each t and t + ∆τ. Pro-
cedures À, Â, and Ã are done only once while Á takes maximum T iterations. Notations are
described in Sections 5.1 and 5.2 [9].

case to reach an agreement can take T iterations, utilizes an intermediate
VPP to negotiate, on behalf of prosumers. Let

OV ($) =



BP k

1 (t)
...

BP k′
h (t)


 , (5.1)

where OV ($) is an offer package sent from the VPP to the aggregator at ne-
gotiation iteration 1 ≤ $ ≤ T . Behavior pairs BP k

1 (t) and BP k′
h (t) point to

rows k and k′ (not necessarily equivalent) in `1 (t) and `h (t), respectively (see
Equation (4.29)). Let

UV (SIV ($)) = 1−

h
∑

i=1

(
1
2 × SIk

i (t)
)2

h
, (5.2)

SIV ($) ,
h⋃

i=1

SIk
i (t), 1 ≤ k ≤ K, (5.3)

where UV ∈ [0, 1) is the VPP’s utility function. We assume a very general
hyper-quadric utility function [90] for negotiators, which is private, continu-
ous, and strictly concave [68]. By “private," negotiators have no knowledge
about other negotiator’s utility function. SIV ($) is the union of satisfaction
indexes of prosumers’ behavior pairs. Superscripts k in SIk

i (t) , ∀ρi ∈ P are
not necessarily equivalent. Let

Ores
V (t) =



BP res

1 (t)
...

BP res
h (t)


 , (5.4)
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BP res
i (t) = (ℵres

i (t) , Pres
i (t)) , (5.5)

ℵres
i (t) =





ℵi (t) ∑
flexj,i(t)=0,
∀saj,i∈SAi

ecj,i (t) ≤ PVG
i (t) ,

ℵi (t) otherwise,

(5.6)

Pres
i (t) =

{
Pl (t) ℵres

i (t) > 0,
Pu (t) ℵres

i (t) < 0, (5.7)

where Ores
V (t) is the reservation offer package of the VPP including pro-

sumers’ reservation behavior pair BP res
i (t). ℵres

i (t) and Pres
i (t) are the reser-

vation power and price offers of prosumer ρi at time interval t. Prosumers in
the worst case have to: i) satisfy appliances with no flexibility remained, and
ii) utilize the electric power generated by the PV completely. The reservation
price offer equals to either the lowest (ℵres

i (t) > 0) or highest (ℵres
i (t) < 0)

possible offerable electricity price, respectively. SIres
V (t), as the satisfaction

index of Ores
V (t), is union of SIres

i (t) ∈ (0, 2] (calculated by Equation (4.31))
associated with BP res

i (t). Any offer package with the utility value less than
UV (SIres

V (t)) is unacceptable to VPP. The VPP in the end of negotiation re-
turns indexes of agreed behavior pairs, i.e., k ≤ K, ∀ρi ∈ P , to the prosumers
(see Fig. 5.1).

5.1.2 Aggregator
Let

OA ($) = B̃Mk̃
A (t) , (5.8)

where OA ($), equivalent to a behavior matrix in ˜̀A (t), is an offer package
sent from the aggregator to the VPP. Let

UA
(
SI k̃
A (t)

)
= 1−

(
1
2
× SI k̃

A (t)
)2

, (5.9)

where UA ∈ [0, 1) is the aggregator’s utility function, which follows the same

rule as prosumers’ [68]. SI k̃
A (t) is the satisfaction index of behavior ma-

trix B̃P k̃
A (t). Let

Ores
A (t) =




B̃P res
1 (t)
...

B̃P res
h (t)


 , (5.10)

B̃P res
i (t) =

(
min
∀ρi∈P

ℵi (t) , Pl (t)
)

, (5.11)
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where Ores
A (t) is the reservation offer package of the aggregator denoting

h × min
∀ρi∈P

ℵi (t) amount of electric power must be exchanged (in the worst

case) with the grid for Pl (t). This reservation offer package is coupled with
a satisfaction index SIres

A (t) ∈ (0, 2] (calculated by Equation (4.39)). Similar
to the VPP, the aggregator will not accept any offer package with the utility
value less than UA (SIres

A (t)). The following part explains the protocol and
strategy the negotiators follow during the negotiation process.

5.2 Negotiation Protocol and Strategy
We employ an alternating-offer protocol [91], where the VPP produces an offer
and the aggregator either accepts it or produces a new one. The negotiation
begins with offer packages produced with the highest possible utility values
and continues with offer packages with lower utility values. It terminates
when: i) an offer on the table is acceptable to both negotiators, or ii) it reaches
iteration T with no offer accepted. Let

OV (1) =



BP1

1 (t)
...

BP1
h (t)


 , (5.12)

OA (1) = B̃M1
A (t) , (5.13)

UV (SIV ($− 1)) ≤ UV (SIV ($)) ≤ UV (SIres
V (t)) , (5.14)

UA (SIA ($− 1)) ≤ UA (SIA ($)) ≤ UA (SIres
A (t)) , (5.15)

where OV (1) and OA (1) are initial preferred offer packages of the VPP and
aggregator, respectively. Since `i (t) , ∀ρi ∈ P and ˜̀A (t) are sorted descend-
ingly, the initial offer packages provide the highest utility value. Negotiators
gradually produce offer packages with lower utility values over negotiation
iterations. They neither propose nor accept any offer package with utility
value lower than their reservation utility value. To propose a new offer pack-
age, they follow the following two consecutive procedures:

5.2.1 Reactive Utility Value Concession
The negotiation approach assumes each negotiator’s utility value obtained
by an agreement is higher than the one with no agreement. Therefore, they
prefer to concede over risking negotiation breakdown. Let

µV ($) = UV (OV (1))−Ores
V (t)×

( $

T
) 1

ε , (5.16)
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µA ($) = UA
(
O1
A (t)

)
−Ores

A (t)×
( $

T
) 1

ε , (5.17)

where µV ($) , µA ($) ∈ [0, 1) are monotonically decreasing time-dependent
concession values of the VPP and aggregator, respectively [68]. Their values
only depend on each negotiator’s reservation utility value and the number of
negotiation iterations passed so far with the decay rate ε ∈ R>0 [92]. As the
second assumption, negotiators are assumed to be reactive. Hence, their con-
cession rate should depend on their perception of the utility value of other
party’s offer packages given: i) whether the current offer of the opponent ne-
gotiator provides higher utility value than the negotiator’s reservation utility
value, and ii) the negotiator’s perception of how much the other party has
conceded. One reason for a negotiator to stop decreasing its desired utility
value over time is to gain higher utility. This happens if the other negotiator,
without realizing that the negotiator has stopped conceding, accepts time-
dependent concession values at all negotiation iterations. This behavior is
called the “deliberate stopping of concession." As a result, Let

κV ($) =
(

UV
(
SI temp
V
)
−UV

(
SI temp′
V

))+
, (5.18)

κA ($) =
(

UA
(
SI temp
A
)
−UA

(
SI temp′
A

))+
, (5.19)

where κV ($) , κA ($) ∈ [0, 1) are reactive concession values of the VPP and ag-
gregator, respectively, and y+ = max {0, y}. The VPP, using Equation (4.31),

calculates SI temp
V and SI temp′

V for OA ($) and OA ($− 1), respectively. The
aggregator, by using Equation (4.39), follows a similar procedure. Then, let

ΠV ($) = min {µV ($) , ΠV ($− 1)− κV ($)} , (5.20)
ΠA ($) = min {µA ($) , ΠA ($− 1)− κA ($)} , (5.21)

where ΠV ($) , ΠA ($) ∈ [0, 1) are desired utility values of the VPP and the
aggregator at iteration $, respectively. Negotiators only accept an offer pack-
age that provides a utility value equal to or higher than their desired utility
value at that iteration.

5.2.2 New Offer Package Generation
Let us assume ZV (t) (including maximum Kh offer packages, see Equa-
tion (4.29)) and ZA (t) (including maximum K̃ possible feasible offer pack-
ages, see Equation (4.37)) are the convex feasible offer package sets of the VPP
and the aggregator, respectively. These offer packages provide negotiators
with utility value equal to or no less than their reservation offer package’s
utility value. For an agreement to exist, let Z (t) = ZV (t)

⋂
ZA (t) 6= ∅, ∀t

remain unchanged during the negotiation, where Z (t) is the zone of agree-
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ment denoting the common intersection of the feasible offer package sets. If
an offer package is within Z (t), a negotiator may not accept it if it yields
a utility value lower than the negotiator’s current desired utility value. To
make an acceptable agreement, negotiators keep conceding to their reserva-
tion utility values subject to the nonempty zone of agreement at each time
interval. Thus, geometrically speaking, in negotiation, the negotiators’ goal is
to find a point in the zone of agreement, under the restriction that this zone is
unknown to negotiators and none of them has any explicit knowledge about
each other’s utility functions [68].

Let $ be the negotiation iteration when it is the VPP’s turn to produce a
new offer package. Let BP k

i (t) ∈ OV ($− 1). The VPP (temporarily) updates
OV ($− 1) with behavior pairs BP k′

i (t) , ∀k + 1 ≤ k′ ≤ K and expands ZV ($)
with the updated offer packages individually only if each returns a utility value
equivalent to ΠV ($). ZV ($) ⊆ ZV (t) , ∀$ ≤ T is the continuously expanding
feasible offer package subset of the VPP. The aggregator at iteration $ + 1

determines k̃ where B̃Mk̃
A (t) ∈ ˜̀A (t). Then, it updates ZA ($ + 1) with new

offer packages B̃Mk̃+1
A (t) , ∀k̃ + 1 ≤ K̃, where each provides the aggregator

with a utility value equal to ΠA ($ + 1). ZA ($) ⊆ ZA (t) , ∀$ ≤ T is the
continuously expanding feasible offer package subset of the aggregator. Let

OV ($) = ϑZV ($)
[ξ ($)] = arg min

q∈ZV ($)
‖q− ξ ($)‖ , (5.22)

OA ($) = ϑZA($)
[ξ ($)] = arg min

q∈ZA($)
‖q− ξ ($)‖ , (5.23)

ξ ($) = ϕV ($)×OV ($− 1) + ϕA ($)×OA ($− 1) , (5.24)
ϕV ($) + ϕA ($) = 1, (5.25)

where ϑ is the operator of projecting the weighted offer package ξ ($), created
based on the latest offers made by all agents, on current continuously expand-
ing feasible offer package subsets ZV ($) and ZA ($) [93]. arg min ‖·‖ is the
Frobenius norm with argument of minimum. Note this method generates an
offer that is acceptable to the negotiator and is closest (in terms of Euclidean
distance) to the weighted offer package ξ ($). ϕV ($) , ϕA ($) ∈ (0, 1) are the
weights that each negotiator puts on the other’s offer package.

In Algorithms 5.1 and 5.2, we provide the pseudo-code for the overall
communication steps and the negotiation approach, respectively. Steps in the
former are in line with the data flow diagram depicted in Fig. 5.1. Fig. 5.2
illustrates a conceptual example of the offer package space during the ne-
gotiation and shows how the VPP and the aggregator negotiate with each
other over, for example, T = 9 iterations [68]. Offer packages existing on
each concession curve have equal utility values. The negotiation terminates
when max {‖OV (9)− ξ (9)‖ , ‖OA (9)− ξ (9)‖} < ∇, which denotes that if
the Euclidean distances between the current iteration’s offer packages and
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the weighted offer package are less than a convergence tolerance ∇ ∈ R>0.

Algorithm 5.1: Communication steps in the framework between time
intervals t and t + ∆τ [9].
// Prosumers’ part;

1 foreach ρi ∈ P do
2 See line 12 in Algorithm 4.1;
3 end
// VPP’s part (i);

4 Determine the reservation offer package Ores
V (t);

5 Produce the first offer package OV (1);
// Aggregator’s part;

6 Run the NSGA-III to produce ˜̀A (t);
7 Determine the reservation offer package Ores

A (t);
8 Produce the first offer package OA (1);
// Negotiation approach;

9 Run Algorithm 5.2 // VPP’s part (ii);
10 Return the indexes of agreed behavior pairs to prosumers (see line 13

in Algorithm 4.1);

5.3 Solution Concept for the Negotiation
Approach

The use of the solution concept in this negotiation approach, where the nego-
tiators have no information about their opponents, is in the spirit of Herbert
Simon [94]. Through computational experiments, The authors in [68] have
demonstrated that such solution concept proposed in the negotiation ap-
proach yields performance sufficiently close to the Nash bargaining solution,
which is a different definition proposed for a proper negotiation solution [95].
The set of points that satisfy Nash bargaining solution’s requirements are all
subsets of the zone of agreement. However, computing them requires that
all the negotiators have complete knowledge of the preference structure and
utility function of the opponents.

The authors in [68] have also analytically proved that: i) the scale of the
utility value of each negotiator is of no critical importance, as long as the
reservation utility value and the scale of concession are consistent with it; ii)
the negotiators, by utilizing the utility value concession strategy described
earlier, converge to an agreement acceptable to all in maximum T iterations,
if the zone of agreement is nonempty and they concede to reservation utility
values in the worst case; and iii) the convergence holds for general concave
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Fig. 5.2: Conceptual example of the offer package space during the negotiation [9].

utility functions as long as all the negotiators concede to their reservation
utilities, irrespective of the specific concession strategy they adopt.

5.4 Conclusions
This chapter proposes a non-cooperative approach for coordinating a neigh-
borhood of prosumers. To take advantage of their consumption and gener-
ation flexibilities, they individually communicating with an aggregator. The
approach, by using the two MO-MINLP models for prosumers and the ag-
gregator developed in the previous chapter, prosumers are able to schedule
their appliances and share surplus power with the grid while the aggregator
controls the power matching over time. To relieve the burden of parallel bilat-
eral communications between prosumers and the aggregator, this approach
employs a VPP, working on behalf of prosumers, to negotiate on packaged
power and price offers with the aggregator subject to having no knowledge
about each other’s preferences and utility functions. Thus, this chapter has
made the following Application Level Contributions:

ALC-5: Materialize the trading of prosumers’ heterogeneous flexibilities
through the negotiation approach;

ALC-6: Model and implement a bilateral multi-issue negotiation ap-
proach to enable the negotiation between a VPP (on behalf of prosumers)
and the aggregator.
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Algorithm 5.2: The negotiation algorithm [9].
1 IsConverge=False;
2 $ = 2;
3 while $ ≤ T and IsConverge=False do
4 Determine agent’s turn by W = mod ($, 2);
5 if W = 0 then // VPP’s turn
6 OA ($) = OA ($− 1);
7 ΠA ($) = ΠA ($− 1);
8 Calculate ΠV ($) by Equation (5.20);
9 for i = 1 to h do

10 Determine k, where BP k
i (t) ∈ OV ($− 1);

11 Otemp
V = OV ($− 1);

12 Found=0;
13 while k + 1 ≤ K do
14 Update Otemp

V with BP k+1
i (t);

15 Calculate SI temp
V for Otemp

V by Equation (5.3);

16 if UV
(
SI temp
V

)
= ΠV ($) then

17 Add Otemp
V to ZV ($);

18 Found=1;
19 k = k + 1;
20 else if Found=1 then
21 k = K;
22 else
23 k = k + 1;
24 end
25 end
26 end
27 Set OV ($) by Equation (5.22);
28 else // Aggregator’s turn
29 OV ($) = OV ($− 1);
30 ΠV ($) = ΠV ($− 1);
31 Set ΠA ($) by Equation (5.21);

32 Determine k̃, where B̃Mk̃
A ∈ ˜̀ (t);

33 Found=0;
34 while k̃ + 1 ≤ K̃ do
35 if SI k̃+1

A (t) = ΠA ($) then
36 Add Ok̃+1

A to ZA ($);
37 Found=1;
38 k̃ = k̃ + 1;
39 else if Found=1 then
40 k̃ = K̃;
41 else
42 k̃ = k̃ + 1;
43 end
44 end
45 Set OA ($) by Equation (5.23);
46 end
47 Set ξ ($) by Equation (5.24);
48 if max {‖OV ($)− ξ ($)‖ , ‖OA ($)− ξ ($)‖} < ∇ then
49 IsConverge=True;
50 else
51 $ = $ + 1;
52 end
53 end
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Chapter 6

Simulation and Discussion

This chapter presents the simulation results and evaluates the performance of
the proposed contributions. It is divided into two main sections: i) defining
economic and environmental assessment metrics for performance evaluation,
and ii) proposing two case studies based on the research progress made dur-
ing the three-year PhD study. The content of this chapter partially originates
and adapts from the following publications:

[1] Armin Ghasem Azar, Rune Hylsberg Jacobsen, and Qi Zhang, "Aggre-
gated Load Scheduling for Residential Multi-Class Appliances: Peak
Demand Reduction," In IEEE International Conference on the European En-
ergy Market (EEM), 2015, pages 1-6, doi: 10.1109/EEM.2015.7216702

[5] Armin Ghasem Azar and Rune Hylsberg Jacobsen, "Appliance Schedul-
ing Optimization for Demand Response," International Journal on Ad-
vances in Intelligent Systems, vol. 2, no 1&2, 2016, pages 50-64, Link to
paper

[8] Armin Ghasem Azar and Rune Hylsberg Jacobsen, "Agent-Based Charg-
ing Scheduling of Electric Vehicles," In IEEE Online Conference on Green
Communications (OnlineGreenComm), 2016, pages 64-69, doi: 10.1109/On-
lineGreenCom.2016.7805408

[9] Armin Ghasem Azar, Hamidreza Nazaripouya, Behnam Khaki, Chi-
Cheng Chu, Rajit Gadh, and Rune Hylsberg Jacobsen, "A Non-Cooperative
Framework for Coordinating a Neighborhood of Distributed Prosumers,"
Submitted to IEEE Transactions on Smart Grid, 2017

6.1 Evaluation Metrics
To verify the effectiveness of the contributions in different directions, the
following assessment metrics are defined.
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Chapter 6. Simulation and Discussion

6.1.1 Environmental Metrics
Environmental metrics are designed to assess the environmental impact of
the SALSA system on the power grid. The impact is primarily related to
using prosumers’ flexibility capabilities and RESs.

6.1.1.1 Peak Demand Reduction
This metric determines how much the proposed framework is successful in
shaving the peak demand. Let

PDR ,




1−
max
∀t

h
∑

i=1

Mi
∑

j=1
ecj,i (t)× decj,i (t)

max
∀t′

h
∑

i=1

Mi
∑

j=1
ecj,i (t′)



× 100, (6.1)

where t and t′ are time intervals, at which the grid confronts the maximum
peak demand with and without using the proposed framework, respectively.
PDR equals to zero, when t = t′.

6.1.1.2 Peak-to-Average Ratio
This metric measures how much higher the peak demand is than average
demands over a single simulation. A high PAR means a large fluctuation in
daily load demand. Let

PAR ,
max
∀t≤T

h
∑

i=1

Mi
∑

j=1
ecj,i (t)× decj,i (t)

T
∑

t=1

h
∑

i=1

Mi
∑

j=1
ecj,i (t)

/

T

. (6.2)

6.1.2 Economic and Profit Metrics
These metrics allow the analysis of economic performance and impact of the
proposed SALSA system on prosumers’ daily life (in terms of load consump-
tion). Their main purpose is to provide the quantitative information needed
to make a judgment on deployment of the SALSA system.
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6.1.2.1 Average Appliance Operation Delay
This metric calculates the delay in delivering appliances in the completed
status. Let

AOD ,

h
∑

i=1

Mi
∑

j=1

(
ε j,i − β j,i

)

h
∑

i=1
Mi

. (6.3)

6.1.2.2 Average Flexibility Usage Rate
This metric considers how much of prosumers’ flexibilities are traded in the
market. Let

FUR ,

h
∑

i=1

Mi
∑

j=1

ε j,i−β j,i
oflj,i−ostj,i

h
∑

i=1
Mi

× 100. (6.4)

6.1.2.3 Average Prosumer Cost-Benefit
This metric evaluates the cost-effectiveness of the framework for prosumers.
It studies how much money they averagely earn/spend with and without ne-
gotiating and exchanging power with the grid. Let

PCB ,




1−
T

∑
t=1

h

∑
i=1

ℵk
i (t)× Pk

i (t)
Mi
∑

j=1
ecj,i (t)× Pu

G (t)



× 100, (6.5)

where k ≤ Ki is the behavior pair index of prosumer ρi, on which the VPP in
the end of negotiation process at time interval t has agreed with the aggrega-
tor. T ≡ HH:MM:SS is the last simulated time interval.

6.1.2.4 Average Self Load-Satisfaction Rate
This metric studies the local energy utilization for prosumers. Let

SLR ,

T
∑

t=1

h
∑

i=1

ℵP2L
i (t)+ℵB2L

i (t)
Mi
∑

j=1
ecj,i(t)+PVG

i (t)+Bd-chg
i

h× T
× 100. (6.6)
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6.1.2.5 Average Self Sufficiency Rate
This metric evaluates PVs’ capability in maximizing the comfort level of pro-
sumers without purchasing any amount of power from the grid. Let

SSR ,

T
∑

t=1

h
∑

i=1

ℵP2L
i (t)+ℵP2B

i (t)
Mi
∑

j=1
ecj,i(t)+PVG

i (t)

h× T
× 100. (6.7)

6.1.3 Computation Time
Measuring the CPU time (or process time) of different parts of the SALSA is
to quantify the overall busyness of the system. This is the time taken from
the start of until the end of a specific part as measured by an ordinary clock.
This metric measures the computation time of the LDS mechanism, NSGA-III
algorithm, negotiation approach, and the total simulation. Note the presence
of each measurement differs in each case study.

6.2 Simulation Case Studies
As Table 6.1 describes, this section presents two simulation case studies ac-
cording to the contributions made during the PhD study. The second case
study is dependent on the first case study. Case studies will be further ex-
plained in Sections 6.2.2.1 and 6.2.2.2.

Table 6.1: Description of simulation case studies.

Case
study

PhD
period

Feature
highlights

Simulation
environment

CS-1 1st and 2nd years • Centralized
• LDS mechanism: All
• ECT policy: All
• Objective: Comfort

• Matlab R2015b
• 4 Intel 2.00 GHz

Core i7-3537U CPUs
• 12 GB memory

CS-2 3rd year • Decentralized
• LDS mechanism: EDF
• ECT policy: ECT-P2
• Objectives: Comfort and

profit
• Integration of PVs and

BESSs with the SALSA
• Bilateral automated

multi-issue negotiation

• Matlab R2017a
• 16 Intel 2.3 GHz

Xeon E5-2686 CPUs
• 64 GB memory
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6.2.1 Simulation Data and Setting
Table 6.2 lists the inputs to simulations, which are assumed constant unless
otherwise stated. For the PV generation profile, the real data captured from
the UCLA Ackerman Union is scaled down from the capacity of 35 kW to
7 kW [10]. Real-time hourly electricity prices are captured from Nord Pool
Spot [96], where

{
Pl (t) , Pu (t)

}
, ∀t and

{
Pl

G (t) , Pu

G (t)
}

, ∀t are adjusted by
fluctuation rates of ±50% and ±20%, respectively [63]. Analyzing the price
formation is beyond the scope of this dissertation. Table 6.3 describes how
consumption scenarios for appliances are created. Start, end, and deadline
flexibility times are randomly generated by the normal distribution N (µ, σ2)
with mean µ ∈ R and variance σ2 > 0. Load profiles of appliances are
captured from [75, 97] with the time resolution of ∆τ = 1 hour. Refrig-
erator operates uninterruptedly with no end and flexibility times. Nissan
Altra is chosen as the electric vehicle with an empty battery at arrival and
fully charged battery at departure [97]. The deadline flexibility concept from
the perspective of the air conditioner is the comfortable temperature range [75],
where 25°C and ±3°C are prosumers’ desired temperature set point and flex-
ibility, respectively. Values for ECTs are defined in each case study.

Table 6.2: Constant input values for the simulation case studies [9].

Parameter Value Parameter Value Parameter Value

∆τ 1 hour ∗PVcap
i 7 kW ∗Bcap

i 13.2 kWh
∗Bchg

i 5 kW ∗Bd-chg
i 5 kW T 50

Q 100 U 20 pc 0.8
pm 0.2 ε 0.8 ∇ 0.01
∗˜̄hi ±3 °C ∗∆h̄i 0.05 °C ∗tspi 25 °C
† ϕV ($) 0.5 † ϕA ($) 0.5 †X (t) {20, 40, 60, 80}%
∗∀ρi ∈ P , †∀$ ≤ T .

Table 6.3: Timetable of generating load demand scenarios of appliances [9].

saj,i ∈ SAi, ∀ρi ∈ P ostj,i β j,i oflj,i

NS i Refrigerator 00:00 N/A N/A

Si

Washing Machine N (10, 3) ostj,i + 02:00 N (16, 4)
Laundry Dryer N (15, 1) ostj,i + 01:30 N (21, 5)
Dishwasher N (17, 2) ostj,i + 01:40 N (23, 2)
Electric Vehicle N (19, 10) ostj,i + 05:00 ∗N (7.5, 1)
HVAC N (9, 1) N (21, 2) 25 °C ± 3 °C

∗The next day.
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6.2.2 Simulation Analysis and Discussion
All statistical results have been averaged over 100 independent simulation
runs. The following parts analyzes the simulation results of the two proposed
case studies (see Table 6.1 for their features). Note that metrics defined in
Sections 6.1.2.4 and 6.1.2.5 are not applicable to the first case study.

6.2.2.1 Case Study 1
Fig. 6.1 shows fluctuations in the aggregated load demands of 100 prosumers
(with and without using the proposed SALSA system) subject to three ECT
policies. Table 6.4 also compares the results of applying these policies on 100
prosumers against the evaluation metrics.

Table 6.4: Comparing three ECT policies against the evaluation metrics. For the LDS mechanism,
0-1 Knapsack is used (Dynamic Programming).

ECT ∗Xi (t) (%) PDR (%) PAR AOD (hrs) FUR (%) PCB (%)

EC
T-

P1

20 11.18 3.00 2.05 24.01 38.92
40 38.83 2.06 1.18 18.71 36.80
60 25.52 2.25 0.48 9.04 34.82
80 11.89 2.45 0.13 2.86 33.81

EC
T-

P2

20 9.51 2.96 2.16 33.68 38.78
40 37.73 2.04 2.15 28.30 37.45
60 29.02 2.32 1.05 18.56 36.03
80 13.22 2.81 1.10 13.23 34.81

EC
T-

P3

– 23.80 2.57 1.48 21.78 42.45

– 100 0 3.21 0 0 –
∗∀ρi ∈ P , ∀t ≤ T.

The peak electricity consumption (in baseline) equals to almost 723 kW
occurring at 18:00. As Fig. 6.1(a) demonstrates, when X = 20%, the SALSA
has been successfully flattened the aggregated consumption between 14:00
and 24:00. However, this flattening causes another peak period happening
between 02:00 to 06:00 (the next day). The reasons are the non-shiftability
feature and deadline/temperature flexibility of some appliances, as the FUR
is higher compared to other ECT percentages (see FUR column of ECT-P1
part in Table 4.1). Furthermore, in this situation, the Knapsack cannot find
any solution for the remaining load demands at some time intervals due to
the low remaining ECT. Consequently, the SALSA has to shift all the re-
maining loads to the next time interval. According to the deadline flexibility
constraint, it must allow some loads to start or to continue their operation
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(a) ECT-P1 (keeping the aggregated load demands below a constant ECT).
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(b) ECT-P2 (keeping the aggregated load demands below the multiplication of the
aggregation of load demands at each time interval and a constant ECT).
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(c) ECT-P3 (following the day-ahead normalized electricity prices over time).

Fig. 6.1: Fluctuations in the aggregated load demands of 100 prosumers (with and without using
the proposed SALSA system) subject to three ECT policies.

apart from the remaining ECT at the next time intervals, which produces
another peak time.

When X = 40%, the Knapsack procedure can permit most of loads to
start or to continue their work at corresponding time intervals, and accord-
ingly, the SALSA should shift only a few remaining load demands to the next
interval. This will decrease the aggregated consumption at peak times and
flatten the aggregated consumption by 38.83%, as represented in Fig. 6.1(b)
and Table 6.4. In addition, no significant achievement is found, when the
ECT increases to 60% 80%. The reason is that most of load demands are
permitted to start or to continue their operation at the time they request.
In this situation, the peak reduction ratio is reduced to 25.52% and 11.89%,
respectively.

The SALSA system behaves similarly, when ECT-P2 is applied. As Fig. 6.1(b)
pictures and the relevant part in Table 4.1 analyzes, ECT-P2 benefits from pro-
sumers’ flexibilities more and provides them with more cost reduction (see
PCB column of ECT-P2 part in Table 4.1). However, in average, PDRs are
slightly lower compared to ECT-P1. Finally, regarding ECT-P3, as Fig. 6.1(c),
although this policy is not as successful as the previous two policies, however,
prosumers face higher PCB. The reason is that the SALSA attempts to shift
load demands from periods with high electricity prices (e.g., 17:00 to 22:00)
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to periods with low prices (e.g., 24:00 to 06:00 in the next day).
Fig. 6.2 compares the computation time of applying the first two ECT

policies on the simulated prosumers. The most important point about the
SALSA system in terms of computational expenses is that it is independent
of the ECT policy applied over time. Computation time of applying ECT-P3
is equivalent to X = 60% in ECT-P1. Note that, according to the definition
provided in Section 6.1.3, only parameters À and Ã are analyzable.

Fig. 6.3 pictures the fluctuations in the aggregated load demands of 100
prosumers with respect to various LDS mechanisms. Table 6.5 compares ap-
plying various LDS mechanisms against the applicable assessment metrics.
Fig. 6.2 compares the computation time of applying each of these LDS mech-
anisms. Interestingly, FIFO dominates other mechanism in terms of PDR but
fails in terms of PCB. Except the 0-1 Knapsack mechanism, others consumer
less computation time, which also results in lower total computation time.
The reason is the NP-Completeness of the Knapsack problem. Utilizing the
Genetic Algorithm due its repetitive nature for finding the optimal solution
in a polynomial time causes the highest computation time compared to other
LDS mechanisms.

Table 6.5: Comparing applying various LDS mechanisms against the applicable assessment
metrics (ECT-P2 with X = 40%).

LDS PDR (%) PAR AOD (hrs) FUR (%) PCB (%)

0-1 Knapsack (∗DP) 37.73 2.04 2.15 28.30 37.45
0-1 Knapsack (†GA) 34.12 2.38 2.29 22.04 34.06

EDF 36.89 2.09 2.19 29.65 36.72
LST 28.97 2.35 2.52 34.40 36.56
LRT 25.04 2.47 1.30 24.36 37.16
RMS 28.37 2.43 3.37 46.97 36.30
FIFO 41.06 1.95 2.01 35.17 31.42

– 0 3.21 0 0 –
∗ Dynamic Programming, † Genetic Algorithm (Matlab Toolbox).

Fig. 6.5 evaluates the trade-off between number of prosumers, time inter-
val resolution, and total simulation time, when ECT-P2 with X = 40% and
EDF mechanism are assumed. Table 6.6 compares the utilization of various
time interval resolutions against the applicable assessment metrics. As time
interval resolution increases, total computation time decreases. Nevertheless,
such increase causes: i) the grid to confront lower PDR and higher PAR, and
ii) prosumers to experience lower FUR, PCB, and AOD.
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(a) ECT-P1.
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(b) ECT-P2.

Fig. 6.2: Computation time of scheduling load demands of 100 prosumers subject to ECT-P1&2.
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Fig. 6.3: Fluctuations in the aggregated load demands of 100 prosumers with respect to various
LDS mechanisms (ECT-P2 with X = 40%).

Table 6.6: Comparing the utilization of various time interval resolutions against the applicable
assessment metrics (ECT-P2 with X = 40% and EDF mechanism are assumed).

∆τ (min) PDR (%) PAR AOD (hrs) FUR (%) PCB (%)

15 33.84 2.85 2.02 29.58 37.68
30 33.61 2.95 1.49 24.02 34.05
45 33.20 3.06 1.33 20.19 32.39
60 32.98 3.16 1.05 16.46 31.35

6.2.2.1.1 Analysis of the Impact of the SALSA System on Charging Schedul-
ing of Electric Vehicles

Recently, the electrification of the current transportation system has emerged
as one of the most crucial challenges in the power grid control. Integrat-
ing an increasing number of environmentally friendly EVs with the current
grid has yielded to the largest share of total energy consumption growth in
the world [43]. Because of this large impact, charging scheduling of EVs is an
important research topic since their uncoordinated charging process can jeop-
ardize the efficiency and reliability of the power grid. For more information,
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Fig. 6.4: Computation time of each LDS mechanism applied on 100 prosumers (ECT-P2 with
X = 40%).

the reader is referred to [8].
Fig. 6.6 pictures the aggregated charging loads of 100 EVs before schedul-

ing (uncoordinated). Fig. 6.7 illustrates EVs’ probability density and real-time
hourly basis electricity prices of Scandinavian countries [96]. Fig. 6.8 shows
the aggregated charging loads of 100 EVs before and after scheduling subject
to ECT-P3 applied over time. The comparison is made according to electric-
ity prices of four Scandinavian countries adjusted in a specific date (May 17,
2016). Table 6.7 analyzes the scheduling performance against the evaluation
metrics defined earlier.

For Denmark, its highest and lowest electricity prices are adjusted al-
most after departure and arrival times, respectively (see Fig. 6.8(a)). Their
difference ratio is 1.95. This results in averagely 3.45% Average Prosumer
Cost-Benefit (PCB) for each prosumer while averagely 5.22% Peak Demand
Reduction (PDR), as pictured in Fig. 6.8(a). This PDR is the result of 10%
Average Flexibility Usage Rate (FUR) and 94.19 minutes of Average Appli-
ance Operation Delay (AOD). Residents provide averagely 932.79 minutes
of flexibility. For instance, a Nissan Altra arrives at 19:00 and will depart
at 08:00 the next day. This includes 780 minutes of flexibility. According
to its charging duration (300 minutes [97]), although its battery can be fully
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Fig. 6.5: Comparing the trade-off between number of prosumers, time interval resolution, and
total simulation time (ECT-P2 with X = 40% and EDF mechanism are assumed).

charged until 24:00, however, charging is continued until almost 01:34 the
next day.

Table 6.7: Performance analysis of the SALSA applied on 100 prosumers (owning only EVs)
against the evaluation metrics [8].

PDR (%) PAR AOD (hrs) FUR (%) PCB (%)

Denmark 5.22 3.12 1.34 10.30 3.45
Norway 20.20 2.45 4.40 28.23 3.58
Finland -11.87 3.89 3.07 20.65 19.53
Sweden 6.63 3.05 1.24 9.40 2.68

For Norway, as Fig. 6.8(b) pictures, PDR is 20.20%. The reason is the
low difference ratio 1.29 in electricity prices (see Fig. 6.7). Having an incon-
siderable fluctuation in electricity prices, ECTs are relatively low (compared
to Denmark), which helps the scheduler shift more charging loads from the
first day to the second day. However, this influences AOD, in which EVs
are delayed averagely 263.40 minutes to fully charge their batteries. PCB is
averagely 3.58%, which is due to the low difference ratio. However, PCB for
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Fig. 6.6: Aggregated charging loads of 100 EVs. Two consecutive days are divided by a vertical
dashed line. EVs arrive in the first day with probability of N (19, 10) and depart the day after
with the probability of N (7.5, 1) [8].

Fig. 6.7: EVs’ probability density and hourly basis electricity prices of four Scandinavian coun-
tries (May 17, 2016) [8].

Danish residents is lower compared to Norwegian residents, which depends
on PDR.

For Finland, as Fig. 6.8(c) shows, there is a significant trade-off between
PCB and PDR. Here, the different ratio is 2.32, which results in 19.53% PCB.
This reduction is the result of using 20% FUR meaning averagely 263.40 min-
utes of AOD. Finland’s electricity prices are higher than other discussing
countries and more fluctuating during arrival times (see Fig. 6.7). This causes
the scheduler not to succeed in shaving the peak, which produces a signifi-
cant rebound peak with -11.87% PDR. This analysis proves that electricity-
price-dependent ECTs significantly behaves differently in these countries.

For Sweden, as Fig. 6.8(d) shows, the evaluation almost equals to the
Denmark (ratio: 1.95). However, the small difference in results is caused by a
small fluctuation in the electricity prices during arrival times.
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(a) Denmark.

(b) Norway.

Fig. 6.9 shows the distribution of charging EVs over time (reflected by
Fig. 6.8). Before scheduling, 61 EVs make the peak demand. PDRs, men-
tioned in Table 6.7, also represent the reduction in the number of charging
EVs. This analysis helps operators configure the grid’s structure efficiently.

Fig. 6.10 presents the charging evolution of a Nissan Altra’s battery. It
arrives at 18:07 on May 17 and departs at 02:32 on May 19. After scheduling,
the charging period is split into 571 one-minute slots starting from 17:01 on
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(c) Finland.

(d) Sweden.

Fig. 6.8: Aggregated charging loads of 100 EVs before and after applying the SALSA system
subject to price-driven ECTs (ECT-P3) [8].

May 18 ending to 02:31 on May 19. From 18:00 to 22:33 on May 18, the battery
remains with 20.28% charge.

As the final step, Fig. 6.11 demonstrates how increasing the number of
prosumers impacts on the performance. Fig. 6.11(a) shows how FUR and
AOD are changed when the number of prosumers increases from 100 to 1000.
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Fig. 6.9: Distribution of charging EVs [8].

Fig. 6.10: Charging evolution of a Nissal Altra EV [8].

Although FURs and AODs behave reversely, however, the result shows that
prosumers benefit more (in terms of AOD) when the DR participation per-
centage increases. FURs increase since the scheduler uses more flexibility to
be able to shave the peak. Nevertheless, since ECTs are higher than the ag-
gregated load consumptions at some intervals (because of previously denied
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and newly received events), more events are responded to operate, which
consequently, leads to a reduction in AODs.

Fig. 6.11(b) complements this analysis based on PCBs and Maximum
Computation Times (MCTs). MCT reports how long it takes for the SALSA
system to return decisions in the worst case. For instance, prosumers in Den-
mark, to receive a response to their load demand requests, averagely wait
for 0.28 seconds. The fluctuating nature of PCBs is due to having: 1) high
ECTs because of the number of prosumers, and 2) more complexity in select-
ing an optimal subset of events at each time interval. PCBs do not follow a
normal and expected behavior compared to others. The ascending slope of
MCTs is a consequence of having more events in the waiting buffer at each
time interval. This indeed makes the scheduling algorithm take longer time
than anticipated to return decisions. However, taking almost only 4 seconds
to schedule 1000 events in the worst case scenario is surprisingly interesting,
which confirms the scalability of the algorithm. In Danish electricity grid’s
infrastructure, averagely 100 prosumers are serviced via a single aggregator
(substation). According to Table 6.7, each prosumer will see a delay of 0.28
seconds to receive a response to each event it sends. Since decision mak-
ing takes place at each sub-station independently, the framework is able to
accommodate for a large number of requests in a fair manner.

6.2.2.2 Case Study 2
The following parts evaluate and analyze the second case study from differ-
ent perspectives.

6.2.2.2.1 Impact of Status of Prosumers on the Negotiation

Fig. 6.12 shows the offer package and utility value (unitless, see (5.2) and (5.9))
concession spaces of randomly picked time interval in different circumstances.
In Fig. 6.12(a), no PVs and BESSs are considered. The VPP, for example at ne-
gotiation iteration $ = 15, is interested in buying 1630 kW of electric power
for 0.0145 $/kWh. The aggregator, at negotiation iteration $ = 16, rejects
this offer and makes a new one intending to sell 2180 kW of electric power
for 0.022 $/kWh. They continue negotiating until iteration $ = 31, at which
they come to an agreement on exchanging 2000 kW of electric power for
0.016 $/kWh. Fig. 6.12(b) shows the negotiation process, where all prosumers
own PV and BESS. They reach an agreement after exactly 100 negotiation it-
erations. Having the same utility value of 0.76 at negotiation iteration $ = 65
does not terminate the process since the VPP provides an offer package with
selling 8385 kW of electric power for 0.0227 $/kWh while the aggregator re-
turns another offer package with buying 4738 kW of electric power for 0.0212
$/kWh.

Fig. 6.12(c) experiences the same setting as Fig. 6.12(b) does, where nego-
tiators reach an agreement after 71 negotiation iterations. Reasons for having
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(a) FUR (FUP) and AOD (AED).

(b) PCB (CCR) and MCT.

Fig. 6.11: Performance analysis based on increasing the number of prosumers [8].

a mixed number of buyer and seller prosumers at this interval are the absence
of PV generation (outside of the PV generation period), presence of BESSs
with average SOC value of 0.48, and having all refrigerators, 23 dishwash-
ers, 12 newly arrived electric vehicles, and all air conditioners in operation.
Therefore, the VPP has to averagely increase the amount of power to sell and
decrease the price offer while the aggregator behaves the other way around.
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(a) All prosumers are buyers.
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(b) All prosumers are sellers.
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(c) Prosumers are mixed.

Fig. 6.12: Offer package (left) and utility value concession (right) spaces in different situations.
Symbols in the offer package spaces, for the sake of simplicity, represent the average values of
columns in the behavior matrices [9].
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6.2.2.2.2 Impact of Penetration of Prosumers on the Negotiation Process
and the Grid

Fig. 6.13 demonstrates how increasing the number of prosumers influences
the computation time and negotiation convergence iteration. Running an in-
dividual instance of NSGA-III for each prosumer and the aggregator, where
population size and number of generations equal 100, takes approximately 7
seconds. To evaluate the practicality of the negotiation approach employed
in the proposed framework with h = 900 prosumers, we simulate two se-
tups: i) parallel bilateral negotiations between prosumers and the aggregato
(with no VPP), and ii) a single bilateral negotiation between the VPP and the
aggregator (introduced here). In the former, CPU and memory usages are
79% and 42 GB, respectively, and reaching agreement at each time interval
takes approximately 75 seconds. In the latter, these values for the gateway
of each party (each prosumer, the VPP, and the aggregator) are 34.6% (of a
single core CPU) and 960 MB, respectively, and the negotiation converges in
approximately 39 seconds.

Table 6.8 evaluates the assessment metrics according to different pene-
tration rates of prosumers. These assessment metrics, due to the presence
of conflicting objectives in the framework, provide prosumers and the ag-
gregator with trade-offs in making decisions. As the number of prosumers
increases, mathematically speaking, the size of the convex feasible offer pack-
ages set ZV (t) , ∀t of the VPP also increases (including maximum Kh offer
packages). This provides the VPP with more opportunities in utilizing pro-
sumers’ flexibilities, which enables it to: i) decrease the delay in satisfying
load demands of appliances in average, ii) increase the PCB, and iii) increase
the PDR. Increasing rates of SLR and SSR also depend on: i) the generation
profiles of PVs in different weather conditions and the BESS capacities, as
discussed in the next section, and ii) decrease in FUR.

Table 6.8: Evaluating the assessment metrics according to different penetration rates of pro-
sumers in the grid [9].

h PDR (%) PAR AOD (hrs) FUR (%) PCB (%) SLR (%) SSR (%)

100 15.19 2.76 3.30 42.00 65.40 10.10 14.03
300 25.90 2.23 2.57 37.39 99.34 12.47 21.29
500 32.19 2.13 2.29 31.91 147.97 15.08 32.51
700 34.78 2.37 1.43 23.12 179.49 19.17 47.46
900 38.46 2.01 1.13 18.75 209.47 24.45 51.21

6.2.2.2.3 Impact of Penetration of PVs and BESSs on Prosumers and the
Grid

Table 6.9 evaluates to which extent the “random distribution of PVs and
BESSs" impacts on the values of assessment metrics. Compared to the setting,
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Fig. 6.13: Total computation and average negotiation convergence times with different number
of prosumers [9].
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where all prosumers own PVs and BESSs (see the first row in Table 6.8), here,
the grid experience lower PDR since the amount of flexibility is restricted.
Decrease in AOD and FUR (due to limited flexibility) increases SLR and SSR
(desire to increase the comfort), since the VPP cooperates with the aggregator
to increase the PDR and PCB.

Table 6.9: Evaluating the assessment metrics according to the presence of PVs and BESSs in the
grid [9].

∀ρi ∈ P PDR (%) PAR AOD (hrs) FUR (%) PCB (%) SLR (%) SSR (%)

Only PV 11.43 2.95 1.56 28.18 46.73 20.16 20.16
Only BESS 33.29 2.08 1.20 11.67 35.46 0.83 0.00
Random 16.32 2.60 1.25 12.91 39.97 6.06 6.51

Table 6.10 analyzes the framework in different weather conditions. Obvi-
ously, fluctuations in the PV generation limits the VPP, in terms of available
flexibility, in negeotiation.

Table 6.10: Evaluating the assessment metrics according to the PV generation profile in different
weather conditions [9].

Weather PDR (%) PAR AOD (hrs) FUR (%) PCB (%) SLR (%) SSR (%)

Sunny 15.19 2.76 3.30 42.00 65.40 10.10 14.03
Cloudy 09.42 2.99 1.33 14.04 37.78 07.15 13.30

Fig. 6.14 shows grid demands for different PV and BESS penetration lev-
els in two sunny and cloudy days. In Fig. 6.14(a), until the time at which
PVs start the power generation (i.e., 07:00), BESSs, by consecutive charging
and discharging, try to regulate the grid demand. The grid confronts lower
demand fluctuation, when there are only PVs in the system (see Fig. 6.14(b)).
However, this setting results in lower PDR for the grid and PCB for pro-
sumers. The reason is that prosumers, due to having no storage flexibility, are
unable to provide the VPP with more flexibility. As Fig. 6.14(c) demonstrates,
prosumers experience lower AOD and PCB. Similarly, the reason is the very
limited amount of flexibility (only consumption flexibility). Table 6.11 evalu-
ates the assessment metrics and Fig. 6.15 shows the average SOCs according
to the various BESS capacities. High BESS capacity provides prosumers with:
i) more flexibility in storing energy, ii) lower AOD, and iii) higher PCB by
selling more to the grid. The VPP, by such increase in the capacity, is able to
provide the grid with more flexibility, which in turn, results in having higher
PDR. BESSs with different capacities behave dissimilarly after PVs stop gen-
erating the electric power (see Fig. 6.15 for 20:00 to 07:00-next day). The
main reason is the arrival of the majority of electric vehicles, which impose
higher load demands to the grid compared to other appliances.

Figs. 6.16 and 6.17 picture the generation profile and utilization distribu-
tion of a PV and a BESS, respectively. Considering Table 6.3, the prosumer
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at 11:00, 15:00, and 19:00 endeavors to satisfy load demands of washing
machine, laundry dryer, and dishwasher, respectively, with PV generation.

96



6.2. Simulation Case Studies

0 2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8

Time Interval [hour]

-600

-400

-200

0

200

400

600

800

1000

1200

G
r
id

 D
e
m

a
n

d
 [

k
W

]

Baseline

Grid Demand

(c) Full penetration of only BESSs.

Fig. 6.14: Grid demand with different penetration levels of PVs and BESSs in two sunny and
cloudy days. Baseline shows load demands of appliances [9].
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Table 6.11: Evaluating the assessment metrics according to various BESSs capacities [9].

Bcap
i , ∀ρi ∈ P PDR (%) PAR AOD (hrs) FUR (%) PCB (%) SLR (%) SSR (%)

13.2 kWh 15.19 2.76 3.30 42.00 65.40 10.10 14.03
26.4 kWh 24.36 2.38 2.00 34.68 102.72 14.84 14.66
39.6 kWh 39.62 1.98 0.58 25.36 165.57 18.12 14.34

At other hours, most of the PV generation is sold to the grid. These time
intervals are also reflected in Fig. 6.17.
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Fig. 6.16: Generation and utilization profiles of the PV of a prosumer [9].

6.2.2.2.4 Impact of Consumption Flexibility of Prosumers on the Negotia-
tion Process and the Grid

Table 6.12 evaluates the assessment metrics, where different sets of appliances
are simulated. Considering only a refrigerator for each prosumer yields no
PDR and delay due to its non-shiftability feature. Adding more shiftable
appliances help prosumers provide the VPP with more consumption flexi-
bilities. This increase has a direct correlation with the AOD and PCB, where
prosumers benefit more while waiting for a longer time to receive their appli-
ances in the completed status. A shiftable appliance contributes to the grid’s
PDR and the prosumer’s PCB with averagely 0.1% and 0.37%, respectively.
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Fig. 6.17: Energy and utilization profiles of the BESS of a prosumer [9].

Table 6.12: Evaluating the assessment metrics according to different sets of appliances [9].

SAi, ∀ρi ∈ P PDR (%) PDR AOD (hrs) FUR (%) PCB (%) SLR (%) SSR (%)

{RG} 0 3.15 0.00 0.00 6.10 2.94 16.58
{RG, WM} 03.42 3.11 0.14 2.39 10.68 3.32 16.35
{RG, WM, LD} 09.22 3.01 0.58 13.19 26.98 6.20 15.39
{RG, WM, LD, DW} 11.63 2.92 1.37 20.90 34.33 8.06 15.14
{RG, WM, LD, DW, EV} 13.24 2.85 2.26 30.27 49.88 9.44 12.24
{RG, WM, LD, DW, EV, AC} 15.19 2.76 3.30 42.00 65.40 10.10 14.03

RG: Refrigerator, WM: Washing Machine, LD: Landry Dryer,
DW: Dish Washer, EV: Electric Vehicle, and AC: Heating, Ventilation, and Air Conditioning.

Fig. 6.18 demonstrates the baseline and reshaped load profiles of appli-
ances of a prosumer (only hours in charge). Consecutive fluctuations in the
baseline profile of the air conditioner is to keep the temperature constant
at 25°C. Air conditioner starts using its temperature flexibility due to the
load demand overlap between the laundry dryer (partly), dishwasher, and
the electric vehicle. For example, the air conditioner between 19:20 and
19:40 attempts to increase the temperature since the laundry dryer has just
finished operating and the operation of dishwasher has been interrupted.

Fig. 6.19 shows the hourly benefit/cost of prosumers with respect to real-
time electricity prices. The baseline points to the case, where there are no
PVs and BESSs simulated. One prosumer, for instance, to satisfy its load
demands without any PV and BESS, has to daily spend (-)$2.59 while holding
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Fig. 6.18: Baseline and reshaped load profiles of appliances of a prosumer [9].

such equipment results in making a benefit of $2.78. Therefore, according
to (6.5), PCB for this prosumer equals to 207.41%. The results confirm that
the prosumers are interested in buying less from the grid, when the electricity
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Fig. 6.19: Hourly benefit/cost of prosumers [9].

prices are relatively high (see 18:00 to 24:00). The reason for buying power
from the grid at 17:00 is the low PV generation, the start time of majority of
dishwashers, and the arrival of some of electric vehicles. The VPP at the next
hour changes its behavior and compensates the cost imposed at the previous
hour. However, since PVs stop generating at 19:00, prosumers have to buy
from the grid since the majority of electric vehicles arrive and intend to charge
immediately. From then on, prosumers, to satisfy their load demands, utilize
their BESSs while trying to sell the surplus energy to the grid simultaneously.

6.2.2.2.5 Scalability of the SALSA

The research, conducted during PhD study, has been in collaboration with
the SEMIAH project. SEMIAH, to determine the potential performance of
the impact of a scalable number of prosumers on the grid, has promised
to deliver a scalable simulation infrastructure for the aggregation of 200.000
prosumers. The deployment of SEMIAH in these households would allow
the shifting of 90 GWh/year of electrical consumption from fossil fuels to
RESs, thereby, reducing the gap between RES produced and consumed [3].
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In order to validate and confirm the scalability of the SALSA system for the
SEMIAH, 1000 aggregators, each of which serving 200 prosumers, are instan-
tiated. Time resolution for running the SALSA is set to 15 minutes. ECT-P2
with percentage of 60% is used. Fig. 6.20 demonstrates the computation time
of scheduling a scalable number of prosumers with the SALSA.
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Fig. 6.20: The computation time of scheduling a scalable number of prosumers with the SALSA.

Referring to simulation environment listed in Table 6.1, once the simula-
tion starts, Matlab picks 16 random aggregators and assigns each aggretgator
to one CPU. Then, each CPU schedules its own prosumers. Once a CPU fin-
ishes scheduling, another random aggregtor is assigned to it. Therefore, at
maximum, 16 × 200 = 3.200 prosumers are scheduled simultaneously. In
fact, a number of back-and-forth messages in each simulation per CPU is
200× 1.538× 15.396 = 153.600, where "8" is the total of six appliances (listed
in Table 6.3) with a PV, and a BESS. Also, "96" is denoted as the number of
intervals during a 24-hour day. Therefore, at each time, at which 16 CPUs are
running the scheduling simultaneously, 16× 153.600 = 2.457.600 messages
are transferred. Three main parameters influence the simulation time: i)
number of aggregators, ii) number of prosumers per each aggregator, and iii)
the time resolution. By decreasing the number of aggregators and increas-
ing the number of prosumers at the same time, the SALSA moves further
towards the complete decentralized solution. For instance, let us consider
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there are 16 aggregators and 12.500 prosumers per each substation. In the
simulation, each aggregator is assigned to each CPU. When the simulation
starts, it runs only once since 16 ∗ 12.500 = 200.000. Therefore, 200.000 house-
holds are scheduled simultaneously in a completely decentralized way. The
interesting achievement here is that by fluctuating the time resolution the to-
tal simulation time also changes. As a result, there is a three-dimensional
trade-off between these three parameters.

6.2.2.2.6 Network Complexity of the SALSA

To analyze the network complexity of the SALSA in a realistic scenario, con-
sider a world with h = 20.000 prosumers interacting with one aggregator (no
VPP is assumed). The size of the private type of a typical prosumer with six
appliances, one PV, and one BESS is approximated to 16 kB at most. As for
the communication network topology, current last-mile technologies include
wireless 4G LTE and fiber optic cables. Nevertheless, as a worst case scenario,
the former is considered. The wireless 4G LTE technology claims 1 Gb/s (125
Mb/s) peak data rate shared among all prosumers within a cell; which it is
assumed to have the capacity of 200 active prosumers (i.e., one cell per 200
active prosumers). Note that time resolution is set to 15 minutes.

One message of size 16 kB is sent over one two-way communication chan-
nel by each prosumer to the aggregator, which take approxiamtely 3 sec-
onds. The highest (and only) computational burden is at the aggregator
node, which has polynomial time complexity and requires an execution time
of approximately 28 seconds.1 The highest required storage at the aggregator
node is also 0.016× 20.000 = 320 MB.. Then, the aggregator returns individ-
ual responses to prosumers in one message over each two-way communica-
tion channel. The time required to send all the 320 MB messages back to the
agents in each round would be (320 MB/message×200 message/cell)/125
MB/s≈ 512 s/cell.

In summary, assuming negligible latency in a 4G LTE network, the whole
process can be achieved in approximately (3 sec.+ 28 sec.+512 sec.)/60 sec/min
= 9.05 minutes which is not an unreasonable computation time in a realistic
setting with 20.000 prosumers.

1The simulation results on the hardware listed in Table 6.1 are just an example for instantia-
tion purposes. For actual systems, the running time would of course be different but as well as
the hardware.
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Chapter 7

Web Applications

This chapter describes the web applications developed during the PhD stud-
ies. It includes two sections: i) the first section proposes an interactive web
service for the SALSA system, and ii) the second section provides a brief de-
scription about an interactive "Microgrid Online Training Center" developed
during the six-month stay at UCLA.

7.1 SALSA Web Service
The web application of the SALSA, developed for the SEMIAH project, is
accessed by browsing salsa.semiah.eu. Fig. 7.1 shows a snapshot of this ap-
plication. As Fig. 7.2 pictures, navigating to "Simulation Case Study" part on
the left side, the case study, entitled "SALSA: A Formal Hierarchical Opti-
mization Framework for Smart Grid," appears.

By clicking on the "Grid Information" button, as Fig. 7.3 shows, the "Popu-
lation" button enables the modification of the set of prosumers and aggregators
in the grid while the "Appliance Set" button enables the incorporation of var-
ious appliances and their penetration rates to prosumers. For the sake of
simplicity, only one aggregator is allowed to be instantiated. For each appli-
ance, e.g., "Refrigerator," it is possible to enable/disable its availability and
define its penetration rate accordingly. Once the "Number of Prosumers" is
defined, more simulation settings appear, as Fig. 7.4 depicts. Each appliance
has a specific setting, as Fig. 7.5 illustrates. Referring to the "Scheduling In-
formation," it defines the ECT policy ("Grid Constraints") and "Scheduling
Time Resolution," as Fig. 7.6 shows.

By clicking on the "Start Scheduling button, a JavaScript code running
in the background forwards the information to the Matlab installed in the
server. If the "individual household analysis," is checked prior to starting the
scheduling, a simulation analysis for the household of each prosumer is made
and shown afterwards. Once scheduling starts, the screen is locked until the
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Fig. 7.1: Snapshot of the web application of the SALSA.

Fig. 7.2: Snapshot of the case study developed for the SALSA during the three-year PhD study.

Matlab returns the results. Waiting time depends on the number prosumers,
appliance set, and time resolution adjusted. Results include the evaluation
of different economic and environmental criteria along with the Excel file of
schedules of the whole grid and each of households. Fig. 7.8 shows schedul-
ing results of two prosumers with full penetration of all appliances. It is
also possible to download the Excel file of schedules, as Fig. 7.9 shows its
snapshot (both the aggregated and individual versions). This file includes
five columns. The first column lists the time intervals. Second column lists
aggregated load demands before scheduling. Third column lists aggregated
load demands after scheduling, which have been satisfied through the grid.
Fourth column lists aggregated load demands after scheduling, which have
been satisfied through PVs installed in households. Finally, fifth column
lists aggregated load demands after scheduling, which have been satisfied
through BESSs installed in households. Fig. 7.10 shows an example of results
for one household.
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(a) Population. (b) Appliance Set.

Fig. 7.3: Snapshot of adjusting the "Grid Information."

Fig. 7.4: Snapshot of different scheduling setting after defining the "Number of Prosumers."
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(a) Refrigerator. (b) Washing Machine. (c) Electric Vehicle.

(d) HVAC. (e) PV. (f) BESS.

Fig. 7.5: Snapshot of the specific setting for each appliance.

(a) ECT Policy (1&3). (b) Time Resolution.

Fig. 7.6: Snapshot of adjusting the "Scheduling Information."
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Fig. 7.7: Snapshot of the "Start Scheduling" button.

(a) Aggregated Consumption. (b) Electricity Cost.

(c) Aggregated Peak Demand. (d) Computation Time.

Fig. 7.8: Performance of the SALSA from grid’s point of view according to different criteria.

7.2 Microgrid Online Training Center
The web address for the developed web application has been excluded due to
data export regulations in United States. Nowadays, the demand for electric
vehicles is increasing. Although this will add new features to the distribu-
tion grid management, however, it can also bring challenging issues at the
same time. The "Microgrid Online Training Center" is a user-interactive web
service that is designed to help non-expert users understand the energy flow,
timing, and performance of a microgrid. It simulates a microgrid integrated
with three different components: PVs, BESSs, and Electric Vehicle Supply
Equipments (EVSEs). For information about the components, the reader is
referred to Sections 4.1.2, Section 4.1.3, and [98], respectively. Fig. 7.11 shows
a snapshot of the Microgrid Online Training Center.
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Fig. 7.9: Snapshot of the Excel file of schedules.

These components are managed through a Control System. The overall
goal of the control system is to reduce the EVSE demand by optimally man-
aging energy fed from the PV and BESS. The control system, to satisfy the
EVSE demand, will try to utilize the energy from the PV and BESS (if possi-
ble). This applications employs two variations of the SALSA system, named
"Real-Time" and "PV Power Integration." The first one attempts to satisfy the
EVSE load consecutively over time while the second one shifts all demands
until a certain percentage of PV peak production is reached. Lastly, to meet
the remaining EV demand, it would utilize the energy from the grid. The
control center allows users to adjust parameters of each component. Once
parameters are entered, the back-end of the Online Training Center will start
simulating, and then, displaying simulation results through a user-interactive
plot. The user can study the impacts of such components on the microgrid
according to different simulation parameters. The overall goal of the Online
Training Center is to provide users with visual simulation results to have
a fundamental understanding about microgrid. Fig. 7.12 shows the control
center configuration. Fig. 7.13 shows the simulation result. PV capacity is
10 kW. A 10kWh BESS is assumed to discharge and charge once over a day.
Charging is done during the midnight when electricity prices and peak de-
mand are low. Its minimum and maximum SOCs are set to 10% and 100%,
respectively.

7.3 Conclusion
This chapter has led to the following Application Level Contribution:
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(a) Aggregated Consumption. (b) Resource Usage.

(c) PV Profile and Usage. (d) Electricity Consumption Cost.

ALC-7: Develop and implement two interactive web services for: i) the
SALSA system, which is accessible at salsa.semiah.eu, and ii) a microgrid
online training center hosted at UCLA SMERC.

111

http://salsa.semiah.eu


Chapter 7. Web Applications

(e) Peak Consumption. (f) Appliance Serving Delay.

(g) Appliance Flexibility Usage. (h) Refrigerator Profile.
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(i) Washing Machine Profile. (j) Electric Vehicle Profile.

(k) House Temperature.

Fig. 7.10: Performance and impact of the SALSA on a prosumer’s daily consumption.
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Fig. 7.11: Microgrid Online Training Center.

Fig. 7.12: Control Center Configuration.
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(a) Real-time algorithm.

(b) PV power integration algorithm (Maximum peak percentage for shifting is 100%).

Fig. 7.13: Grid’s status using different algorithms.
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Chapter 8

Conclusions and Future Work

This chapter concludes the summary part of this dissertation and presents
an overview of the contributions. It is finalized with a discussion on future
work.

8.1 Contributions Overview
The research hypotheses of the dissertation, as described in Section 1.2, have
been addressed with 10 scientific contributions. Each of these contributions
has been presented in publications, as shown in Table 8.1. The table shows
the level that each publication has supported each contribution: Low (L),
Medium (M), or High (H). Note that all of these 10 contributions have mainly
been addresses in this dissertation with a high level.

The contributions fall in the following categories according to three re-
search hypotheses: i) formal framework for smart grid applications, which is
addressed in Chapter 3, ii) the SALSA system, which is addressed in Chap-
ters 4 and 7, and iii) the bilateral multi-issue negotiation approach, which is
addressed in Chapter 5. Fig. 8.1 shows an overview of the different contribu-
tions and how they relate to each other. Fig. 8.2 illustrates the decision tree of
relationship between research hypotheses and corresponding contributions
through doughnut pie charts. The relationship of parts to the whole in each
chart defines the time-driven impact and influence of the contribution on
the relevant research sub-hypothesis. The 10 contributions of this PhD dis-
sertation have addressed different aspects of the research hypotheses. The
research carried out has been evaluated in Chapter 6 following different case
studies and assessment criterion. For all of these reasons, the sole author of
this document believes that the hypotheses have been validated. The follow-
ing parts briefly overview the contributions.

117



Chapter 8. Conclusions and Future Work

Table 8.1: Traceability between research contributions and publications. Each publication can
support a contribution at three different levels: High (H), Medium (M) and Low (L).

Res. Cont. [1] [2] [3] [5] [6] [7] [8] [9] PhD Diss.

SLC-1 – – – L L H M M H
SLC-2 – – – – – H L L H
SLC-3 – – – – – H L L H
ALC-1 M L L H M M H H H
ALC-2 L L – M L L M H H
ALC-3 L L L M M L L H H
ALC-4 H H L H L M H H H
ALC-5 – – – – – – – H H
ALC-6 – – – – – – – H H
ALC-7 – – – – – H – – H

RH-2

RH-3

SLC-1

SALSA

RH-1

SLC-2

SLC-3

ALC-7

ALC-5

ALC-6

Chapter 3 Chapters 4 & 5 & 7

System Level 
Contributions

Application Level 
Contributions

ALC-4 ALC-3

ALC-2ALC-1

Fig. 8.1: Overview of the contributions of this PhD dissertation and their linking.
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RH-1 RH-3

SLC-1 SLC-3

Hypotheses and Contributions

RH-2

SLC-2 ALC-5 ALC-6ALC-1 ALC-2 ALC-3 ALC-4 ALC-7

Fig. 8.2: Decision tree of research hypotheses and contributions.

8.1.1 Formal Framework for Smart Grid
This category of research hypothesis made the following contributions:

SLC-1: Propose a generic formal framework by providing a smooth way to
describe smart grid elements, domains, and their interactions;

SLC-2: Develop and formulate three essential smart grid aspects, i.e.,
hardware, software, and network, to demonstrate the formal framework’s
scalability, reusability, interoperability, and updatability;

SLC-3: Model, design, and develop two novel UML smart grid profiles to
map the formal framework into various smart grid applications.

A formal framework for modeling the main semantics of smart grid sys-
tems, with an emphasis on the customers and operations domains, have been
defined and mathematically formalized (see Section 3.2 for more informa-
tion). Two novel UML profiles, shown in Figs. 3.3 and 3.4, were developed
to integrate smart grid aspects into the generic formal framework profile and
to support the implementation of the framework, reflect the mathematical
formulas, and create formal grid models. To prove the validity of the formal
framework in building an efficient simulator for smart grid applications, a
case study was proposed in Chapter 3 demonstrating how to synthesize the
formal framework into an executable code.

8.1.2 The SALSA System
This category of research hypothesis made the following contributions:
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ALC-1: Design, implementation, and evaluation of the SALSA system con-
sisting of the following high-level features: i) conforming to the hierarchical
grid infrastructure; ii) operating using no forecasting services and historical
data; iii) performing in real-time (one minute to one hour); and iv) following
an easily expandable agent-based modeling design;

ALC-2: Design and support different LDS mechanisms to enable the
load shifting from peak to off-peak periods and develop a novel load
demand buffering sub-system to serve hundreds of thousands of prosumers
(including diverse appliance types);

ALC-3: Model, develop, and implement a novel concept of flexibility
zone for synthesizing diverse flexibility characteristics by the integration
of PVs with BESSs in two MO-MINLP models for prosumers to schedule
their appliances and share their surplus energy with the grid and for the
aggregator to efficiently match prosumers’ demands with surpluses;

ALC-4: Design and implement dynamic ECT policies for prosumers
and the aggregator (complied with the smart grid operating regimes defined
by the USEF) following day-ahead peak consumption, real-time aggregated
load demands, and day-ahead electricity prices,

ALC-7: Develop and implement two interactive web services for: i)
the SALSA system, which is accessible at salsa.semiah.eu, and ii) a microgrid
online training center hosted at UCLA SMERC.

The SALSA system has been derived from the formal framework pro-
posed in Chapter 3. This system conforms to the hierarchical grid infrastruc-
ture and enables an easy expansion approach due to its agent-based modeling
design. It has three main features: i) it operates without using any forecasting
services, ii) it is independent of any historical data (in both prosumers and
aggregators layers), and iii) it is capable of performing in real-time. SALSA
is able to manage multi-class smart appliances. The shiftability feature of
appliances helps it incentivize prosumers to modify their load consumption
scenarios over time. This modification provides the grid with an opportunity
to flatten the grid demand by shifting loads from peak to off-peak periods.
This is done using a negotiation between prosumers and an aggregator. Be-
side proposing consumption-based flexibility types (shiftability), integrating
PVs and BESSs with the SALSA system provides prosumers with more flex-
ibility types, i.e., generation and storing. This integration has resulted in a
new concept for prosumers named flexibility zone. This zone mathematically
formulates the feasible integrated region of flexibilities over time. Prosumers,
by modifying their load consumption scenarios, aim at reducing their elec-
tricity cost. However, some appliances are non-shiftable and some may have
limited amount of flexibility. Therefore, the SALSA system follows a bound-
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ary to keep the aggregated load demands below dynamic ECTs over time.
This concept supports various policies, such as coupling with electricity pric-
ing strategies or PV production profile.

To enable the SALSA to serve a scalable number of appliances in the grid,
this dissertations developed a load demand buffering sub-system. It classifies
load demands according to their shiftability feature and remaining flexibility.
Non-shiftable appliances and those, which have insufficient amount of flexi-
bility remained, are immediately allowed to operate. Others wait until EMSs
makes decisions according to the grid situation at that time interval.

Incorporating all contributions made so far, the SALSA system developed
a decentralized Multi-Objective Mixed Integer Nonlinear Programming op-
timization model for prosumers. This model is responsible for providing
prosumers with a set of feasible solutions. Each solution defines actions to be
taken in response to load demands, PV generation, and BESS status at each
time interval. This optimization model is also integrated with diverse LDS
mechanism, e.g., 0-1 Knapsack, EDF, etc. Each mechanism has specific fea-
tures for scheduling load demands. For instance, the 0-1 Knapsack approach
tries to operate as many load demands as possible subject to 1its capacity
(equivalent to the ECT). On the other side, the EDF mechanism sorts load
demands according to their remaining flexibility from the current time inter-
val. For more information regarding other mechanism, the reader is referred
to Section 4.1.4.3. Achievements provided in Section 4.2.1.1 have proposed a
similar MO-MINLP optimization model for the aggregator. This model, by
aiming at maximizing the profit and minimizing the grid purchase simulta-
neously, is responsible for matching prosumers’ demand with surplus subject
to ECTs over time.

Finally, the SALSA provides two web services, where a combination of
JavaScript, PHP, and Matlab code orchestrate various contributions in an in-
teractive way.

8.1.3 The Bilateral Multi-Issue Negotiation Approach
This category of research hypothesis made the following contributions:

ALC-5: Materialize the trading of prosumers’ heterogeneous flexibilities
through the negotiation approach.

ALC-6: Model and implement a bilateral multi-issue negotiation ap-
proach to enable the negotiation between a VPP (on behalf of prosumers)
and the aggregator.

This category proposed a bilateral multi-issue negotiation approach in a
non-cooperative environment. This approach follows the two MO-MINLP
optimization models studied in the previous section. To relieve the burden
of parallel bilateral communications between prosumers and the aggregator,
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this approach employs an efficient negotiation approach, in which a Virtual
Power Plant, on behalf of prosumers, negotiate on packaged power and price
offers with the aggregator subject to having no knowledge about each other’s
preferences and utility functions. This approach utilizes an alternating offer
package production protocol and a reactive utility value concession strategy,
where none of the negotiators has incentive to deliberately stop conceding
while the zone of agreement must remain nonempty.

8.2 Future Work
There are different directions of future work that either build on top of the
developed research or explore new challenges brought to light during this
PhD studies.

As possible future work for the first research hypothesis, to confirm the
generality and re-usability of the framework in different directions, more sys-
tems, similar to the SALSA, should be investigated. Furthermore, to evaluate
how efficient the framework behaves in a simulated ICT-based power grid
environment, smart grid communication protocols will be necessary to inte-
grate with the framework (updating the network aspect). At the moment, the
code is not automatically generated by the framework, but manually mapped
from the UML model to Matlab code. This method can be promoted by an
automatic code generation tool, e.g., Acceleo, which is an open-source code
generator allowing researchers to use a model-driven approach to build ap-
plications.

For the SALSA system, it is left for future work to: i) apply learning and
forecasting approaches to enhance the load demand scheduling efficiency,
ii) investigate the correlation between the flexibility zone, PV capacity and
BESS sizing, and iii) analyze the sensitivity of rapid change in prosumers’
flexibilities on their comfort level and profit as well as on the grid status.

Finally, for the third research hypothesis, future work will focus on adding
a negotiation level between aggregators, integrating industrial and commer-
cial prosumers, where their intermittent load consumptions and power gen-
erations can lead to a difficulty in balancing supply and demand, and in-
vestigating the network performance and communication delays between the
hierarchical agents in the power grid.
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W. Lehner, T. B. Pedersen, Y. Pitarch, L. Šikšnys et al., “Data Manage-
ment in the Mirabel Smart Grid System,” in Joint EDBT/ICDT Workshops.
ACM, 2012, pp. 95–102.

[35] J. Hu, S. You, M. Lind, and J. Ostergaard, “Coordinated Charging of
Electric Vehicles for Congestion Prevention in the Distribution Grid,”
IEEE Transactions on Smart Grid, vol. 5, no. 2, pp. 703–711, 2014.

[36] S. Rahnama, S. E. Shafiei, J. Stoustrup, H. Rasmussen, and J. Bendtsen,
“Evaluation of Aggregators for Integration of Large-Scale Consumers
in Smart Grid,” IFAC Proceedings Volumes, vol. 47, no. 3, pp. 1879–1885,
2014.

[37] P. Siano, “Demand Response and Smart grids—A Survey,” Renewable
and Sustainable Energy Reviews, vol. 30, pp. 461–478, 2014.

[38] A. Di Giorgio and L. Pimpinella, “An Event Driven Smart Home Con-
troller Enabling Consumer Economic Saving and Automated Demand
Side Management,” Applied Energy, vol. 96, pp. 92–103, 2012.

[39] Y. Wang, I. R. Pordanjani, and W. Xu, “An Event-Driven Demand Re-
sponse Scheme for Power System Security Enhancement,” IEEE Transac-
tions on Smart Grid, vol. 2, no. 1, pp. 23–29, 2011.

[40] T. AlSkaif, A. C. Luna, M. G. Zapata, J. M. Guerrero, and B. Bel-
lalta, “Reputation-Based Joint Scheduling of Households Appliances
and Storage in a Microgrid With a Shared Battery,” Energy and Build-
ings, vol. 138, pp. 228–239, 2017.

[41] T. AlSkaif, M. G. Zapata, and B. Bellalta, “A Reputation-Based Cen-
tralized Energy Allocation Mechanism for Microgrids,” in IEEE Interna-
tional Conference on Smart Grid Communications (SmartGridComm), 2015,
pp. 416–421.

126



References

[42] N. G. Paterakis, O. Erdinç, I. N. Pappi, A. G. Bakirtzis, and J. P. Catalão,
“Coordinated Operation of a Neighborhood of Smart Households Com-
prising Electric Vehicles, Energy Storage and Distributed Generation,”
IEEE Transactions on Smart Grid, vol. 7, no. 6, pp. 2736–2747, 2016.

[43] J. C. Mukherjee and A. Gupta, “A Review of Charge Scheduling of Elec-
tric Vehicles in Smart Grid,” IEEE Systems Journal, vol. 9, no. 4, pp. 1541–
1553, 2015.

[44] F. Rassaei, W.-S. Soh, and K.-C. Chua, “Demand Response for Residen-
tial Electric Vehicles With Random Usage Patterns in Smart Grids,” IEEE
Transactions on Sustainable Energy, vol. 6, no. 4, pp. 1367–1376, 2015.

[45] H. Mohsenian-Rad and M. Ghamkhari, “Optimal Charging of Electric
Vehicles With Uncertain Departure Times: A Closed-Form Solution,”
IEEE Transactions on Smart Grid, vol. 6, no. 2, pp. 940–942, 2015.

[46] Z. Xu, W. Su, Z. Hu, Y. Song, and H. Zhang, “A Hierarchical Framework
for Coordinated Charging of Plug-in Electric Vehicles in China,” IEEE
Transactions on Smart Grid, vol. 7, no. 1, pp. 428–438, 2016.

[47] Y. He, B. Venkatesh, and L. Guan, “Optimal Scheduling for Charging
and Discharging of Electric Vehicles,” IEEE Transactions on Smart Grid,
vol. 3, no. 3, pp. 1095–1105, 2012.

[48] S. Deilami, A. S. Masoum, P. S. Moses, and M. A. Masoum, “Real-Time
Coordination of Plug-in Electric Vehicle Charging in Smart Grids to Min-
imize Power Losses and Improve Voltage Profile,” IEEE Transactions on
Smart Grid, vol. 2, no. 3, pp. 456–467, 2011.

[49] A. Veit and H.-A. Jacobsen, “Multi-Agent Device-Level Modeling Frame-
work for Demand Scheduling,” in IEEE International Conference on Smart
Grid Communications, 2015, pp. 169–174.

[50] J. Hu, H. Morais, M. Lind, and H. W. Bindner, “Multi-Agent Based Mod-
eling for Electric Vehicle Integration in a Distribution Network Opera-
tion,” Electric Power Systems Research, vol. 136, pp. 341–351, 2016.

[51] I. G. Unda, P. Papadopoulos, S. Skarvelis-Kazakos, L. M. Cipcigan,
N. Jenkins, and E. Zabala, “Management of Electric Vehicle Battery
Charging in Distribution Networks With Multi-Agent Systems,” Electric
Power Systems Research, vol. 110, pp. 172–179, 2014.

[52] S. R. Griful, “System Design and Evaluation for Residential Demand
Response,” PhD Dissertation, Aarhus University, 2016.

[53] S. M. Nosratabadi, R.-A. Hooshmand, and E. Gholipour, “A Comprehen-
sive Review on Microgrid and Virtual Power Plant Concepts Employed
for Distributed Energy Resources Scheduling in Power Systems,” Renew-
able and Sustainable Energy Reviews, vol. 67, pp. 341–363, 2017.

127



References

[54] I. Atzeni, L. G. Ordóñez, G. Scutari, D. P. Palomar, and J. R. Fonollosa,
“Noncooperative and Cooperative Optimization of Distributed Energy
Generation and Storage in the Demand-Side of the Smart Grid,” IEEE
Transactions on Signal Processing, vol. 61, no. 10, pp. 2454–2472, 2013.

[55] G. d. O. e Silva and P. Hendrick, “Lead–Acid Batteries Coupled With
Photovoltaics for Increased Electricity Self-Sufficiency in Households,”
Applied Energy, vol. 178, pp. 856–867, 2016.

[56] E. Nyholm, J. Goop, M. Odenberger, and F. Johnsson, “So-
lar Photovoltaic-Battery Systems in Swedish Households–Self-
Consumption and Self-Sufficiency,” Applied Energy, vol. 183, pp.
148–159, 2016.

[57] K. Worthmann, C. M. Kellett, P. Braun, L. Grüne, and S. R. Weller, “Dis-
tributed and Decentralized Control of Residential Energy Systems Incor-
porating Battery Storage,” IEEE Transactions on Smart Grid, vol. 6, no. 4,
pp. 1914–1923, 2015.

[58] Q. D. La, Y. W. E. Chan, and B.-H. Soong, “Power Management of Intel-
ligent Buildings Facilitated by Smart Grid: A Market Approach,” IEEE
Transactions on Smart Grid, vol. 7, no. 3, pp. 1389–1400, 2016.

[59] T. AlSkaif, M. G. Zapata, B. Bellalta, and A. Nilsson, “A Distributed
Power Sharing Framework Among Households in Microgrids: A Re-
peated Game Approach,” Computing, vol. 99, no. 1, pp. 23–37, 2017.

[60] T. Taniguchi, K. Kawasaki, Y. Fukui, T. Takata, and S. Yano, “Automated
Linear Function Submission-Based Double Auction as Bottom-Up Real-
Time Pricing in a Regional Prosumers’ Electricity Network,” Energies,
vol. 8, no. 7, pp. 7381–7406, 2015.

[61] K. Rahbar, C. C. Chai, and R. Zhang, “Energy Cooperation Optimization
in Microgrids with Renewable Energy Integration,” IEEE Transactions on
Smart Grid, 2016.

[62] B. Gao, X. Liu, W. Zhang, and Y. Tang, “Autonomous Household Energy
Management Based on a Double Cooperative Game Approach in the
Smart Grid,” Energies, vol. 8, no. 7, pp. 7326–7343, 2015.

[63] A. Sha and M. Aiello, “A Novel Strategy for Optimising Decentralised
Energy Exchange for Prosumers,” Energies, vol. 9, no. 7, p. 554, 2016.

[64] N. Liu, X. Yu, C. Wang, C. Li, L. Ma, and J. Lei, “Energy Sharing Model
With Price-Based Demand Response for Microgrids of Peer-to-Peer Pro-
sumers,” IEEE Transactions on Power Systems, vol. 32, no. 5, pp. 3569–
3583, 2017.

128



References

[65] Y. Zhou, S. Ci, H. Li, and Y. Yang, “A New Framework for Peer-to-
Peer Energy Sharing and Coordination in the Energy Internet,” in IEEE
International Conference on Communications (ICC), 2017, pp. 1–6.

[66] M. Vinyals, M. Velay, and M. Sisinni, “A Multi-Agent System for En-
ergy Trading Between Prosumers,” in 14th International Conference on
Distributed Computing and Artificial Intelligence, vol. 620. Springer, 2018,
p. 79.

[67] K. Deb and H. Jain, “An Evolutionary Many-Objective Optimization
Algorithm Using Reference-Point-Based Nondominated Sorting Ap-
proach, Part I: Solving Problems With Box Constraints,” IEEE Transac-
tions on Evolutionary Computation, vol. 18, no. 4, pp. 577–601, 2014.

[68] R. Zheng, T. Dai, K. Sycara, and N. Chakraborty, “Automated Multi-
lateral Negotiation on Multiple Issues with Private Information,” IN-
FORMS Journal on Computing, vol. 28, no. 4, pp. 612–628, 2016.

[69] E. Ernst, “Separation of Concerns,” in AOSD Workshop on Software-
Engineering Properties of Languages for Aspect Technologies (SPLAT), 2003.

[70] International Electrotechnical Commission (IEC), “IEC 61970: Energy
Management System Application Program Interface (EMS-API) - Part
301: Common Information Model (CIM) Base,” Technical Report, 2009.

[71] E. Ebeid, S. Rotger-Griful, S. A. Mikkelsen, and R. H. Jacobsen, “A
Methodology to Evaluate Demand Response Communication Protocols
for the Smart Grid,” in IEEE International Conference on Communication
Workshop (ICCW), 2015, pp. 2012–2017.

[72] V. Alagar and K. Periyasamy, “Extended Finite State Machine,” in Spec-
ification of Software Systems, ser. Texts in Computer Science. Springer
London, 2011, pp. 105–128.

[73] A. Soares, Á. Gomes, and C. H. Antunes, “Categorization of Residential
Electricity Consumption as a Basis for the Assessment of the Impacts of
Demand Response Actions,” Renewable and Sustainable Energy Reviews,
vol. 30, pp. 490–503, 2014.

[74] S. Bera, S. Misra, and D. Chatterjee, “C2C: Community-Based Cooper-
ative Energy Consumption in Smart Grid,” IEEE Transactions on Smart
Grid, 2017.

[75] M. Pipattanasomporn, M. Kuzlu, S. Rahman, and Y. Teklu, “Load Pro-
files of Selected Major Household Appliances and Their Demand Re-
sponse Opportunities,” IEEE Transactions on Smart Grid, vol. 5, no. 2, pp.
742–750, 2014.

129



References

[76] M. Pipattanasomporn, M. Kuzlu, and S. Rahman, “An Algorithm for In-
telligent Home Energy Management and Demand Response Analysis,”
IEEE Transactions on Smart Grid, vol. 3, no. 4, pp. 2166–2173, 2012.

[77] S. Shao, M. Pipattanasomporn, and S. Rahman, “Development of
Physical-Based Demand Response-Enabled Residential Load Models,”
IEEE Transactions on Power Systems, vol. 28, no. 2, pp. 607–614, 2013.

[78] I. Atzeni, L. G. Ordóñez, G. Scutari, D. P. Palomar, and J. R. Fonol-
losa, “Demand-Side Management via Distributed Energy Generation
and Storage Optimization,” IEEE Transactions on Smart Grid, vol. 4, no. 2,
pp. 866–876, 2013.

[79] K. Deb, “Multi-Objective Optimization,” in Search Methodologies.
Springer, 2014, pp. 403–449.

[80] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack problems. Springer
Science & Business Media, 2013.

[81] G. Buttazzo, Hard Real-Time Computing Systems: Predictable Scheduling
Algorithms and Applications. Springer Science & Business Media, 2011,
vol. 24.

[82] G. T. Costanzo, G. Zhu, M. F. Anjos, and G. Savard, “A System Ar-
chitecture for Autonomous Demand Side Load Management in Smart
Buildings,” IEEE Transactions on Smart Grid, vol. 3, no. 4, pp. 2157–2165,
2012.

[83] J. Lee, “Time-Reversibility for Real-Time Scheduling on Multiprocessor
Systems,” IEEE Transactions on Parallel and Distributed Systems, vol. 28,
no. 1, pp. 230–243, 2017.

[84] T. A. AlEnawy and H. Aydin, “Energy-Aware Task Allocation for Rate
Monotonic Scheduling,” in 11th IEEE Real Time and Embedded Technology
and Applications Symposium (RTAS), 2005, pp. 213–223.

[85] S. Salinas, M. Li, P. Li, and Y. Fu, “Dynamic Energy Management for
the Smart Grid With Distributed Energy Resources,” IEEE Transactions
on Smart Grid, vol. 4, no. 4, pp. 2139–2151, 2013.

[86] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. John
Wiley & Sons, 2001, vol. 16.
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Abstract—The Smart Grid represents an unprecedented 
opportunity to move the energy industry into a new era. In this 
context, Demand Response programs provide mechanisms to 
regulate the power demand through load control according to 
conditions of the supply side, where consumers can efficiently 
schedule the operation of their appliances. This paper has 
proposed an efficient local load scheduling optimization strategy 
for residential multi-class multi-constraint appliances by shifting 
and interrupting load requests to flatten the aggregated 
consumption. One scenario for each smart house, including the 
desirable usage schedule of its appliances in a 24-hour period, is 
considered. The proposed strategy has supposed a time-
independent constant electricity consumption threshold,
imposed by the grid stability management, in each time interval.
The demand response system attempts to optimally schedule the 
received load requests over time, aiming at flattening the 
aggregated consumption meanwhile, maximizing satisfaction of 
consumers. The results have indicated that decreasing the 
electricity consumption threshold up to 60% of the maximum 
peak demand results in significant aggregated consumption 
flattening and also admissible delay in appliance reception. 

Index Terms—Smart Grid, Supply and Demand, Load 
Management, Scheduling. 

I. INTRODUCTION

The Smart Grid defines an electricity network that can 
intelligently integrate the behaviors and actions of generators 
and consumers, in order to efficiently deliver sustainable, 
economic, and secure electricity supply [1]. Demand 
Response (DR) has been thought as a key component in the 
smart grid which allows electricity consumers to adapt their 
electricity consumption according to fluctuations in the 
electricity generation over time. DR technologies facilitate the 
communications between energy utilities and smart appliances 
at the customer premises, which are indispensable for
consumers’ ability to reduce or to shift their power 
consumption during peak demand periods [2], [3]. 

Consumers become secondary actors in the electricity 
wholesale market dynamics through DR programs [4]. Load 
control actions are leveraged by market actors such as 
aggregators that offer specific load reductions in the market. 
Participants of DR programs have the opportunity to help 

those reduce the risk of power grid outages thus provide a 
value to the Distribution System Operator (DSO).  

This paper critically discusses the Peak Demand Reduction
problem based on the Appliance Reception Minimization
method. First, a DR model for smart houses, where the DR
System (DRS) receives and schedules a large number of 
consumers’ partial load requests, is proposed. The advantage 
of this approach is its ability to streamline the control of 
received load requests while optimally schedule them in each 
time interval by decreasing the peak-to-average ratio.
Furthermore, an efficient local load scheduling optimization 
strategy has been proposed for smart houses to shift or to 
interrupt demands to flatten the aggregated consumption,
where each smart house has a desired usage scenario of its 
appliances. When consumers provide their appliances to the 
DRS in the “DR Ready” mode, they give permission to the 
DRS to schedule their multi-class multi-constraint appliances 
in a 24-hour period restricting to a specific deadline flexibility 
for completion of each appliance in a worst case. 

So far, however, there has been little discussion about 
coupling Electricity Consumption Threshold (ECT), provided 
by the DSO grid stability management, with DR programs 
preventing appliances of smart houses to start at their desired 
time in order to flatten the aggregated electricity consumption.
This paper follows a case study design that appropriately 
utilizes the time-independent ECT constraint to schedule the 
received load requests of appliances of smart houses in each 
time interval. Although consumers provide flexibility to the 
DRS, they are not interested in waiting too long to receive 
their appliances in the completed status. Hence, the proposed 
aggregated local load scheduling technique for residential 
appliances aims at maximizing satisfaction of consumers while 
considering ECT. Here, local means receiving load requests in 
specific time intervals and scheduling them in these intervals. 

The remainder of the paper is organized as follows: 
Section II reviews related work. Section III presents 
descriptions of the system model. Section IV clarifies the 
proposed local load scheduling algorithm with its relevant 
sub-procedures. Section V demonstrates the experimental 
setup and obtained results with their evaluations. Finally, 
conclusion and future work are provided in Section VI.  

978-1-4673-6692-2/15/$31.00 ©2015 IEEE
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II. RELATED WORK 
In recent years, there has been an increasing amount of 

literature on incentivizing consumers to shift their electricity 
consumption by varying the electricity prices [5], [6]. Sou et 
al. [5] investigated the minimization of electricity bills 
combined with enforcing uninterruptible and sequential 
operation model constraints. Nonetheless, the utilized mixed 
integer linear programming approach to solve the scheduling 
problem is not scalable and the appliance classification is 
limited to the interruptibility feature. In addition, [6] has 
proposed an electricity load scheduling algorithm that controls 
the operation time and energy consumption of appliances 
based on adapting time-of-use pricing to minimize the total 
electricity bill. A serious weakness with this argument, 
however, is that the authors have used solely one smart house 
as the test-bed, excluding any aggregated consumption 
threshold.  

On the other hand, a solution to the problem of optimally 
scheduling a set of residential appliances under the day-ahead 
variable peak pricing scheme has been studied in [7]. Here, the 
objectives are minimizing the electricity bills and spreading 
the electricity usage out in each time interval simultaneously. 
On the contrary, they have considered a limited number of 
appliances. Finally, the focus in [8] is on applying the priority-
based appliance methodology to quantify preferences of 
consumers for using appliances during peak times based on 
the Knapsack problem approach. Nonetheless, in the proposed 
mechanism, there is no consumption threshold constraint to 
prevent consumers from exceeding it. 

III. SYSTEM MODEL 
Smart houses play a critical role in DR programs [9]. 

When the consumer of a smart house operates his appliances 
in the “DR ready” mode, he offers a flexibility to the grid and 
permits the DRS to take the control of his appliances. In this 
paper, it is assumed that there are  smart houses, where 
each smart house ,  has  appliances. 
Furthermore,  denotes the decision variable of the 
DRS which allows  appliance of  smart house to start or 
to continue its work in time interval  or not. In the following, 
the objective function and relevant constraints of the proposed 
system model will be clarified. 

A. Objective function 
Consumers may give priorities to their appliances based on 

their preferences [8]. More accurately, a time-independent 
constant pairwise priority exists between two distinct types of 
appliance based on some criteria, e.g., emergent usage, 
welfare, or electricity cost. Consumers provide their 
normalized priority vector to the DRS by using their own 
pairwise comparisons. The priority vector of  smart 
house,  includes  elements, in which its each element 

 refers to the priority of  appliance of that 
smart house. Since  is normalized, the sum of its elements 
should be equal to one. The DRS employs the provided 
priority vectors to qualify for permitting corresponding 
appliances of received load requests to start or to continue in 
each time interval. In this paper, the comparison criterion is 
the emergent usage. Even though consumers permit the DRS 

to schedule their appliances, however, they hope to receive 
their appliances in the completed status at when they desire. 
Equation (1) formulates this objective:  

 
 

(1) 

B. Constraints 
Appliance full operation: Appliances are drivers of 

electricity demands in each smart house. The electricity 
consumption of  appliance of  smart house in time 
interval  is  (watt). It should be noted that 

 is its total electricity consumption in a 24-hour 
period. To guarantee the full operation of appliances, the DRS 
checks whether each appliance has completed its duty during 
the day defined by last time interval of the day, i.e. T. Hence, 
(2) is imposed to satisfy this hard constraint: 

 
 

(2) 

Smart features: Appliances are divisible based on some 
smart features. Fig. 1 pictures classification of appliances 
coupling with correspondent examples. Firstly, appliances 
have been classified according to the shiftability feature [10]. 
Shiftability is to give permission to the DRS to shift load 
requests of shiftable appliances to another time interval. On 
the other hand, load requests of some appliances, such as the 
refrigerator, cannot be shifted. Thus, those appliances become 
members of non-shiftable appliances. Secondly, the shiftable 
appliances can be divided into two groups based on the 
interruptibility feature. The electric vehicle is an example of 
this feature, where the DRS can both shift and interrupt the 
duty cycle of charging the electric vehicle. Nevertheless, those 
appliances which are shiftable but uninterruptible are called 
uninterruptible appliances (e.g., the dish washer). 
Consequently, the DRS, while receiving an uninterruptible 
load request in  time interval, should check whether the 
relevant appliance has been allowed to start or to continue its 
work in the  time interval. If so, the DRS cannot 
interrupt and shift it to another time interval. Equation (3) is a 
hard constraint and belongs to only uninterruptible appliances: 

 
 

(3) 

Appliance dependency: In practice, there are some 
dependency relationships between consumption activities of 
some appliances of each smart house [2]. These relationships 
impose a hard constraint on the DRS that must be satisfied 
entirely. Dependency is denoted by the relationship between 
two different appliances. For instance, it is infeasible to put 
clothes into the laundry dryer before washing them. More 
accurately, these dependencies can be divided into two 
independent groups named consecutive or concurrent 
dependencies. The former group relates to those appliances 
which cannot be utilized at the same time, as exemplified 
before. Alternatively, concurrent dependency refers to 
operations which should be performed simultaneously (e.g., 
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lighting and watching TV). , in which
, corresponds to the dependency value between 

appliances  and  of smart house . If it is zero, there is no 
dependency between the relevant appliances. If  is 
equivalent to one, there is a consecutive dependency 
relationship. Here, if appliance  finishes its duty until time 
interval , then, appliance  can be allowed to start from 
time interval . Finally, if the dependency value is equal to 
two, there is a concurrent dependency. In this situation, 
appliance  can be allowed to start or to continue if appliance 

 is allowed to start or to continue at the same time interval. 
Equation (4) demonstrates the dependency constraint: 

 

 

(4) 

Deadline flexibility: As mentioned previously, consumers 
put their appliances in the “DR Ready” mode to be scheduled 
by the DRS. In addition, they provide a particular time-
oriented hard deadline flexibility constraint of each appliance 
to the DRS. With respect to the load profile of each appliance, 
the required completion time period of each appliance is 
known to consumers. For instance, one consumer desires to 
charge the electric vehicle from 18:00 to 20:00. Nevertheless, 
one may provide two hours flexibility of the electric vehicle to 
the DRS. The provided deadline flexibility means that one can 
wait for at most two additional hours to receive the charged 
electric vehicle. This flexibility is applicable to both start and 
finish times of appliance operation, since the DRS can shift 
the starting time with postponing the finishing time. However, 
it should finish the appliance operation at latest at the provided 
flexibility. This kind of flexibility facilitates the DRS by 
shifting or even by interrupting appliances. The DRS 
considers the time difference between the provided deadline 
flexibility of each appliance and current time interval before 
shifting it to another one. Equation (5) indicates this hard 
constraint: 

 (5) 

 relates to the total remaining load requests of 
 appliance of  smart house from  interval until the end 

of its cycle. (time instant) denotes the provided deadline 
flexibility of that specific appliance. The DRS examines each 
of the received load requests for satisfying this constraint. If 

the total remaining load requests of an appliance is still less 
than the time difference between the provided deadline 
flexibility and current time interval , then, the DRS can 
decide to whether allow it to start or to continue in current 
time interval or shift it to another time interval. 

Aggregated consumption threshold: Many electricity 
producers are experiencing a deficit of electricity generation 
capacity in consequence of load requests by consumers. More 
accurately, the generated amount of electricity is often unable 
to satisfy the requested loads in a specific time interval. 
Hence, the DSO currently applies an , to ease grid 
stability [11]. (watt) is a soft constraint over the time 
intervals, in which it sometimes cannot be satisfied due to the 
provided deadline flexibilities and uninterruptibility feature of 
some appliances. Therefore, the DRS can only apply this 
constraint on the remaining shiftable load requests including 
those which: I) have not started yet, and II) have started earlier 
but corresponding appliances are interruptible. This threshold, 
as formulated in (6), attempts to keep the aggregated 
consumption of allowed load requests in each time interval 
under the provided :  

 
 

(6) 

C. Scenario 
Each smart house  has a specific scenario including 

usage pattern of its appliances. The DRS is unaware of the 
scenario details of all smart houses before scheduling and it 
continuously receives load requests over time. Table I exhibits 
a sample scenario including the desired schedule of appliances 
of a smart house.  

For instance, the consumer of the smart house provides 
two hours of deadline flexibility to the DRS from charging the 
electric vehicle. The DRS receives the first load request of the 
electric vehicle at 20:00. Therefore, the DRS has an 
opportunity to deliver the charged electric vehicle until 24:00 
by shifting and interrupting the charging procedure, since the 
electric vehicle is a member of the interruptible appliances. 
Furthermore, there is a consecutive dependency between the 
laundry dryer and the washing machine. Moreover, a 
concurrent dependency exists between the personal computer 
(or the television) and the lighting system. It is worthwhile to 
note that only shiftable appliances have priority among each 
other. Hence, the refrigerator and lighting will not undergo 
any scheduling procedure, since they are members of the non-
shiftable appliances. Therefore, they receive infinite priority. 

 
Figure 1. Classification of appliances 

Appliances

Shiftable

Interruptible Electric vehicle

Uninterruptible

Dish washer

Washing machine

Laundry dryer

TV

Computer

Non-shiftable

Lighting

Refrigerator

TABLE I. A SAMPLE SCENARIO OF A SMART HOUSE 
Start End Activity description Deadline Dependency Priority 

00:00 24:00 Using the refrigerator. 24:00 -- Infinite 
08:00 24:00 Turning the lights on. 24:00 -- Infinite 
08:05 09:50 Using the dish washer. 10:30 -- 0.2158 
08:40 10:00 Using the washing 

machine. 
10:30 -- 0.1063 

11:00 11:50 Using the laundry 
dryer. 

12:30 Washing 
machine 

0.1499 

11:30 22:40 Using the computer. 23:30 Lighting 0.2649 
19:50 22:00 Watching the TV. 24:00 Lighting 0.1293 
20:00 22:00 Charging the electric 

vehicle. 
24:00 -- 0.1338 
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IV. LOCAL LOAD SCHEDULING OPTIMIZATION ALGORITHM 
The DRS continuously applies the load scheduling 

optimization algorithm on the received load requests to 
produce a specific schedule for appliances of each smart house 
based on the aforementioned objective and constraints in each 
time interval. Apart from ECT, the DRS permits the non-
shiftable loads to do their duty over time. Furthermore, if there 
are uninterruptible appliances which have been allowed to 
start or to continue in the previous time interval, they should 
be granted to continue. Finally, if there would be a load, where 
shifting it to the next time interval will exceed its provided 
deadline flexibility, again, it should be permitted to start or to 
continue. After completing these procedures, the scheduling 
algorithm will check whether total consumption of the 
remaining loads is less than the remaining ECT. If so, all will 
be allowed to start or to continue their procedure. Otherwise, 
the algorithm calls the Knapsack procedure to permit a subset 
of loads from the remaining ones to start or to continue, and to 
shift the unpermitted loads to the next time interval. 

A. The Knapsack Problem 
The Knapsack problem is a traditional problem of 

Computer Science in combinatorial optimization literature 
[12]. Given  items, the Knapsack packs the items to get 
the maximum total value, where each indivisible item has a 
weight and a value. The Knapsack has a fixed capacity 
named . The Knapsack problem is a weakly NP-
Complete problem since the time complexity of solving it in a 
brute-force manner is . This method calculates all 
feasible subsets in order to find the optimal one. In the load 
scheduling problem, the priority of corresponding appliances 
of the remaining loads matches with the items in the Knapsack 
problem. In addition, weights correspond to the electricity 
consumption of the remaining loads. The objective in the 
Knapsack problem is to maximize the total value, whereas in 
the load scheduling problem, the objective is to maximize the 
total number of allowed loads in each time interval. Finally, 
the Knapsack capacity corresponds to the remaining ECT. In 
the load scheduling problem, the DRS should select and allow 
those loads which optimize the objective and satisfy the 
constraints thoroughly. In summary, the Knapsack problem is 
reducible to the load scheduling problem. As a result, the load 
scheduling problem is also a weakly NP-Complete problem.  

The Knapsack procedure receives the remaining loads and 
calculates the fitness of produced feasible subsets, where each 
subset comprises some loads. In conclusion, the outcome of 
this approach is a subset of remaining loads which should be 
allowed to start or to continue in this time interval. Obviously, 
there will probably be some loads which are not permitted to 
start or to continue. These loads should be shifted to the next 
time interval. In addition, in order to decrease the computation 
time, Dynamic Programming approach with  time 
complexity has been applied to solve the Knapsack problem, 
when required [7], [8]. Algorithm 1 describes the procedure of 
the proposed local load scheduling optimization algorithm.  

V. EXPERIMENTAL SETUP AND ANALYSIS 
This section first describes the experimental setup 

including analysis criterion and data types. Subsequently, the 
experimental results will be clarified precisely.  

A. Experimental Setup 
The proposed algorithm has been implemented with 

MATLAB® R2014b on a computer with an Intel Core i7 2.0 
GHz CPU, and 6 GB memory. Load profiles of appliances, 
shown in Fig. 1, have been captured from the TraceBase open 
repository which comprises power traces of electrical 
appliance [13]. To simplify the experiments, consumers will 
operate their appliances once a day. Furthermore, operation 
time of appliances (based on the load profiles of TraceBase 
database), their deadline flexibility, and priority have been 
randomly selected. The DRS continuously receives load 
requests of  smart houses in 5-minutes time intervals 
over a 24-hour period. Each load request only includes its 
required electricity consumption for the next five minutes 
except the first load request, which additionally comprises its 
shiftability and interruptibility memberships, priority, deadline 
flexibility, and dependency status.  

The results will be analyzed based on variations of ECT. 
ECT is constant over time and will be 20%, 40%, 60%, or be 
80% of the maximum aggregated consumption of all smart 
houses at the peak time interval. It is beneficial to note that 
although the DRS is unaware of all scenarios prior to starting 
the schedule, however, the DSO grid stability management 
informs the DRS about ECT based on the forecasted or learnt 
scenarios of previous days. If ECT equals to or is greater than 
the maximum peak demand, no scheduling is needed. 
Hereinafter, each ECT percentage is based on the informed 
maximum peak demand.  

B. Experimental Results 
Fig. 2 depicts the scheduled aggregated consumption of 

100 scenarios with respect to changes in ECT. The period 
from 10:45 to 00:45, in which the aggregated consumption 
approaches ECT, is selected. The peak electricity consumption 
equals to almost 289 kW at 20:30, when ECT is 100%. In 
addition, the average aggregated consumption is almost 56 
kW in a 24-hour day. The DRS desires to reach a point, in 
which there are as few peak times as possible. More in details, 
as Fig. 2 demonstrated that, when ECT is 20%, the scheduler 

Algorithm 1. Pseudo code of the local load scheduling optimization algorithm 

Inputs : Scenarios, flexibilities, classification of appliances, ECT. 
Output: Schedule of appliances of all smart houses. 
 

Preprocessing the input data; 
While receiving load requests in specific time intervals do 
  Start or continue the non-shiftable loads; 
Continue uninterruptible loads, which have started previously;  
Start or continue loads which cannot be shifted or interrupted 
anymore due to their provided deadline flexibility; 
If there are some remaining load requests then 
  If their total consumption is less than the remaining ECT then 

 Allow them to start or to continue; 
     Else 

 Call the Knapsack procedure, allow the output loads to start or  
 to continue, and shift unpermitted loads to the next interval; 

  End 
End 

End 
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has been successfully flattened the aggregated consumption 
between almost 10:45 to 14:30. However, this flattening 
causes another peak period from almost 14:45 to 16:45. The 
reasons are the uninterruptibility feature and deadline 
flexibility of some appliances. This is also true for the future 
time intervals. Furthermore, when ECT is 20%, the Knapsack 
cannot find any solution for the remaining loads in some time 
intervals due to the low remaining ECT. Consequently, the 
DRS has to shift all the remaining loads to the next time 
interval. According to the deadline flexibility constraint, the 
DRS must allow some loads to start or to continue their 
operation apart from the remaining ECT in the next time 
intervals which produces another peak time. By applying this 
threshold (20%), aggregated electricity consumption at the 
peak time (almost 284 kW) decreases only 1.73% comparing 
with the maximum peak demand (almost 289 kW).  

Nonetheless, when ECT is 40%, the Knapsack procedure 
can permit most of loads to start or to continue their work in 
corresponding time interval, and accordingly, the DRS should 
shift only a few remaining loads to the next interval. It will 
decrease the aggregated consumption at peak times (almost 
189.4 kW) and flatten the aggregated consumption by 34.46%, 
as represented in Fig. 2. In addition, if ECT increases up to 
60%, the peak reduction ratio will be 40%. Ultimately, no 
significant achievement was found from increasing ECT to 
80%. The reason is that most of load requests are permitted to 
start or to continue their operation at the time they request. In 
this situation, the peak reduction ratio is only 20.17%.  

Table II analysis the number of referrals to the Knapsack 
procedure (K-Referrals), average deviation between appliance 
deliverance and reception times (T-Deviation), maximum 
required ECT (M-ECT), and peak-to-average ratio (PAR).  

According to the K-Referrals, if ECT equals to 20%, the 
Knapsack procedure will be called for 56 times during the 
whole schedule. This number will raise if ECT increases up to 
40%. The reason is the existence of some intervals that the 
DRS allows some shiftable and interruptible loads to start or 
to continue their operation. Furthermore, there will be some 

new load requests in the next time intervals. Hence, the 
aggregated consumption of new and shifted load requests will 
be more than the remaining ECT and accordingly, the number 
of referrals to the Knapsack procedure increases. Nevertheless, 
this number will decrease when ECT is equal to 60%. The 
reason is the large number of load requests that can be allowed 
to start or to continue in each time interval with respect to the 
assigned ECT. In addition, some of these loads, permitted to 
start or to continue, are members of the uninterruptible 
appliances. Hence, in the next time intervals, apart from the 
remaining ECT, they must be allowed to continue their duty. 
Therefore, the number of referrals to the Knapsack procedure 
will decrease. This is also applicable when ECT is 80%. 
Obviously, there is no need to call the Knapsack procedure 
when the assigned ECT is 100%.  

Considering the T-Deviation values in Table II, the DRS 
has the opportunity to shift and interrupt some loads to satisfy 
the constraints based on the provided deadline flexibility of 
appliances. Hence, some consumers will confront reception 
delay of their appliances. For instance, although one consumer 
desires to receive his charged electric vehicle at 18:00, 
however, he has provided two hours flexibility to the system. 
It means that he can receive it in the worst case at 20:00. Now, 
after scheduling the charging process of the electric vehicle, 
the consumer observes that he has received the charged 
electric vehicle at 18:45. Therefore, there is 45 minutes 
reception delay. As a result, according to Table II, consumers 
will averagely receive their appliances in the completed status 
with 220 minutes delay. This average delay decreases when 
ECT increases. The fact is that appliances will be permitted to 
start their operation at the time they request. Most delays are 
related to the electric vehicle since it is a member of the 
interruptible appliances and it consumes more than other 
appliances according to its load profile.  

With respect to Table II, M-ECT denotes the aggregated 
consumption at the peak time, when ECT changes. What is 
interesting is that if assigned ECT is 60%, the corresponding 
M-ECT is less than the assigned ECT (173.4 kW). It means 
that the DRS is entirely successful in flattening the aggregated 
consumption, even below the assigned ECT. Nevertheless, this 
fact is not feasible, where ECT is equal to 20% or to 40%. In 
these two circumstances, the DRS has to exceed the assigned 
threshold since it should allow the non-shiftable and 
previously-started uninterruptible loads to continue apart from 
the remaining ECT. Furthermore, since the T-Deviation is not 
averagely too high when ECT is 60%, it is not mandatory to 
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TABLE I. ALGORITHM ANALYSIS BASED ON ECT VIOLATION 
 ECT violation 

57.8 kW 
(20%) 

115.6 kW 
(40%) 

173.4 kW 
(60%) 

231.2 kW 
(80%) 

289 kW 
(100%) 

K-Referrals 56 68 48 12 0 
T-Deviation 220 115 30 5 0 

M-ECT 284 kW 189.4 kW 173.4 kW 231.1 kW 289 kW 
PAR 5.07 3.38 3.09 4.12 5.16 
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assign a higher ECT, e.g., 80%. Accordingly, the value of PAR 
decreases, when ECT is up to 60%.  

As the final analysis, Fig. 3 demonstrates more time 
complexity when the assigned ECT increases. Nonetheless, 
number of time intervals, in which the Knapsack procedure 
should run, decreases. Having some uninterruptible appliances 
and the deadline flexibility constraint are reasons of this 
decrease. If the DRS allows uninterruptible loads to start in a 
time interval, it has to shift more loads in the next time 
intervals since the remaining ECT in that time intervals will be 
low. These shifted loads will be accumulated and eventually 
the Knapsack procedure confronts a large number of 
remaining loads in a time interval. As a final note for this 
analysis, running the local load scheduling algorithm employs 
only 5% of CPU bandwidth with almost 350 megabytes of 
memory, when ECT is 20% to 80%. Obviously, there is no 
influential computation time when ECT is 100%. 

VI. CONCLUSION AND FUTURE WORK 
In this paper, load requests of appliances of smart house 

are scheduled by a Demand Response System (DRS) that runs 
as a centralized control by e.g., an aggregator actor in the 
electricity market. Based on this control, this paper has 
investigated a DR strategy incorporating a local load 
scheduling optimization algorithm. Each consumer provides a 
daily scenario describing the usage pattern of his appliance. 
Appliances of each smart house are classified based on the 
shiftability feature. Those appliances which can be shifted to 
other time intervals have further been divided based on the 
interruptibility feature. Each shiftable appliance has a hard 
deadline flexibility constraint provided by the consumer. 
Furthermore, some appliances have concurrent or consecutive 
dependency relationship among themselves imposing a hard 
constraint on the DRS in scheduling. Consequently, a local 
load scheduling optimization algorithm based on the 
Knapsack concept for solving the scheduling problem has 
been proposed. The Knapsack procedure in some time 
intervals attempts to select a subset of remaining loads to 
permit them to start or to continue, and shift the unpermitted 
ones to the next time interval. The main objective applied in 
this algorithm is maximizing satisfaction of consumers while 
aiming at peak demand reduction. Results considering an 
aggregation of 100 smart houses, indicate that the application 
of an electricity consumption threshold results in flattening of 
the aggregated consumption and leads to a decreased peak 
demand. As future work, we are planning to apply learning 
and forecasting approaches to enhance the load scheduling 

strategy while improving the system model by utilizing multi-
objective optimization techniques in order to incentivize 
consumers more to actively participate in DR programs. 
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Abstract—The European research project SEMIAH aims at de-
signing a scalable infrastructure for residential demand response.
This paper presents the progress towards a centralized load
scheduling algorithm for controlling home appliances taking
power grid constraints and satisfaction of consumers into account.

Keywords–Smart grids, demand response, load scheduling

I. INTRODUCTION

Demand Response (DR) is in its nascent stage in Europe.
DR programs allow Distribution System Operators (DSOs) to
reduce electricity peak demand by incentivizing consumers to
adapt their usage to variations in the electricity generation [1].
Existing DR programs aim at large industrial consumers, who
can be managed as one large client, representing an aggregated
demand of hundreds of residential households. Despite the fact
that households constitute 27% of the total energy consumption
in Europe and are responsible for 10% of the CO2 emissions,
no automated DR programs have been implemented for Euro-
pean households. The European FP7 research project SEMIAH
(Scalable Energy Management Infrastructure for Aggregation
of Households) strives for developing an Information Commu-
nication Technology (ICT) infrastructure for DR [2]. SEMIAH
enables shifting of energy consumption to periods with high
electricity generation from Renewable Energy Sources (RESs)
which helps DSOs to flatten the peak electricity demand.

SEMIAH undertakes three different approaches to address
the home appliance load scheduling optimization problem as
follows: 1) scheduling of non-critical power-intensive loads
using a residential Home Energy Controlling Hub (HECH) sys-
tem, 2) two-stage linear stochastic programming for schedul-
ing of domestic loads, and 3) load scheduling with multi-
objective optimization techniques. This paper introduces a
single-objective load scheduling optimization as a precursor
for the latter multi-objective optimization approach.

II. THE SEMIAH SYSTEM

The SEMIAH system employs a centralized approach for
aggregation and scheduling of load demands of appliances. It
relies on the flexibilities provided by households who decide
to join a DR program. The flexibility concept of SEMIAH
aligns with the European mandate M/490 [3]: “The flexibility
[offering] concept assumes that parties connected to the grid
produce offerings of flexibility in load and (distributed) genera-
tion. Thereby, so-called flex-offers are issued indicating these
power profile flexibilities, e.g., shifting in time or changing
the energy amount. In the flex-offer approach, consumers and
producers directly specify their demand and supply power
profile flexibility in a fine-grained manner (household and
SME level).” In SEMIAH, flexibility from home appliances

Household

DRS

Scheduler

Objective(s) Constraints

Scenario

Input data

Electricity price

CO2 emission

Grid constraint

Solution

Schedule

Figure 1. Conceptual diagram of the demand response serving subsystem.

are aggregated in a coherent way to produce flex-offers that
can be traded in the electricity markets.

Load demands of appliances can be categorized based on
the shiftability feature [4]. Shiftability means to authorize a
DR System (DRS) to shift load requests of shiftable appliances
to a future time interval. Some appliances cannot be shifted,
for instance the refrigerator. Hence, these become members of
the category of non-shiftable appliances. Shiftable appliances
can be further divided into groups based on the interruptibility
feature. As an example, the DRS can both shift and interrupt
the charging cycle of an electric vehicle. However, it should
continue operation of the uninterruptible appliances until com-
pletion when these are started, e.g., a washing machine. Each
household presents a scenario including the usage schedule
of appliances. The household applies a deadline flexibility
constraint, which sets a contract when a given appliance
must complete its operation at latest. Subsequently, the DRS
produces a schedule for the aggregated set of appliances,
i.e., a solution. The deadline constraint imposes a non-trivial
optimization problem for the scheduling of electricity loads.

Fig. 1 illustrates a conceptual diagram of the load schedul-
ing subsystem. The DRS applies input data from the electricity
market and the bulk generation side to establish an objective
function used by the scheduling algorithm. In the household, a
HECH is installed to manage loads of appliances. The HECH
connects to sensors and actuators of the household by using
ZigBee communication. It receives control information from
the DRS and runs the scheduled appliances accordingly.

III. LOAD SCHEDULING

The DRS schedules and manages appliances based on
desired scenarios of households. When consumers provide
their appliances in the “DR Ready” mode to the DRS, they
authorize the DRS to schedule appliances in a 24-hour period.
The DRS receives load requests from all presented scenarios
in each time interval of 5 minutes. Consecutively, it runs the
scheduling algorithm on load requests taking the shiftability
and interruptibility features of appliances into account. Three
constraints are assumed by the scheduler: 1) keeping the total
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power consumption below a specific Electricity Consumption
Threshold (ECT), 2) satisfying the deadline flexibility of appli-
ances, and 3) satisfying the dependencies between appliances,
e.g., the laundry washing is completed before drying can start.
The first constraint relates to the grid stability. The second and
third constraints impact on satisfaction of consumers.

The scheduling algorithm allows non-shiftable loads to
start or to continue their operation. If there are uninterruptible
loads running in the previous time interval, they are permitted
to continue. When there are loads which cannot be shifted
without violating the deadline constraint, they must start or
continue. Afterwards, the algorithm utilizes a Knapsack ap-
proach [5] on the remaining load requests to calculate the
fitness of subsets. It returns a subset of remaining load requests
to start or to continue in the current time interval. Loads, which
cannot be started, are shifted to the next time interval.

IV. PRELIMINARY RESULTS

Table I offers an example of a scenario from a household
with a consumer returning home at 18:00 and commencing
to operate his appliances. The corresponding scheduled load
demands of the household is demonstrated in Fig. 2 using two
different ECTs. The maximum demand occurs at 18:25 and
equals to 8,940 W. It comprises the electric vehicle, lighting,
washing machine, oven, and stove. The day-ahead market is
utilized for electricity price data (www.nordpoolspot.com). The
CO2 emission rate is derived from the electricity generation
mix (www.energinet.dk) using the Danish power grid as the
case study. To arrive at a cost metric, combining electricity
price and CO2 emission cost, an average cost of CO2 emission
of 171.78 DKK/1,000 kg is used. No shifting occurs when ECT
is 9 kW which is higher that the peak demand of the household.
When the threshold is lowered to 3 kW, load shifting takes
place. The DRS decides to shift the charging of the electric

TABLE I. AN EXAMPLE OF A HOUSEHOLD SCENARIO.

Start End Activity description DF Pp [W]

18:00 23:00 Turning the lights on. 23:00 100
18:00 20:00 Plugging the electric vehicle in its station. 23:00 3,600
18:05 19:50 Running the washing machine. 23:00 2,000
18:10 18:50 Preparing food and turning the oven on. 22:15 2,350
18:20 18:50 Starting and using the stove. 22:15 840
19:00 19:45 Eating the food while watching TV. 23:00 55
21:30 23:00 Preparing the laundry dryer. 23:00 2,000

DF and Pp are the the deadline flexibility and the peak power
consumption of appliances (marked with bold type face) , respectively.
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Figure 2. Peak demand shifting of home appliances due to ECT constraint.
The cost metric (from 4 Nov. 2014 data) indicates a decreasing trend.
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Figure 3. As ECT decreases, the serving delay of appliances increases.

vehicle by 200 minutes, and operations of the stove and oven
by 100 and 20 minutes, respectively. It is beneficial to note
that the threshold cannot be fully satisfied due to non-shiftable
appliances that must run. This implies a “softness” of ECT.

To study consumer satisfaction, Fig. 3 examines the devia-
tion between the starting and the serving times of appliances.
Obviously, consumers prefer minimal deviation between the
provided scenario and the offered schedule. As ECT increases,
the consumer gets closer to the desired scenario. In the exam-
ple, the electric vehicle is the best candidate to be shifted to
later time intervals due to its higher peak power consumption.

V. CONCLUSIONS AND FUTURE WORK

The SEMIAH project aims at developing an infrastructure
for DR enabling aggregation and scheduling of electricity
loads of home appliances. A scheduling algorithm based on
a single-objective optimization approach has been developed.
It allows the shifting of loads according to flexibilities provided
by consumers. As future work, the scheduling algorithm will
support multi-objective optimization techniques coupling with
the divergent priorities of consumers and the DSO. SEMIAH
targets a solution that scales to 200,000 households to produce
aggregated flex-offers tradable in the electricity markets.
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Abstract—Smart grids offer an indisputable business oppor-
tunity for system operators and energy traders to engage in
demand response programs. Hereby these actors may profit from
trading flexibility provided at the prosumer side on the energy
markets. This paper discusses the system design challenges for
an information and communication technology system infras-
tructure facilitating DR for residential prosumers. It presents
the SEMIAH framework for providing a scalable infrastructure
for residential DR built on a component-based architecture
with the virtual power plant at the hearth of the system. The
paper examines the possible impact of deploying an automated
residential DR program on the quality and stability of a low
voltage grid.

Index Terms—Smart grids, demand response, aggregator, in-
frastructure framework.

I. INTRODUCTION

European countries are progressing towards the develop-
ment of smart grid concepts for the establishment of an ef-
ficient market for trading flexibility in electricity consumption
and production [1]. The concept is based on a wholesale
model, which determines the future roles of actors in the
electricity market [2]. Today, energy markets, such as the Nord
Pool Spot1, offer intraday trading across different regions in
Europe to act as a balancing market to the day-ahead markets.
The intraday market offers opportunities for risk reduction as
well as increased profit by giving access to a wide selection of
counterparts with different consumption and production mix,
marginal costs, etc. subjected to general market conditions.

Presently, most trading of flexibility takes place bilaterally
between companies that can interrupt their power consumption
for some periods, and power grid system operators, possibly
through an electricity trading company. Rather than investing
in grid expansions, the system operators in some countries
can pay, through market agreements, large electricity users
to reduce the consumption in concerned hours so that the
congestion in the grid is avoided. To realize the potential of
providing flexibility, aggregators are needed to pool offers
of reduced and shifted electricity demands into aggregated
offers to the electricity market or to system operators [3].
Upon market acceptance, the aggregators actuate the flexible
consumption according to a defined schedule by shifting

1Accessible at: www.nordpoolspot.com

electricity demand to meet the contractural obligations of the
offer.

Demand Response (DR) provides an opportunity for pro-
sumer to play an active role in the operation of the electricity
grid by reducing or shifting their electricity usage during peak
periods in response to an external trigger signal. Prosumers,
that engage in DR, offer flexibility for certain types of ap-
pliances and processes by trading off convenience in daily
practices and comfort e.g., the indoor temperature range of
a building. The realization of DR requires an Information
and Communication Technology (ICT) platform that provides
management, aggregation, and scheduling of a large number
of appliances with flexible prosumption [4]. Furthermore, the
aggregator service platform has the potential of providing DR
to be traded both on the existing wholesale markets and on new
retail markets for system operators. Hereby electricity trading
companies and other service providers have a central role in
promoting concrete flexibility products and services that are
connected to a flexible management of prosumption towards
savings on energy bills.

DR programs can incentivize Distribution System Operators
(DSOs) by taking into account the Low Voltage (LV) grid
constraints such as power quality and power demand limits.
First, it supports the grid operators and balance responsible
providers in balancing the grid. Second, it provides an assest
for flatterning peak demand and hence has the potential of
postponing grid infrastructure investments. In this context,
the European research project SEMIAH (Scalable Energy
Management Infrastructure for Aggregation of Households)
aims to develop a novel and open smart grid infrastructure for
the implementation of automated DR in households [5]. To
validate this new infrastructure and for assessing the potential
impacts, a large-scale simulation of up to 200,000 households
will be performed. In addition, the SEMIAH concepts will be
validated with a total of 200 households running as a pilot in
Norway and Switzerland.

Fig. 1 shows an overview of the SEMIAH aggregator
infrastructure. The infrastructure uses a centralized approach
where a back-end system, hosted by the aggregators, runs the
aggregation, scheduling and actuation of electricity loads from
households. The back-end connects to a number of front-end
Home Energy Management Systems (HEMSs) to act as gate-
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Fig. 1: SEMIAH system overview. The SEMIAH back-end
coordinates a demand response from a large set of front-end
systems to provide peak flattening by load shifting.

ways and proxies for actuation of home appliances. Security
and privacy protection are managed end-to-end between the
back-end and the front-end. New business models are subject
of further studies as these are essential for a commercialization
of an aggregator service provisioning.

This paper addresses the challenges of residential DR. It
presents an open framework for a scalable aggregator infras-
tructure that allows the aggregation of flexible consumption
from a large set of households. The paper is organized as
follows. Section II gives a brief background of DR. Section III
presents the SEMIAH system model. Section IV presents
the aggregator service framework. The impacts on the LV
grid stability is discussed in Section V. Finally, the paper is
concluded in Section VI.

II. DEMAND RESPONSE BACKGROUND

DR is defined as “changes in electric usage by demand-side
resources from their normal consumption patterns in response
to changes in the price of electricity over time, or to incentive
payments designed to induce lower electricity use at times
of high wholesale market prices or when system reliability
is jeopardized.” [6]. A survey of DR architectures and load
management algorithms including ICT architectures for en-
abling DR programs is provided in [7]. A study of ongoing
technology trends, opportunities, products, communications,
DR efforts in residential homes are presented in [8]. Potentials,
benefits, enabling technologies and DR systems are described
and discussed in [9]. An overview of various types of demand
side management analysis including DR and an outlook with
the latest demonstrations are presented in [10]. Several smart
grid projects in Europe are introduced in [11].

DR technology offers several benefits all over the power
grid. Globally, DR programs can support a more efficient
integration of Renewable Energy Sources (RES) in the grid
an hereby contribute to a future low carbon economy. Locally,
DR can improve the stability of the distribution grid, manag-
ing the local production as well as controlling consumption.

Moreover, peak flattening reduces the need for investments in
grid expansions.

The ability to control flexible electricity loads in households
with DR implies great impact for the grid by improved grid
control and for the energy markets through market optimiza-
tions [12]. The various DR programs govern the controlling
of electricity load between the utility and the prosumer when
they are applied. Load management is on the prosumer side,
and there can be either load reduction or load shifting, while
there is only load shifting on system operator side. These
service providers install switches to control the loads and
communicate directly with the switch without engaging the
asset or facility owner. In some cases, the controlling entity
can also send control signals to a home automation system
that can affect the control action.

A. Control Strategies

The operation of a household or a building follows the
principles of optimal control. The objective is typically to run
the household or building with high energy-efficiency taking
into account comfort and economic constraints of the residents.
DR is generally triggered by varying peak demand capacity
or high prices at the wholesale level [3].

Incentive-based or event-driven DR can be invoked in
response to a variety of trigger conditions, including envi-
ronmental parameters (e.g., temperature); local or regional
grid congestion; economics; or operational reliability require-
ments [6]. For DR programs that foster an improved integra-
tion of renewable energy, aggregators can shift consumption
to periods with lower CO2 intensity. The Load Research
Committee of Association of Edison Illuminating Companies
(AEIC) suggests a simple percentage-based calculation for
average demand shifting [13]. It “estimates the total energy
shifted from peak hours to off-peak hours by calculating the
difference in on-peak energy usage between the consumption
baseline and the participants’ load shape.” This definition
provides a mean to quantify the effect of a DR action. Triggers
from economics can for example be spikes in the wholesale
electricity price. Other triggers can derive from reliability
requirements such as the risk of a blackout caused by a major
power plant tripping offline.

B. Renewable Energy Utilization

The Renewable Energy Utilization (REU) identifies the
energy generation mix of the provided power by defining the
Effective Substitution Ratio ESR for substituting renewable
energy Qres for conventional energy Qces [14]. This can be
done by using the REU, which is expressed by:

ESR =
Qres

Qres +Qces
(1− η) (1)

The coefficient η takes into account any differences in the
efficiency of the conversion of energy [14]. Fig. 2 shows
the energy production data for 5 days of the Danish power
grid system2. The top figure displays the RES generation, the

2Sum of DK1 and DK2 areas of the Nord Pool Spot market.
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Fig. 2: RES generation, CO2 emission intensity, and the Ef-
fective Substitution Ratio (ESR) over a 5-day period from 25
May to 29 May 2015. Data has been provided by Energinet.dk.

conventional, fossile fuel based generation (CES generation),
and the CO2 emission intensity. The bottom figure shows
the ESR metric. The correlation between the CO2 emission
intensity and ESR has been calculated to −0.80 for the 5-day
period. By using CO2 as a trigger, DR programs can improve
the integration of RES in the power grid.

C. Appliance Load Forecasting and Scheduling

Load forecasting is an essential step in the planning of a reli-
able electrical grid operation. Forecasting refers to a prediction
of the future electricity load based on short-, medium-, or long-
term periods, to prevent the electricity distribution infrastruc-
ture from unforeseen electricity outages. Although accurate
models for electric power load forecasting are indispensable,
load forecasting facilitates the electricity provides and DSOs
by adopting important decisions on both electricity distribution
and scheduling [15]. DR programs attempt to alleviate the
power system stresses through encouraging the prosumers to
voluntarily modify their daily electricity prosumption behavior
in order to decrease the peak demand while maintaining the
prosumers’ comfort level [16].

Encouraging participation in DR programs requires some
incentives for the prosumers. The main idea behind DR
programs is to follow the fluctuations of the electricity gener-
ation over time by reducing the consumption during periods
of RES generation and/or shifting consumption to off-peak
periods [17]. As a consequence of the discrepancy between
the predictions and prosumer demands, appliances also require
a mechanism to respond to prosumers’ load requests. High-
potential and scalable load scheduling approaches play a key
role in reducing the peak demand. Load scheduling scheme
tries to effectively schedule the electricity load requests of var-
ious domestic smart appliances over time. The load schedul-
ing should take into account various system objectives and

constraints imposed. Therefore, the load scheduling faces a
complex constrained stochastic problem that should be solved
continously in time [12].

D. Home Automation as an Enabler for Demand Response

Home automation technologies are designed to enhance the
quality of life of occupants. These technologies use wired or
wireless solutions to interconnect the home’s smart devices
(e.g., sensors and actuators). Conservative solutions make
use of power lines for establishing the communication link
between such devices. Such wired installations easily become
expensive and complex [18]. Other solutions, established by
wireless communication standards, provide a degree of flexi-
bility, interoperability and cost-effectiveness. However, some
wireless technologies require high-power consumption which
make them infeasible to be used with low-power smart devices.

Assessment of emerging technologies is needed not only to
evaluate the overall behavior of home automation applications,
but also to check if they meet the required low-power, cost-
effective, reliable, and scalable constraints. Rathnayaka et
al. [19] compared the features of emerging wireless solutions.
They concluded that different wireless solutions offer com-
parative benefits and limitations in different perspectives. On
the top of that, HEMSs are taking place and benefiting from
home automation technologies [20]. They aim to monitor, con-
trol, and optimize the performance of the automated homes.
HEMSs provide solutions for the connected homes to let them
consume energy in an efficient way by following a DR schema.

E. The Virtual Power Plant

The Virtual Power Plant (VPP) is a cluster of dispersed
generator units, controllable loads, and storage systems, ag-
gregated to operate as a unique power plant [3], [21], [22].
VPPs can bring flexibility into the smart grid by controlling
Distributed Energy Resources (DERs) and smart appliances.
VPPs help balancing the fluctuating electricity feeds and the
loads locally. It supports the integration of decentralized power
generation which will bring more reliability in the grid. In
practice, most VPPs merely act as virtual storages by providing
load shifting. If the grid operator requests a certain amount of
regulation power, it must be delivered by the VPP. They might
not be interruptible just at a particular time or their virtual
storage might be empty at other times [10]. Despite these
difficulties, VPPs can provide a statistical guarantee for load
shifting on a small scale, and hence contribute to maximizing
the flexibility of a grid.

III. SYSTEM MODEL

To understand the role of an ICT platform supporting DR,
a system model has been developed. The model provides an
abstraction of the key elements of the infrastructure. This
section introduces the SEMIAH system model.

The system model divides into three distinct layers to pro-
vide means for generalizations of device, information objects,
communications, etc. The SEMIAH system model is designed
as a layered model illustrated in Fig. 3. The Internet of Things
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Fig. 3: SEMIAH layered system model.

(IoT) layer has to role of providing an abstraction for field
devices deployed in households. The SEMIAH Objects layer
manages customized objects such as information objects. The
SEMIAH Control layer has the role to manage SEMIAH
objects according to actors requirements. For instance, this
could be the actuation of an appliance that is operated to
provide flexibility for a household.

A. The Internet of Things Layer

The IoT layer addresses the problem of providing a uniform
access to heterogeneous devices and appliances. The SEMIAH
infrastructure has to collect measured values and to control
output values on appliances through sensors and actuators.

Appliances belong to different categories such as heat
pumps, washing machines, refrigerators, etc. and they can
share some characteristics based on shiftability and/or in-
terruptibility [12]. Different appliance models of the same
category feature different ways to access the input and output
parameters and often also a different set of parameters. The
fundamental role of the IoT layer is to provide an abstract view
of that diverse world to the SEMIAH Objects layer. Hence,
data acquisition methods, local communication protocols, etc.
are abstracted by the SEMIAH IoT layer.

B. The SEMIAH Objects layer

Appliances are addressed through a coherent semantics
provided by the SEMIAH Objects layer. Ideally, semantics
are defined at the appliance category level, i.e., there is a
resource type per appliance category. The SEMIAH Objects
layer disposes of a uniform method to access input and output
parameters. This method must be independent of any appli-
ance models, but also independent of appliance categories. In
SEMIAH, the abstract representation of an appliance is called
a Resource. A Resource represents a device, for example an
appliance (appliance interface) prosuming electrical energy or
a meter of any type. The most relevant object in the SEMIAH

TABLE I. List of possible collections.

Collection type Description

Household or Building Set of all processes in the household /
building

Feeder All collections / processes connected on a
given feeder;

Market group Set of all collections / processes belonging
to owners having a contract with a given
market actor (typically an electricity sup-
plier);

Electrical cars collection Set of all electrical cars.

Objects layer is the “flexible element”. Such an element knows
at each instant the flexibility it can provide in the close future,
and it enables to reserve and activate that flexibility.

In the UML class diagram, shown in Fig. 4, the essential
parts of the system model are presented. The main class
is FlexibleElement. It models a flexible element that can
be linked to one or several IoT layers resources. Collection
types are not defined in the system model since they can
be dynamically defined to match specific environments. The
FlexibleElement provides a bidirectional communication with
Controllers representing the SEMIAH actors. A Controller can
be informed about the current Flexibility (i.e., the forecast of
the flexibility for the near future) provided by a FlexibleEle-
ment, and it can request the activation of available flexibility.

A FlexibleElement can be either a process or a collection. A
process abstracts an atomic flexible process like for example:
space heating. A Process is linked to one or more Resources.
The Process state is essentially stored in its Flexibility object.
The Forecaster upgrades the ProcessFlexibility each time a
Resource is updated. When the Process is requested to ac-
tivate flexibility, it asks its ProcessController to set (in real-
time) appropriate Resource parameters and to check that the
request is performed as expected. A Collection features also
a Flexibility. When the Flexibility of one of its members
(either a Process or a Collection) is significantly modified,
the collection’s aggregator updates the proper Flexibility of the
Collection. Flexibility calculation for a Process or a Collection
has to consider constraints (formalised using the Constraint
interface). When a Collection is requested to activate Flexi-
bility, its Scheduler dispatches the request among all member
elements.

Individual processes are basic flexible elements. Collections,
which are sets of processes and/or sub-collections, are also
flexible elements. Hence, a collection must express its flexibil-
ity and provide some controllability. The collections flexibility
is an aggregation of the flexibility of its members. When
requested to activate its flexibility, a collection must dispatch
the request between its members. Collections have two roles: i)
they allow strongly reducing the number of elements presented
to the SEMIAH Control layer, and ii) they allow enforcement
of constraints for flexibility aggregation and dispatching of
flexibility requests. Table I and Table II give lists of possible
meaningful collections and processes, respectively.

Constraints can be specified at the process level and at the
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Fig. 4: UML class diagram for the system model.

TABLE II. List of possible processes.

Process type Description

Space heating Uses energy to provide electricity to heat
conversion

Appliance work Uses an appliance to make mechanical work
Lighting Provides illumination in rooms, streets etc.
Charging Loading an appliance with capacity to store

electrical energy

collection level. An example of a constraint for a thermal
process is the need for a temperature to remain in a given band
to provide comfort to the occupants. Moreover, a deadline
flexibility can be used to describe the required ending-time
of a running appliance [12]. For a building collection, a
constraint could be for example the limitation of the consumed
power. The system model should put as few constraints as
possible on semantics as well as on aggregation and scheduling
algorithm. Thenceforth, new semantics or new algorithms can
be supported without changes in the system model.

C. The SEMIAH Control Layer

SEMIAH allows system operators and electricity suppliers
to activate flexibility to fulfil their specific objectives. The goal
of the SEMIAH Control layer is to capture and serve user-
specific requests. Typically these relate to grid control through
access to control centers, ancillary services or bidding on the
energy market exchange. The SEMIAH Control layer pro-
cesses requests so that they can be forwarded to the SEMIAH
Objects layer. The SEMIAH Control layer addresses SEMIAH

Objects flexible elements. Hence, the SEMIAH Control layer
can manage collections and/or individual processes.

FlexibleElements require that an external entity interact with
them to concretely activate available flexibility in whole or
in part. This is precisely the role of a Controller instance
such as a VPP. A VPP is a class, typically instantiated by a
larger software component that orchestrates FlexibleElement
instances to address market objectives and/or grid control
objectives.

IV. SEMIAH INTEGRATION FRAMEWORK

This section presents an architectural approach that ad-
dresses the challenges of aggregators offering a DR service.
Fig. 5 shows an abstract view of the SEMIAH architecture
of the SEMIAH component-based integration framework. The
heart of the architecture is the Generic Virtual Power Plant
(GVPP). The GVPP has a number of consumer and provider
interfaces to be listed below.

SEMIAH is a component-based framework that lets devel-
opers build, statically or dynamically, a scalable infrastructure
based on a variety of IoT technologies. It has been the goal
to develop a framework that integrates a set of well-defined
concepts in DR and programming abstractions with the types
of infrastructural support. To this end, the conceptual founda-
tions of the SEMIAH framework has been developed; starting
with system modeling as the primary interest. Furthermore,
the frameworks rests on the state of the art in distributed
computing such as service-oriented architectures for loosely-
coupled systems.
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Fig. 5: SEMIAH technical architecture.

A. Functional Components

SEMIAH proposes a two-layer approach: a back-end service
that resides in a scalable Infrastructure as a Service (IaaS) and
a front-end that controls household appliances via a residential
gateway. The two-layer approach applies to service-oriented
platforms that encompasses a “virtualization” layer, including
a Virtual Machine Units (VMUs) such as a Java Virtual
Machine (JVM). Within these VMUs the components related
with the application workflow execution and the DR instance
of the presented framework are deployed.

The SEMIAH aggregator subsystem “wraps” the VPP com-
ponent and becomes the integration layer between a cen-
trally controlled VPP and the distributed set of residential
households (a.k.a. “the horse shoe model”). This configuration
allows or IoT protocols and middleware to be used in the com-
munication between the VPP component and the aggregation
layer.

B. Interfaces

Table III provides a list of open interfaces in the SEMIAH
framework architecture. Interfaces are composed based on the
principle of separation of concerns in software engineering.
The framework uses Representational State Transfer (REST)
for the communication between entities by using HTTPS over
TCP/IP.

C. Data Models

The interworking between SEMIAH components are en-
abled by a common set of data models. These are de-
fined based on a subset of the Common Information Model
(CIM) [23] taylored to the DR concept of SEMIAH.

D. Deployments and Configurations

The system model does not address the distribution of
objects on concrete computing devices. The underlying as-
sumption is that any object can be implemented on any device
and that some distributed systems technology will implement
the interactions between objects. The following computing
devices can be considered: i) home energy management gate-
way in each household/building; ii) feeder management device

TABLE III. SEMIAH infrastructure interfaces.

Interface name Description

iDecisionSupOp Used to deliver forecast information e.g.,
RES production, CO2 emission rate etc.
to support decisions of the Generic VPP
(GVPP)

iEnergySupOp Used to deliver information related to en-
ergy markets such as time varying price
information.

iDsoOp Use by DSO to disseminate grid related
constraints, provide direct control and for
emergency control.

iAlgorithms The GVPP has an open interface for 3rd
party components to interface to VPP op-
erations. This may e.g., be new algorithms
for aggregation, forecasting, and scheduling.
The interface is also a pivot point for inte-
gration of components developed and used
in SEMIAH.

iSemiahOp Used for operation and maintenance of the
SEMIAH system.

iHousehold Used for connecting and controlling the
household appliances through the Home En-
ergy Management Gateway (HEMG).

iHouseholdCollection The interface is similar to iHousehold ex-
cept that is operates of collections of e.g.,
households and/or appliances.

iVppOp Used for operation and maintenance of the
GVPP components planned for use in the
SEMIAH pilot.

typically located in the secondary substation; and iii) full-
featured server or (private or public) cloud service.

The distribution of objects on devices is influenced by
several factors including: hardware costs and energy consump-
tion of computing devices, telecommunication bandwidth,
prosumers expectation and legal requirements for privacy,
prosumers need for confidentiality protection, and the manage-
ment of complexity (to supervise the system and for software
updates). For SEMIAH, the following generic rules apply:

• The VPP component is an existing software module
integrated into SEMIAH through a SEMIAH defined
Application Programming Interface (API);

• All SEMIAH models and algorithms are independent
of deployment topologies and of distributed systems
technologies.

The development and implementation of the proposed in-
tegration framework demands a concerted effort to apply and
extend the existing technologies through near-future initiatives,
while promoting forward-looking research and development
to solve underlying critical issues in the long term to ensure
economic, environmental, and societal impacts.

V. LOW VOLTAGE GRID IMPACT ASSESSMENT

A first conceivable risk, resulting from the possible impact
of a DR on the power grid, is instability due to the feedback
loop introduced between demand and DR triggers such as
wholesale market prices. Theoretical work has shown that ap-
plication of real-time pricing to consumers leads to increased
volatility [24]. DR programs based on aggregation have been
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found better in terms of stability than ones based on prices to
end users [25]. A second possible risk, loss of diversity, arises
when the volume of participation in a given DR program in-
creases. Load diversity is an important dimensioning factor for
power grids. It is based on the observation that consumption
patterns vary across electricity users. As a result, the total peak
demand on a grid portion is lower than the sum of individual
peak demand levels. The ratio between this sum and the total
demand is called coincidence factor. It generally decreases
with an increasing number of users. For electric water heaters,
it is typically around 1/6 in Europe [26]. This observation
enables great savings in infrastructure costs by dimensioning
cables and transformers for a much lower load than the sum
of nominal loads of the households/buildings attached to the
grid.

Ripple control as used for example to control electric water
heaters in peak/off-peak tariff structures is widely imple-
mented in countries like France, Italy and Switzerland. As this
approach is based on broadcast signals, it leads to a strong
reduction in diversity and to spikes in power demand. In a
transformer station in Switzerland whose maximum load is
6 MW, overloading by more than 1 MW has been observed
due to an almost instant rise in demand by about 6 MW in
response to a ripple control signal. Probabilistic analysis has
shown that the loss of diversity depends on the duration of
the controlled interruption of demand: from a starting point of
0.32, the coincidence factor increases to 0.39 after a ten-minute
interruption, 0.8 after a two-hour interruption, and 0.95 after a
four-hour interruption. In the latter case, more than five hours
are necessary to reach back the initial coincidence of 0.32.
This rebound effect has two detrimental effects on the power
grid. It leads to rapid voltage fluctuations potentially beyond
acceptable values, and increases cable and transformer loading
potentially beyond their maximum values. It is particularly
strong in the case of thermostatically-controllable appliances
such as Heating Ventillation and Air Conditionings (HVACs),
heat pumps, or water heaters [27]. The rebound effect can be
integrated in the load forecasting so that sufficient generation
capacity is available to serve the additional load after a
sudden decrease of DR incentive [28]. This solution, however,
does not solve the local network issues. The workaround put
in place in the case of ripple control is to spread signals
over time to avoid simultaneously turning on all controlled
devices. More generally, several control strategies of thermal
electric loads have been investigated to mitigate the rebound
effect. The strategy which leads to the lowest peak load after
interruption is the one which maintains the user’s comfort
during the interruption as the SEMIAH concept intends to
do. However, this approach also delivers the lowest reduction
in power and energy demand [29]. Spreading complete switch
off of appliances over time seems to give the best compromise
between effectiveness of the response to a load-reduction
signal and minimization of the rebound load.

SEMIAH will take into account the grid constraints in the
scheduling of electricity loads. However, this procedure will be
limited by the lack of detailed estimates of voltage variations

due to simultaneous switching of controlled appliances and a
pragmatic approach seems to be the only feasible way forward.
Measurements available in SEMIAH are expected to be only
energy consumption in participating households/buildings, at
a maximum rate of 0.1 Hz. This is an approximate of average
active power consumption. This information can only provide
a crude estimate of the voltage, even if the topology of the
grid is known, because the voltage in LV grids also depends
on reactive power. The information can, however, be used
to manage the increase in component loading due to the
loss of diversity. For efficient operations, the power rating of
the transformers and of each connected participant should be
known. Otherwise, it can only be estimated based on design
rules used in the location under consideration, but that bears
large uncertainties. Managing diversity is relatively easy from
an information point of view but it is a complex constraint on
the optimization algorithm. To minimize risk, this means that
geographic spread should be maximized when deploying DR
schemes rather than rolling them out to district by district.

Table IV summarizes the conclusions of the LV grid stability
analysis. The two locations, that have been analysized, are
Skarpnes in Norway and Visp in Switzerland.

VI. CONCLUSION AND FUTURE WORK

The European research project SEMIAH addresses the DR
challenge of smart grids. It offers an open component-based
framework for an aggregator service platform that can be
deployed to pool flexibility of prosumption for a large number
of residential households. The key system design challenges
such as aggregation, forecasting, and load scheduling have
been outlined. Furthermore, the SEMIAH system model and
the architectural framework have been presented. The im-
pact of the LV grid stability was analyzed. By combining
the SEMIAH framework with the introduction of novel and
innovative business models, prosumers are provided with
incentives to offer flexibility of prosumption that will lead to
a more secure and sustainable energy supply.
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Abstract—The paper studies the challenge of the electricity
consumption management in smart grids. It focuses on different
impacts of demand response running in the smart grid engaging
consumers to participate. The main responsibility of the demand
response system is scheduling the operation of appliances of
consumers in order to achieve a network-wide optimized per-
formance. Each participating electricity consumer, who owns a
set of home appliances, provides the desired expectation of his/her
power consumption scenario to the demand response system. It
is accompanied with time limits on the flexibility of controllable
appliances for shifting their operational time from peak to off-
peak periods. The appliance scheduling optimization for demand
response is modeled as an optimization problem. It concentrates
on reducing the total electricity bills and CO2 emissions as well
as flattening the aggregated peak demand at the same time.
This paper categorizes the appliances based on shiftability and
interruptibility characteristics. It uses information of dwellings
to determine an effective appliance scheduling strategy. This
strategy gets influenced by grid constraints imposed by distribu-
tion system operators. The simulations confirm that scheduling
appliances of 100 consumers yields a significant achievement in
the peak demand reduction while averagely satisfying the comfort
level of consumers.

Keywords–Smart grid, demand response, appliance scheduling,
knapsack problem, dynamic programming, multi-objective optimiza-
tion.

NOMENCLATURE

Constants
PDT Peak Demand Threshold
PPD Peak Power Demand
Ai Number of appliances in Di

ai,j Appliance j in dwelling i

Di Dwelling i

G Number of generations
N Number of dwellings
pc Crossover propability
pm Mutation propability
pi,j Priority of appliance ai,j
Q Population size
T Number of time intervals
DFi,j Deadline flexibility of appliance ai,j
TPDi,j Total power demand of appliance ai,j
Indices
i Index of dwellings
j Index of appliances
t Index of time intervals
Variables
xt
i,j Decision variable of selecting PDt

i,j

CO2E
t Amount of CO2 emission at time interval t

EPt Electricity price at time interval t
PDt

i,j Power demand request of appliance ai,j at time
interval t

RPt
i,j Number of remaining power requests of appliance

ai,j at time interval t

I. INTRODUCTION

The smart grid has emerged as a novel infrastructure aiming
to transform the existing power system into a reliable and
consumer-centric one. It forms a distributed energy delivery
network using the electricity and information streams simul-
taneously. This network possesses a self-healing characteristic
toward facing unforeseen electricity outage circumstances. Its
reliability and stability are based on intelligent controllers,
in which they try to establish bilateral communication chan-
nels between consumers and Distribution System Operators
(DSOs). The demand side management service provides an
opportunity to energy actors for an active participation in coun-
terbalancing the demand response. It helps to find the most
reliable and effective energy solutions in real-time. This paper
extends the work presented in [1]. Here, the key contributions
include the extended mathematical formulation and description
of the demand response system along with a presentation of
an extensive simulation performance analysis.

Demand response is one of the most challenging issues in
demand side management, which is responsible for providing
effective and comprehensive energy solutions [2]. From the
consumers’ point of view, demand response attempts to moti-
vate them to modify their electricity usage patterns, in response
to potential grid incentives. In contrast to this point of view,
DSOs intend to equilibrate demands with responses to reduce
peak power demands as much as possible [3]. These purposes
can be achieved through both curtailing the power demand and
controlling the activation time of electricity usages. However,
a mutual challenge behind these procedures is how to motivate
consumers to modify their power demand profiles [4][5].

One of the most pragmatic incentives for consumers to
modify their consumption behavior is electricity prices. Al-
though demand response includes efforts to change the elec-
tricity usage of consumers with respect to the alterations in
the electricity prices, however, reducing the peak demand
and CO2 emission also help to decrease the greenhouse gas
emissions [6]. This reduction results in a co-optimization
approach of power demand cost and CO2 emission. In some
peak hours, the demand response system has to shift some
power demand requests from diverse dwellings to another time
interval. This shifting can occur several consecutive/separate
times over a day. Obviously, this leads to some changes in the
daily power consumption of consumers. This causes a problem
named dissatisfaction of consumers. As a result, maximizing
the satisfaction of consumers is an essential objective as well.
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Consumers are also interested to reduce their electricity cost
while contributing to CO2 emission reduction program. From
the DSOs’ point of view, they aim to shave the peak period,
which results in flattening the aggregated power demands over
time.

Figure 1 shows a conceptual view of various communica-
tions in the grid. Each dwelling has a specific scenario for its
own appliances. This scenario includes the desired timetable of
using appliances in a day. First, appliances are classified based
on the shiftability feature [7]. Second, shiftable appliances are
categorized by the interruptibility feature. These classifications
permit consumers to give a priority to appliances, which is
important for their starting time. Once the consumer chooses
to operate an appliance in demand response ready mode,
the consumer offers flexibility to the grid and provides an
opportunity to the demand response system for reducing the
peak demand.

This paper proposes a local power scheduling algorithm
attempting to schedule power demand requests of appliances.
Here, local means receiving the power demand requests with
a specific time resolution and scheduling them accordingly.
As its principal novelty, the algorithm runs concurrently and
need not know the whole operating period of appliances.
The scheduler intends to schedule power demand requests
optimally once they arrive. At each time interval, its main
responsibility is to allow some appliances to operate and shift
the operating cycle of the remaining appliances to the future.
This shifting is enabled by utilizing Peak Demand Thresholds
(PDTs) imposed by DSOs. The scheduling algorithm attempts
to keep the aggregated power consumptions below PDTs
continuously.

This rest is organized as follows: Section II overviews the
related work. Section III presents the system model. Section IV
proposes the power scheduling algorithm. Section V discusses
the simulation setup and analysis. Finally, Section VI con-
cludes the paper and provides the possible future extensions.

II. RELATED WORK

A considerable amount of literature is published on smart
grids due to concerns on the inefficient structure of the
current electrical grid in responding to the growing demand
for electricity [8][9]. Farhangi [8] investigated the differen-
tial impacts of transforming the current electrical grid to
a complex system of systems, named the smart grid while
Fang et al. [9] surveyed the enabling technologies for data
communications in the smart grid. With the advent of smart
grids, new solutions are becoming available. To support these,
demand response programs endeavor to change the electricity
usage patterns of consumers in response to electricity prices
or other signals. These programs are considered as reliable
solutions to improve the energy efficiency and reduce the
peak demand [10]. To reach these goals necessitates demand
response service providers investing on proposing functional
and potential power scheduling services to the smart grid.

Most of the current research on the power scheduling
problem focuses on scheduling power demand requests of
appliances of consumers wrapping as a single-objective frame-
work while relying on historical data and forecasting ser-
vices [11][12]. Agnetis et al. [11] defined the problem of
optimally scheduling a limited number of manageable appli-
ances of only one dwelling solving with a high computational

Figure 1. Conceptual view of various communications in the grid

algorithm based on the mixed integer linear programming.
O’Brien [12] proposed a greedy algorithm for automatically
scheduling the shiftable appliances with completely predeter-
mined power profiles while missing to take any grid stability
constraint into account.

Nevertheless, far too little attention has been paid by
smart grid researchers to design a system model where power
scheduling is done near real-time. Jacobsen et al. [1] found this
gap and developed a simple but efficient smart appliance power
scheduling mechanism based on the peak demand reduction
strategy. Consecutively, Azar et al. [13] followed a design
methodology that efficiently utilized a time-independent PDT
policy for decreasing the aggregated peak demand considering
the appliance reception minimization method. It successfully
flattened the aggregated power consumption based on a cen-
tralized demand response system.

This paper advances the state of the art in formulating a
demand response service where appliances send their power
demand requests with a specific time resolution accompanying
the consumer’s time-limit flexibilities. The DSO schedules the
incoming power demand requests according to the customers’
and its objectives. It attempts to keep the aggregated power
demands below PDTs over time.

III. SYSTEM MODEL

This section clarifies the proposed system model, as Fig-
ure 2 illustrates its conceptual view. Consumers play a major
role in this system model since they provide their desired elec-
tricity consumption scenarios and corresponding flexibilities
to the demand response system. In addition, DSOs impose
some grid stability constraints to maintain the electrical grid,
such as PDT. Electricity prices of a typical day with the
corresponding CO2 emission data are another system input.
The demand response system will receive these input data and
then, executes the scheduling algorithm attempting to schedule
appliances of dwellings with respect to the objectives and
constraints settled in the demand response system.
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Figure 2. System model of the appliance power scheduling

A. Consumers: Appliance Point of View
This paper assumes there are N ∈ N dwellings connected

to a feeder in the electrical grid. Each dwelling Di, where
i ∈ {1, 2, . . . , N}, possesses Ai ∈ N appliances. Each appli-
ance ai,j , where j ∈ {1, 2, . . . , Ai}, is a driver of residential
power demands. To guarantee the full operation of appliances,
the demand response system should check whether appliances
have completed their responsibilities during the day or not.
Therefore, Equation (1) shows this hard constraint.

T∑
t=1

(
PDt

i,j ×xt
i,j

)
= TPDi,j , (1)

where PDt
i,j ∈ R∗ (watts) is the power demand of appliance

ai,j at time interval t. Notation xt
i,j ∈ {0, 1} is the decision

variable of the optimization problem. xt
i,j = 1 allows appliance

ai,j to operate at time interval t while xt
i,j = 0 shifts its

operation to the future. Furthermore, TPDi,j ∈ R+ (watts) is
the total power demands of the appliance.

Appliances are classified according to some smart fea-
tures named shiftability and interruptibility [7][13]. Shiftability
means giving permission to the demand response system to
shift the power demand requests of shiftable appliances to later
time intervals. However, some appliances cannot be shifted,
for instance the refrigerator. These appliances are members of
non-shiftable appliances. Afterwards, shiftable appliances are
divided into two groups based on the interruptibility feature.
The electric vehicle is a typical example of an appliance
exhibiting this feature. The demand response system can both
shift and interrupt the duty cycle of charging the electric
vehicle. Nevertheless, those appliances, which can be shifted,
but are infeasible to be interrupted are called uninterruptible
appliances (e.g., dishwasher). Their whole operating duty cycle
can be shifted to another time interval. However, they should
not be interrupted because of the continuity in their cycle.
Equation (2) formulates this hard constraint, which is valid at
each time interval:
Non-shiftable appliances→ xt

i,j = 1,

Uninterruptible appliances→
{
xt
i,j = 1 if xt−1

i,j = 1,

xt
i,j ∈ {0, 1} otherwise,

Interruptible appliances→ xt
i,j ∈ {0, 1} .

(2)

At each time interval t, the demand response system is
signaled with power demand requests of appliances. Once
it receives a power demand request from a non-shiftable
appliance, it is allowed to operate. If the request belongs to
an uninterruptible appliance first it should check whether the
relevant appliance has been allowed to start its work at the
previous time interval. If so, the system cannot interrupt and
shift it to another time interval. Otherwise, it is possible to
shift it, if needed. Finally, if an interruptible appliance sends
a power demand request at any interval, it is possible to either
allow or shift it.

In real world, consumers sometimes give priorities to use
their appliances based on their preferences. For instance, the
stove has higher priority compared to the laundry machine.
There are two kinds of priority preference named static and
dynamic. The former denotes time-independent priorities of
appliances, where the pairwise comparison between each two
appliances is constant with respect to some criteria such as
emergent usage, welfare, or electricity cost. Each consumer
can set 0 < pi,j ≤ 1 as the priority of using appliance ai,j over
the day. As a result, if the demand response system confronts
a circumstance, when it should decide to select one appliance
among two or more, then, the appliance, which has the highest
priority will be selected [14]. Finally, as a brief description
of the dynamic priority, sometimes consumers change the
priorities of their appliances as time moves on. For instance,
one consumer gives a priority to his/her dishwasher in the
morning. In the afternoon, he/she changes its priority since
the washing machine is needed to operate at the same time.
Therefore, dishwasher’s priority is decreased. Nevertheless, for
simplifying the model, the dynamic priority constraint is not
considered in this paper.

Consumers participating in demand response programs
provide some flexibilities to the demand response system for
operating their appliances. Let us assume one consumer is
interested to plug in his/her Nissan Altra electric vehicle at
18:00. The charging cycle will typically take five hours [15].
Nonetheless, he/she is flexible to receive the electric vehicle in
the finished state at most at 08:00 the next day. Therefore, the
flexibility that the consumer offers to operate his/her electric
vehicle is 14 hours. We name this concept as a deadline
flexibility, which is a time-oriented constraint. This kind of
flexibility helps the demand response system to shift some
appliances, which relatively consume more than others, to
the future. The demand response system should consider the
remaining power demand flexibility (with given time limits)
before shifting them. Equation (3) describes this constraint:

RPt
i,j ≤ (DFi,j −t) , (3)

where RPt
i,j ∈ Z∗ relates to the number of remaining power

demand requests of appliance ai,j from time interval t until
the end of its duty cycle. Moreover, DFi,j (e.g., UTC) denotes
the deadline flexibility of this appliance. The demand response
system satisfies this constraint while it receives the power
demand requests continuously. If the remaining power demand
of an appliance is still less than its provided time limit
flexibility, the demand response system can decide to allow
it to start/continue in this time interval or to shift it to another
time interval. To shift a power demand request, it is essential
to ensure the satisfaction of all constraints.
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Considering the aforementioned descriptions, each
dwelling Di has a specific scenario showing how the
consumer intends to operate the appliances. Table I lists
a sample scenario of operating the appliances in a typical
dwelling. As described previously, deadline flexibility in using
appliances means a firm deadline for finishing the related
activity. For example, the consumer provides two hours of
flexibility to the demand response system for charging the
electric vehicle. More in details, it receives the first power
demand request for charging the electric vehicle at the defined
time. The demand response system has an opportunity to
deliver the charged electric vehicle later in time by utilizing
the provided deadline flexibility. It is possible to both shift and
interrupt the charging process during the defined time period
since the electric vehicle is a member of the interruptible
appliances. Here, the priorities are time-independent (static).
It is worthwhile emphasizing that the priority is applied to
only shiftable appliances. Hence, the refrigerator and lighting
will not undergo any scheduling procedure. They will receive
an infinite priority since they are members of non-shiftable
appliances.

B. Distribution System Operator: Grid Constraint Point of
View

Currently, electricity producers generate more electricity
since they are experiencing an insufficiency of electricity gen-
eration capacity because of the power demands by consumers.
However, it can be avoided using demand shaping schemes.
DSOs currently apply a threshold policy, in order to shave
the peak, which results in shaping the demand profiles over
time [1]. From an electricity grid point of view, the upper limit
of the PDT may be enforced by the DSO by the installation
of fuses and other safety-related measures such as protective
relays. These devices may be dimensioned differently and the
subscription fee for a dwelling often depends on the installed
capacity. As a complement, adaptive schemes can be deployed
as a control loop between a DSO-controlled generator side and
individual dwellings [16]. Let

N∑
i=1

Ai∑
j=1

(
PDt

i,j ×xt
i,j

)
≤ PDT, (4)

where PDT ∈ R+ (watts) is a constant and time-independent
power demand threshold, in which the demand response sys-
tem attempts to keep the amount of allowed power demand
requests below it. Nevertheless, Equation (4) sometimes cannot
be satisfied owing to the provided deadline flexibilities and
uninterruptibility feature of some appliances. Therefore, the
demand response system will consider this constraint for power
demand requests, in which the corresponding appliances: 1)
still have time to start operating or 2) have not started yet.
For the former the demand response system can still use the
provided flexibility while for the latter it can shift the starting
time of the appliance to the later time intervals. It is worth
noting that priorities of appliances could be also considered in
Equation (4).

C. Demand Response System: Objective Point of View
While the demand response system receives power de-

mand requests of appliances, it cannot globally optimize the
objectives since they are received at specific time intervals

TABLE I. A SIMPLIFIED EXAMPLE OF A DWELLING’ SCENARIO

Start End Activity description Deadline flexibility Priority

00:00 24:00 Using the refrigerator 24:00 Infinite
08:00 24:00 Turning the lights on 00:30 Infinite
08:05 09:50 Putting the dishes into the

dishwasher
10:30 0.2158

13:00 14:15 Putting the laundry into the
washing machine

17:00 0.1063

17:25 18:15 Putting the washed laundry
into the laundry dryer

22:00 0.1499

11:30 22:40 Using the computer 23:30 0.2649
19:50 22:00 Watching the TV 24:00 0.1293
20:00 22:00 Charging the electric vehicle 24:00 0.1338

continuously. As a result, all objectives are based on a local
controlling strategy, as follows.

1) Minimizing the Electricity Cost: Equation (5) formulates
the willingness of the demand response system to minimize
the electricity cost of consumers at each time interval. Here,
EPt ∈ Z∗ (DKK per watts per hour) is the electricity price at
each time interval.

f(x) = min

N∑
i=1

Ai∑
j=1

(
PDt

i,j ×xt
i,j ×EPt

)
. (5)

2) Minimizing the CO2 Emission: Equation (6) shows the
interest for reducing the CO2 emission of dwellings at each
time interval by applying the decision variable xt

i,j for all
power demand requests. Here, CO2E

t ∈ R∗ (grams per watts
per hour) is the amount of CO2 emission at each time interval.

g(x) = min

N∑
i=1

Ai∑
j=1

(
PDt

i,j ×xt
i,j ×CO2E

t
)
. (6)

3) Maximizing the Comfort Level of Consumers: Equa-
tion (7) formulates how the demand response system is in-
terested to maximize the comfort level of consumers over
time. Comfort level indicates the consumers’ desire to have
their activities being done as they exactly expect from their
scenarios. In fact, appliances aim to get permission to run their
operations at each time interval as much as possible.

h(x) = max

N∑
i=1

Ai∑
j=1

(
xt
i,j × pi,j

)
. (7)

In conclusion, the demand response system considers the
appliance power scheduling optimization as a mixed-integer
linear programming problem including Equations (5) to (7) as
its objective functions subject to Equations (1) to (4) as the
relevant constraints. Next section will describe how the pro-
posed scheduling algorithm attempts to solve this optimization
problem applying diverse approaches.

IV. SCHEDULING ALGORITHM

Algorithm 1 presents the pseudo-code of the power
scheduling algorithm. Considering the system model shown in
Figure 2, the demand response system executes the scheduling
algorithm to produce a specific schedule for appliances of
dwellings based on the objectives and constraints, described in
Section III. It receives power demand requests at specific time
intervals. Apart from the PDT, the scheduler allows the non-
shiftable power demand requests to start or to continue their
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Algorithm 1: Power scheduling
Input : The scenarios, power profiles, classification of appliances, PDT.
Output: Schedule of appliances of all dwellings.

1 Preprocessing the input data;
2 while receiving the power demand requests over time do
3 Allow the non-shiftable appliances to start or to continue;
4 Update PDT;
5 if there are uninterruptible appliances, which have started previously then
6 Allow them to continue;
7 Update PDT;
8 end
9 if there are appliances, which cannot be shifted due to their deadline flexibility constraint then

10 Allow them to start or to continue;
11 Update PDT;
12 end
13 if there are some remaining power demand request then
14 if their total consumption is less than the remaining PDT then
15 Allow them to start or to continue;
16 Update PDT;
17 else
18 Refer to the single/multi-objective Knapsack procedure;
19 Allow the output power demand requests of the Knapsack procedure to start or to continue;
20 Shift the remaining power demand requests to the next time interval;
21 end
22 end
23 end

duties. Furthermore, if there is an uninterruptible appliance,
which has started at the previous time interval, it should
be allowed to continue. Finally, if there is a power demand
request, where shifting it to the next time interval violates its
provided deadline flexibility, then, the same action of allowing
it to start takes place. After finishing these procedures, the
algorithm will check whether the total power demand of the
remaining requests is below the remaining PDT (capacity) or
not. If so, all will be permitted to start or to continue their
procedure. Otherwise, the algorithm refers to the Knapsack
procedure to select some requests from the remaining power
demand requests to enable them to start or to continue, and
shift the unselected requests to the next time interval.

Two challenging circumstances can occur during the
scheduling, and handling them confirms the robustness of the
scheduling algorithm. If there is a sudden drop in the electric
power, indeed no appliance can send any power demand
request. Therefore, the scheduling algorithm waits until the
appliance sends its new power demand request. Furthermore,
if all appliances in all dwellings are configured as non-shiftable
with high priorities, the scheduling algorithm will allow all of
them to operate, when they send their power demand requests.
This is based on respecting the consumers who do not provide
any flexibility to non-shiftable appliances. However, this is
considered to be an infeasible and greedy setup.

A. The Knapsack Problem

The Knapsack problem is one of the traditional problems of
computer science in combinatorial optimization literature [17].
Given F items, the Knapsack tries to pack the items to obtain
the maximum total value. Each item gets a weight and value.
The maximum weight that the Knapsack can tolerate is limited

by a fixed capacity W . This problem has two versions: “0-1”
and “fractional”. In the former, items are indivisible meaning
it is possible to either take an item or not. In contrast, in
the fractional version, items are divisible and, therefore, the
Knapsack can take any fraction of an item.

This paper gets the benefit from the first version since the
remaining power demand requests are similar to the indivisible
items in “0-1” Knapsack problem. The “0-1” Knapsack prob-
lem is NP-Complete since the time complexity of solving it in
a brute-force approach is O(2F ). Time complexity measures
the time that an algorithm takes as a function of the size of
its input. Applying brute-force approach means calculating
the fitness of 2M solutions to locate the optimal one. The
power scheduling problem is reducible to this version since
the demand response system should decide to allow those
indivisible power demand requests, which optimize the objec-
tive(s) and satisfy the constraints simultaneously. Therefore,
the discussing problem is also NP-Complete. Hereinafter, we
the scheduler needs to refer to the Knapsack problem, we name
it the Knapsack procedure.

Indeed, the Knapsack procedure requires not only to de-
cide, which power demand requests have to be processed now
and delay the others afterwards, but should also consider the
starting (ending) times of the latter. The latter is reflected in
the flexibility that consumers provide.

Table II defines the equivalent parameters of the Knapsack
and power scheduling optimization problems according to
various objectives. As described previously, the Knapsack pro-
cedure receives the remaining power demand requests, which
their total power demand is indeed more than the remaining
capacity. It calculates the fitness of produced feasible solutions,
in which each solution includes some power demand requests.
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TABLE II. EQUIVALENT PARAMETERS OF THE KNAPSACK PROCEDURE AND POWER SCHEDULING OPTIMIZATION PROBLEM

Values (items) Objective(s) Weights Capacity

Single-objective
Electricity cost of power demand requests Minimizing the total electricity costs Power demand requests PDT
CO2 emission of power demand requests Minimizing the total CO2 emissions Power demand requests PDT
Priority of power demand requests Maximizing the total allowed power demand requests Power demand requests PDT

Multi-objective
Electricity cost and priority of power demand requests Minimizing the total electricity costs and

maximizing the total number of allowed power demand requests Power demand requests PDT

CO2 emission and priority of power demand requests Minimizing the total CO2 emission and
maximizing the total number of allowed power demand requests Power demand requests PDT

As a result, the solution to this problem is a subset of received
power demand requests, which should be allowed to start or
to continue in this time interval. Then, there will most likely
be some remaining power demand requests, which cannot
successfully start or continue. These power demand requests
should be shifted to the future.

Depending on the number of objectives chosen by the
demand response system, different approaches can be used to
run the Knapsack procedure. On the one hand, if the demand
response system decides to run the scheduling with one ob-
jective, the scheduling problem turns into a single-objective
optimization problem. This is equal to run the single-objective
“0-1” Knapsack procedure with dynamic programming at each
time interval (if needed) [14]. On the contrary, if at least two
objectives are chosen, the scheduling algorithm corresponds
to a multi-objective optimization problem, which has to be
solved with relevant techniques [18]. It is worth noting that
these approaches are used at each time interval, if needed.
The following describes them.

1) Dynamic Programming: We utilize a dynamic program-
ming approach to solve single-objective power scheduling
problem. As Figure 3 demonstrates its principles, this approach
first characterizes the structure of an optimal solution. Then,
it decomposes the problem into smaller problems. Meanwhile,
it finds a relationship between the structure of the optimal
solution of the original problem and solutions of the smaller
problems. It recursively expresses the solution of the original
problem in terms of optimal solutions to smaller problems,
which supports the optimality.

To this end, it follows a bottom-up computation approach.
The value of an optimal solution is computed in a bottom-
up manner using a table structure. This table is repeatedly
filled to use in each iteration [19]. The structure of an optimal
solution to the power scheduling problem is a subset of the
remaining power demand requests, which optimizes the rele-
vant objective. Algorithm 2 declares the dynamic programming
method for running the single-objective Knapsack procedure.
The time complexity of approaching the Knapsack procedure
using dynamic programming is O(M×PDT).

2) Multi-Objective Optimization: Multi-Objective Opti-
mization (MOO) is an area of multiple criteria decision-
making, where mathematical optimization problems involving
more than one objective function should be optimized simul-
taneously [20]. Optimal decisions are taken in the presence
of trade-offs between two or more conflicting objectives.
Solving a MOO problem necessitates computing all or a
representative set of Pareto-optimal solutions. In this paper, a
Pareto solution comprises a subset of remaining power demand
requests. When decision-making is emphasized, the objective
of solving a MOO problem is to support a decision-maker in

Figure 3. Principles of the dynamic programming approach

Algorithm 2: Approaching the Knapsack procedure:
Dynamic programming

Input : power demand requests, PDT.
Output: The optimal solution at the current time

interval.
1 Set F as the number of input power demand requests;
2 Create a (F + 1)× (PDT + 1) table named V ;
3 if the objective is minimization then
4 Set V [0, 0 : PDT + 1]=Inf;
5 else
6 Set V [0, 0 : PDT + 1]=0;
7 end
8 for i = 1 to F do
9 for j = 1 to PDT do

10 if PD[i] ≤ j then
11 if the objective is minimization then
12 V [i, j] =

min(V [i− 1, j],PD[i] + V [i− 1, j − PD[i]]);

13 else
14 V [i, j] =

max(V [i− 1, j],PD[i] + V [i− 1, j − PD[i]]);

15 end
16 else
17 V [i, j] = V [i− 1, j];
18 end
19 end
20 end
21 Return the V [F,PDT] as the final solution;

finding the most preferred Pareto-optimal solution. Here, the
decision-maker is the demand response system, which should
decide to allow only a subset of the remaining power demand
requests to optimize the objectives and satisfy the constraints at
each time interval accordingly. The objective functions are in
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Algorithm 3: Approaching the Knapsack procedure; Multi-objective evolutionary algorithm
Input : Remaining power demand requests, PDT, population size (Q), number of generations (G), crossover (pc) and

mutation (pm) probabilities.
Output: A near-optimal solution at the current time interval.

1 Randomly produce initial solutions and combine them as the parent population;
2 Evaluate the parent population based on the objective functions;
3 Calculate the Pareto-fronts and the crowding distance of solutions inside the parent population;
4 c = 1;
5 while c ≤ G do
6 Apply the selection operator on the parent population and forward to the crossover operator;
7 Apply the crossover operator on the received solutions with a probability of pc and forward to the mutation operator;
8 Apply the mutation operator on the received solutions with a probability of pm and put them into the offspring

population;
9 Evaluate the offspring population based on the objectives;

10 Combine the parent and offspring populations into a temporary population;
11 Calculate the Pareto-fronts and crowding distances of solutions inside the temporary population;
12 Select solutions from the Pareto-fronts orderly while replacing them with solutions in the parent population until

reaching Q;
13 end
14 Return a Pareto-solution from the first Pareto-front as a near-optimal solution;

conflict, when there exist an infinite number of Pareto-optimal
solutions. A Pareto-optimal solution does not improve for one
objective unless it satisfies others. The main goal in MOO
problems is to find a finite Pareto-front in the objective space
including a finite number of diverse Pareto-solutions.

Evolutionary Algorithms (EAs) are one of the most well-
known meta-heuristic search mechanisms utilized for the MOO
problems since their structure is free of search space and ob-
jective capacities [21]. EAs form a subset of evolutionary com-
putation, in which they generally involve techniques and im-
plementing mechanisms inspired by biological evolutions such
as reproduction, mutation, recombination, natural selection,
and survival of the fittest. The main advantage of EAs, when
applied to solve MOO problems, is the fact that they typically
generate sets of solutions, allowing computation of the entire
Pareto-front. Currently, most Multi-Objective Evolutionary Al-
gorithms (MOEAs) apply Pareto-based ranking schemes such
as the Non-Dominated Sorting Genetic Algorithm-II (NSGA-
II) [22]. Algorithm 3 describes the procedure of running the
multi-objective Knapsack procedure using the NSGA-II. The
time complexity of approaching the Knapsack procedure using
the NSGA-II is O(G×M×Q2), where G is the number of
generations, M is the number of objectives, and Q is the
population size.

The NSGA-II randomly generates an initial Pareto-
population, and then, applies some evolutionary procedures
such as tournament selection with crossover and mutation op-
erators. Next, it generates an offspring population from parents
in each generation. It classifies the temporary population, as
the combination of parent and offspring populations, based on
the dominance principle to some fronts f1, f2, f3 and so on. A
solution Sol1 dominates a solution Sol2, if Sol1 is better than
Sol2 in some objectives and perhaps equal to others. All the
solutions, which lie in one specific front are non-dominant. In
addition, for each solution Sola in fk, there exists a solution
Solb in fk′ such that Solb dominates Sola, where k′ < k. In
the last step, the NSGA-II fills the next generation’s population
starting from the first front and continuing with solutions in

the next fronts. Since the size of the combined population
is twice the new one, all fronts, which could be unable to
accommodate are removed. However, it needs to handle the
last allowed fronts, in which some of its solutions are possibly
considered in the new population. In this situation, the NSGA-
II uses a niching strategy to choose solutions of the last allowed
fronts, which lie in the least crowded regions of the solution
space. To this end, it finds the distance between each solution
and its nearest left and right neighbors in the last allowed
fronts for each dimension in the objective hyperspace. Finally,
it sums up such distances for each solution as the largest
hypercube around it, which is empty from other solutions.
The largest hypercube shows a solution with the least crowd.
Figure 4 elaborates a conceptual view of Pareto-fronts and
Pareto-solutions with corresponding crowding distances.

V. SIMULATION SETUP AND ANALYSIS

This section first describes the simulation setup and sub-
sequently, analyzes the results.

A. Simulation Setup
This work has been implemented with Matlab R2014b on

a personal computer with an Intel Core i7-2.0 GHz CPU
and 6 GB memory. Power profiles of all appliances are
captured from the TraceBase open repository, which comprises
a collection of real power traces of electrical appliances [23].
The electricity prices in the Danish day-ahead market, known
as Elspot market, are provided by Nord Pool Spot with an
hourly resolution on the day before the power delivery [24].
CO2 emission intensity prognosis data are also provided in
an hourly resolution by the Danish transmission system op-
erator [25]. It is significant to note that the demand response
system is set to receive the power demand requests at five-
minute time intervals until finishing all activities. At each hour,
it receives the power demand requests 12 times. As a result,
T has been set to 24 × 12. N = 100 dwellings are assumed
to provide their power demand requests over time.

A precise scenario for each dwelling is created randomly
based on power profiles of appliances. Corresponding power
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(a). Pareto-fronts and solutions

(b). Crowding distance of the Pareto-solutions

Figure 4. Conceptual view of Pareto-fronts and Pareto-solutions with
corresponding crowding distances

demand requests are established in each scenario. To stream-
line the model, each appliance is operated only one time.
Regarding flexibilities, we generate a random flexibility value
for each appliance. A lower bound for each flexibility value
is the following time interval from the moment, at which the
operating cycles should finish without scheduling. An upper
bound for each flexibility value is the end of the day.

It is considered that priorities are generated randomly.
Figure 5 shows the aggregated power demand of the appliances
of one dwelling in a typical day. Figure 6 shows the aggregated
power demands of 100 dwellings. Peak power demand occurs
at 20:30, which is 293 kW. Therefore, in order to allow all
requested power demands at each time interval without shifting

TABLE III. SIMULATION CASE STUDIES INSPIRED FROM TABLE II

Objective(s)

Case study 1 1) Minimizing the electricity cost

Case study 2 1) Maximizing the comfort level of consumers

Case study 3 1) Minimizing the electricity cost
2) Maximizing the comfort level of consumers

or interrupting any of them, the PDT should be at least 293 kW
since it has been indicated that the PDT is constant and time-
independent. However, the demand response system desires
to flatten the aggregated demand by shifting power demand
requests from on-peak periods to off-peak times. Therefore, it
modifies the PDT to enable the shifting and interruption.

As described earlier, the MOEA includes some evolution-
ary parameters. As a selection operator, this paper utilizes the
tournament selection. Linear crossover and exchange mutation
are also utilized as the exploitation parameters. Their proba-
bilities are set to pc=80% and pm=20%, respectively. Finally,
the population size (Q) and the number of generations (G) are
both adjusted to 100.

B. Simulation Analysis
This section analyzes the results obtained based on three

simulation case studies, as Table III lists. The first case study
is single-objective and aims to minimize the electricity cost
as its objective function (see Equation (5)). The second case
study is also single-objective and attempts to only maximize
the comfort level of consumers (see Equation (7)). Finally,
the third case study is multi-objective and intends to both
minimize the total electricity cost and maximize the comfort
level of consumers. We omit to show a case study including
minimization of the CO2 emission as an objective function
since it would be similar to minimizing the electricity cost.
The results will be analyzed based on variations of the PDT
as follows:

PDT = {(10% ∼ 100%)× PPD} , (8)

where PPD ∈ R+ (watts) denotes the peak power demand.
It is equal to 293 kW (see Figure 6). We change the PDT
from 10% to 100% to analyze the obtained results. Hereinafter,
when PDT is equal to R%, where 10% ≤ R ≤ 100%, it means
PDT=R×PPD. We examine the effects of these variations on:

• Computation time of running the algorithm over time;
• Number of referrals to the Knapsack procedure;
• Computation time of the total number of referrals to

the Knapsack procedure;
• Total electricity costs of the dwellings in a day;
• Deviation between the reception and delivery times of

appliances;
• Aggregated power demands of the scheduled scenarios

in a day.

Figure 7 analyzes the computation of running the schedul-
ing algorithms based on different case studies. In Figure 7(a),
according to Algorithm 1, non-shiftable power demand re-
quests will be allowed to start or to continue apart from the
assigned PDT. Considering computation time, when PDT is
equal to 10%, the remaining capacity for allowing the remain-
ing power demand requests is very low or even below zero.
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Figure 5. Aggregated power demand of appliances used in Table I

Figure 6. Aggregated power demands of 100 dwellings based on randomly generated scenarios in a typical day

The reason is that the algorithm should satisfy Equations (1)
to (4). Therefore, it is not possible to run the Knapsack
procedure since the minimum consumption of the remaining
power demand requests is greater than the remaining capacity.
In the next intervals, the system, apart from the remaining
capacity, should allow some power demand requests to start
or to continue, for which shifting or interrupting them is
not possible due to their deadline flexibility constraints. As
a result, the number of remaining power demand requests as
inputs to the Knapsack procedure will be few and, therefore,
computation time will be lowered accordingly. Nevertheless,
when PDT increases, the Knapsack procedure will allow more
power demand requests to start or to continue at each interval.
Some of these allowed power demand requests are members
of the uninterruptible set. Therefore, at the next intervals, the
system has to allow the corresponding appliances to continue
their operation apart from the PDT. The demand response
system will confront more remaining power demand requests
compared to lower assigned PDT in later time intervals. This
will increase the complexity and computation time of running
the Knapsack procedure.

We experience more complexity and higher computation
time, when assigned PDT increases. Nevertheless, the number
of intervals, in which the Knapsack procedure should run
decreases. Having some uninterruptible appliances and time
limit flexibility constraints make this decreasing. If the system
allows an uninterruptible power demand request to start at a

certain time interval, it will be unable to interrupt it in the
following intervals. Therefore, it will have to shift more power
demand requests since the remaining capacity has decreased.
These shifted power demand requests will be accumulated and,
finally, the Knapsack procedure will face several remaining
requests. When PDT is 90%, we observe a noticeable decrease
in computation time compared to previous figures. The reason
is the reduced amount of the Knapsack procedure’s inputs.
Since the aggregated power demands of the remaining power
demand requests are less than the remaining capacity at most
of the time intervals, it is not necessary to run the Knapsack
procedure. Obviously, there is no need to run the Knapsack
procedure at any of the time intervals, when the threshold is
equal to 100%.

Figure 7(b) demonstrates the same analysis based on the
second case study. The description of this figure is almost
the same as Figure 7(a). However, there are some minor
differences, which are linked to the differences in the nature of
the objectives. The main reason is underlining the intention of
consumers to pay for the highest comfort as little as possible.
The computation time of running the third case study is
illustrated in Figure 7(c). In contrast to Figures 7(a) and 7(b),
here, the computation time is completely different. The main
reason is the repetitive manner of the MOEA in finding the
non-dominated near-optimal solution at each time interval.
As described previously, there is no exact solution for multi-
objective problems. Therefore, the near-optimal solutions ob-
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(a). Computation time of running the scheduling algorithm based on the first case study

(b). Computation time of running the scheduling algorithm based on the second case study

(c). Computation time of running the scheduling algorithm based on the third case study

Figure 7. Computation time of running the scheduling algorithms based on different case studies
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tained from running the algorithm at each time interval, affect
the computation time of subsequent intervals. Computation
times for the next intervals may change due to the randomized
nature of finding near-optimal solutions. If all scenarios and
relevant information are known before scheduling, it will
be possible to limit the computation time. However, in this
situation, when the system receives the power demand requests
with a specific time resolution, it is not possible to do it since
there is no future prediction or even forecasted data to learn
before scheduling.

According to Figure 7(c), the computation time decreases,
when PDT is 50% or more. The total power demand of
remaining requests at 22:00 is a bit more than the remaining
capacity. Also, most of the corresponding appliances are mem-
bers of the uninterruptible appliances. Therefore, the Knapsack
procedure’s output comprises most of them. The demand
response system should allow them to continue their duties at
the next time intervals apart from the remaining capacity. This
decreases the computation time at the next time intervals since
the number of inputs to the Knapsack procedure decreases. As
the final note, in this analysis, only 35% of the CPU speed and
400 MB of memory have been employed by the local power
algorithm in all three case studies in the worst case.

Figure 8 analyzes the number of referrals to the Knapsack
procedure in Algorithm 1. Figure 9 studies the corresponding
computation time, when PDT changes. According to Figure 8,
the number of referrals to the Knapsack procedure in the first
two case studies is different, when PDT is equal to 10%.
The reasons are first the reductive nature of Equation (5)
and second the remarkable difference between the assigned
PDT and the power demand of the remaining requests. When
the threshold changes to at least 20%, uninterruptible power
demand requests will roughly be allowed to start or to continue
their work at the time they desire. Therefore, the number of
inputs to the Knapsack procedure will decrease and the total
number of referrals to the Knapsack procedure in the first two
case studies will be almost the same. Now, due to the multi-
objective nature of the third case study, the total number of
referrals will also be more than previous case studies since
the outcome solutions of the Knapsack procedure at each time
interval are near-optimal.

According to Figure 9, the computation time of the total
referrals to the Knapsack procedure increases when the number
of referrals rises. However, this fact is applicable to only
the first two case studies. The computation time of running
the multi-objective algorithm is decreased when the number
of referrals to the Knapsack procedure increases. Similar to
the provided descriptions to Figure 7(c), this algorithm does
not seek to obtain the optimal solution of the problem. As a
result, the near-optimal solutions contain a mix of interruptible
and uninterruptible power demand requests. Intuitively, the
uninterruptible power demand requests will not be shifted to
the next intervals and, therefore, the number of Knapsack
procedure’s inputs will decrease.

As the next analysis, Figure 10 displays the differences
between the total electricity costs in the three case studies
based on the variations in PDT. With respect to Figure 7,
computation time increases nearly linearly when PDT changes.
The total electricity cost is the same since the total number
of interruptions decrease when the threshold increases. Thus,
appliances start operating roughly at their desired time. This

causes the peak times to remain over the time (see Figure 6).
Nevertheless, with decreasing the PDT, some of the power
demand requests should be shifted to the low price intervals,
which result in decreasing the total electricity costs. As can be
easily seen, the electricity cost is reduced for 1%, when PDTs
are equivalent to 10% and 100%. Having almost low fluctuat-
ing Danish electricity prices make this very low reduction.

The third case study performs better in terms of electricity
cost reduction. This is due to having a multi-objective problem.
For instance, in the second case study, the algorithms tries
to find an optimal solution at each time interval. An optimal
solution should include the maximum number of possible
power demand requests. However, this is different in the
third case study since objectives are conflicting. Therefore,
the solution’s size is smaller, which causes the requests being
shifted to lower electricity price periods.

Table IV analyzes the actual required PDT and the differ-
ences at peak time intervals when the assigned PDT changes
based on Equation (8). The variation rates of PDT required for
scheduling the power demand requests in first two case studies
are almost the same. If we compare the maximum needed PDT
in the first case study with the second one when assigned PDT
rises, we observe that the gradients of maximum needed PDTs
are almost similar to one another. Nevertheless, the decreasing
gradient of PDT, when the system applies the third case study,
is lower than the other case studies. The time interval, at which
the peak demand happens, is equivalent in the first two case
studies. This time interval is different in the third case study
due to its multi-objective nature.

According to Equation (7), consumers desire to receive
their appliances in the completed status at the time they expect.
This expected time for each appliance is the sum of the time
periods provided in the scenarios and the corresponding addi-
tional deadline flexibility period. However, it is not possible
to satisfy all consumers due to some restrictions such as PDT.
The average deviation between reception and delivery times of
each appliance of each dwelling for all case studies is pictured
in Figure 11. These waiting times do not result in a violation of
the deadline flexibility constraint. Assigning 60% is beneficial
to minimize the deviation between delivery and reception times
of each appliance in the first two case studies. Consumers
have to wait to receive their charged electric vehicle almost
30 minutes when PDT is 60%. For the multi-objective case
study, if PDT is 80%, consumers should wait averagely almost
20 minutes for receiving their charged electric vehicle. It is
worth emphasizing that these waiting times are in addition to
the time it takes to actually charge the EV.

As the final analysis, Figures 12 demonstrates the ag-
gregated consumption of the scenarios after applying the
scheduling algorithm. The demand response system endeavors
to flatten the aggregated power consumption over the day.
According to Figure 12(a), it shows the best condition of
aggregated power demand when PDT is equal to 60% (17
kW). If the system does not apply any scheduling algorithm
on the received power demand requests, i.e., PDT is 100%,
the total maximum consumption will be approximately 293
kW. It proves that the demand response system can reduce
the peak demand by 40%. This fact is also applicable to the
second case study shown in Figure 12(b). Finally, it is worthy
to note that since the complexity of the multi-objective case
study is high, it needs a high PDT. Figure 12(c) pictures the
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Figure 8. Total number of referrals to the Knapsack procedure in Algorithm 1

Figure 9. The computation time of referrals to the Knapsack procedure in Algorithm 1

Figure 10. Total electricity costs of dwellings in a day based on three case studies
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(a). Deviation time between appliance delivery and reception times based on the first case study

(b). Deviation time between appliance delivery and reception times based on the second case study

(c). Deviation time between appliance delivery and reception times based on the third case study

Figure 11. Deviation time between appliance delivery and reception times based on different case studies
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TABLE IV. MAXIMUM NEEDED PDT AND CORRESPONDING PEAK TIME INTERVAL WHEN THE ASSIGNED PDT CHANGES

Assigned PDT

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
293 kW 586 kW 879 kW 117 kW 146 kW 175 kW 205 kW 234 kW 263 kW 293 kW

Maximum needed PDT
Case study 1 360 kW 282 kW 222 kW 218 kW 200 kW 175 kW 205 kW 234 kW 263 kW 293 kW
Case study 2 363 kW 287 kW 242 kW 192 kW 155 kW 175 kW 205 kW 234 kW 263 kW 293210
Case study 3 360 kW 322 kW 213 kW 300 kW 298 kW 291 kW 291 kW 234 kW 254 kW 293 kW

Peak time interval
Case study 1 23:35 23:05 22:30 22:30 22:30 11:05 20:20 20:35 11:20 20:30
Case study 2 23:35 23:05 23:05 23:05 22:35 11:20 11:05 20:35 11:20 20:30
Case study 3 23:35 23:05 23:05 23:05 23:05 23"05 23:05 20:35 12:30 20:30

(a). Aggregated power demand of 100 dwellings based on the first case study

(b). Aggregated power demand of 100 dwellings based on the second case study

(c). Aggregated power demand of 100 dwellings based on the third case study

Figure 12. Aggregated power demand of 100 dwellings based on different case studies
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aggregated consumption of 100 dwellings when the system
applies the third case study. In this figure, the demand response
system will receive the minimum aggregated power demand,
when PDT is equal to 80%. In this status, the maximum power
demand is 234 kW and the achievement is 20%.

VI. CONCLUSION AND FUTURE WORK

This paper developed a demand response system. It re-
ceived power demand requests of appliances continuously and
scheduled them accordingly. Appliances are classified based
on the shiftability and interruptibility features. The well-known
“0-1” Knapsack procedure has been applied to the scheduling
problem, when it is necessary to choose some requests to allow
them to start or to continue their duties at the current time
interval and shift the remaining to the future time intervals.
The objectives of the proposed scheduling algorithm are mini-
mizing the total electricity costs and CO2 emission intensities
coupling with maximizing the satisfaction of consumers. In
addition, as constraints, the system attempts to keep the total
power demands under a constant and time-independent power
demand threshold provided by distribution system operators
at each time interval. Consumers may provide time limits
of flexibilities of electricity powers to the demand response
system. These time limit flexibilities of power demand requests
vary among appliances. It helps the system to find an optimal
or near-optimal solution (based on the approach used) to decide
when to shift or to interrupt power demand requests. The
results were analyzed based on changing the thresholds. It
was confirmed that applying this kind of threshold led to a
reduction in the total electricity costs, a change in the daily
behavior of consumers in a beneficial way, and additionally, a
flattened aggregated power demand.

An investigation of reformulating the current power
scheduling algorithm to a hierarchical scheduling algorithm to
run in each dwelling is a promising future work. It would be
also interesting to investigate the sensitivity of the scheduling
algorithm to the stochasticity of power profiles. In practice, the
adaptation of power demand thresholds can be accomplished
by implementing a control loop between the demand response
system and a gateway deployed in each dwelling.
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Abstract—Event-driven demand response programs reward
consumers for shifting their electricity loads upon requests from
an aggregator, a balance responsible party, or a distribution
system operator. In order to have any significant impact on the
smart grid, the flexibility exhibited on the demand-side needs to
be aggregated from a large number of consumers. This poses
significant scalability challenges for the ICT infrastructure that
controls flexible electricity loads. This paper reports from the
European research project SEMIAH. The project aims to design
a scalable infrastructure for residential demand response. The
study presents progress towards the system design of a centralized
load scheduling algorithm for controlling home appliances over
time. The demand response system takes the power grid con-
straints and satisfaction of consumers into account. Simulation
results from a case study quantify the potential impact of a
residential demand response program.

Keywords—Smart grids, residential demand response, scalabil-
ity, load scheduling.

I. INTRODUCTION

In the last two decades, the demand for electricity has risen
exponentially, and it will continue to grow remarkably. In Eu-
rope, the electricity demand in the residential sector is expected
to rise on average 56% from its 2000 level until 2050 with an
annual growth rate of 1.1% [1]. Although many appliances are
becoming more efficient, their number is increasing and they
are used more often and for longer periods of time. Moreover,
many appliances have more functions or special features that
require more energy. By 2050, it is estimated that 23% of total
electricity demand will be consumed by households compared
to today’s level of 12-14% [1].

The Energy Roadmap 2050 strategies aim to reduce
“greenhouse gas emissions to 80-95% below 1990 levels by
2050” [2]. Government policies are furthermore setting costs
on CO2 emissions to increase the share of Renewable Energy
Sources (RES) for power generation significantly in order to
reach a secure, competitive and decarbonized energy system in
2050. Energy utilities will therefore face significant challenges
to meet the increasing energy demand while at the same time
comply with the EU energy policies with respect to greenhouse
gas emissions.

Advancement in technologies and new services for the
smart grid enable novel solutions for energy system integration
while respecting the stability and security needed in the context
of an increasing share of RES in the electricity grid. The
European research project SEMIAH (Scalable Energy Manage-
ment Infrastructure for Aggregation of Households) strives to

Fig. 1: Overview of the SEMIAH demand response distributed
infrastructure.

develop an open Information and Communication Technology
(ICT) infrastructure for the implementation of residential de-
mand response [3]. The paper extends the SEMIAH aggregator
framework presented in [3].

The infrastructure exploits the flexibility provided by con-
sumers in doing work with their home appliances and through
the flexibility provided by thermal appliances such as heat-
ing/cooling systems. An expected impact of the implemented
Demand Response System (DRS) will result from the matching
of supply with demand for load management and energy
efficiency. Hereby, SEMIAH will facilitate a reduction of peak
demand and increase the use of RESs through flexible demand.

Fig. 1 shows an overview of the distributed nature of
a SEMIAH demand response infrastructure. Load demands
of electrical appliances can be categorized based on the
shiftability feature [4]. Shiftability promotes a DRS to shift
load requests of shiftable appliances to a future time inter-
val. Typical flexible loads are wet appliances, heating, and
pumping devices [5]. Some appliances can hardly be shifted,
for instance, the refrigerator, while others represent appliances
where residents do not offer any flexibility such as cooking.
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However, such systems consume high amounts of electricity
and shifting the operation even for small amounts of time has
therefore, a high impact. Shiftable appliances can be further
divided into groups based on the interruptibility feature. As
an example, the DRS can both shift and interrupt the charging
cycle of an electric vehicle. However, it should run unin-
terruptible appliances to completion when these are started,
e.g., a laundry machine. When an appliance is plugged in, the
household applies a deadline flexibility constraint, which sets
a contract between the DRS and the consumer when the given
appliance must complete its operation at latest.

Communication between appliances and the DRS is based
on an event-driven approach. Each appliance starts sending
load requests to the DRS which runs with a specific time
resolution. At each time interval, the DRS produces a schedule
solution for the aggregated set of load requests with respect to
flexibilities offered, grid constraints, and grid incentives such
as real-time electricity prices. To make such solutions, the DRS
employs an algorithm named SALSA (Scalable Aggregation of
Load Schedulable Appliances). SALSA runs an event selection
procedure to investigate which load requests should be decided
to operate.

The remaining parts of the paper is organized as follows:
Section II presents the related work. Section III describes the
design of the DRS and Section IV introduces the implementa-
tion. In Section V, we evaluate the DRS based on a case study.
Finally, the paper is concluded in Section VI.

II. RELATED WORK

Electrical grids increasingly depend on RES production
that is weather-dependent, often fluctuating and difficult (or
impossible) to plan and control. To smoothen RES produc-
tion, the use of physical storage (e.g., batteries and electrical
vehicles) and virtual storage (e.g., demand response systems)
are currently being considered [6], [7].

As significant energy amounts are involved and substantial
flexibility (elasticity) is available to operate the devices within
the allowed bounds, and due to their broad availability, storage
loads are of great value [8] for different smart-grid applica-
tions, e.g., demand and supply balancing [9], grid congestion
problem solving [10], and electricity market trading [11].
However, large storage systems are still considered to be too
costly and demand response has been considered to a feasible
way to provide a cost-effect virtual storage.

Today, most commercial demand response services in Eu-
rope are leveraged by large consumers that e.g., find flexibility
potentials in their production processes. More recently, atten-
tion has shifted towards smaller consumers such as residential
households. Consumers may be engaged in event-driven (also
known as incentive-based) demand response programs [12]. In
these programs, home appliances can be invoked in response
to a variety of trigger conditions, including environmental
parameters (e.g., temperature); local or regional grid conges-
tion; economics; or operational reliability requirements. For
demand response programs that foster an improved integration
of renewable energy, aggregators can shift consumption to
periods with lower CO2 intensity or electricity prices.

Vardakas et al. [7] presented a survey on different demand
response schemes and programs according to their control

mechanism, offered motivations, and decision variable. More-
over, the authors reviewed various optimization algorithms for
optimal operation of the smart grid.

Di Giogio and Pimpinella [13] presented the design of a
smart home controller strategy providing efficient management
of electric energy in a domestic environment. Their work pro-
vided an integration between ICT and automation to implement
a pervasive control platform, which allowed consumers to au-
tomatically fulfil the terms of previously subscribed contracts,
while assuring cost-effective use of energy. The deployed
controller is event-driven which means that it reacts to events
from the environment such as requests from the consumer for
the execution of loads and signals from a demand-side control.

Early forms of event-driven demand response include
the old-fashioned ripple control acting as an emergency re-
serve [14]. Ripple control aims to protect power systems in
the emergency conditions caused by critical contingencies.
Wang et al. [15] proposed an event-driven emergency demand
response scheme to improve the stability of the power system
from experiencing voltage collapse. The proposed scheme was
able to provide key setting parameters such as the amount of
demand reductions at various locations to prepare the demand
response infrastructure and hereby act as a balancing asset for
the grid in case of emergency.

A more novel approach used ICT in a service-oriented
approach to offer smart grid applications that enabled services
to be deployed in a distributed way over the Internet. A
recent European research project SmartHG has addressed the
challenges of deploying residential energy management as
an integrated set of intelligent automation services deployed
in a cloud infrastructure (the SmartHG Platform) [16]. The
set of interrelated service aims to steer energy demand of
residential users in order to: keep operating conditions of
the power grid within given healthy bounds, minimize energy
costs, and minimize CO2 emissions from electricity generation.
This is achieved by creating demand-awareness based on
consumption habits (as for electricity production/consumption)
of residential users as gained from sensing and communica-
tion infrastructure. The control policies forming the backbone
of such software service-based methodology has proven to
be feasible [17]. At the top tier, the Distribution System
Operator (DSO) sets operational constraints for the low-
voltage/medium-voltage distribution grid and retrieves a power
profile (i.e., power grid constraints) for each residential user
from the service platform. At the bottom tier, the SmartHG
platform monitors and controls smart devices in the residential
households in order to keep the household power demand
within its power profile at all times.

III. SYSTEM DESIGN

Fig. 2 gives an overview of the SEMIAH system design.
The infrastructure complies with the system architecture pre-
viously published in [3]. The system is agnostic to the choice
of Virtual Power Plant (VPP) platform and the aggregator
operating the demand response program has the possibility of
choosing between different VPP vendors. The system imple-
ments a Front-End Server (FES) to provide provisioning and
monitoring down to household level. In addition, a back-end
system is implemented as an open loop control to coordinate
and provide schedules to the front-end system.
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Fig. 2: Overall SEMIAH system design.

In the following, the front-end system is briefly introduced.
Hereafter, a more thorough presentation of the back-end is
given. Communications, which take place for both the front
and back-end systems are shown with arrows. The mechanism
on which load requests are delivered to the back-end is beyond
the scope of this paper.

A. Front-End Design

The front-end system consists of home appliances, and a
Home Energy Management Gateway (HEMG) that connects
them with the back-end system. The HEMG is a flexible
solution for connecting networks based on different Home
Area Network (HAN) technologies. It is a programmable
Linux hub with Java and Open Services Gateway initiative
(OSGi) support. ZigBee has been chosen as the HAN technol-
ogy preferred for communication with sensors, actuators, and
HEMGs in the households.

A FES is deployed as a Software as a Service (SaaS)
infrastructure to serve a neighborhood of households. The
FES is the basis for the central provisioning, the system
administration, and the database & analytics functions. It stores
the current and historical state of front-end systems including
recording of time series of measurement results, history of set
points’ updates, connection and disconnection of HEMGs. The
central provisioning service offers a set of rules to identify any
faulty behavior of the DRS. The FES stores data needed for
system operation monitoring and analysis. Appropriate user
data can be presented to system administrators and consumers
by using the web-based Graphical User Interface (GUI). A
database & analytics function is responsible for management
of set points as they change. It relies on a history database that
stores the past sensors and actuators values as well as a process
database that keeps track on the current status of sensors and
actuators.

The FES does not take direct part in the demand response
operations but rather serves as a monitoring service for the
program. The central provisioning provides basic functions for
remote HEMG software maintenance and updating.

B. Back-End Design

The back-end of the DRS infrastructure consists of a set
of distributed services interconnected over the Internet using
open standards communication protocols in particular secure
HyperText Transfer Protocol (HTTP) over Transmission Con-
trol Protocol (TCP). Data exchange between back-end services
is primarily accomplished by exchange of eXtendible Markup
Language (XML) documents. Communication is secured by
using the Transport Layer Security (TLS) protocol.

The distributed nature of the back-end allows system
parts to have independent product life cycles. The back-end
encompasses the DRS, which essentially provides a third party
implementation of a scheduling algorithm for actuation of
electricity loads that can work with the Generic VPP (GVPP).
Furthermore, it serves DSO grid constraints including its
configuration GUI and corresponding database. Finally, the
back-end communicates with the GVPP by sending schedule
solutions produced by the DRS.

Our starting point is the home appliances providing flexi-
bility to the demand response aggregator. Each appliance can
generate different types of load profiles with a specific time
resolution. Load profiles are generated randomly with a normal
distribution. Taking these load profiles, a specific electricity
usage pattern is created for each consumer for a whole day.
The back-end receives the load request from appliances in
real-time based on events created in the households. The
following describes how these components behave in the back-
end system.

1) Buffering Sub-System: The buffering system is com-
posed of four various buffers named immediately wait (iw),
immediately start (is), decided to operate (do), and decided
to wait (dw). It stores the load requests, coming from the
households (cf. Fig. 2), into the iw buffer. These buffered
load requests are forwarded to SALSA to be scheduled. The
is buffer is specialized for load requests of non-shiftable
appliances while the last two buffers are designed for those
load requests which are sending from shiftable appliances. A
load request is moved to the do buffer if the SALSA algorithm
decides to operate the corresponding appliance at that time
interval. Otherwise, the load request will be moved to the dw
buffer. At the next time interval, the buffering system removes
the load requests from the dw buffer and appends them to the
iw buffer. Indeed, the SALSA will decide about appended load
requests and newly arrived load requests simultaneously. At
each time interval, the DRS sends the schedules to the GVPP
based on load requests located in the do and the dw buffers.

2) SALSA Algorithm: SALSA is a key component of the
DRS. It follows an event-based approach, where it communi-
cates with the buffering subsystem to decide about the buffered
load requests at each time interval. SALSA fetches load
requests from iw buffer at each time interval. All load requests
whose corresponding appliances are non-shiftable are decided
to operate immediately without undergoing any scheduling.
Then, it removes these load requests from iw buffer and places
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Fig. 3: Flowchart of the SALSA algorithm.

them in is buffer. Afterwards, SALSA investigates whether
deciding to postpone an appliance at the current time interval
violates the relevant flexibility or not. If so, the load request
is moved to do buffer. Otherwise, it is added to a temp buffer.
When the iw buffer is emptied at the current time interval,
if temp buffer is empty, it moves to the next time interval.
Otherwise, it determines whether the remaining Electricity
Consumption Threshold (ECT) can handle the load requests
stored in the temp buffer or not. If there is any possibility, all
load requests will be appended to do buffer. On the contrary,
SALSA executes a load request selection procedure to allow
some load requests to operate (will be stored in do buffer) and
shift others to the future time interval (will be stored in dw
buffer).

3) DSO Grid Constraints: Many electricity producers are
experiencing an insufficiency of electricity generation capacity
because of the load requests by consumers. More accurately,
the generated amount of electricity is often unable to satisfy
the requested loads at a specific time interval. Therefore, the
DSO currently applies an ECT policy in order to overcome
the mentioned outages and shortcomings [19].

The DSO Grid Constraints is a service for configuring
grid constraints for a collection of households belonging to an
aggregator. The interface is used by DSOs to define boundaries
for the operation of the scheduling of power consumption. This
interface complies with the smart grid operating regimes as
defined by Universal Smart Energy Framework (USEF) [18].
These operation regimes are shown in Fig. 4. As the electricity
demand increases the grid operation moves gradually from
the Normal Operations scheme to the Capacity Management
regime. This demarcation point is marked by the soft ECT
(ECTs) and triggers the scheduler to start scheduling elec-
tricity loads for the future. At the same time, the regulating
electricity markets start planning a significant role by providing
peak load reduction and power balancing between electricity
supply and demand through market mechanisms. Should the
DSO not be able to successfully manage capacity, there is
a risk of hitting the second demarcation point in which the
regime of Graceful Degradation starts. This is marked by the
hard ECT (ECTh). When crossing this boundary the DSO
may take action to curtail load regarding any Service Level

Fig. 4: Adaptation of the ECT concept to the USEF operating
regimes. Adapted from [18].

Agreement (SLA) promises just to secure the grid supply and
to regain control of the network.

C. Data Models

The designed aggregator infrastructure is built on pre-
existing components and should interact with external systems.
These facts influence the definition of data models. Con-
cretely, the front-end is based on the OGEMA framework [20].
OGEMA has already its own data model (OGEMA data
model elements are called resources). OGEMA resources can
be extended to cover SEMIAH needs but existing resources
should be used whenever possible. Furthermore, grid transport,
distribution systems, and energy management systems such
as a VPP have their own data model. When relevant, DRS
data models have been based on the Common Information
Model (CIM) semantics [21], [22], to ease integration into grid
operation and energy markets. CIM is an open standard that
defines how managed elements in an information technology
environment are represented as a common set of objects and
relationships between them. Within the energy domain, CIM
can be used for representing power system components and
networks which has been primarily developed by the Electric
Power Research Institute (EPRI) [21], [22].

Data modeling is a key aspect of SEMIAH to ensure
interoperability between stakeholders systems. In accordance
with the recommendation for European smart grids, the data
models in the SEMIAH project will be based on the CIM.
Unified Modeling Language (UML) has been selected as a
language for the expression of the data models, because UML
class diagrams allow the definition of data models and also
because CIM is expressed in UML. The SEMIAH back-
end uses the data model as a standard that was developed
by the electric power industry and that has been adopted
by the International Electrotechnical Commission (IEC). The
core package of CIM is defined by the standard IEC 61970-
301 [21].

Fig. 5 shows the data model of SEMIAH based on IEC
CIM. The VPP has different sub elements like feeder or clus-
ters of households, which are modeled as Facility. Each Facility
has a connection to a GeneratingUnit. The GeneratingUnit has
one or more Measurements to represent the characteristics of
an element.

The core object for modeling measurements and schedules
is the Analog object show in Fig. 6. Every measurement or
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Fig. 5: SEMIAH CIM compliant data model.

schedule represent its core data in a time series of values.
With an additional type of data together with UnitMultiplier
and UnitSymbol, it is distinguished between these different
types of an Analog. The Analog has a createdDateTime which
is treated differently. In case of measurements and schedules
this field can be neglected, because every AnalogValue has the
complete information of the timestamp where the given value
is valid for. The Analog-Class is derived from Measurements.
The UML diagram of the Analog can be found in Fig. 6.

IV. PROTOTYPE IMPLEMENTATION

The main motivation for developing the demand response
prototype is to validate the feasibility of the DRS, evaluate
its scalability and performance and test the connectivity of it
with DSO grid constraints and other components. Moreover,
SEMIAH project aims to establish a research platform for un-
derstanding the feasibility and practicality of demand response
and load shifting in residential household on a large scale.
This is needed to build an ICT infrastructure that can support
the emerging business of European aggregators acting in the
liberalized electricity market.

Fig. 7 shows Energy Management System (EMS) interface
with consumers from where they can enable flexibility of their
appliances. Enabling each appliance activates the correspond-
ing part in the lower half of the GUI. Consumers can set
at which time they are interested to operate their appliances
by Start Time. The corresponding operating program is set in
Program. Finally, flexibility is provided in the Flexibility box.
After successfully generating load profiles, pressing Next to
DSO button accompanies you to reach the next GUI.

SALSA receives a number of consumers from the DSO.
Fig. 8 presents the GUI of DSO which is connected to SALSA.
Electricity prices and CO2 emission intensities of the current
day are fetched from Energinet and Nord Pool Spot1. The
corresponding table shows their values where the first column
relates to electricity prices while the second column lists CO2

1http://www.nordpoolspot.com
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Fig. 6: Model of timeseries for data exchange in the back-end.

Fig. 7: GUI for the consumer.

emission intensities for today. The same procedure is also
applicable to DSO Grid Constraints. Here, the first column
shows the values of the soft ECT while the second column lists
the values of hard ECT for today. These values are fetched
from the XML file produced by the web application of the
DSO grid constraint.

SALSA starts scheduling generated scenarios, as shown
in Fig. 9. The upper diagram shows the aggregated load
consumption of consumers before (red) and after (green)
scheduling. Black and blue lines are hard and soft ECT , re-
spectively. Lower diagram shows aggregated load consumption
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Fig. 8: GUI for DSO.

Fig. 9: Scheduling control GUI.

of a chosen consumer before and after scheduling. Finally,
left column shows the various peak and demand response
information. Appliance delivery delay shows an average time
in minutes where each consumer should wait more to receive
his/her appliances in a completed state (comparing with the
time at which he/she expects before providing the flexibility).
Consumer flexibility usage indicates how much percentage
SALSA has used the provided flexibilities.

The DSO Grid Constraints is a service to configure grid
constraints for a collection of households belonging to an
aggregator. There can be a different set of constraints for each
collection (see Fig. 10). ECTs and ECTh correspond to soft
and hard ECTs, respectively. For each day, there is a time-
series analog including 24 values each per hour. Submitting the
adjusted constraints results in producing an XML file, as shown
in Fig. 10. Grid constraints are given as energy in kWh/h for
particular time slots during a 24 hour period.

V. CASE STUDY

This section presents a case study to demonstrate the
applicability of the proposed demand response infrastructure.
Two main consecutive validation steps are studied. In the first
step, a constant number of households are simulated. More-
over, three independent ECT policies are defined to enable
the scheduling of households’ consumptions. The first step
evaluates the results according to different demand response
performance criteria. It confirms the usability and profitability

Fig. 10: Snapshot of DSO grid constraint web application.

of the infrastructure. Second step depends on the results of
the first step. One of the ECT policies is chosen to analyze
the sensitivity of SALSA algorithm toward increasing the
number of households. This step is two-fold. First, the impact
of increasing the number of households on the same demand
response performance criteria is investigated. Then, it is shown
that how this increasing influences the computation time of
running the SALSA algorithm. Therefore, this step validates
the scalability of the infrastructure.

A. Step 1

The case study uses the BehavSim as a consumption
simulation tool [23]. It can simulate 20 different appliances.
For each, it generates various types of load profiles with
a normal distribution at one-minute time resolution. Taking
these load profiles, a specific daily electricity usage pattern is
created for each household. The framework proposed has been
modeled and coded in Matlab R2016a. It runs on a single
CPU core (Intel Core i7 2.0 GHz) with 12 GB memory. In
the first step, 100 households are simulated including three
appliances: dishwasher, washing machine, and laundry dryer.
It is considered that each appliance is operated once upon a
day. To allow the DRS control these appliances, consumers
are flexible to receive their appliances in the finished status
until the midnight. SALSA intends to schedule load requests
based on optimizing the comfort level of consumers. It uses the
dynamic programming technique to schedule the load requests.
This provides the optimal scheduling solution at each time
interval. For more information, the reader is referred to [24].

Three ECT policies are defined as follows:

• ECT-P1: This policy aims to keep the aggregated
consumption below a constant threshold over the day.
Let us assume that the peak demand consumption of
100 households in the previous day is already known.
According to the results achieved in [24], 60% of this
value is considered as the current day’s ECT. This
policy is called a day-ahead approach.

• ECT-P2: This policy follows the real-time normalized
electricity prices over time. At each time interval, ECT
is the multiplication of the aggregated consumption of
incoming load requests and the normalized electricity
price. Obviously, the DRS attempts to allow more load
requests to operate during periods with low electricity
price and shift load requests during periods with high
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electricity price. This policy is called a real-time
approach.

• ECT-P3: This is basically similar to ECT-P2. The
difference is in the nature of the trigger. This policy
uses the real-time normalized CO2 emission intensities
to schedule the incoming load requests over time. This
policy is also called a real-time approach.

Table I analyzes the performance of SALSA in scheduling
100 households based on three ECT policies. It is worth
noting that values listed in Table I depend on the nature of
randomly generated load profiles. AAS shows the Average
Amount of Shifting during scheduling. Fluctuations in the
electricity prices provide more flexibility to the SALSA to
shift load requests from periods with high electricity prices
to periods with relatively low prices. However, since there is
no considerable fluctuation in CO2 emission intensities, the
SALSA cannot gain so much of shifting, when it utilizes ECT-
P3. PDR analyzes the Peak Demand Reduction percentage.
ECT-P1 gives better results compared to other policies since
the SALSA always has the same threshold boundary to shift
load requests. Compared to ECT-P2, which uses electricity
prices as triggers, fluctuations in prices give no flexibility to
the SALSA. The reason is that when electricity prices are low,
it allows more load requests to operate. This is also reflected in
ECR values, which show average Electricity Cost Reduction
of households. Finally, CER studies the average percentage
of CO2 Emission Reduction. ECT-P3 helps consumers reduce
more CO2 emission. However, it fails to reach reasonable
values in other criteria.

TABLE I: Performance analysis of the algorithm in step 1

ECT-P1 ECT-P2 ECT-P3

AAS (kW) 24.94 30.11 5.27
PDR (%) 39.98 18.65 -8.05
ECR (%) 3.45 8.45 3.74
CER (%) 7.14 5.20 12.28

B. Step 2

This step studies the scalability of the SALSA algorithm
in two sub-steps. Both sub-steps select ECT-P1 to investigate
how SALSA behaves.

1) Sub-Step 1: This step increases the number of house-
holds from 100 to 500, as Table II shows the demand response
evaluation results. AAS increases while the number of house-
holds increase. However, this is not applicable to PDR. The
reason is having the similar increase in ECTs over time. In
this case, PDR values do not follow a straight line. Increasing
the number of households support them to averagely benefit
more in terms of ECR and CER. It should be emphasized that
AAS, ECR, and CER do not grow linearly due to having a
randomness in load profile generation and flexibility values.

2) Sub-Step 2: This part aims to analyze the computation
time of running the SALSA algorithm when the number of
households increases from 500 to 10000. This causes the
SALSA to receive and schedule much more load requests at
each time interval. The event-driven load scheduling problem
is NP-complete by a reduction from the “0-1” Knapsack

TABLE II: Performance analysis of the SALSA algorithm
towards increasing the number of households

100 150 200 250 300 350 400 450 500

AAS (kW) 24.94 25.04 25.14 25.74 25.65 26.57 27.61 27.35 27.39
PDR (%) 39.98 40.01 42.15 40.71 41.30 41.33 41.92 41.45 42.87
ECR (%) 3.45 3.75 3.79 3.97 4.05 4.45 4.87 4.88 4.99
CER (%) 7.14 7.20 7.87 8.14 8.17 8.26 8.32 8.40 8.45

problem [24]. However, to still use the dynamic programming
technique to receive optimal scheduling solutions over time,
it is needed to enlarge the time resolution. This results in
a decrease in the number of referrals to the load request
selection procedure in the SALSA algorithm (see Fig. 3). In the
first step, the SALSA is called 1440 times due to generating
the load profiles at one-minute time resolution. However, in
this part, they are regenerated at one-hour time resolution,
which results in calling the SALSA algorithm for only 24
times. Fig. 11 demonstrates the whole simulation time versus
the number of households. When the number of households
equals to 5500, Matlab needs more memory to buffer load
requests. However, this can be mitigated by increasing the
time resolution. For instance, if the time resolution increases
to two-hour intervals, scheduling 5500 households takes 31
minutes. Therefore, there is a trade-off between the number of
households, the time resolution, and the computation time.

Fig. 11: Computation time versus number of households.

VI. CONCLUSIONS

Residential demand response is in a nascent stage in Eu-
rope. An only recently the first set of commercial aggregators
have emerged. So far focus has been on the big consumer
and very little attention has been paid to the residential
consumers. However, to secure the future smart grid all types
of flexibilities are needed. For residential consumers this means
aggregating of a large number of flexible loads possible in the
order of 100 thousands of households. This poses challenge
to the ICT infrastructure that is needed to control the flexible
loads. The paper has reported on the design of such infrastruc-
ture. Emphasis has been put on the scaling of the centralized
aggregator step i.e., the back-end part of the infrastructure.
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Abstract—Smart grid applications belong to a diverse set
of technologies, which combine behaviors and actions of all
grid actors. Building such application is a challenging task
requiring modeling, integrating, and validating different grid
aspects efficiently. The design flow should adapt to the grid’s
requirements ranging from basic appliance functions to complex
load scheduling algorithms and their integration’s consequences.
This paper tackles such challenges by proposing a framework
to describe smart grid elements formally along with defining
their interactions. The framework provides a smooth way for
upgrading grid components independently and evaluate their
performance. A case study utilizing an infrastructure of electric
vehicles is demonstrated to validate the framework and prove its
applicability in modeling smart grid applications. The case study
enables a demand response service that provides a solution to the
coordinated charging scheduling problem of electric vehicles.

Keywords—Smart grid, formal modeling, validation, UML pro-
file, demand response, load scheduling.

I. INTRODUCTION

The current structure of the electrical grid is ineffective
in responding to the growing demand for electricity. National
Institute of Standards and Technology (NIST) has devel-
oped a smart grid conceptual model, which identifies main
smart grid domains and stakeholders describing their possible
communication paths [1]. Domains are customers, markets,
service providers, operations, bulk generation, transmission,
and distribution. Standardizing and formalizing these domains
in the smart grid is a challenging procedure, particularly
when interdisciplinary engineering approaches are concerned.
International Electrotechnical Commission (IEC) has proposed
reliable and reproducible standards for the smart grid, e.g.,
IEC 61970, which is based on Common Information Model
(CIM) providing various elements and definitions of energy
management systems in the smart grid [2]. Smart Grid Ar-
chitecture Model (SGAM) represents a technical reference
architecture to compare different architectures and identify
gaps in the smart grid standardization. It enriches the NIST’s
model by integrating interoperability layers and zones with the
domains already defined [3].

Nevertheless, far too little attention has been paid by smart
grid application designers to build a formal pragmatic frame-
work. To effectively design such frameworks, the following
requirements are crucial: 1) the grid infrastructure must be
scalable and specified together with its constituents, 2) the
grid model must be interoperable and supportive to its future
extensions, 3) the grid design must consider its topology and
hardware/software/network aspects, and 4) the grid updating
process must perform independently of its aspects. This paper
proposes a formal framework to model smart grid applications,
as Fig. 1 presents its top-down design methodology. This

Fig. 1. Top-down design methodology of the proposed framework

strategy helps the framework build reliable and self-healing
smart grid applications. Moreover, it is entirely adaptable to
various domains, their actors, and interior entities.

First, the framework formally describes each domain and
its actors using software engineering design principles to
ensure its scalability and interoperability. The framework is
based on three main aspects: hardware (HW), software (SW),
and network (NW). The hardware aspect discusses the physical
entities of the smart grid actors. The software aspect represents
some functionalities that are running inside these hardware en-
tities. Meanwhile, the network aspect establishes the commu-
nication flow between the grid’s actors. Next, the framework
exploits generic modeling languages such as Unified Modeling
Language (UML) for formalizing its aspects. This step enables
the interoperability, reusability, and scalability of smart grid
models. Finally, these models are transformed into executable
models, i.e., following the Model-to-Text transformation ap-
proach, such as Matlab.

This paper analyzes customers and operations domains in
the smart grid. The framework is indeed open to being ex-
tended by other domains. Customers possess a set of electricity
consuming devices. They aim to manage and control their
consumption behaviors. Operators continuously stabilize grid
functions to ease the power system operation using various
management systems.

A Demand Response (DR) scenario is employed as a case
study to validate the usability and applicability of the proposed
formal framework. DR is a cooperation between customers
and grid operators through doing incentive-based businesses to
reduce/stabilize the customers’ aggregated load consumption at
peak periods [4]. The importance of synthesizing the formal
framework and DR is demonstrated by challenging the coor-

2016 Euromicro Conference on Digital System Design

978-1-5090-2817-7/16 $31.00 © 2016 IEEE

DOI 10.1109/DSD.2016.61

46

184



dination of a high penetration of Electric Vehicles (EVs) [5].
It focuses on peak shaving and customers’ inconvenience
reduction considering physical grid stability constraints and
EVs’ arrival and departure times [6][7].

As a result, this paper makes the following contributions:

• Three essential grid aspects, i.e., hardware, software,
and network, are presented to demonstrate the frame-
work’s scalability, reusability, interoperability, and up-
datability focusing on both power and Information and
Communication Technology (ICT) perspectives;

• A new UML profile is developed to capture the
framework aspects inspiring by diverse meta-classes;

• A robust formal framework is proposed to mathemat-
ically formalize different domain elements;

• A novel UML SmartGrid profile is produced to effi-
ciently model various smart grid applications;

• The applicability of the formal framework is vali-
dated using a case study that challenges the charging
scheduling problem of EVs using DR as an application
of the formal smart grid framework.

The paper is organized as follows: Section II overviews
the related work. Section III provides the prerequisite aspects
of the framework. Section IV proposes the formal framework.
Section V studies the framework’s applicability using a case
study. Finally, Section VI concludes the paper and provides
possible future extensions.

II. RELATED WORK

In recent years, there has been an increasing interest in
investigating concerns about the inefficient structure of the
current electrical grid for responding the growing electricity
demand [8][9]. Farhangi [8] examined different impacts of
transforming the current electrical grid to a complex system of
systems named the smart grid. Fang et al. [9] discussed that
engaging ICT with the smart grid could play a major role in
enabling technologies for smart grid data communications.

To handle these data communications, Godfrey et al. [10]
presented a co-simulation framework to model both the com-
munication network and the power system. They employed
a baseline scenario and demonstrated the responses to power
fluctuations subject to considering any communication effi-
ciency (e.g., Quality of Service (QoS)). Afterwards, Schutte et
al. [11] delivered the Mosaik framework for a co-simulation
of various scenario descriptions, grid topology, and control
strategies using their semantic information. The framework
lacks precise details in the model description since it has just
considered a single naive life entity while current electrical
infrastructure includes different varieties of entities such as
cables, step-down transformers, etc. Finally, Montenegro et
al. [12] presented an Open Distribution System Simulator
(OpenDSS) for the smart grid. It is a simulation tool for
the electrical power system principally for the electricity
distribution grid. However, it failed in calculating mathematical
models to develop a real-time simulation for available devices
in the power grid to show their real behavior and their
communications.

To the best of the authors’ knowledge, the model-based
design of the smart grid as a robust formal framework is
currently limited and not well supported. Andrén et al. [13]
also recognized this issue and proposed a semantically-driven
design method using CIM for transmission (IEC 61970-301)
and distribution (IEC 61968-11). These standards have been
highly promoted for modeling grid issues and the correspond-
ing device/component communications. Additionally, since the
smart grid requires a specific standard for communication
networks and power utility automation systems, IEC 61850
has been launched in the course of an object-oriented infor-
mation model. Nonetheless, an ICT-driven formal framework
is needed to overcome the major shortcoming of the standards
above, i.e., a limited number of covered domains beside
discarding grid physics, communication and control issues.

SGAM intended to present the design of smart grid use
cases in an architectural way [3]. To handle the model, it in-
troduced five interoperability layers to allow the representation
of entities and their relationships in the context of smart grid
domains. This paper maps the component, information, and
communication layers into hardware, software, and network
aspects of the framework, respectively, to build a more generic
profile. Although SGAM provides the structural design of the
smart grid applications in a high-level approach, however, it
lacks the behavioral part describing feasible actions and behav-
iors of each actor. This paper covers this gap by mathematically
formulating actors and defining their proper behavioral actions.

UML is widely applied to software modeling and the
demonstration of its specifications based on hardware/soft-
ware/network co-designs [14][15][16]. De Miguel et al. [14]
introduced UML extensions for the representation of temporal
requirements and resource usage of real-time systems. Their
tools generated a model for the OPNET simulator. Hennig et
al. [15] described a UML-based simulation framework for per-
formance assessment of hardware/software systems described
as sequence diagrams. The proposed simulator was based
on the discrete event simulation package OMNet++. Finally,
Ebeid et al. [16] proposed a formal framework and supporting
tools to represent networked-embedded systems in terms of
application requirements, the library of network components,
the environment description, and rules to compose them. Their
framework allowed to generate code for design validation by
simulation and return annotation mechanism of the simulation
results to refine the original model.

III. ASPECTS AND MODELING

This section sets the basis for building a comprehensive
formal framework to model, simulate, and validate smart grid
applications. This paper establishes the proposed framework
according to the “separation of concerns” design principle.
It allows the reusability, development, and upgrading of its
components independently. Therefore, the framework orches-
trates the smart grid system using three most important aspects;
hardware, software, and network.

A. Aspects

Fig. 2 demonstrates an overview of the framework pre-
senting these aspects. The framework is formalized using
grid component definitions followed in architectural guidelines
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Fig. 2. Overview of the hardware, software, and network aspects

of the future smart grid such as IEC standards [2][13] and
SGAM [3]. They organize how application characteristics
exchange data model specifications among described aspects.
The following parts explain how these aspects are formalized.

1) Hardware Aspect: The smart grid comprises different
hardware devices employed in various domains. Devices can
be digital, analog, or heterogeneous with discrete or continuous
behavior. They are characterized based on different structures
and responsibilities. The hardware aspect defines the physical
model of these devices. To understand the general constituents
of a device helps the formal framework allocate appropriate
responsibilities to each different device from both computa-
tional and communicational points of view. For instance, a
home energy management system can perform optimization
techniques and message broadcasting operations with certain
specifications. Equation (1) defines the device entity:

dev = [dig, ana] ∈ D where:
dig = [comp, comm],
ana = [phy,mech].

(1)

Each device dev is a member of a multiset of devices D.
It includes digital dig and analog ana components. The latter
component will be investigated more in the future extensions
of the framework. A digital component consists of compu-
tational comp and communication comm components. The
computational component, e.g., a CPU, performs computing
operations. The communication component, e.g., a network
interface, distributes the achieved/updated information to other
devices (using the network aspect). Equation (2) defines the
computational component:

comp = [r, q] where:
r = [f1, f2, . . . , fn] ∈ app,
q = [o1, o2, . . . , om] ∈ R+

0 .
(2)

The computational component comp includes computa-
tion r and overhead q vectors. The former includes n function

elements. Each element performs a specific procedure, for
instance, starting/stopping the appliance operating cycle. This
is done as a software application app running in a hardware en-
tity, e.g., CPU. The latter contains m overhead elements. Each
represents the processing time of running a subset of function
elements. The information, processing in the computational
component, should be distributed to other devices through
the communication component using the network aspect nw.
Equation (3) defines this component:

comm = [i, z] where:
i = [elec, info] ∈ nw,
z = [e1, e2, . . . , ev] ∈ R+

0 .
(3)

The communicational component comm includes vectors of
communication interfaces i and communication overheads z.
The vector of communication interfaces i, as a member of a
network component nw, includes electricity elec and informa-
tion info elements. The former is responsible for satisfying the
electricity demand of the device through physical power lines.
The latter is performed on top of a communication protocol
to exchange the information with other devices. The vector
of communication overheads z comprises v communication
overhead elements. Each element is caused by characteristics
of the communication media of each corresponding device.
Packet loss rate, latency, and throughput are some examples
of communication overheads.

2) Software Aspect: The software aspect aims to develop
platform-independent models of software applications that can
be executable in hardware entities. Software applications can
describe miscellaneous functionalities, ranging from the basic
operation of an appliance (e.g., ON/OFF) to heterogeneous
communication protocols (e.g., the Smart Energy Profile 2.0
(SEP2) [17]). The framework considers the software devel-
opment from the object-oriented programming point of view.
Equation (4) defines the software application:

app = [sv, bv] ∈ Apps where:
sv = [en, re] ∈ SV,
bv = [s, ι] ∈ BV.

(4)

Each application app is a member of a multiset of appli-
cations Apps. It consists of two correlated structural sv and
behavioral bv views. The former describes the structure of
the application while the latter presents its dynamics. The
structural view sv is a member of a multiset of structural
views SV. It is a combination of entities en and relationships re.
An entity represents the functional part of an application,
which can be periodic or aperiodic. A relationship defines a
logical connection between entities. Afterwards, the behavioral
view bv is a member of a multiset of behavioral views BV.
It represents the dynamical view of an application, in which
it complements the application structure. An Extended Finite
State Machine (EFSM) can capture such behavior. Here, a set
of states s describes the application’s actions while a set of
transitions ι provides conditional paths between them. The
detailed description of EFSM can be found in [18].

3) Network Aspect: The network aspect enables the com-
munication between two or more devices based on CIM in
IEC 61970 standards series [2]. It defines the communication
media that delivers the information broadcast between software
and hardware aspects. Its characteristics shape its performance,
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for instance, the latency, throughput, and packet loss. Equa-
tion (5) formulates this aspect:

nw = [QoS, dist,mob] ∈ NW where:
QoS = [x1, x2, . . . , xy] ∈ R+

0 ,
dist ∈ R+

0 ,mob ∈ B.
(5)

Each network component nw is a member of a multiset
of network components NW. The QoS vector includes y
elements of parameters x to represent the overall performance
of the communication network. The distance dist indicates
the topological distance value between two connected device
entities dev. Finally, mobility mob represents the device’s
mobility type, i.e., wired or wireless (see Equation (1)).

B. Modeling

This section shows the trajection of the previously de-
scribed mathematical equations of the framework’s aspects into
a formal model. Fig. 3 illustrates a novel UML profile, in which
aspects are labels with red-dashed rounded rectangles.

Fig. 3. UML profile diagram of the framework’s aspects

The used UML meta-classes are:

1) Class: is an extensible template for creating objects,
providing initial values for attributes and implemen-
tations of the behaviors. It is used to model the
Digital and Analog hardware aspects of the
smart grid applications.

2) Node: is a physical object that represents a compu-
tational resource of the system, such as servers. It is
used to model the Digital hardware aspect of the
smart grid applications.

3) Device: is a type of node that represents a physical
computational resource, such as a gateway. The de-
vice is used to model the Digital and Analog
hardware aspects of the smart grid applications.

4) Artifact: is a software component, such as an ex-
ecutable software component, files or libraries, de-
ployed inside the Node. It is used to model the
software Application aspect.

5) CommunicationPath: defines the path between two
nodes that are able to exchange signals and messages

such as a wired/wireless communication channel. It
is used to model the Network aspect of the smart
grid applications.

6) Interface: is a collection of operation signature and
attribute definitions that ideally defines a cohesive
set of behaviors. It is used to model the Network
aspect of the smart grid applications in the sense of
connections between devices and the network.

The profile will be used to enrich the semantics of the
UML diagrams in representing smart grid applications, which
the following section will emphasize this step.

IV. PROPOSED SMART GRID FRAMEWORK

This section first, describes the formal framework proposed
based on the aspects defined in Section III. Then, it models
the framework mathematically using a UML smart grid class
diagram. The smart grid formalization requires a high-level
conceptual framework taking its domains into account. This
paper serves the formal framework as an application. It intends
to both identify the actors inside each smart grid domain and
establish their possible communication routes appropriately.
Equation (6) defines a smart grid:

sg = [w] ∈ Ψ where:
w ⊆ ω.

(6)

A smart grid sg, as an entity, is a member of a multiset
of smart grids Ψ. A set of smart grid domains w is a
member of a multiset of smart grid domains ω. A significant
challenge about these domains is how to organize them to
work consistently focusing on delivering right services to their
relevant interior actors. As the concept of the separation of
concerns is employed, each domain corresponds to an add-in
feature to the framework. Hence, adding or removing a domain
will not affect the framework’s functionality, which strengthens
its robustness and flexibility. The following parts present how
smart grid domains are formalized and modeled.

A. Formalization: Smart Grid Domains

This paper considers w = [C,O] as the first step in
formalizing a smart grid, where C and O correspond to
Customers and Operations domains, respectively [1].

1) Customers Domain: The Customers domain typically
provides applications to customers to manage their electricity
consumption behaviors. Equation (7) defines this domain:

C = [c1, c2, . . . , ch] where:
c = [SA, ems, sm, gw] ,
SA ⊆ A, ems ∈ app, {sm, gw} ∈ dev.

(7)

This domain includes h customers. Each customer c has
an individual set of smart appliances SA, as a subset of
a multiset of smart appliances A. Inherently, customers are
interested to enhance the efficiency and profitability of the
electricity consumption of their smart appliances. This is done
using an Energy Management System (EMS) as a software
application running on a hardware device. Moreover, each
customer has a smart meter sm installed in the dwelling. The
smart meter measures the electricity consumption of smart
appliances and periodically sends them to the electric utility
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via the power line communication. Finally, each customer has
a gateway gw that is responsible for routing different device-
to-device communications. Since smart meters and gateways
are predefined entities, their descriptions are discarded. The
following defines SA and ems precisely.

Smart Appliances: They are the main drivers of electricity
demands, as Equation (8) defines:

SA = [sa1, sa2, . . . , sap] where:
sa = [sf, ctsa, lp] ,
sf = [shift, intr] ∈ B,
ctsa = [ζ1, ζ2, . . . , ζa] ∈ R+

0 ,
lp = [ec,Δτ ],
ec ∈ R+

0 ,Δτ ∈ R+.

(8)

Each customer c possesses p smart appliances. Each smart
appliance sa ∈ dev has a smart feature pair sf including
two dependent Boolean functions named shiftability shift and
interruptibility intr [6]. Shiftability allows smart appliances
to shift their operating start times to the future. Interrupt-
ibility allows smart appliances to interrupt their operating
cycles in the middle. Dependency between these features
indicates that if a smart appliance is shiftable, it can be
either interruptible, i.e., sf = [TRUE,TRUE] or uninterruptible,
i.e., sf = [TRUE, FALSE]. Nevertheless, if it is non-shiftable,
then, it is also uninterruptible, i.e., sf = [FALSE, FALSE]. In
addition, each smart appliance has a set of constraints ctsa
including a constraint elements ζ. For instance, each appliance
should finish its operation cycle in the defined period. Finally,
the smart appliance sa follows a specific load profile lp in each
operating cycle. It is determined with respect to its program
predefined by the corresponding customer. Each lp is presented
as a vector of time-series electricity consumptions ec with a
specific time resolution Δτ .

Energy Management System: It is a software application app
running on a device dev. It can be a web service in the cloud
or an application installed on a server. In fact, ems is a com-
bination of energy optimization and information processing
functions. It integrates the efficiency into advanced control and
optimization strategies. Equation (9) defines the ems ∈ app:

ems = [objC, prefp, evp, rspp] where:
objC = [σ1, σ2, . . . , σt] ∈ R+

0 ,
pref = [ost, opr, ofl] ∈ R+

0 ,
ev = [est, ept, objC, pref, sf, ctsa, lp] ,
{est, ept} ∈ R+

0 ,
rsp = [dec, rst],
dec ∈ B, rst ∈ R+

0 .

(9)

Each customer, using an ems, adjusts his/her own objective
set objC including t distinct objectives. These objectives can
be in conflict with or in line with each other, for instance,
minimizing the electricity cost and CO2 emission, maximizing
comfort level, minimizing appliance service delay, etc. In
addition, for each smart appliance sa in SA, the customer
provides a vector of operating preferences pref. For the sake of
simplicity, pref is assumed as a 3-tuple including customer’s
interested operating start time ost, operating program opr,
and operating flexibility ofl. As the first element, customers
adjust the time, at which they want to operate their smart
appliance. As the second element, customers set a specific

program to operate each smart appliance (e.g., washing the
clothes at 60 ◦C). This program directly influences the load
profile lp mentioned before. As the last element, customers
offer a voluntarily flexibility ofl to operate each shiftable smart
appliance. Two flexibility types, named deadline and temper-
ature, are defined. Deadline flexibility is an additional time to
the required period of the main operating cycle of physically-
controllable smart appliances. Providing this flexibility, cor-
responding smart appliances can be shifted and interrupted
until reaching the adjusted deadline flexibility. Temperature
flexibility is a feature of thermostatically-controllable smart
appliances, e.g., Heating, Ventilating, and Air Conditioning
(HVAC). It is notable that ost for these smart appliances
equals to the operating set temperature. Similarly, offering the
temperature flexibility, the dwelling’s temperature can fluctuate
over the operating set temperature.

Once customers set the objectives and preferences, the
EMS sends events ev to the Operation Management System
(OMS) of the Operations domain (described later). Then, the
EMS waits to receive responses rsp of similarly sent events.
Notation est refers to the time, at which the event has been
sent. The event pooling time ept defines a length of time, at
which each smart appliance waits to receive a response from
the EMS after sending the event. If no response arrives, another
event is forwarded after ept minutes/seconds. Then, each
response is a pair including a Boolean decision value dec and
a time rst, at which the response has been sent. Decision dec
indicates whether the corresponding smart appliance should
operate or wait. The network aspect is responsible for sending
events from the EMS and receiving the responses from the
OMS. Finally, the EMS starts actuating smart appliances in
accordance with the received responses.

2) Operations Domain: This domain handles the move-
ment of electricity. It facilitates the continuous grid manage-
ment functions. Its responsibilities include maintaining and
operating the electricity distribution infrastructure efficiently
while delivering the electricity to customers securely. Equa-
tion (10) defines this domain:

O = [oms, nms] where:
{oms, nms} ∈ app. (10)

This domain includes two representative software appli-
cations Operation Management System (OMS) and Network
Management System (NMS) derived from IEC 61970 [2]. The
former, as an operational planning software, is responsible for
performance monitoring and optimization of the electrical grid,
e.g., load balancing and scheduling. The latter, as a network
maintenance software, monitors the communication network of
smart grid domains, for instance, fault management, overhead
and delay calculation, etc. (beyond the scope of this paper).

Operation Management System: Equation (11) defines oms:

oms =
[
objO, ctdso, ep, drs

]
where:

objO = [ς1, ς2, . . . , ςg] ∈ R+
0 ,

ctdso = [χ1, χ2, . . . , χl] ∈ R+
0 ,

ep = [ρ1, ρ2, . . . , ρd] ∈ R+
0 ,

drs = [buf, sch, rspp],
buf = [iw, is, do, dw] ∈ R+

0 ,
sch = [objO, ctdso, ep, evp, λ],
λ ∈ R+.

(11)
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Fig. 4. UML class diagram of the framework’s elements

Here, Distribution System Operators (DSOs) are the main
actors of this domain. Current shortcomings of the electrical
grid motivate them to employ the ICT to react upon the grid
information to meet reasonable demands for the electricity dis-
tribution. Each DSO, similar to customers (see Equation (9)),
has a set of objectives objO including g distinguishable ob-
jectives ς . Flattening the aggregated electricity consumption,
reducing the outages, reducing the CO2 emission, etc. are some
examples of objectives. In addition, ctdso corresponds to a
set of l grid stability constraints χ that the DSO imposes to
the grid. For instance, hard and soft electricity consumption
thresholds in the feeder/substation level, active and reactive
power flow capacities, etc. are some of such examples. The
DSO adjusts the set of electricity prices ep over d time periods
in different schemes, i.e., real-time, day-ahead, etc. Finally, the
DSO employs a Demand Response System (DRS) to respond
to the events received from the EMSs of customers.

The DRS is a software application app composing of a set
of buffers buf, a scheduler sch, and responses rsp. Once an
event arrives, it is stored in the immediately wait buffer iw.
Then, the scheduler decides to relocate them to different
buffers. The scheduler sch follows a scheduling approach λ
to make these decisions. Decisions are made based on the
information stored in the events. The scheduling approach can
be either stochastic or deterministic applying single-objective
or multi-objective optimization techniques.

B. Modeling: UML Class diagram

Fig. 4 shows a complete description of the proposed
framework as UML class diagram combined with the profile
diagram (see Fig. 3) The smartgrid class is extended by
the <<digital>> stereotype that contains the predefined
framework’s aspects (analog part is not considered at this
stage). Objects can be instantiated and linked together to
compose a variety of smart grid applications. Next section
exemplifies such application as a case study.

Fig. 5. UML deployment diagram of the instantiated objects

V. CASE STUDY: CHARGING SCHEDULING
COORDINATION OF ELECTRIC VEHICLES

This section presents a case study to demonstrate the
applicability of the proposed formal framework.

A. Description

In the recent years, the electric transportation system has
gained the largest share of total energy consumption growth
in the world [5]. DR is one of the promising solutions to meet
these high-consuming electricity demands at peak periods [4].
Therefore, designing a smart grid application for coordinated
charging process of EVs in residential DR is substantial.
The case study aims to model h = 100 customers that are
connected to a utility company, which handles their electric
demands. The company uses a direct load control approach,
including a load scheduling algorithm. This algorithm intends
to shave demands at peak periods.

B. Modeling

The structure of one customer of the case study is captured
in Fig. 5 using a UML deployment diagram along with the
developed profile annotations (see Section III-B). The diagram
shows a customer, who has an EV and communicates with
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Fig. 6. (a) UML sequence diagram of the interactions of the instantiated objects, (b) UML activity diagram of the scheduling algorithm

the DSO though a gateway that handles its preferences via
the EMS system. The DSO contains a server that has an
OMS, which runs a DR scheduling algorithm. The interactions
between the elements of the case study are presented in Fig. 6
(for one customer). Fig. 6(a) shows the UML sequence and
activity diagram. Fig. 6(b) demonstrates the behavioral part of
the DR scheduler elaborating how the scheduler decides about
the incoming events.

C. Code Generation

UML diagrams have been manually mapped into Matlab
code to validate these high level models. Table I shows
the main mapping patterns of the UML diagrams and the
generated executable Matlab code. However, in order to build
an automatic synthesis tool, the developer needs to use a model
of computation to capture the UML models and generate the
corresponding code [18]. In order to evaluate the performance
of the scheduler, 100 customer objects have been instantiated
in the Matlab code (see c 1 box in Fig. 5). It is assumed that
these customers are connected to one substation.

D. Simulation Results

Arrival and departure times of EVs follow a normal dis-
tribution with N = (19, 10) and N = (7.5, 1), respectively,
when state of charges of EVs’ batteries at that times are 0 and
100, respectively [7]. The DSO attempts to keep the aggregated
load consumption below an Electricity Consumption Threshold
(ECT) over time. ECTs are adapted to the normalized Danish
real-time electricity prices ep [19]. The DRS, inside the OMS,
couples ECTs with a load scheduler. This scheduling algorithm
uses a deterministic event-driven DR approach, which applies a
selection procedure on incoming events to select some at each
time interval and postpone the remaining to the future. This
procedures is a single-objective optimization problem, which is
continuously solved by a dynamic programming technique at
each time interval. For more information, the reader is referred
to [6].

Fig. 7 demonstrates the charging process aggregation
of 100 EVs in two consecutive days before and after running
the scheduling. ECTs follow the multiplication of the normal-
ized vector of electricity prices by the current aggregation of
load requests at each time interval. The scheduler receives the

Fig. 7. Charging process aggregation of 100 EVs before and after running
the scheduling during two-consecutive days

events in one-minute time resolution (Δτ = 1). At each time
interval, it runs the scheduling algorithm to allow a subset of
EVs to operate and postpone the remaining subset to the next
time interval. In a future time interval, the scheduler receives
the previously postponed events along with the events sent for
the first time from new EVs. It is worth noting that in the worst
case, the simulation takes 0.38 seconds to buffer the incoming
events, schedule them, and forward the responses back.

The peak consumption before scheduling occurs at 21:05
with 27.04 Kilowatt-minute of electricity consumption. Run-
ning the scheduling shifts the peak to 03:05 (the next day) with
17.59 Kilowatt-minute of electricity consumption. This con-
firms that the DSO succeeds in shaving the peak by 34.94%.
This peak reduction uses averagely 60.29% of customers’
flexibilities, which causes the customers to wait averagely
356 minutes more to have their EV fully charged. Intuitively,
this waiting time falls in the flexibility period of each customer
(starting from the EV’s arrival time ending to its departure
time).

Fig. 8 shows the charging process of the EV of cus-
tomer 52. Here, the EV has arrived at 20:05 in the present
day and will depart at 08:22 in the next day. If the battery
takes 300 minutes to be charged, the customer can receive the
fully charged EV at 01:05 (the next day). The period from
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TABLE I. MAPPING PATTERNS FROM UML DIAGRAMS TO MATLAB CODE

UML entity Matlab code UML entity Matlab code

Classes: classdef sa
properties

sf
ct_sa
ev

end
methods

function obj=sa(sf,
↪→ ct_sa)

obj.sf = sf;
obj.ct_sa =
↪→ ct_sa;

end
function obj =
↪→ CreateEvent(obj)

est = datetime;
ept = 2;
obj.ev = Event(
↪→ est,ept);

end
end

end

classdef Event
properties

est
ept

end
methods

function obj=Event(
↪→ est,ept)

obj.ept = ept;
obj.est = est;

end
end

end

Objects:

sf = [1,1];
ct_sa = 1;
ElectricVehicle(1) = sa(sf,
↪→ ct_sa);
ElectricVehicle(1) =
↪→ CreateEvent(
↪→ ElectricVehicle(1));

Sequence:

sendEvent(ev);
iw = {iw,ev};
Scheduler(iw);
sendResponse(ev);

Activity:

if ev.sf ~= [1,1];
dec = 1;

end

Fig. 8. The charging process of the EV of customer 52

this time until the departure time contributes 438 minutes of
flexibility. According to the simulation, the scheduler delivers
the EV at 03:47 in the fully charged status. This indicates
that the scheduler has used 37.21% of the provided flexibility,
which equals to 163 minutes of delay.

Fig. 9 demonstrates the effect of increasing the number
of customers on the computation time in the worst case. The
selection procedure in the scheduling algorithm is the main

driver of the computation time. When h = 1, obviously, no
selection procedure is executed during the simulation. While
the number of customers increases, the number of referrals to
the selection procedure during the simulation also increases.
The ascending slope of the computation time is a consequence
of having more incoming events at each time interval. This
indeed makes the scheduling algorithm take longer time to
return the decisions. However, the computation time does
not increase exponentially, when the number of customers
increases.

VI. CONCLUSION AND FUTURE WORK

This paper proposed a formal framework for modeling
smart grid applications. It defined the main grid elements using
three aspects: hardware, software, and network. A UML profile
was developed to integrate these aspects into a generic profile.
Employing this profile, a formal framework for modeling
the main semantics of smart grid systems was defined and
mathematically formalized with an emphasis on the customers
and operations domains. A novel UML profile and a class
diagram were developed to support the implementation of
the framework, reflect the mathematical formulas, and create
formal grid models. A case study was used to prove the validity
of the formal framework demonstrating how to synthesize the
formal framework into an executable code to build an efficient
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Fig. 9. Computation time in the worst case versus increasing the number of
customers

simulator for grid applications. Preliminary results confirmed
the significant benefit of orchestrating the framework as a
demand response service for solving the coordinated charging
scheduling problem of electric vehicles in the smart grid.

As on-going future extensions, various case studies will
be investigated to confirm the generality and re-usability of
the framework in different directions. Furthermore, smart grid
communication protocols will be integrated into the framework
(updating the network aspect) to evaluate how efficient the
framework behaves in a simulated ICT-based power grid envi-
ronment. At the moment, the code is not automatically gener-
ated by the framework, but manually mapped from the UML
model. This will be updated to an automatic code generation,
using e.g., Acceleo, which is an open-source code generator.
It allows people to use a model-driven approach to build
applications. Finally, an important element to define a smart
grid application is the structure of the grid’s topology. The
future version of the framework will be explicitly adaptable to
the current top-down topology.
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Abstract—The electric vehicle technology intends to mitigate
negative impacts of the energy challenge on the current trans-
portation infrastructure. However, integrating a large number of
such vehicles imposes a significant additional load to the grid
and may overload it. This paper proposes a hierarchical event-
driven multi-agent system framework for coordinated charging
scheduling of electric vehicles. Household agents negotiate tempo-
ral travel patterns with substation agents to decide when electric
vehicles should charge their batteries. A scalable load scheduling
algorithm is proposed to schedule charging process of electric
vehicles in real-time regardless of using any forecasting method.
It aims to permit as many electric vehicles as possible to operate
while keeping their aggregated charging energy consumption be-
low continuous electricity-price-dependent thresholds over time.
Simulations confirm that the framework benefits from charging
flexibilities, reduces the charging cost, and shaves the grid’s peak.

Keywords—Smart grid; Electric vehicle; Demand response;
Coordinated charging scheduling; Multi-agent systems.

I. INTRODUCTION

Recently, the electrification of the current transportation
system has emerged as one of the most crucial challenges
in the power grid control. This revolution has yielded to
the largest share of total energy consumption growth in
the world [1]. Electric Vehicles (EVs) are environmentally
friendly alternatives to ordinary vehicles. However, integrating
an increasing number of EVs into the current grid imposes
a significant additional load. Because of this large impact,
charging scheduling of EVs is an important research topic
since their uncoordinated charging process can jeopardize the
efficiency and reliability of the power grid (see Fig. 1).

Demand Response (DR) programs enable the manage-
ment of such challenge by providing incentives and technical
assistance to consumers encouraging them to expand their
energy management capabilities. Their main purpose is to
enable the shifting of high energy-consuming loads to off-peak
periods. Indeed, it is hard for consumers and grid operators to
automatically adapt the charging behavior of EVs to grid’s
requirements. This paper claims that Multi-Agent Systems
(MASs) significantly help the grid accomplish these operations
in residential DR programs [2]. It proposes a hierarchical
event-driven MAS framework for the coordination of charging
scheduling of EVs. Here, agents are self-interested that need
to maximize their profit. An individual household agent is
characterized with a resident and an EV. Its objective is to
control the charging process and cost of the EV. An operator
and a management system specify each (secondary) substation
agent. Its objective is to prevent overloading of the substation
while satisfying household agents. It is assumed that both
communication links and power lines are available between
agents. The former exchanges the information between agents
while the latter supplies households’ electricity needs. This
paper considers that agents communicate with each other
through Internet without any limitation.

(a) Uncoordinated charging (b) Coordinated charging

Fig. 1. Grid’s status according to uncoordinated and coordinated for charging
scheduling of electric vehicles. The dashed red line is the grid’s capacity.

Each substation performs independently and serves a finite
set of households. Residents are required to set their trans-
portation needs, i.e., arrival and departure times. Then, EVs
communicate with substation agents and send charging events
with a specific time resolution. In practice, these communi-
cations are instantiated asynchronously. Each event specifies
the required charging load at the current time. Since the
framework is decentralized, scheduling of events is executed at
each substation, which significantly reduces the computational
complexity of the scheduling problem. Each substation uses an
identical instance of the scalable load scheduling algorithm to
manage its incoming events. The algorithm employs real-time
electricity prices to structure Electricity Consumption Thresh-
olds (ECTs) [3]. In particular, it attempts to keep aggregated
charging loads below these ECTs over time. It decides which
EVs should charge their batteries at each time interval. Substa-
tion agents return these decisions to corresponding household
agents to continue the remaining charging process.

Hence, as the main novelty of this framework, it does not
utilize: 1) any historical data, 2) any forecasting methods,
and 3) any complex optimization techniques. Instead, the
framework considers how much energy EVs need now to
charge their batteries and for how long they provide flexibility
from the current moment. Since the grid operates in real-time,
the framework requires a simple but intelligent optimization
method. Relying on day-ahead global optimization techniques
is not a feasible solution since the uncertainty in consumers’
behavior is not negligible. Therefore, this paper studies the
charging scheduling problem of EVs under a MAS framework
as a continuous behavior-dependent optimization problem.

The paper is structured as follows. Section II reviews
the related work. Section III presents the MAS framework.
Section IV describes the negotiation model and EV charging
scheduling algorithm. Section V provides the simulation setup
and results. Finally, Section VI concludes the paper and
provides some future work.

64

2016 IEEE Online Conference on Green Communications (OnlineGreenComm)

978-1-5090-2753-8/16/$31.00 ©2016 IEEE

194



II. RELATED WORK

Coordinated charging scheduling of EVs is a challeng-
ing problem, in which Mukherjee et al. [1] have recently
reviewed the recent contributions. They argued that consid-
ering only grid-to-EV power flows could be a logical first
step toward challenging more complex bidirectional models.
Rassaei et al. [4] studied the impact of a game-based DR
framework on shaping the aggregated charging profiles taking
uncertain arrival times into account. Although the work suc-
ceeded to minimize the peak, however, consumers’ comfort
level was not considered. Mohsenian-Rad et al. [5] proved
that the dependability of optimizing the charging scheduling
of EVs on the uncertain departure times is undeniable. They
developed a closed-form solution to this problem with respect
to time-of-use electricity prices.

However, a majority of current unidirectional model-driven
works made centralized decisions for coordinating a high
penetration of EVs, which was computationally intractable
to handle. Xu et al. [6] framed a distributed concept into
a hierarchical framework for coordinated charging of EVs.
He et al. [7] proposed a centralized charging scheduling frame-
work for charging and discharging of EVs, in which consumers
could use it to minimize their energy cost. Deilami et al. [8]
proposed a charging load scheduling algorithm for residential
EVs using the amount of energy purchased in the day-ahead
market based on forecasting methods.

Veit et al. [9] provided a MAS-based framework to the DR
scheduling problem in response to the real-time supply. They
formulated the constraints of individual scheduable electrical
devices under the agent’s control. Hu et al. [10] proposed an
agent-based centralized concept for scheduling EVs including
different layered agent types. Unda et al. [11] also presented
an agent-based method for managing the battery charging
problem of EVs in power distribution network according to
electricity prices and grid stability constraints.

III. MULTI-AGENT SYSTEM FRAMEWORK

Agent-based modeling of real-world problems leads to
more flexibility since: 1) different behavioral criteria can be
analyzed, and 2) it is possible to add more properties to agents
or add more distributed agents to the model. Fig. 2 pictures
a conceptual view of the proposed framework. Agents are
organized in a hierarchical way, where each household agent
is serviced through a substation agent. Substation agents work
independently. Let us assume the MAS framework includes

S = {S1, . . . , Sm} ,
H = {{H1,1, . . . , Hn,1} , . . . , {H1,m, . . . , Hn′,m}} , (1)

where S and H are sets of substation and household agents,
respectively. Sj is substation agent j, where 1 ≤ j ≤ m.
Then, Hi,j is denoted as household agent i connected to
substation agent j, where 1 ≤ i ≤ n. According to grid’s
topology, ∀Sj ∈ S, ∃ {H1,m, . . . , Hn,j} ∈ H. Substation
agents can control different number of household agents, i.e.,
n �= n′. Hereinafter, for readability of notations, subscripts
(i.e., i and j) are eliminated. Since the framework is designed
as an object-oriented system, the following formulates speci-
fications of household and substation agent classes.

A. Household Agent
Once an EV arrives at home, the resident updates

{α, β} ∈ {YYYY-MM-DD HH:mm:ss} , (2)

where α and β denote the current arrival and desired departure
times, respectively. To evaluate the framework under the max-
imum load, it is assumed that batteries are empty upon arrival
and must be fully charged until departure. Let

P =
{
στ , . . . , σt, . . . , σθ

}
, (3)

where P defines the known vector of EV’s charging profile.
Each σt ∈ R∗ (kWh) is a charging event at time interval
t ∈ {YYYY-MM-DD HH:mm:ss} defining the energy
needed between t and t + Δt. Vector P is divided into
equal time slots of duration Δt ∈ N (sec/min). It should be
considered that events are created continuously over time. The
EV starts trying to charge its battery upon arrival, i.e., α ≤ τ .
Charging must finish before departure, i.e., θ ≤ (β −Δt). Let

Ct = Ct−Δt +
(
dect × σt

)
, (4)

where Ct ∈ R+ (kWh) is battery’s capacity at time interval t.
Also, dect ∈ {0, 1} is a binary decision variable triggered by
the substation agent stating that the EV can charge its battery
at time interval t (dect = 1) or should resend the event at the
next time interval t+Δt (dect = 0). This decision is mainly
dependent on

flext =
{

1 ((|P′| ×Δt) + t) < (β −Δt) ,
0 otherwise, (5)

where flext is the flexibility status of EV at time inter-
val t. |{}| returns the vector’s length. Here, P′ ⊆ P, where
P′ =

{
σt, . . . , σθ

}
. The period between α and β is the

flexibility period. It enables the possibility of both shifting the
start time and aperiodically interrupting the charging process.
flext = 1 if there is still any possibility to interrupt the charging
process and send charging events at future intervals.

Let us assume a resident decides to shift the departure time
back, i.e., β′ < β, where β′ is the new departure time. Indeed,
in reality, the less the difference between available time and
the time required for charge, the higher the risk of actually
not being able to complete the charging if the departure
happens before. Nevertheless, the framework is flexible to
accommodate sudden behavioral changes. Here, the EV should
recalculate its flexibility status. If flext = 1, then, the resident
will definitely receive a fully charged EV. Otherwise, the EV
cannot be fully charged until the departure time. However, it
will be in the charging mode until departure uninterruptedly.

As two main battery constraints, first, let

Ct ≤ Ct+Δt ≤ Cmax, (6)

where Cmax ∈ R+ (kWh) is the battery’s maximum capacity.
This constraint avoids overcharging or discharging the battery
over time. As the second constraint, let

θ∑

t=τ

(
dect × σt

)
= Cmax, (7)

where it ensures that the battery should be fully charged until
the departure time at the latest. Next part describes how a
substation agent handles incoming events.
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Fig. 2. Conceptual view of the proposed hierarchical multi-agent system framework for the problem of coordinated charging scheduling of electric vehicles.

B. Substation Agent
A substation agent consists of two parts named buffers and

scheduler. Once an event arrives at a substation agent, it is
forwarded to the buffers part. Let

B =
{

wbt, abt′ , dbt′
}
, (8)

where wbt, abt′ , and dbt
′

are waiting, allowed, and denied
buffers, respectively. In practice, t �= t′, since these intervals,
at which buffers are updated, are asynchronous. The first buffer
is updated when a new event is received while the others are
updated when the scheduler returns decisions. Let

B ← Φ
(
wbt,Πt

)
, (9)

where Φ is the scheduling algorithm that makes decisions.
When the buffers part receives decisions, it removes events
from wbt and appends them to either abt′ if dect

′
= 1 or dbt

′

if dect
′
= 0. The substation agent uses flexibilities provided

by household agents to shave peak demand periods. Let

Πt =

( ∑

σt∈wbt
σt

)
× êpt, (10)

where Πt ∈ R∗ (kWh) is a real-time normalized electricity-
price-dependent Electricity Consumption Threshold (ECT).
Each time interval’s threshold is applied on events in wbt to
activate the decision making process. The following section
describes the negotiation model and scheduling strategy.

IV. NEGOTIATION MODEL AND CHARGING LOAD
SCHEDULING ALGORITHM

Agents are self-interested and have the following goals:
• Household agent: Controlling the charging process of

EV while managing its charging cost.
• Substation agent: Preventing overloading of the sub-

station while satisfying household agents.
These goals are not independent of each other. Household

agents should control charging processes of EVs between
arrival and departure times. They are interested to perform
these processes in lower electricity cost periods. Substation
agents also have to respect substation’s capacity over time
while attempting not to confront unnecessary rebound peaks.
Therefore, all agents need to coordinate with each other to
meet the individual goals of all agents.

A. Negotiation Model
Fig. 3 pictures the information flow diagram of the nego-

tiation model. It functions as follows:
1) Household agents send their events to the substation

agent asynchronously.

2) The substation agent aggregates these requests and
sends them to the buffers part. Meanwhile, it updates
the ECT of the current time interval accordingly.

3) The buffers parts appends incoming events to the
waiting buffer and send the updated version to the
scheduling algorithm.

4) The scheduling algorithm decides about events ac-
cording to updated ECT and returns decisions to the
buffers part.

5) The buffers part updates the buffers with respect to
decisions and forwards the allowed and denied buffers
to the substation agent.

6) The substation agent returns the decisions to house-
hold agents.

Fig. 3. Information flow diagram of the negotiation model. Numbers are in
line with the text.

This negotiation model impacts the charging process and
grid’s status over time. Fig. 4 demonstrates how an unco-
ordinated charging process is shaped into a coordinated one
from a household agent’s perspective. Brown ovals symbolize
the amount of energy exchanged with the system. If there is
no coordination, the EV is continuously permitted to charge
its battery until completion. This results in not using the
potentiality of the provided flexibility period (refer to Idle
Period). In the coordinated status, the substation agent divides
both charging and idle periods of the EV on account of the
sending-receiving time resolution of events. Obviously, there
is no charging operation in idle periods.

From the substation’s perspective, Fig. 5 shows a con-
ceptual view of how the grid is influenced at three random
consecutive time intervals by respecting the negotiation model.
The substation’s real capacity is mapped to dashed red lines.
Furthermore, ECTs are shown by dashed green lines. The
remaining space between red and green lines are denoted
as the substation’s reserved capacity. In practice, having no
negotiation model causes overloading, which damages the
substation. Obviously, this model considers the same priority to
previously denied and newly arrived events. Each event block
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Fig. 4. Reshaping an uncoordinated charging process to a coordinated one.

belongs to one specific household agent. Next part presents
the scheduling algorithm and how it decides about incoming
events at each time interval.

Fig. 5. A schematic view of the grid’s status after three consecutive time
intervals. New events at each time interval are known with a different color.
Dashed red and green lines are substation’s capacity and ECTs, respectively.

B. Scalable Charging Load Scheduling Algorithm
Algorithm 1 describes the EV charging load scheduling

algorithm. For each event, stored in the waiting buffer, its flexi-
bility is checked to decide whether shifting is possible. Then, if
the remaining ECT is unable to cover the events located in the
temp buffer, an event selection procedure is employed to select
a subset of events subject to the remaining ECT. This paper
considers the Earliest Deadline First (EDF) mechanism, where
departure times are mapped to deadlines. EDF is derived from
real-time systems theory, which is particularly heuristic while
presenting better scalability properties [12]. The scheduling
algorithm should return the decisions as soon as possible
while not sacrificing the local optimality. Having complicated
algorithms may delay the responses, which causes household
agents resend new events. This brings chaos to the system. For
more information about the scheduling algorithm, the reader
is referred to [3].

According to Fig. 2, each substation agent runs an instance
of this scheduling algorithm independently and continuously.
This eases the complexity of the load scheduling problem
compared to the situation, where an agent is responsible for
responding events of all household agents in the grid. In that
case, the problem would be computationally intractable [13]. If
all household agents send events simultaneously, the scheduler
has to run at maximum capacity. This will create a challenge
since the scheduler will need much more time to handle these
events. This will also cause household agents not to receive
responses in a reasonable time frame. Therefore, they will start
sending new events, which it will make a congestion. The
buffers part handles this challenge. Since in practice, there are

Algorithm 1: Load scheduling algorithm
Input: Events in the waiting buffer, corresponding

flexibilities, and the current ECT.
Output: Decisions.

1 Create a temp buffer tbt;
2 foreach σt ∈ wbt do
3 if flext = 1 then
4 tbt = tbt ∪ {σt};
5 else
6 dect = 1;
7 Πt = Πt − σt;
8 end
9 end

10 if Πt ≥ ∑
σt∈wbt

σt then

11 foreach σt ∈ tbt do
12 dect = 1;
13 Πt = Πt − σt;
14 end
15 else
16 Call the event selection procedure (EDF mechanism);
17 foreach σt ∈ tbt do
18 if σt is selected then
19 dect = 1;
20 Πt = Πt − σt;
21 end
22 dect = 0;
23 end
24 end
25 return all decisions;

some limitations on the communication side, e.g., bandwidth,
throughput, etc., these events do not arrive at the same time.
The times, at which the scheduler fetches the waiting buffer
and the waiting buffer is updated with new events are asyn-
chronous. These features reduce the computational complexity
of the scheduling algorithm while confirming its scalability.

V. SIMULATION SETUP AND RESULTS

This section first adjusts the simulation setup and then,
provides the results and analyzes their performance.

A. Simulation Setup
The framework proposed has been modeled and coded in

Matlab R©. It runs on a computer with an Intel Core i7 2.0 GHz
CPU and 12 GB memory. However, CPU and memory usages
never exceed 33% and 400 MB in simulations, respectively.
Since substation agents perform their responsibilities indepen-
dently, the results of only one substation are reflected. We use
specifications of batteries equipped in General Motors EV1
(share=30%), Toyota RAV1 (share=20%), and Nissan Altra
(share=50%) [14]. Then, arrival and departure times follow
normal distributions N (19, 10) and N (7.5, 1), respectively [4].
EVs arrive with empty batteries and will depart with fully
charged status. Fig. 6 pictures the aggregated charging loads of
100 EVs before scheduling (uncoordinated). Fig. 7 illustrates
EVs’ probability density and real-time hourly basis electricity
prices of Scandinavian countries1. Events are sent in Δt = 1

1http://www.nordpoolspot.com
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Fig. 6. Aggregated charging loads of 100 EVs. Two consecutive days are
divided by a vertical dashed line. EVs arrive in the first day with probability
of N (19, 10) and depart the day after with the probability of N (7.5, 1).

Fig. 7. EVs’ probability density and real-time hourly basis electricity prices
of Scandinavian countries (May 17, 2016).

minute time resolution. The framework simulates two consec-
utive days, in which EVs arrive at the first day and depart in
the second day. EVs are limited to charge their batteries once
during this period.

B. Simulation Results
Fig. 8 shows the aggregated charging loads of EVs before

and after scheduling according to the time-dependent ECTs
applied over time. Table I analyzes the scheduling performance
accordingly. All information are the result of averaging over
multiple experiments in the same time frame.

For Denmark, its highest and lowest electricity prices are
adjusted almost after departure and arrival times, respectively
(see Fig. 8(a)). Their difference ratio is 1.95. This results in
averagely 3.45% Charging Cost Reduction (CCR) for each
household while averagely 5.22% Peak Demand Reduction
(PDR), as pictured in Fig. 8(a). This PDR is the result of
10% Flexibility Usage Percentage (FUP) and 94.19 minutes of
Average EV Delay (AED). Residents provide averagely 932.79
minutes of flexibility (refer to Section III-A). For instance,
a Nissan Altra arrives at 19:00 and will depart at 08:00 the
next day. This includes 780 minutes of flexibility. According
to its charging duration (300 minutes [14]), although its
battery can be fully charged until 24:00, however, charging is
continued until almost 01:34 the next day. Finally, Maximum
Computation Time (MCT) reports how long it takes for the
substation agent to return decisions in the worst case among all
intervals. For instance, household agents in Denmark averagely
wait 0.28 seconds to receive a response to their events.

For Norway, as Fig. 8(b) pictures, PDR is 20.20%. The
reason is the low difference ratio 1.29 in electricity prices
(see Fig. 7). Having an inconsiderable fluctuation in electricity
prices, ECTs are relatively low (compared to Denmark), which
helps the scheduler shift more charging loads from the first

(a) Denmark (b) Norway

(c) Finland (d) Sweden

Fig. 8. Aggregated charging loads of 100 EVs before and after scheduling
subject to real-time electricity-price-dependent ECTs.

TABLE I. PERFORMANCE ANALYSIS OF THE ALGORITHM

CCR (%) PDR (%) FUP (%) AED (min.) MCT (sec.)

Denmark 3.45 5.22 10 94.19 0.28
Norway 3.58 20.20 28.23 263.40 0.21
Finland 19.53 -11.87 20 187.19 0.35
Sweden 2.68 6.63 9 84.25 0.27

CCR is Charging Cost Reduction. PDR is Peak Demand Reduction. FUP is Flexibility
Usage Percentage. AED is Average EV Delay. MCT is Maximum Computation Time.

day to the second day. However, this influences AED, in which
EVs are delayed averagely 263.40 minutes to fully charge their
batteries. CCR is averagely 3.58%, which is due to the low
difference ratio. However, CCR for Danish residents is lower
compared to Norwegian residents, which depends on PDR.

For Finland, as Fig. 8(c) shows, there is a significant
trade-off between CCR and PDR. Here, the different ratio
is 2.32, which results in 19.53% CCR. This reduction is the
result of using 20% FUP meaning averagely 263.40 minutes
of AED. Finland’s electricity prices are higher than other
discussing countries and more fluctuating during arrival times
(see Fig. 7). This causes the scheduler not to succeed in
shaving the peak, which produces a significant rebound peak
with -11.87% PDR. Nevertheless, this rebound peak uses a part
of the substation’s reserved capacity (see Fig. 5). This anal-
ysis proves that electricity-price-dependent ECTs significantly
behaves differently in these countries.

For Sweden, as Fig. 8(d) shows, the evaluation results
almost the same as Denmark. Here, the different ratio is also
1.95. However, the small difference in results is caused by a
small fluctuation in the electricity prices during arrival times.

Fig. 9 shows the distribution of charging EVs over time
(reflected by Fig. 8). Before scheduling, 61 EVs make the
peak demand. PDRs, mentioned in Table I, also represent the
reduction in the number of charging EVs. This analysis helps
operators configure the grid’s structure efficiently.

Fig. 10 presents the charging evolution of a Nissan Altra’s
battery. It arrives at 18:07 on May 17 and departs at 02:32
on May 19. After scheduling, the charging period is split into
571 one-minute slots starting from 17:01 on May 18 ending to
02:31 on May 19. From 18:00 to 22:33 on May 18, the battery
remains with 20.28% charge.
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Fig. 9. Distribution of charging EVs. Fig. 10. Charging evolution of EV

As the final step, Fig. 11 demonstrates how increasing
the number of household agents impacts on the performance.
Fig. 11(a) shows how FUP and AED are changed when the
number of households increases from 100 to 1000. Although
FUPs and AEDs behave reversely, however, the result shows
that household agents benefit more (in terms of AED) when
the DR participation percentage increases. FUPs increase since
the scheduler uses more flexibility to be able to shave the
peak. Nevertheless, since ECTs are higher than the aggregated
load consumptions at some intervals (because of previously
denied and newly received events), more events are responded
to operate, which consequently, leads to a reduction in AEDs.

Fig. 11(b) complements this analysis based on CCRs and
MCTs. The fluctuating nature of CCRs is due to having: 1)
high ECTs because of the number of household agents, and
2) more complexity in selecting an optimal subset of events at
each time interval. CCRs do not follow a normal and expected
behavior compared to others. The ascending slope of MCTs is
a consequence of having more events in the waiting buffer at
each time interval. This indeed makes the scheduling algorithm
take longer time than anticipated to return decisions. However,
taking almost only 4 seconds to schedule 1000 events in the
worst case scenario is surprisingly interesting, which confirms
the scalability of the algorithm. In Danish electricity grid’s
infrastructure, averagely 100 households are serviced via a
single substation. According to Table I, each household agent
will see a delay of 0.28 seconds to receive a response to each
event it sends. Since decision making takes place at each sub-
station independently, the framework is able to accommodate
for a large number of requests in a fair manner.

(a) FUP and AED (b) CCR and MCT

Fig. 11. Performance analysis based on increasing the number of households.

VI. CONCLUSION AND FUTURE WORK

This paper studied the problem of the uncoordinated charg-
ing process of electric vehicles. It proposed a hierarchical
event-driven multi-agent system framework considering house-
holds’ needs and substations’ capacity limitations. A scalable
load scheduling algorithm was presented to schedule incoming
charging events efficiently in real-time. It takes flexibilities
and required energies into account and runs an event selection
procedure to allow some electric vehicles to charge their
batteries at the current time interval and force the remaining

ones to resend their events in the future. Simulation results
supported the work while confirming that the framework was
successful in shaving the peak and reducing the charging cost
regardless of using any historical data or forecasting methods.
Currently, we are working on a scalable solution to integrate
communication networks with the demand response framework
to measure network delays and quality of services. Other grid
stability constraints, such as voltage violation limits, will also
be integrated with the framework. Finally, the framework will
be synthesized with the vehicle-to-grid technology, to study
when and how much an electric vehicle should give the energy,
stored in its battery, back to the grid.
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1

A Non-Cooperative Framework for Coordinating
a Neighborhood of Distributed Prosumers

Armin Ghasem Azar, Hamidreza Nazaripouya, Behnam Khaki,
Chi-Cheng Chu, Rajit Gadh, and Rune Hylsberg Jacobsen

Abstract—This paper introduces a scalable framework for coor-
dinating a neighborhood of residential prosumers including smart
appliances, photovoltaics, and battery energy storage systems.
Prosumers, to maximize their comfort level and profit at each
instant of time, individually take advantage of their consump-
tion, generation, and storage flexibilities by negotiating with an
aggregator in a non-cooperative environment. The aggregator
matches prosumers’ supply and demand with the objectives of
maximizing its profit and minimizing the grid purchase. The
framework is comprised of two separate multi-objective mixed
integer nonlinear programming models for prosumers and the
aggregator, which are solved by the evolutionary NSGA-III
algorithm independently. A distributed negotiation approach, to
enable prosumers and the aggregator to negotiate on concurrent
packaged power and price offers with private utility functions and
preferences, is incorporated into the framework. This approach,
to converge to an acceptable agreement, follows an alternating-
offer production protocol and a reactive utility value concession
strategy. Moreover, to reduce the computation overhead in par-
allel bilateral negotiations, a virtual power plant is employed to
proceed the negotiation on behalf of prosumers. The effectiveness
of the framework is evaluated through four case studies based
on several economic and environmental assessment metrics.
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NOMENCLATURE

Note: Notations follow ÀÂ
Á (Ã), where À-Ã refer to an entity,

its index, its feature, and the time/iteration index, respectively.

Constants
A Aggregator
K̃ Number of feasible behavior matrices of the aggre-

gator
aj,i j-th appliance of prosumer ρi
εj,i Exact operating end time of appliance aj,i
βj,i Desired operating end time of appliance aj,i
θj,i Desired operating flexibility of appliance aj,i
ni Number of appliances of prosumer ρi
αj,i Desired operating start time of appliance aj,i
Bi BESS of prosumer ρi
Bcap
i BESS capacity of prosumer ρi (kWh)

Bci Maximum charging power of the BESS of pro-
sumer ρi (kW)

Bdi Maximum discharging power of the BESS of pro-
sumer ρi (kW)

BSOC
i Maximum SOC for the BESS of prosumer ρi

B
SOC
i Minimum SOC for the BESS of prosumer ρi

δ Negotiation convergence tolerance
ε Decay rate controller for time-dependent concession

values
W Number of generations in the NSGA-III
G The grid
T Number of negotiation iterations
P Projection operator
ρi i-th prosumer
K Number of feasible behavior pairs of prosumers
PVi PV system of prosumer ρi
PVcap

i Power generation capacity of the PV of pro-
sumer ρi (kW)

∆t Time interval resolution
T Number of time intervals
ψA Utility function of the aggregator
ψV Utility function of the VPP
V VPP
Indexes
k̃ Behavior matrix index
j Appliance index
ι Negotiation iteration index
i Prosumer index
k, k′ Behavior pair indexes
t Time interval index
Sets
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APi Set of appliances of prosumer ρi
∅ Empty set
lpj,i Load profile of appliance aj,i
B Binary numbers
N Natural numbers
R Real numbers
NSi Set of non-shiftable appliances of prosumer ρi
P Set of prosumers
Si Set of shiftable appliances of prosumer ρi
Variables
Υ̃A (t) Set of feasible behavior matrices of the aggregator
Z (t) The zone of agreement in the negotiation
τj,i (t) Load demand of appliance aj,i (kW)
Bci (t) Charging power of the BESS of prosumer ρi (kW)
Bdi (t) Discharging power of the BESS of prosumer ρi

(kW)
Bei (t) Amount of energy stored in the BESS of pro-

sumer ρi until time interval t (kWh)
BSOC
i (t) SOC value of the BESS of prosumer ρi

υci (t) Binary charging status of the BESS of prosumer ρi
υdi (t) Binary discharging status of the BESS of pro-

sumer ρi
B̃Mk̃

A (t) k̃-th behavior matrix of the aggregator
BPki (t) k-th behavior pair of prosumer ρi
BP res

i (t) Reservation behavior pair of prosumer ρi

B̃P k̃i (t) k̃-th behavior pair of the aggregator concerning
prosumer ρi

B̃P res
i (t) Reservation behavior pair of the aggregator assumed

for prosumer ρi
decj,i (t) Binary decision variable of the operating status of

appliance aj,i
ωA (ι) Reactive concession value of the aggregator
ωV (ι) Reactive concession value of the VPP
ΠA (ι) Desired utility value of the aggregator
ΠV (ι) Desired utility value of the VPP
φu (t) Maximum offerable price for prosumers to trade

electric energy ($/kWh)
φl (t) Minimum offerable price for prosumers to trade

electric energy ($/kWh)
φuG (t) Price of the grid to sell electric energy to the

aggregator ($/kWh)
φlG (t) Price of the grid to buy electric energy from the

aggregator ($/kWh)
φi (t) Price of prosumer ρi offered to the aggregator via

the VPP ($/kWh)
φres
i (t) Reservation price offer of prosumer ρi ($/kWh)
φ̃i (t) Price of the aggregator offered to prosumer ρi via

the VPP ($/kWh)
ZA (t) Set of feasible desired offer packages of the aggre-

gator
ZV (t) Set of feasible desired offer packages of the VPP
ZA (ι) Subset of feasible desired offer packages of the

aggregator
ZV (ι) Subset of feasible desired offer packages of the VPP
flexj,i (t) Binary flexibility status of appliance aj,i
σA (ι) Offer package sent from the aggregator to the VPP

σres
A (t) Reservation offer package of the aggregator
σV (ι) Offer package sent from the VPP to the aggregator
σres
V (t) Reservation offer package of the VPP
ℵi (t) Power exchanged between prosumer ρi and the

grid (kW)
ℵB2G
i (t) Power transferred from the BESS of prosumer ρi to

the grid (kW)
ℵB2L
i (t) Power transferred from the BESS to appliances of

prosumer ρi (kW)
ℵG2B
i (t) Power transferred from the grid to the BESS of

prosumer ρi (kW)
ℵG2L
i (t) Power trasnferred from the grid to appliances of

prosumer ρi (kW)
ℵP2B
i (t) Power transferred from the PV to the BESS of

prosumer ρi (kW)
ℵP2G
i (t) Power transferred from the PV of prosumer ρi to

the grid (kW)
ℵP2L
i (t) Power transferred from the PV to appliances of

prosumer ρi (kW)
ℵres
i (t) Reservation power offer of prosumer ρi to ex-

change (kW)
ℵ̃A (t) Power exchanged between the aggregator and the

grid (kW)
ℵ̃i (t) Power exchanged between the aggregator and pro-

sumer ρi (kW)
ℵi (t) Extreme value of maximizing the comfort level of

prosumer ρi
ℵi (t) Extreme value of maximizing the benefit of pro-

sumer ρi
ϕA (ι) Offer package projection weight of the aggregator

imposed on the offer package received from the
VPP

ϕV (ι) Offer package projection weight of the VPP im-
posed on the offer package received from the ag-
gregator

Υi (t) Set of feasible behavior pairs of prosumer ρi
PVgi (t) PV generation of prosumer ρi (kW)
SI k̃A (t) Satisfaction index of offer package σk̃A (ι) sent from

the aggregator to the VPP
SIres
A (t) Satisfaction index of reservation offer pack-

age σres
A (t) of the aggregator

SIki (t) Satisfaction index of behavior pair BPki (t) of pro-
sumer ρi

SIres
i (t) Satisfaction index of reservation behavior

pair BP res
i (t) of prosumer ρi

SIV (ι) Satisfaction index of offer package sent from the
VPP to the aggregator

SIres
V (t) Satisfaction index of reservation offer pack-

age σres
V (t) of the VPP

ςA (ι) Time-dependent concession value of the aggregator
ςV (ι) Time-dependent concession value of the VPP
χ (ι) Weighted offer package

I. INTRODUCTION

MODERNIZING the current power grid through the in-
tegration of distributed Photovoltaics (PVs) and Battery

Energy Storage Systems (BESSs) paves the road towards the
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materialization of the vision of a smart grid [1]. In an attempt
to promote this revolution, such integration provides electricity
prosumers with the opportunity to supply load demands of
their smart appliances locally and trade their surplus power
with the grid through balancing services, e.g., aggregators [2].
Two main challenges pertaining to introducing prosumers and
aggregators within the smart grid are: i) the development
of a practical decision-making model for them, and ii) the
exploitation of an efficient coordination strategy to enable the
communication between them. Hence, the following formally
states the research problem.

A. Research Problem

To address the above-mentioned challenges in a smart grid
composed of a neighborhood of distributed prosumers, each of
them including a set of smart appliances, a PV, and a BESS,
which communicate with an aggregator:

i) Develop a distributed framework such that:
• Prosumers with multiple conflicting objectives, by

taking advantage of their consumption, genera-
tion, and storage flexibilities, attempt to schedule
the operation of their appliances, utilize their PV
production, and share their surplus power with the
grid; and

• The aggregator with similar but independent mul-
tiple conflicting objectives, to ensure balance in
the electricity grid, intends to match prosumers’
supply to demand.

ii) Propose a negotiation approach such that:
• The automated negotiation of concurrent power

and price between prosumers and the aggregator
is enabled;

• The convergence in the negotiation to a feasible
solution within a reasonable time and acceptable
to all negotiators is guaranteed; and

• The flexibility information, objective (utility)
functions, and matching contracts during the
course of a negotiation are kept private.

B. Research Motivation

Fig. 1 shows a high-level view of the system model proposed
in this paper. We develop a Multi-Objective Mixed Integer
Nonlinear Programming (MO-MINLP) model for prosumers
to enable them to manage their resources following their
available flexibilities and the electricity prices adjusted by the
market [3]. The model for each prosumer handles mathematical
constraints of its equipment beside confronting the conflicting
objectives of maximizing its: i) comfort level by operating the
smart appliances in time and charging the BESS during low-
price periods as much as possible (to utilize it during high-
price periods), and ii) profit by selling more power to the
grid [4]. Prosumers, by benefiting from the Non-dominated
Sorting Genetic Algorithm-III (NSGA-III) [5], strategically
make trade-offs over behavior pairs, each of which declaring
the amount of “power” to sell/buy and “price” to trade it. The

Prosumer ��

Prosumer ��

Prosumer ��
…

…

VPP Aggregator
Negotiation

Grid

Power Exchange (Matching)

MO-MINLP
(by NSGA-III)

Electricity
Prices

Scheduling and Sharing Power

Logical

Internet

Fig. 1. System model of the proposed framework.

NSGA-III translates this trade-off into a set of non-dominated
solutions lying on the first Pareto-front produced.

Aggregation services are fundamental to prevent any imbal-
ance between supply and demand in the grid, and to ensure that
both utility companies as well as prosumers derive benefits [6].
We assume each group of prosumers and the corresponding
aggregator is determined beforehand, and different groups do
not share members, essentially allowing us to concentrate on
the interactions of a single group. The aggregator matches
surplus power to demand. This matching is activated through
electricity price fluctuations in the market. It intends to, by
considering “demand amount with buying price” from buyer
prosumers and “surplus amount with selling price” from seller
prosumers, optimize its objectives of “maximizing the profit”
and “minimizing the grid purchase” simultaneously. This is
done by using a similar MO-MINLP model, which is also ap-
proached by the NSGA-III to generate a set of non-dominated
solutions (resting on the first Pareto-front) to the aggregator’s
optimization problem.

Currently, clear mathematical models for trading transac-
tions of energy and ancillary services have not been defined
yet, particularly due to a lack of methodologies for the
quantification of social and financial benefits of prosumers as
well as aggregators. Concurrent bilateral negotiations between
prosumers and the aggregator at each instant of time enable
such services in the grid. However, there is a possibility that the
amount of power that each prosumer intends to trade during the
course of a negotiation changes. Such fluctuations may lead to
an infeasible aggregated matching solution [2]. Furthermore,
bilaterally negotiating with an increasing number of prosumers
to reach an overall agreement is computationally expensive and
imposes a substantial delay in communications.

This paper employs a multi-issue negotiation approach,
which is conducted in a non-cooperative environment [7]. This
approach follows an alternating-offer production protocol and
a reactive utility value concession strategy. An intermediary
Virtual Power Plant (VPP), acting on behalf of prosumers,
negotiates with the aggregator about aggregated power and
price. In fact, in a non-cooperative environment, no private
information is shared: i) among prosumers, and ii) between
the VPP and the aggregator. This private information consists
of: i) prosumers’ available flexibility and objective functions,
ii) the VPP’s utility function, and iii) the aggregator’s objective
and utility functions.

At each instant of time, prosumers provide the VPP with
their first Pareto-fronts including a finite number of behavior
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pairs. The aggregator, at the same time, produces its Pareto-
front consisting of a set of feasible behavior matrices. The
VPP, to respect the negotiation protocol, produces behavior
matrices based on the received behavior pairs. The negotiation
approach assumes the negotiators (the VPP and aggregator)
have nonlinear utility functions and start the negotiation with
an offer package (i.e., behavior matrix) providing the highest
possible utility value. A novel evaluation metric, named satis-
faction index, is also introduced to quantify to which extend
each behavior pair/matrix: i) benefits from the current available
flexibility, and ii) provides a price offer close to its extreme
value (maximum or minimum electricity price depending on
being a seller or buyer prosumer, respectively). This metric
help negotiators at each negotiation interval identify the most
beneficial offer package. Negotiators continuously concede
to their pre-defined reservation offer package (the worst but
feasible behavior in terms of power and price). That is, they
neither propose nor accept any offer package with utility value
lower than their reservation utility values. The VPP in the end
of negotiation returns the index of the behavior pair, agreed
with the aggregator on, to each prosumer.

C. Related Work

Residential appliance load scheduling, to reduce the elec-
tricity bills following price fluctuations, has been explored
by a number of researchers [3], [8]–[11]. In [3], a multi-
objective demand response system concentrating on reducing
the total electricity bills and flattening the aggregated peak
demand at the same time is proposed, where each resident
provides the system with the desired expectation of his load
demand scenario accompanied with flexibility time limits of
his controllable appliances. The agent-based version of such
system to coordinate charging scheduling of a large number
electric vehicles is developed in [8], in which households,
to decide when electric vehicles should charge, negotiate on
their temporal travel patterns with substation agents. A central
energy management system, with the aim of minimizing the
grid purchase, is proposed in [9] and [10], where it controls
households’ appliances based on their reputations in storing
their surplus PV generation in a shared BESS. A distributed
version of such system is proposed in [11], where under a
dynamic pricing system, a coordination strategy fairly controls
the operation of appliances while respecting the transformer
capacity limits. Even though these models incentivize the
households to modify their consumption pattern to achieve
lower electricity bills, however, they fail to study the impact of
the high penetration of households, with different ownership
levels of shiftable appliances and various flexibility types, on
households’ economic as well as on the distribution grid.

A very comprehensive review of scheduling problems of
distributed energy resources, such as PVs, from various aspects
is done in [2], where the authors propose considering micro-
grids and VPPs as two suitable potential solutions. Limited
research has been conducted on developing a scalable real-time
framework for coordinating scheduling, sharing, and matching
tasks engaged with a non-cooperative negotiation approach
respecting negotiators’ private information [12]–[24].

In [12], a day-ahead demand-side management mechanism
for prosumers formulated as a non-cooperative game with a
single objective of reducing monetary expenses is proposed.
It preserves prosumers’ privacy, limited communication with
the central unit is needed, and the peak is reduced by 12.6%.
However, prosumers’ load demand scenarios should be known
in advance and cannot change during the process. They should
also commit to follow strictly the resulting consumption pat-
tern. In [13] and [14], a lead-acid BESS coupled with PV is
modeled through a home energy management system. To quan-
tify the self-consumption and self-sufficiency of the model,
load demands are satisfied first by the PV, then by the energy
stored in the BESS, and finally by the grid. The main challenge
with this single-objective system is that they simply consider
the excess energy is injected to the grid with a fixed rate
without any negotiation. The challenges of rapid residential
PV installations in the recent years is discussed in [15], where
the authors, to overcome the difficulty in balancing supply and
demand, propose three independent centralized, decentralized,
and distributed approaches using small-scale distributed BESSs
based on model predictive control methodologies.

In [16], given a real-time pricing scheme, a simple model for
buildings with the basic components of a generator, a BESS,
and loads is proposed allowing two-way energy trading via
a broker based on differential game theory. The convergence
condition and time, however, are only characterized based on
a limited number of buildings. A distributed power sharing
framework formulated as a repeated game between households
in a microgrid is proposed in [17], where each household
decides on amount of power to trade with the grid. Households,
by taking advantage of the variability in their load consumption
patterns, achieve cost savings up to 20%. However, they require
to have a list of preferences of households, with which they
individually prefer to negotiate. A submission-based double
auction mechanism with linear functions for a set of pro-
sumers, possessing PVs and BESSs, is proposed in [18], where
the mechanism is able to achieve an exact demand supply
balance in a day-ahead electricity market subject to having
a full information of consumption and generation profiles.

In [19], a set of computationally expensive off-line and on-
line algorithms for the real-time cooperative energy manage-
ment of only two microgrids are presented. These algorithms,
however, assume that the renewable energy generation offset,
by the aggregated load of individual microgrids, is known
ahead of time. A similar double cooperative game to mini-
mize the overall costs of both the utility companies and the
residential prosumers is formulated in [20]. In [21], the authors
develop a strategy including a heuristic algorithm for optimiz-
ing decentralized energy exchange depending on prosumers’
involvement and physical constraints of distribution networks,
in which prosumers’ cost is averagely reduced by 66% and the
proportion of energy self-satisfaction reaches 98%.

In [22], a peer-to-peer energy sharing model with price-
based demand response for prosumer including PVs are in-
troduced. Although an energy sharing provider is defined
to coordinate the power exchanges, however, no method for
ensuring the match between demand and supply is proposed.
Furthermore, peak demand reduction before and after using
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the proposed model is only 2% while the computation time
of the simulation is very high, e.g., around 175 seconds
for 25 prosumers. A similar work to obtain flexible and
efficient distributed energy management is also studied in [23],
where the main purpose is to minimize the economic cost of
prosumers in the energy sharing problem, which is tailored to
a convex optimization problem.

D. Contributions
This paper, to account for the gaps identified in [9]–[24],

makes the following key contributions:
• Proposing a scalable framework for coordinating

scheduling, sharing, and matching tasks of a neighbor-
hood of distributed prosumers communicating with an
aggregator in real-time regardless of any historical data
or forecasting services;

• Developing two MO-MINLP models for: i) prosumers to
schedule their appliances and share their surplus energy
with the grid (based on mathematical models defined for
their consumption, generation, and storage flexibilities),
and ii) the aggregator to match seller prosumers’ supply
to buyer prosumers’ demand;

• Introducing a generic formulation for non-dominated
solutions to MO-MINLP models and utilizing the
NSGA-III to produce a set of such solutions accordingly;

• Implementing a novel satisfaction index metric for quan-
tifying each non-dominated solution according to the
amount of flexibility used and the profitability of the
price offer;

• Incorporating a multi-issue negotiation approach into
the framework following an alternating-offer production
protocol and a reactive utility value concession strategy
with a guarantee to a feasible solution acceptable to all
within a finite time;

• Enabling an automated bilateral negotiation between a
VPP, working on behalf of prosumers, and the aggre-
gator in a non-cooperative environment, without sharing
any private information (prosumers’ available flexibility
and objective functions, the VPP’s utility function, and
the aggregator’s objective and utility functions) during
the negotiation; and

• Evaluating the effectiveness of the framework through
simulation of four case studies based on several eco-
nomic and environmental assessment metrics.

E. Structure of the Paper
The rest of paper is structured as follows: Section II presents

the system model of the framework; Section III introduces the
multi-objective optimization algorithm; Section IV describes
the negotiation approach; Section V provides the simulation
setup and results; and finally, Section VI concludes the paper
and provides the future work.

II. SYSTEM MODEL OF THE FRAMEWORK

The smart grid system in this paper is represented by a set
of prosumers P = {ρ1, . . . , ρi, . . . , ρm}, which communicate
with an aggregator A through a VPP V (will be described in
Section IV-A1).

A. Prosumers
Prosumer ρi consists of a set of smart appliances, a PV

system, and a BESS. It has two main responsibilities: i)
scheduling appliances, and ii) selling/buying power to/from the
grid [4]. Fig. 2 shows the prosumer’s power actions at each
time interval t ∈ N.

PV

GridLoad

BESS

ℵP2G
i (t)ℵP2L

i (t)

ℵB2G
i (t)

ℵG2B
i (t)

ℵB2L
i (t)

ℵG2L
i (t)

ℵP2B
i (t)

Prosumer ρi

Fig. 2. Model diagram of power actions of prosumer ρi. The dotted red box
conceptualizes the prosumer’s physical equipment. “Load” points to the set of
appliances. Exchanging power between prosumers and the “Grid” is controlled
by the aggregator. Notations are described in Sections II-A1 to II-A3.

1) Appliances: Appliances are main drivers of prosumers’
electricity consumption. Let

APi =

{ NSi︷ ︸︸ ︷
a1,i, . . . , aj,i,

Si︷ ︸︸ ︷
aj+1,i, . . . , ani,i

}
, (1)

lpj,i = {τj,i (αj,i) , τj,i (αj,i + ∆t) , . . . , τj,i (βj,i)} , (2)
βj,i∑

t=αj,i

τj,i (t)× decj,i =
∣∣lpj,i

∣∣ , (3)

ni∑

j=1

τj,i (t)× decj,i (t) = ℵP2L
i (t) + ℵB2L

i (t) + ℵG2L
i (t) , (4)

flexj,i (t) =

{
0 (βj,i − αj,i) ≤ (θj,i − t) ,
1 otherwise, (5)

{
decj,i (t) ∈ {0, 1} flexj,i (t) = 1,
decj,i (t) = 1 otherwise, (6)

where APi is set of appliances of prosumer ρi. Each smart
appliance aj,i ∈ APi, 1 ≤ j ≤ ni ∈ N is a member of subsets
of either non-shiftable NSi ⊆ APi or shiftable Si ⊆ APi ap-
pliances. Shiftability feature provides the prosumer with a flex-
ibility degree to interrupt the operating cycle of appliances [3],
[25]. Appliance aj,i follows a specific load profile lpj,i during
its operating cycle, which is determined with respect to the
program preset by the prosumer. τj,i (t) ∈ R≥0 (kW) is the
load demand of appliance aj,i at time interval t specifying the
amount of power it needs to operate between t and t + ∆t.
Note that ∆t ∈ N is the time interval resolution. decj,i (t) ∈ B
is the binary decision variable of load demand τj,i (t) at time
interval t. For shiftable appliances, the prosumer can decide to
satisfy the load demand (decj,i (t) = 1) or postpone it to the
next interval (decj,i (t) = 0) [8], [26]. The prosumer adjusts an
operating deadline θj,i ∈ N defining for how long the prosumer
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is flexible in having the appliance’s operation completed after
its normal end time βj,i ∈ N. flexj,i (t) ∈ B is the binary
flexibility status of appliance aj,i. Decision variable for non-
shiftable appliances always equals one. These appliances,
which are provided with no flexibility (βj,i = θj,i), operate un-
interruptedly until their completion. This type of flexibility for
shiftable appliances depends on the desired start time αj,i ∈ N
and the appliance’s load profile, which together adjust the
appliance’s normal end time. Calculating the flexibility value
at each time interval (see (5)) allows prosumers to dynamically
change the availability of their flexibility subject to the number
of load demands remained until the full completion. Fig. 3
illustrates how the concept of flexibility reshapes the load
profile of a shiftable appliance. Brown ovals, which their length
depends on ∆t, symbolize the load demands [8]. Note that
the maximum upper bound in (3) can be θj,i. Any appliance
schedule that lies outside the desired start time (t ≮ αj,i)
and the assigned flexibility deadline (t ≯ θj,i) is considered
invalid. ℵP2L

i (t) , ℵB2L
i (t) ,ℵG2L

i (t) ∈ R≥0 (kW) denote the
power transferred from the PV, the BESS, and the grid to
appliances, respectively. The proposed model ensures that the
energy needed for each shiftable appliance over a given time
horizon is fully satisfied.

Operating Period Idle Period

Operating Idle Operating Operating OperatingIdle Idle

��,� = ��,���,� ��,�

Flexibility Period

��,� ��,���,� ��,�

Flexibility Period

Fig. 3. Reshaping the operating cycle of a shiftable appliance aj,i through
the concept of flexibility. εj,i ∈ N is its exact end time after scheduling.

2) Photovoltaic: Each prosumer is equipped with a locally
installed PV system (behind the meter). Let

PVgi (t) = ℵP2L
i (t) + ℵP2B

i (t) + ℵP2G
i (t) ≤ PVcap

i , (7)

where PVgi (t) ,PVcap
i ∈ R≥0 (kW) are the amount of power

that the PV generates at time interval t and its maximum gen-
erating capacity, respectively. ℵP2B

i (t) ,ℵP2G
i (t) ∈ R≥0 (kW)

are the amounts of power transferred from the PV into the
BESS and the grid, respectively [13]. PV production depends
on external factors, such as weather condition [27]. Moreover,
demand for electricity changes through the day and does not
necessarily match to the PV production. Next part describes
how BESSs, by storing the energy during off-peak and utilizing
it during peak periods, can alleviate such challenges.

3) Battery Energy Storage System: Each prosumer owns a
BESS. It accumulates excess energy created by the local PV
and stores it to be used when there is an insufficient amount
of energy to supply the demands. Let

Bei (t+ 1) = Bei (t) +
(
Bci (t)× υci (t)−Bdi (t)× υdi (t)

)
×∆t,

(8)
Bci (t) = ℵP2B

i (t) + ℵG2B
i (t) ≤ Bci , (9)

Bdi (t) = ℵB2G
i (t) + ℵB2L

i (t) ≤ Bdi , (10)
υci (t) + υdi (t) ≤ 1, (11)

Bei (0) = Bcap
i ×

B
SOC
i +BSOC

i

2
, (12)

B
SOC
i ≤ BSOC

i (t) ≤ BSOC
i , (13)

BSOC
i (t) =

Bei (t)

Bcap
i

, (14)

where Bei (t) , Bcap
i ∈ R>0 (kWh) are the amount of energy

stored in the BESS until time interval t and the BESS capacity,
respectively. Notations Bci (t) , Bdi (t) ∈ R≥0 (kW) denote the
amounts of power the battery is “charged” and “discharged”
with, respectively, subject to Bci , B

d
i ∈ R>0 (kW) as maxi-

mum charging and discharging power, respectively. Notations
ℵB2G
i (t) ,ℵG2B

i (t) ∈ R≥0 (kW) denote the amounts of power
transferred from the BESS to the grid and vice versa, respec-
tively. υci (t) , υdi (t) ∈ B are binary charging and discharging
variables, respectively. Concurrent charging and discharging
are not allowed. The BESS at each time interval can charge,
discharge, or remain silent (see (11)). Bei (0) is the initial
available amount of energy. BSOC

i , BSOC
i , BSOC

i (t) ∈ [0, 1] are
the lowest and highest possible State of Charges (SOCs) of the
BESS, and its value at time interval t, respectively. Charging
and discharging efficiencies, for clarity of presentation, are
assumed to be one [28].

4) Optimization Model: Multi-Objective Optimization
(MOO) is an area of multiple criteria decision-making, where
mathematical optimization problems involving more than
one objective function are solved [29]. Optimal decisions
need to be taken in the presence of trade-offs between such
conflicting objectives. When decision making is emphasized,
the purpose of solving a MOO problem is referred to support
decision maker (here prosumers) in finding the most preferred
non-dominated solutions. The objective functions are said to
be conflicting, whenever there exists an infinite number of
non-dominated solutions. A solution does not improve for one
objective unless it satisfies others. The main goal in MOO
problems is to find a finite number of diverse solutions in the
objective space.

The following defines a MOO model for each prosumer
to tune its power actions. The model only accounts to the
information given at time interval t and is independent of the
information provided at time interval t−∆t or will be provided
at time interval t+ ∆t. Let

maximize
{decj,i(t)}nij=1,B

c
i (t)

ni∑

j=1

τj,i (t)× decj,i (t) +Bci (t), (15)

207



7

maximize
ℵi(t),φi(t)

ℵi (t)× φi (t)×∆t, (16)

subject to

(1)− (14),

ℵi (t) ≤ ℵi (t) ≤ ℵi (t) , (17)
φl (t) ≤ φi (t) ≤ φu (t) , (18)

ℵi (t) = PVgi (t)−
ni∑

j=1

τj,i (t)−Bci , (19)

ℵi (t) = PVgi (t) +Bdi −
∑

flexj,i(t)=0,

∀aj,i∈APi

τj,i (t), (20)

ℵi (t) = ℵB2G
i (t) + ℵP2G

i (t)− ℵG2B
i (t)− ℵG2L

i (t) , (21)

where (15) aims at maximizing the comfort level by satisfying
as many load demands as possible and charging the BESS
as much as possible (subject to (13)) while (16) by selling
more power to the grid intends to maximize the profit. These
two objectives are in conflict with each other, since trying
to inject more power to the grid results in jeopardizing
the comfort level and vice versa. On one hand, this paper
assumes satisfying load demands at each time interval partially
affects the prosumer’s comfort level [3]. On the other hand,
the reason for considering the charging completeness of the
BESS [30] in (15) is twofold: i) to allow wide solution-space
exploration by making the corresponding objective function
continuous, since variables {decj,i (t)}nij=1 are discrete; and
ii) to store energy during low-price and utilize it (to either
satisfy load demands or inject to the grid) during high-price
periods. ℵi (t) ∈ R (kW) is the desired amount of power
the prosumer strives to exchange with the grid coupled with
a price offer φi (t) ∈ R>0 ($/kWh). This price is selected
between

[
φl (t) , φu (t)

]
∈ R>0 ($/kWh) as the minimum

and maximum offerable price for trading energy, respectively.
ℵi (t) and ℵi (t) are the optimum values of maximizing the
comfort level and profit, respectively. If ℵi (t) = ℵi (t), all
demanding appliances are allowed to operate and the BESS
is fully charged subject to (13). If ℵi (t) = ℵi (t), the profit
is maximized and appliances, without enough flexibility, are
only allowed to operate. The remaining is sold to the grid.

For each prosumer at each time interval, one of the following
cases can happen:
• The prosumer is a buyer, i.e., ℵi (t) ≤ ℵi (t) < 0: The

prosumer, through the electric power generated by the
PV, the energy stored in the BESS, and the amount
intended to purchase externally, fully satisfies appliances
with insufficient flexibility. The profit, however, is al-
ways below zero. To lower the cost, the prosumer strives
to pay less by offering a buying price close to φl (t).

• The prosumer is a seller, i.e., 0 < ℵi (t) ≤ ℵi (t): Appli-
ances with insufficient flexibility, by the PV generation
and energy stored in the BESS, are fully satisfied and
the surplus power is injected to the grid. The prosumer,
to make the most beneficial contract, attempts to offer a
selling price close to φu (t).

• The prosumer is flexible, i.e., ℵi (t) < 0 and ℵi (t) > 0:

Both of the previous cases can happen, which makes a
trade-off between the comfort level and profit. In this
case, the prosumer can also be silent, i.e., ℵi (t) = 0,
where ℵG2B

i (t) = ℵG2L
i (t) = ℵP2G

i (t) = ℵB2G
i (t) = 0.

Power actions ℵB2L
i (t) ,ℵP2L

i (t) ,ℵP2B
i (t) are tuned so as

to maximize the comfort level, where the profit is zero.
Prosumers are not allowed to buy and sell at the same time.

If the prosumer intends to buy electric power from the grid,
i.e., ℵG2B

i (t) > 0 or ℵG2L
i (t) > 0, then, ℵB2G

i (t) = 0 and
ℵP2G
i (t) = 0. If the prosumer is a seller, i.e., ℵB2G

i (t) > 0 or
ℵP2G
i (t) > 0, then, ℵG2B

i (t) = 0 and ℵG2L
i (t) = 0.

B. Aggregator

The aggregator, which is accountable for balancing ser-
vices [2], holds no physical connection with the grid and is
only responsible for: i) trading prosumers’ flexibilities in the
market, and ii) making feasible and profitable contracts with
them. Analysis of market mechanism and trading strategy falls
outside of the scope of this paper [31].

1) Optimization Model: To enable the aggregator to make
the decisions in response to matching prosumers’ surplus to
shortage, it runs the following optimization model. Let

maximize
{ℵ̃i(t),φ̃i(t)}m

i=1

∆t×
m∑

i=1

{
ℵ̃i (t)×

(
φl
G (t)− φ̃i (t)

)
ℵ̃i (t) > 0,

ℵ̃i (t)×
(
φ̃i (t)− φu

G (t)
)
ℵ̃i (t) < 0,

(22)

minimize
{ℵ̃i(t)}m

i=1

−
m∑

i=1

ℵ̃i (t), (23)

subject to




[
0 < ℵ̃i (t) ≤ max

∀ρi∈P
ℵi (t)

φl (t) ≤ φ̃i (t) ≤ φlG (t)
ℵi (t) > 0,∀ρi ∈ P,

[
min
∀ρi∈P

ℵi (t) ≤ ℵ̃i (t) < 0

φuG (t) ≤ φ̃i (t) ≤ φu (t)
ℵi (t) < 0,∀ρi ∈ P,

(24)
m∑

i=1

ℵ̃i (t) + ℵ̃A (t) = 0, (25)

where (22) attempts to maximize the aggregator’s profit while
(23) aims at minimizing the grid purchase. These objectives
are in conflict with each other, since selling more to buyer
prosumers and buying less from seller prosumers leads to
buying more from the grid. ℵ̃i (t) ∈ R (kW) is the amount
of power the aggregator trades with prosumer ρi coupled with
a price offer φ̃i (t) ∈ R>0 ($/kWh). Note that (24) prevents the
aggregator from requesting buyer prosumers to sell and vice
versa. The aggregator, by (25), identifies ℵ̃A (t) ∈ R (kW), as
the amount of electric power at time interval t to exchange
with the grid. This constraint ensures that the supply at each
time interval meets demand in the grid. φlG (t) , φuG (t) ∈
R>0 ($/kWh) are the grid’s prices for buying/selling energy
from/to the aggregator, respectively. It should be emphasized
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that, hereinafter, the tilde symbol in all notations are related
to the aggregator.

The following section describes the NSGA-III algorithm
employed to produce a set of non-dominated solutions for
optimization problems of prosumers and the aggregator.

III. MULTI-OBJECTIVE OPTIMIZATION ALGORITHM

Evolutionary algorithms for MOO problems, due to their
independent search space structure, are among the most well-
known meta-heuristic search mechanisms [32]. These algo-
rithms form a subset of evolutionary computations, in which
they generally involve techniques and implementation mecha-
nisms inspired by biological evolutions, such as reproduction,
mutation, recombination, natural selection, and survival of the
fittest. This paper, by employing the evolutionary NSGA-III,
enables each of prosumers and the aggregator at each time
interval to generate a finite number of non-dominated solutions
to their individual optimization problem.

The algorithm, in each generation, starts by generating an
initial parent population including Q ∈ N feasible solutions.
Section III-A for prosumers and Section III-B for the ag-
gregator propose a generic formulation for producing these
solutions. It, then, produces new solutions (offspring) and
combines them with the parent population. The NSGA-III,
to guarantee the diversity among such solutions, uses a
reference-point-based non-dominated sorting approach. These
points, at each time interval, are all permutations of extreme

values of power
(

i.e., min
∀ρi∈P

ℵi (t) , max
∀ρi∈P

ℵi (t)

)
and price

(
i.e., φl (t) , φu (t)

)
located on a normalized hyper-plane (see

Fig. 1 in [5]). Therefore, it associates each solution a reference
value according to the reference points. To create the first
Pareto-front, it determines Q closest solutions (in the com-
bined parent and offspring populations) to the reference points
using a niche-preservation operation and places them in the
fronts accordingly. It continues until the maximum number
of generations W ∈ N is reached. For more information, the
reader is referred to [5] and [33].

A. Pareto-Solution Formulation for Prosumers
The following defines a generic formulation for Pareto-

solutions of prosumers, which is independent of the algorithm
being used to produce them. Let

Υi (t) =



BP1

i (t) SI1i (t)
...

...
BPKi (t) SIKi (t)


 , (26)

BPki (t) ,
(
ℵki (t) , φki (t)

)
, (27)

SIki (t) ,





ℵki (t)
ℵi(t)

+
φki (t)
φu(t) ℵki (t) > 0,

ℵki (t)
ℵi(t)

+ φl(t)

φki (t)
ℵki (t) < 0,

(28)

where Υi (t) at each time interval is produced once and is
comprised of feasible behavior pairs BPki (t) , 1 ≤ k ≤ K.
Fig. 4 shows how these behavior pairs, according to (1)-(14)
and (17)-(21), are randomly generated. Υi (t) is ultimately

sorted descendingly by its second column. Satisfaction in-
dex SIki (t) ∈ (0, 2] is a measure of to which extent BPki (t),
depending on the prosumer’s status, uses the available flexi-
bility and provides a more beneficial price offer [9], [10]. Its
maximum value is reached, whenever: i) a buyer prosumer
(ℵki (t) < 0) purchases the lowest possible amount of power,
i.e., ℵi (t), for the lowest possible price, i.e., φl (t); ii) a seller
prosumer (ℵki (t) > 0) sells the maximum possible amount
of electricity, i.e., ℵi (t), for the highest possible price, i.e.,
φu (t).

Start
Generate a

random ℵki (t)
subject to (17)

ℵP2L
i (t) = min {∑ τj,i (t),PVgi (t)}

ℵki (t) = 0ℵki (t) < 0

ℵB2L
i (t) =

∑
τj,i (t) − ℵP2L

i (t)

ℵG2L
i (t) = min{∑ τj,i (t) − ℵP2L

i (t) ,ℵki (t)}

ℵB2L
i (t) =

∑
τj,i (t) − ℵP2L

i (t),
ℵP2G
i (t) = min

{
PVgi (t)− ℵP2L

i (t) ,ℵki (t)
}

,
ℵB2G
i (t) = ℵki (t) − ℵP2G

i (t)

Run the EDF and
update relevant
power actions
accordingly

Feasibility
validated?

Generate a
random φki (t)
subject to (18)

End

Yes

No

Yes

No

Yes No

Fig. 4. Flow chart of generating a feasible behavior pair BPk
i (t).

∑
τj,i (t)

is the summation of load demands of appliances with insufficient flexibility.
The Earliest Deadline First (EDF) mechanism, which is derived from real-time
systems theory [8], is applied on the remaining appliances. Choosing proper
power actions to update after running the EDF depends on ℵki (t). Feasibility
is related to constraints formulated in Section II-A4.

B. Pareto-Solution Formulation for the Aggregator

The aggregator, similar to prosumers, uses an algorithm-
independent model for generating a set of feasible non-
dominated solutions to its optimization problem. Let

Υ̃A (t) =




B̃M1

A (t) SI1A (t)
...

...

B̃MK̃

A (t) SIK̃A (t)


 , (29)
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B̃Mk̃

A (t) ,




B̃P k̃1 (t)
...

B̃P k̃m (t)


 , (30)

B̃P k̃i (t) ,
(
ℵ̃k̃i (t) , φ̃k̃i (t)

)
, (31)

SI k̃A (t) , 1

m
×

m∑

i=1





ℵ̃k̃i (t)
max

∀ρi∈P
ℵi(t)

+ φl(t)

φ̃k̃i (t)
ℵ̃k̃i (t) > 0,

ℵ̃k̃i (t)
min

∀ρi∈P
ℵi(t)

+
φ̃k̃i (t)
φu(t) ℵ̃k̃i (t) < 0,

(32)

where Υ̃A (t) defines actions that the aggregator makes re-
garding behavior pair of prosumers. This matrix is produced
once at each time interval. Fig. 5 shows how behavior

matrices B̃Mk̃

A (t), 1 ≤ k̃ ≤ K̃, according to (24), are

generated randomly. B̃Mk̃

A (t) consists of B̃P k̃i (t) ,∀ρi ∈ P ,
each of which is an action that the aggreagtor makes in
response to corresponding behavior pair of prosumers. Υ̃A (t)
is finally sorted descendingly by the metric of satisfaction
index SI k̃A (t) ∈ (0, 2] determining to which extent the aggre-

gator is satisfied with B̃Mk̃

A (t). This is done by calculating

how much each B̃P k̃i (t) ,∀ρi ∈ P depending on the status of
prosumer, uses the maximum (minimum) available flexibility
and provides a more beneficial price offer.

Start i = 1 i ≤ m

Generate a
random B̃P k̃i (t)

subject to (24)

i = i+ 1

Update ℵ̃A (t)
by (25)End

Yes

No

Fig. 5. Flow chart of generating a feasible behavior matrix B̃Mk̃

A (t).

The following section explains how the employed negotia-
tion approach, to reach an agreement acceptable to all, benefits
from behavior pairs and matrices.

IV. NEGOTIATION APPROACH

Prosumers’ rational behaviors are more pronounced when
their uncertainty about the decision space of the aggrega-
tor increases. Due to the promising outlook of introducing
prosumers into the smart grid, this dissertation employs an
approach to enable the concurrent negotiation on power and
price issues with packaged offers given that the negotiators
have no prior knowledge about the flexibility information and
utility functions of each other [7]. To model such approach,
the following key elements are needed: i) notion of a solution

to the negotiation problem, and ii) negotiation protocol and
strategy. The negotiation protocol and strategy define how
negotiators provide and prepare offers, respectively.

A. Negotiators
Fig. 6 depicts the behavior of work-flow executions in the

framework. The negotiation procedure is conducted between
time intervals t and t+∆t for maximum T ∈ N iterations (set
arbitrarily). The following part defines the negotiators.

À

À

Á

Â
Ã

VPP

ρ1

...

ρm

Aggregator Grid

Υ1 (t),
BP res

1 (t)

k

Υm (t),
BP res

m (t)

k′

σV (ι)

σA (ι)

ℵ̃A (t)

Υ̃A (t),

B̃Mres
A (t)

Fig. 6. Data flow diagram of the framework between each t and t + ∆t.
Procedures À, Â, and Ã are done only once while Á takes maximum T
iterations. Notations are described in Sections IV-A and IV-B.

1) Virtual Power Plant: This paper, to alleviate the chal-
lenges of m parallel bilateral negotiations between prosumers
and the aggregator, where each negotiation in the worst case
to reach an agreement can take T iterations, utilizes an
intermediate VPP to negotiate, on behalf of prosumers. Let

σV (ι) =



BPk1 (t)

...
BPk′m (t)


 , (33)

where σV (ι) is an offer package sent from the VPP to the
aggregator at negotiation iteration 1 ≤ ι ≤ T . Behavior pairs
BPk1 (t) and BPk′m (t) point to rows k and k′ (not necessarily
equivalent) in Υ1 (t) and Υm (t), respectively (see (26)). Let

ψV (SIV (ι)) = 1−

m∑
i=1

(
1
2 × SI

k
i (t)

)2

m
, (34)

SIV (ι) ,
m⋃

i=1

SIki (t), 1 ≤ k ≤ K, (35)

where ψV ∈ [0, 1) is the VPP’s utility function. We assume a
very general hyper-quadric utility function [34] for negotiators,
which is private, continuous, and strictly concave [7]. By “pri-
vate,” negotiators have no knowledge about other negotiator’s
utility function. SIV (ι) is the union of satisfaction indexes of
prosumers’ behavior pairs. Superscripts k in SIki (t) ,∀ρi ∈ P
are not necessarily equivalent. Let

σres
V (t) =



BP res

1 (t)
...

BP res
m (t)


 , (36)
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BP res
i (t) = (ℵres

i (t) , φres
i (t)) , (37)

ℵres
i (t) =





ℵi (t)
∑

flexj,i(t)=0,

∀aj,i∈APi

τj,i (t) ≤ PVgi (t) ,

ℵi (t) otherwise,
(38)

φres
i (t) =

{
φl (t) ℵres

i (t) > 0,
φu (t) ℵres

i (t) < 0,
(39)

where σres
V (t) is the reservation offer package of the VPP in-

cluding prosumers’ reservation behavior pair BP res
i (t). ℵres

i (t)
and φres

i (t) are the reservation power and price offers of pro-
sumer ρi at time interval t. Prosumers in the worst case have
to: i) satisfy appliances with no flexibility remained, and ii)
utilize the electric power generated by the PV completely. The
reservation price offer equals either the lowest (ℵres

i (t) > 0)
or highest (ℵres

i (t) < 0) possible offerable electricity price,
respectively. SIres

V (t), as the satisfaction index of σres
V (t), is

the union of SIres
i (t) ∈ (0, 2] (calculated by (28)) associated

with BP res
i (t). Any offer package with the utility value less

than ψV (SIres
V (t)) is unacceptable to VPP. The VPP in the

end of negotiation returns indexes of agreed behavior pairs,
i.e., k ≤ K,∀ρi ∈ P , to the prosumers (see Fig. 6).

2) Aggregator: Let

σA (ι) = B̃Mk̃

A (t) , (40)

where σA (ι), equivalent to a behavior matrix in Υ̃A (t), is an
offer package sent from the aggregator to the VPP. Let

ψA
(
SI k̃A (t)

)
= 1−

(
1

2
× SI k̃A (t)

)2

, (41)

where ψA ∈ [0, 1) is the aggregator’s utility function, which
follows the same rule as the VPP does [7]. SI k̃A (t) is the
satisfaction index of behavior matrix BMk̃

A (t). Let

σres
A (t) =



B̃P res

1 (t)
...

B̃P res
m (t)


 , (42)

B̃P res
i (t) =

(
min
∀ρi∈P

ℵi (t) , φl (t)

)
, (43)

where σres
A (t) is the reservation offer package of the aggregator

denoting m × min
∀ρi∈P

ℵi (t) amount of electric power must be

exchanged (in the worst case) with the grid for φl (t). This
reservation offer package is coupled with a satisfaction index
SIres
A (t) ∈ (0, 2] (calculated by (32)). Similar to the VPP, the

aggregator will not accept any offer package with the utility
value less than ψA (SIres

A (t)). The following part explains
the protocol and strategy the negotiators follow during the
negotiation process.

B. Negotiation Protocol and Strategy
We employ an alternating-offer protocol [35], where the

VPP produces an offer and the aggregator either accepts it
or produces a new one. The negotiation begins with offer

packages produced with the highest possible utility values
and continues with offer packages with lower utility values.
It terminates when: i) an offer on the table is acceptable to
both negotiators, or ii) it reaches iteration T with no offer
accepted. Let

σV (1) =



BP1

1 (t)
...

BP1
m (t)


 , (44)

σA (1) = B̃M1

A (t) , (45)
ψV (SIV (ι− 1)) ≤ ψV (SIV (ι)) ≤ ψV (SIres

V (t)) , (46)
ψA (SIA (ι− 1)) ≤ ψA (SIA (ι)) ≤ ψA (SIres

A (t)) , (47)

where σV (1) and σA (1) are initial preferred offer packages of
the VPP and aggregator, respectively. Since Υi (t) ,∀ρi ∈ P
and Υ̃A (t) are sorted descendingly, the initial offer packages
provide the highest utility value. Negotiators, over negotiation
iterations, produce offer packages with lower utility values.
They neither propose nor accept any offer package with utility
value lower than their reservation utility value. To propose a
new offer package, they follow the following two consecutive
procedures:

1) Reactive Utility Value Concession: The negotiation ap-
proach assumes each negotiator’s utility value obtained by an
agreement is higher than the one with no agreement. Therefore,
they prefer to concede over risking negotiation breakdown. Let

ςV (ι) = ψV (σV (1))− σres
V (t)×

( ι
T
) 1
ε

, (48)

ςA (ι) = ψA
(
σ1
A (t)

)
− σres
A (t)×

( ι
T
) 1
ε

, (49)

where ςV (ι) , ςA (ι) ∈ [0, 1) are monotonically decreasing
time-dependent concession values of the VPP and aggregator,
respectively [7]. Their values only depend on each negotia-
tor’s reservation utility value and the number of negotiation
iterations passed so far with the decay rate ε ∈ R>0 [36].
As the second assumption, negotiators are assumed to be
reactive. Hence, their concession rate should depend on their
perception of the utility value of other party’s offer packages
given: i) whether the current offer of the opponent negotiator
provides higher utility value than the negotiator’s reservation
utility value, and ii) the negotiator’s perception of how much
the other party has conceded. One reason for a negotiator to
stop decreasing its desired utility value over time is to gain
higher utility. This happens if the other negotiator, without
realizing that the negotiator has stopped conceding, accepts
time-dependent concession values at all negotiation iterations.
This behavior is called the “deliberate stopping of concession.”
As a result, Let

ωV (ι) =
(
ψV
(
SI temp
V
)
− ψV

(
SI temp′

V

))+
, (50)

ωA (ι) =
(
ψA
(
SI temp
A
)
− ψA

(
SI temp′

A

))+
, (51)

where ωV (ι) , ωA (ι) ∈ [0, 1) are reactive concession values of
the VPP and aggregator, respectively, and y+ = max {0, y}.
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The VPP, using (28), calculates SI temp
V and SI temp′

V for σA (ι)
and σA (ι− 1), respectively. The aggregator, by using (32),
follows a similar procedure. Then, let

ΠV (ι) = min {ςV (ι) ,ΠV (ι− 1)− ωV (ι)} , (52)
ΠA (ι) = min {ςA (ι) ,ΠA (ι− 1)− ωA (ι)} , (53)

where ΠV (ι) ,ΠA (ι) ∈ [0, 1) are desired utility values of the
VPP and the aggregator at iteration ι, respectively. Negotiators
only accept an offer package that provides a utility value
equivalent to or higher than their desired utility value at that
iteration.

2) New Offer Package Generation: Let us assume ZV (t)
(including maximum Km offer packages, see (26)) and ZA (t)
(including maximum K̃ possible feasible offer packages,
see (29)) are the convex feasible offer package sets of the
VPP and the aggregator, respectively. These offer packages
provide negotiators with utility value equivalent to or no less
than their reservation offer package’s utility value. For an
agreement to exist, let Z (t) = ZV (t)

⋂
ZA (t) 6= ∅,∀t

remain unchanged during the negotiation, where Z (t) is the
zone of agreement denoting the common intersection of the
feasible offer package sets. If an offer package is within Z (t),
a negotiator may not accept it if it yields a utility value lower
than the negotiator’s current desired utility value. To make
an acceptable agreement, negotiators keep conceding to their
reservation utility values subject to the nonempty zone of
agreement at each time interval. Thus, geometrically speaking,
in negotiation, the negotiators’ goal is to find a point in the
zone of agreement, under the restriction that this zone is
unknown to negotiators and none of them has any explicit
knowledge about each other’s utility functions [7].

Let ι be the negotiation iteration when it is the VPP’s turn
to produce a new offer package. Let BPki (t) ∈ σV (ι− 1).
The VPP (temporarily) updates σV (ι− 1) with behavior
pairs BPk′i (t) ,∀k + 1 ≤ k′ ≤ K and expands ZV (ι) with the
updated offer packages individually only if each returns a
utility value equivalent to ΠV (ι). ZV (ι) ⊆ ZV (t) ,∀ι ≤ T
is the continuously expanding feasible offer package subset
of the VPP. The aggregator at iteration ι + 1 determines k̃

where B̃Mk̃

A (t) ∈ Υ̃A (t). Then, it updates ZA (ι+ 1)

with new offer packages B̃Mk̃+1

A (t) ,∀k̃ + 1 ≤ K̃, where
each provides the aggregator with a utility value equivalent
to ΠA (ι+ 1). ZA (ι) ⊆ ZA (t) ,∀ι ≤ T is the continuously
expanding feasible offer package subset of the aggregator. Let

σV (ι) = PZV(ι) [χ (ι)] = arg min
q∈ZV(ι)

‖q − χ (ι)‖ , (54)

σA (ι) = PZA(ι) [χ (ι)] = arg min
q∈ZA(ι)

‖q − χ (ι)‖ , (55)

χ (ι) = ϕV (ι)× σV (ι− 1) + ϕA (ι)× σA (ι− 1) , (56)
ϕV (ι) + ϕA (ι) = 1, (57)

where P is the operator of projecting the weighted offer
package χ (ι), created based on the latest offers made by
all agents, on current continuously expanding feasible offer
package subsets ZV (ι) and ZA (ι) [37]. arg min ‖·‖ is the

Frobenius norm with argument of minimum. Note this method
generates an offer that is acceptable to the negotiator and is
closest (in terms of Euclidean distance) to the weighted offer
package χ (ι). ϕV (ι) , ϕA (ι) ∈ (0, 1) are the weights that each
negotiator puts on the other’s offer package.

In Algorithms 1 and 2, we provide the pseudo-code for
the overall communication steps and the negotiation approach,
respectively. Steps in the former algorithm are in line with
the data flow diagram depicted in Fig. 6. Fig. 7 illustrates
a conceptual example of the offer package space during
the negotiation and shows how the VPP and the aggrega-
tor negotiate with each other over, for example, T = 9
iterations [7]. Offer packages existing on each concession
curve have equal utility values. The negotiation terminates
when max {‖σV (9)− χ (9)‖ , ‖σA (9)− χ (9)‖} < δ, which
denotes that if the Euclidean distances between the current
iteration’s offer packages and the weighted offer package are
less than a constant convergence tolerance δ ∈ R>0.

Algorithm 1: Communication steps in the framework
between time intervals t and t+ ∆t

// Prosumers’ part;
1 foreach ρi ∈ P do
2 Run the NSGA-III to produce Υi (t);
3 Determine the reservation behavior pair BP res

i (t);
4 end
// VPP’s part (i);

5 Determine the reservation offer package σres
V (t);

6 Produce the first offer package σV (1);
// Aggregator’s part;

7 Run the NSGA-III to produce Υ̃A (t);
8 Determine the reservation offer package σres

A (t);
9 Produce the first offer package σA (1);
// Negotiation approach;

10 Run Algorithm 2 // VPP’s part (ii);
11 Return the indexes of agreed behavior pairs to prosumers;
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212



12

Algorithm 2: The negotiation approach
1 IsConverge=False;
2 ι = 2;
3 while ι ≤ T and IsConverge=False do
4 Determine the negotiator’s turn by S = mod (ι, 2);
5 if S = 0 then // VPP’s turn
6 σA (ι) = σA (ι− 1);
7 ΠA (ι) = ΠA (ι− 1);
8 Calculate ΠV (ι) by (52);
9 for i = 1 to m do

10 Determine k, where BPki (t) ∈ σV (ι− 1);
11 σtemp

V = σV (ι− 1);
12 Found=0;
13 while k + 1 ≤ K do
14 Update σtemp

V with BPk+1
i (t);

15 Calculate SI temp
V for σtemp

V by (35);
16 if ψV

(
SI temp
V
)

= ΠV (ι) then
17 Add σtemp

V to ZV (ι);
18 Found=1;
19 k = k + 1;
20 else if Found=1 then
21 k = K;
22 else
23 k = k + 1;
24 end
25 end
26 end
27 Set σV (ι) by (54);
28 else // Aggregator’s turn
29 σV (ι) = σV (ι− 1);
30 ΠV (ι) = ΠV (ι− 1);
31 Set ΠA (ι) by (53);

32 Determine k̃, where B̃Mk̃

A ∈ Υ̃ (t);
33 Found=0;
34 while k̃ + 1 ≤ K̃ do
35 if SI k̃+1

A (t) = ΠA (ι) then
36 Add σk̃+1

A to ZA (ι);
37 Found=1;
38 k̃ = k̃ + 1;
39 else if Found=1 then
40 k̃ = K̃;
41 else
42 k̃ = k̃ + 1;
43 end
44 end
45 Set σA (ι) by (55);
46 end
47 Set χ (ι) by (56);
48 if max {‖σV (ι)− χ (ι)‖ , ‖σA (ι)− χ (ι)‖} < δ then
49 IsConverge=True;
50 else
51 ι = ι+ 1;
52 end
53 end

C. Solution Concept for the Negotiation Approach

The use of the solution concept in this paper, where the
negotiators have no information about their opponents, is
in the spirit of Herbert Simon [38]. Through computational
experiments, The authors in [7] have demonstrated that such
solution concept proposed in the negotiation approach yields a
performance sufficiently close to the Nash bargaining solution,
which is a different definition proposed for a proper negotiation
solution [39]. The set of points that satisfy Nash bargaining so-
lution’s requirements are all subsets of the zone of agreement.
However, computing them requires that all the negotiators have
complete knowledge of the preference structure and utility
function of the opponents.

The authors in [7] have also analytically proved that: i) the
scale of the utility value of each negotiator is of no critical
importance, as long as the reservation utility value and the
scale of concession are consistent with it, ii) the negotiators, by
utilizing the utility value concession strategy described earlier,
converge to an agreement acceptable to all in maximum T
iterations, if the zone of agreement is nonempty and they
concede to reservation utility values in the worst case, and iii)
the convergence holds for general concave utility functions as
long as all the negotiators concede to their reservation utilities,
irrespective of the specific concession strategy they adopt.

V. SIMULATION SETUP AND ANALYSIS

This section presents the simulation results and evalu-
ates the performance of the proposed framework, which has
been implemented in Matlab® R2017a running with 16 In-
tel 2.3 GHz Xeon® E5-2686 CPUs and 64 GB memory.

A. Assessment Metrics for Performance Evaluation

To verify the effectiveness of the framework, we define the
following performance evaluation metrics:

1) Environmental Metrics: They are designed to assess the
environmental impact of the proposed framework on the power
grid. The impact is primarily related to using prosumers’
flexibility capabilities.

a) Peak Demand Reduction: It determines how much the
proposed framework succeeds in shaving the peak demand. Let

PDR ,


1−

max
∀t

m∑
i=1

ni∑
j=1

τj,i (t)× decj,i (t)

max
∀t′

m∑
i=1

ni∑
j=1

τj,i (t′)


× 100, (58)

where t and t′ are time intervals, at which the grid confronts
the maximum peak demand with and without using the pro-
posed framework, respectively. PDR will be zero, if t = t′.

b) Peak-to-Average Ratio: It measures how much higher
the peak demand is than average demands over a single
simulation. A high PAR means a large fluctuation in daily
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load demand. Let

PAR ,
max
∀t≤T

m∑
i=1

ni∑
j=1

τj,i (t)× decj,i (t)

T∑
t=1

m∑
i=1

ni∑
j=1

τj,i (t)

/

T

. (59)

2) Economic and Profit Metrics: It allow the analysis of
economic performance and impact of the proposed framework
on prosumers’ daily life (in terms of load consumption). Their
main purpose is to provide the quantitative information needed
to make a judgment on real deployment of the framework.

a) Average Appliance Operation Delay: It calculates the
delay in delivering appliances in the completed status. Let

AOD ,

m∑
i=1

ni∑
j=1

(εj,i − βj,i)
m∑
i=1

ni

. (60)

b) Average Flexibility Usage Rate: It considers how much
of prosumers’ flexibilities are traded in the market. Let

FUR ,

m∑
i=1

ni∑
j=1

εj,i−βj,i
θj,i−αj,i

m∑
i=1

ni

× 100. (61)

c) Average Prosumer Cost-Benefit: It evaluates the cost-
effectiveness of the framework for prosumers. It studies how
much money they averagely earn/spend with and without
negotiating and exchanging power with the grid. Let

PCB ,


1−

T∑

t=1

m∑

i=1

ℵki (t)× φki (t)
ni∑
j=1

τj,i (t)× φuG (t)


× 100, (62)

where k for each prosumer is the behavior pair index, on which
the VPP in the end of negotiation process at time interval t
has agreed with the aggregator. T ∈ N is the last simulated
time interval.

d) Average Self Load-Satisfaction Rate: It studies the
local energy utilization for prosumers. Let

SLR ,

T∑
t=1

m∑
i=1

ℵP2L
i (t)+ℵB2L

i (t)
ni∑
j=1

τj,i(t)+PVgi (t)+B
d
i

m× T × 100. (63)

e) Average Self Sufficiency Rate: It evaluates PVs’ capa-
bility in maximizing the comfort level of prosumers without
purchasing any amount of power from the grid. Let

SSR ,

T∑
t=1

m∑
i=1

ℵP2L
i (t)+ℵP2B

i (t)
ni∑
j=1

τj,i(t)+PVgi (t)

m× T × 100. (64)

3) Computation Time: Measuring the CPU time of different
parts of the framework is to quantify the overall busyness of

the system. This is the time taken from the start until the end of
a specific part as measured by an ordinary clock. This metric
measures the computation time of the NSGA-III algorithm,
negotiation approach, and total simulation.

B. Simulation Data
Table I lists the inputs to simulations, which are assumed

constant unless otherwise stated. For the PV generation profile,
the real data captured from the UCLA Ackerman Union is
scaled down from the capacity of 35 kW to 7 kW [27]. Real-
time hourly electricity prices are captured from Nord Pool
Spot [40], where

{
φl (t) , φu (t)

}
,∀t and

{
φlG (t) , φuG (t)

}
,∀t

are adjusted by fluctuation rates of ±50% and ±20%, respec-
tively [21]. Table II describes how consumption scenarios for
appliances are created. Start, end, and deadline flexibility times
are randomly generated by the normal distribution N (µ, σ2)
with mean µ ∈ R and variance σ2 > 0. Load profiles of
appliances are captured from [41], [42] with the time resolution
of ∆t = 1 hour. Refrigerator operates uninterruptedly with no
end and flexibility times. Nissan Altra is chosen as the electric
vehicle with an empty battery at arrival and fully charged
battery at departure [42]. The deadline flexibility concept
from the perspective of the air conditioner is the comfortable
temperature range [41], where 25°C and ±3°C are prosumers’
desired temperature set point and flexibility, respectively.

TABLE I. CONSTANT INPUT VALUES FOR THE SIMULATIONS

Parameter Value Parameter Value

∆t 1 hour ∗PVcap
i 7 kW

∗BSOC
i 0.8 ∗BSOC

i 0.2
∗Bcap

i 13.2 kWh ∗Bci 5 kW
∗Bdi 5 kW T 100
ε 0.8 δ 0.01
†ϕV (ι) 0.5 †ϕA (ι) 0.5
∗∀ρi ∈ P , †∀ι ≤ T .

TABLE II. TIMETABLE OF GENERATING LOAD DEMAND SCENARIOS
OF APPLIANCES

aj,i ∈ APi,∀ρi ∈ P αj,i βj,i θj,i

NSi Refrigerator (RG) 00:00 N/A N/A

Si

Washing Machine (WM) N (10, 3) αj,i + 02:00 N (16, 4)
Laundry Dryer (LD) N (15, 1) αj,i + 01:30 N (21, 5)
Dishwasher (DW) N (17, 2) αj,i + 01:40 N (23, 2)
Electric Vehicle (EV) N (19, 10) αj,i + 05:00 ∗N (7.5, 1)
Air Conditioner (AC) N (9, 1) N (21, 2) 25°C ± 3°C

∗The next day.

C. Analysis and Discussion
The following four parts evaluate and analyze the proposed

framework and the negotiation algorithm from different per-
spectives. This section is concluded with evaluating the per-
formance of the proposed framework compared with existing
frameworks discussed in the related work. All statistical results
have been averaged over 100 independent simulation runs.
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1) Impact of Status of Prosumers on the Negotiation Pro-
cess: Fig. 8 shows the offer package and utility value (unitless,
see (34) and (41)) concession spaces of randomly picked time
interval in different circumstances. In Fig. 8(a), no PVs and
BESSs are considered. The VPP, for example at negotiation
iteration ι = 15, is interested in buying 1630 kW of electric
power for 0.0145 $/kWh. The aggregator, at negotiation itera-
tion ι = 16, rejects this offer and makes a new one intending
to sell 2180 kW of electric power for 0.022 $/kWh. They
continue negotiating until iteration ι = 31, at which they come
to an agreement on exchanging 2000 kW of electric power for
0.016 $/kWh. Fig. 8(b) shows the negotiation process, where
all prosumers own PV and BESS. They reach an agreement
after exactly 100 negotiation iterations. Having the same utility
value of 0.76 at negotiation iteration ι = 65 does not terminate
the process since the VPP provides an offer package with
selling 8385 kW of electric power for 0.0227 $/kWh while the
aggregator returns another offer package with buying 4738 kW
of electric power for 0.0212 $/kWh. Fig. 8(c) experiences
the same setting as Fig. 8(b) does, where negotiators reach
an agreement after 71 negotiation iterations. Reasons for
having a mixed number of buyer and seller prosumers at this
interval are the absence of PV generation (outside of the PV
generation period), presence of BESSs with average SOC value
of 0.48, and having all refrigerators, 23 dishwashers, 12 newly
arrived electric vehicles, and all air conditioners in operation.
Therefore, the VPP has to averagely increase the amount of
power to sell and decrease the price offer while the aggregator
behaves the other way around.

2) Impact of Penetration of Prosumers on the Negotiation
Process and the Grid: Fig. 9 demonstrates how increasing
the number of prosumers influences the computation time
and negotiation convergence iteration. Running an individual
instance of NSGA-III for each prosumer and the aggregator,
where population size and number of generations equal 100,
takes approximately 7 seconds. To evaluate the practicality of
the negotiation approach employed in the proposed framework
with m = 900 prosumers, we simulate two setups: i) parallel
bilateral negotiations between prosumers and the aggregator
(with no VPP), and ii) a single bilateral negotiation between
the VPP and the aggregator (introduced here). In the former,
CPU and memory usages are 79% and 42 GB, respectively, and
reaching agreement at each time interval takes approximately
75 seconds. In the latter, these values for the gateway of each
party (each prosumer, the VPP, and the aggregator) are 34.6%
(of a single core CPU) and 960 MB, respectively, and the
negotiation converges in approximately 39 seconds.

Table III evaluates the assessment metrics according to dif-
ferent penetration rates of prosumers. These assessment met-
rics, due to the presence of conflicting objectives in the frame-
work, provide prosumers and the aggregator with trade-offs
in making decisions. As the number of prosumers increases,
mathematically speaking, the size of the convex feasible offer
packages set ZV (t) ,∀t of the VPP also increases (including
maximum Km offer packages). This provides the VPP with
more opportunities in utilizing prosumers’ flexibilities, which
enables it to: i) decrease the delay in satisfying load demands
of appliances in average, ii) increase the Average Prosumer
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Fig. 8. Offer package (left) and utility value concession (right) spaces in
different situations. Symbols in the offer package spaces, for the sake of
simplicity, represent the average values of columns in the behavior matrices.
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Fig. 9. Total computation and average negotiation convergence times with
different number of prosumers.

Cost-Benefit (PCB), and iii) increase the PDR. Increasing rates
of SLR and SSR also depend on: i) the generation profiles of
PVs in different weather conditions and the BESS capacities,
as discussed in the next section, and ii) decrease in FUR.

3) Impact of Penetration of PVs and BESSs on Prosumers
and the Grid: Table IV evaluates to which extent the “random
distribution of PVs and BESSs” impacts on the values of
assessment metrics. Compared to the setting, where all pro-
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Fig. 10. Grid demand with different penetration levels of PVs and BESSs in two sunny and cloudy days. Baseline shows load demands of appliances.

TABLE III. EVALUATING THE ASSESSMENT METRICS ACCORDING TO
DIFFERENT PENETRATION RATES OF PROSUMERS IN THE GRID.

m PDR (%) PAR AOD (hrs) FUR (%) PCB (%) SLR (%) SSR (%)

100 15.19 2.76 3.30 42.00 65.40 10.10 14.03
300 25.90 2.23 2.57 37.39 99.34 12.47 21.29
500 32.19 2.13 2.29 31.91 147.97 15.08 32.51
700 34.78 2.37 1.43 23.12 179.49 19.17 47.46
900 38.46 2.01 1.13 18.75 209.47 24.45 51.21

sumers own PVs and BESSs (see the first row in Table III),
here, the grid experience lower PDR since the amount of
flexibility is restricted. Decrease in AOD and FUR (due to
limited flexibility) increases SLR and SSR (desire to increase
the comfort), since the VPP cooperates with the aggregator to
increase the PDR and PCB.

TABLE IV. EVALUATING THE ASSESSMENT METRICS ACCORDING TO
THE PRESENCE OF PVS AND BESSS IN THE GRID.

∀ρi ∈ P PDR (%) PAR AOD (hrs) FUR (%) PCB (%) SLR (%) SSR (%)

Only PV 11.43 2.95 1.56 28.18 46.73 20.16 20.16
Only BESS 33.29 2.08 1.20 11.67 35.46 0.83 0.00
Random 16.32 2.60 1.25 12.91 39.97 6.06 6.51

Table V analyzes the framework in different weather condi-
tions. Obviously, fluctuations in the PV generation limits the
VPP, in terms of available flexibility, in negotiation.

TABLE V. EVALUATING THE ASSESSMENT METRICS ACCORDING TO
THE PV GENERATION PROFILE IN DIFFERENT WEATHER CONDITIONS.

Weather PDR (%) PAR AOD (hrs) FUR (%) PCB (%) SLR (%) SSR (%)

Sunny 15.19 2.76 3.30 42.00 65.40 10.10 14.03
Cloudy 09.42 2.99 1.33 14.04 37.78 07.15 13.30

Fig. 10 shows grid demands for different PV and BESS
penetration levels in two sunny and cloudy days. In Fig. 10(a),
until the time at which PVs start the power generation (i.e.,
07:00), BESSs, by consecutive charging and discharging,
try to regulate the grid demand. The grid confronts lower
demand fluctuation, when there are only PVs in the system
(see Fig. 10(b)). However, this setting results in lower PDR for
the grid and PCB for prosumers. The reason is that prosumers,
due to having no storage flexibility, are unable to provide the

VPP with more flexibility. As Fig. 10(c) demonstrates, pro-
sumers experience lower AOD and PCB. Similarly, the reason
is the very limited amount of flexibility (only consumption
flexibility). Table VI evaluates the assessment metrics and
Fig. 11 shows the average SOCs according to the various
BESS capacities. High BESS capacity provides prosumers
with: i) more flexibility in storing energy, ii) lower AOD,
and iii) higher PCB by selling more to the grid. The VPP,
by such increase in the capacity, is able to provide the grid
with more flexibility, which in turn, results in having higher
PDR. BESSs with different capacities behave dissimilarly
after PVs stop generating the electric power (see Fig. 11 for
20:00 to 07:00-next day). The main reason is the arrival
of the majority of electric vehicles, which impose higher load
demands to the grid compared to other appliances.

TABLE VI. EVALUATING THE ASSESSMENT METRICS ACCORDING TO
VARIOUS BESSS CAPACITIES.

Bcap
i ,∀ρi ∈ P PDR (%) PAR AOD (hrs) FUR (%) PCB (%) SLR (%) SSR (%)

13.2 kWh 15.19 2.76 3.30 42.00 65.40 10.10 14.03
26.4 kWh 24.36 2.38 2.00 34.68 102.72 14.84 14.66
39.6 kWh 39.62 1.98 0.58 25.36 165.57 18.12 14.34

Figs. 12 and 13 picture the generation profile and utilization
distribution of a PV and a BESS, respectively. Considering
Table II, the prosumer at 11:00, 15:00, and 19:00 en-
deavors to satisfy load demands of washing machine, laundry
dryer, and dishwasher, respectively, with PV generation. At
other hours, most of the PV generation is sold to the grid.
These time intervals are also reflected in Fig. 13.

4) Impact of Consumption Flexibility of Prosumers on the
Negotiation Process and the Grid: Table VII evaluates the
assessment metrics based on different sets of appliances. A
single refrigerator yields no PDR and delay due to its non-
shiftability feature. Adding more shiftable appliances help pro-
sumers provide the VPP with more consumption flexibilities.
This increase has a direct correlation with the AOD and PCB,
where prosumers benefit more while waiting for a longer time
to receive their appliances in the completed status. Simulation
results confirm that a shiftable appliance contributes to the
PDR in the grid and the prosumer’s PCB with averagely 0.1%
and 0.37%, respectively.
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Fig. 11. Average SOC of BESSs with different
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Fig. 12. Generation and utilization profiles of the
PV of a prosumer.
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Fig. 13. Energy and utilization profiles of the BESS
of a prosumer.

TABLE VII. EVALUATING THE ASSESSMENT METRICS ACCORDING TO
DIFFERENT SETS OF APPLIANCES.

APi,∀ρi ∈ P PDR (%) PAR AOD (hrs) FUR (%) PCB (%) SLR (%) SSR (%)

{RG} 0 3.15 0.00 0.00 6.10 2.94 16.58
{RG, WM} 03.42 3.11 0.14 2.39 10.68 3.32 16.35
{RG, WM, LD} 09.22 3.01 0.58 13.19 26.98 6.20 15.39
{RG, WM, LD, DW} 11.63 2.92 1.37 20.90 34.33 8.06 15.14
{RG, WM, LD, DW, EV} 13.24 2.85 2.26 30.27 49.88 9.44 12.24
{RG, WM, LD, DW, EV, AC} 15.19 2.76 3.30 42.00 65.40 10.10 14.03

RG: Refrigerator, WM: Washing Machine, LD: Landry Dryer,
DW: Dish Washer, EV: Electric Vehicle, and AC: Air Conditioner.

Fig. 14 demonstrates the baseline and reshaped load profiles
of appliances of a prosumer (only hours in charge). Consec-
utive fluctuations in the baseline profile of the air conditioner
is to keep the temperature constant at 25°C. Air conditioner
starts using its temperature flexibility due to the load demand
overlap between the laundry dryer (partly), dishwasher, and
the electric vehicle. For example, the air conditioner between
19:20 and 19:40 attempts to increase the temperature since
the laundry dryer has just finished operating and the operation
of dishwasher has been interrupted.

Fig. 15 shows the hourly benefit/cost of prosumers with
respect to real-time electricity prices. The baseline points to
the case, where there are no PVs and BESSs simulated. One
prosumer, for instance, to satisfy its load demands without
any PV and BESS, has to daily spend (-)$2.59 while holding
such equipment results in making a benefit of $2.78. Therefore,
according to (62), PCB for this prosumer equals 207.41%. The
results confirm that the prosumers are interested in buying less
from the grid, when the electricity prices are relatively high
(see 18:00 to 24:00). The reason for buying power from
the grid at 17:00 is the low PV generation, the start time of
majority of dishwashers, and the arrival of some of electric
vehicles. The VPP at the next hour changes its behavior and
compensates the cost imposed at the previous hour. However,
since PVs stop generating at 19:00, prosumers have to buy
from the grid since the majority of electric vehicles arrive and
intend to charge immediately. From then on, prosumers, to
satisfy their load demands, utilize their BESSs while trying to
sell the surplus energy to the grid simultaneously.

5) Performance Comparison: Fig. 16 shows comparison be-
tween recent relevant works and the current work based on four
significant evaluation criteria, i.e., PDR, PCB, computation
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Fig. 14. Baseline and reshaped load profiles of appliances of a prosumer.

time, and negotiation convergence iteration. This comparison
is based on simulation parameters, which are identical in all
references. However, some references fail to provide adequate
analysis with respect to some of the mentioned evaluation
criteria. Interestingly, the proposed framework performs quite
better than the recent related works.
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Fig. 15. Hourly benefit/cost of prosumers with and without having PVs and
BESSs according to real-time electricity prices.
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Fig. 16. Comparison between recent relevant works and the current work
based on four applicable evaluation criteria.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes a non-cooperative framework for co-
ordinating a neighborhood of distributed prosumers, which
possess smart appliances, photovoltaics, and battery energy
storage systems. To relieve the burden of parallel bilateral com-
munications between prosumers and the aggregator, a virtual
power plant, on behalf of prosumers, communicates with an
agregator to take advantage of their consumption, generation,

and storage flexibilities. The framework consists of two multi-
objective mixed integer nonlinear programming models for
prosumers and the aggregator, by which prosumers are able
to schedule their appliances and share surplus power with the
grid while the aggregator controls the power matching over
time. This paper employs an efficient negotiation approach, in
which the virtual power plant and the aggregator negotiate
on packaged power and price offers subject to having no
knowledge about each other’s preferences and utility functions.
This approach utilizes an alternating offer package production
protocol and a reactive utility value concession strategy, where
negotiators have no incentive to deliberately stop conceding
while the zone of agreement must remain nonempty.

Four different performance evaluation scenarios, based on
real data of load demands and power generation profiles of
photovoltaics, as well as real-time hourly electricity prices,
are developed to evaluate the effectiveness of the framework
according to several economic and environmental assessment
metrics, e.g., peak demand reduction, appliance operation
delay, prosumer cost-benefit, etc. Simulation results show that,
for instance, 500 prosumers, by shifting their load demands
and sharing their surplus power, contribute to the peak demand
reduction by 32.19% and benefit by 147.97%, both compared
to the case, where they do not negotiate to exchange power
with the grid. It is also discussed that such assessments are
closely related to the weather condition, where fluctuations
in photovoltaic generation during a cloudy day decrease the
peak demand reduction by 5.77% and prosumer cost-benefit
by 27.62% compared to a sunny day. Even though having
batteries with higher capacities (e.g., 26.4 kWh compared to
13.2 kWh) shaves the peak demand more by 9.17%, however,
it imposes higher purchasing costs to prosumers. Thanks
to the bilateral multi-issue negotiation approach integrated
with the framework, we show that solutions to the problem
with different number of prosumers and ownership levels of
shiftable appliances is obtained in a reasonable computation
and negotiation convergence times.

Future work will focus on adding a negotiation level
between aggregators, integrating industrial and commercial
prosumers, where their intermittent load consumptions and
power generations can lead to a difficulty in balancing supply
and demand, and investigating the network performance and
communication delays between different parties.
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