228 research outputs found

    A novel hybrid archimedes optimization algorithm for energy-efficient hybrid flow shop scheduling

    Get PDF
    The manufacturing sector consumes most of the global energy and had been in focus since the outbreak of the energy crisis. One of the proposed strategies to overcome this problem is to implement appropriate scheduling, such as Hybrid Flow Shop Scheduling. Therefore, this study aims to create a Hybrid Archimedes Optimization Algorithm (HAOA) for solving the Energy-Efficient Hybrid Flow Shop Scheduling Problem (EEHFSP). It is hoped that this helps to provide new insights into advanced HAOA methods for resolving the EEHFSP as the algorithm has the potential to be a more efficient alternative. In this study, three stages of EEHFSP were considered in the problem as well as a sequence-dependent setup and removal times in the second stage. Experiments with three population variations and iterations were presented for testing the effect of HAOA parameters on energy consumption. Furthermore, ten job variations are also presented to evaluate the performance of the HAOA algorithm and the results showed that HAOA iteration and the population did not affect the removal and processing of energy consumption, but impacted that of setup and idle. The comparison of these ten cases revealed that the proposed HAOA produced the best total energy consumption (TEC) when compared to the other algorithms

    A general Framework for Utilizing Metaheuristic Optimization for Sustainable Unrelated Parallel Machine Scheduling: A concise overview

    Full text link
    Sustainable development has emerged as a global priority, and industries are increasingly striving to align their operations with sustainable practices. Parallel machine scheduling (PMS) is a critical aspect of production planning that directly impacts resource utilization and operational efficiency. In this paper, we investigate the application of metaheuristic optimization algorithms to address the unrelated parallel machine scheduling problem (UPMSP) through the lens of sustainable development goals (SDGs). The primary objective of this study is to explore how metaheuristic optimization algorithms can contribute to achieving sustainable development goals in the context of UPMSP. We examine a range of metaheuristic algorithms, including genetic algorithms, particle swarm optimization, ant colony optimization, and more, and assess their effectiveness in optimizing the scheduling problem. The algorithms are evaluated based on their ability to improve resource utilization, minimize energy consumption, reduce environmental impact, and promote socially responsible production practices. To conduct a comprehensive analysis, we consider UPMSP instances that incorporate sustainability-related constraints and objectives

    A novel Tiki-Taka algorithm to optimize hybrid flow shop scheduling with energy consumption

    Get PDF
    Hybrid flow shop scheduling (HFS) has been thoroughly studied due to its significant impact on productivity. Besides the impact on productivity, the abovementioned problem has attracted researchers from different background because of its difficulty in obtaining the most optimum solution. HFS complexity provides good opportunity for researcher to propose an efficient optimization method for the said problem. Recently, research in HFS has moved towards sustainability by considering energy utilization in the study. Consequently, the problem becomes more difficult to be solved via existing approach. This paper modeled and optimized HFS with energy consumption using Tiki-Taka Algorithm (TTA). TTA is a novel algorithm inspired by football playing style that focuses on short passing and player positioning. In different with existing metaheuristics, the TTA collected information from nearby solution and utilized multiple leaders’ concept in the algorithm. The research began with problem modeling, followed by TTA algorithm formulation. A computational experiment is then conducted using benchmark problems. Then, a case study problem is presented to assess the applicability of model and algorithm in real-life problems. The results indicated that the TTA consistently was in the first and second ranks in all benchmark problems. In addition, the case study results confirmed that TTA is able to search the best fitness solution by compromising the makespan and total energy utilization in the production schedule. In future, the potential of TTA will be further investigated for flexible hybrid flow shop scheduling problems

    Energy Efficient Manufacturing Scheduling: A Systematic Literature Review

    Full text link
    The social context in relation to energy policies, energy supply, and sustainability concerns as well as advances in more energy-efficient technologies is driving a need for a change in the manufacturing sector. The main purpose of this work is to provide a research framework for energy-efficient scheduling (EES) which is a very active research area with more than 500 papers published in the last 10 years. The reason for this interest is mostly due to the economic and environmental impact of considering energy in production scheduling. In this paper, we present a systematic literature review of recent papers in this area, provide a classification of the problems studied, and present an overview of the main aspects and methodologies considered as well as open research challenges

    Energy Efficient Policies, Scheduling, and Design for Sustainable Manufacturing Systems

    Get PDF
    Climate mitigation, more stringent regulations, rising energy costs, and sustainable manufacturing are pushing researchers to focus on energy efficiency, energy flexibility, and implementation of renewable energy sources in manufacturing systems. This thesis aims to analyze the main works proposed regarding these hot topics, and to fill the gaps in the literature. First, a detailed literature review is proposed. Works regarding energy efficiency in different manufacturing levels, in the assembly line, energy saving policies, and the implementation of renewable energy sources are analyzed. Then, trying to fill the gaps in the literature, different topics are analyzed more in depth. In the single machine context, a mathematical model aiming to align the manufacturing power required to a renewable energy supply in order to obtain the maximum profit is developed. The model is applied to a single work center powered by the electric grid and by a photovoltaic system; afterwards, energy storage is also added to the power system. Analyzing the job shop context, switch off policies implementing workload approach and scheduling considering variable speed of the machines and power constraints are proposed. The direct and indirect workloads of the machines are considered to support the switch on/off decisions. A simulation model is developed to test the proposed policies compared to others presented in the literature. Regarding the job shop scheduling, a fixed and variable power constraints are considered, assuming the minimization of the makespan as the objective function. Studying the factory level, a mathematical model to design a flow line considering the possibility of using switch-off policies is developed. The design model for production lines includes a targeted imbalance among the workstations to allow for defined idle time. Finally, the main findings, results, and the future directions and challenges are presented

    Energy aware hybrid flow shop scheduling

    Get PDF
    Only if humanity acts quickly and resolutely can we limit global warming' conclude more than 25,000 academics with the statement of SCIENTISTS FOR FUTURE. The concern about global warming and the extinction of species has steadily increased in recent years

    An Enhanced Estimation of Distribution Algorithm for Energy-Efficient Job-Shop Scheduling Problems with Transportation Constraints

    Full text link
    [EN] Nowadays, the manufacturing industry faces the challenge of reducing energy consumption and the associated environmental impacts. Production scheduling is an effective approach for energy-savings management. During the entire workshop production process, both the processing and transportation operations consume large amounts of energy. To reduce energy consumption, an energy-efficient job-shop scheduling problem (EJSP) with transportation constraints was proposed in this paper. First, a mixed-integer programming model was established to minimize both the comprehensive energy consumption and makespan in the EJSP. Then, an enhanced estimation of distribution algorithm (EEDA) was developed to solve the problem. In the proposed algorithm, an estimation of distribution algorithm was employed to perform the global search and an improved simulated annealing algorithm was designed to perform the local search. Finally, numerical experiments were implemented to analyze the performance of the EEDA. The results showed that the EEDA is a promising approach and that it can solve EJSP effectively and efficiently.This work was supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 17KJB460018), the Innovation Foundation for Science and Technology of Yangzhou University (No. 2016CXJ020 and No. 2017CXJ018), Science and Technology Project of Yangzhou under (No. YZ2017278), Research Topics of Teaching Reform of Yangzhou University under (No. YZUJX2018-28B), and the Spanish Government (No. TIN2016-80856-R and No. TIN2015-65515-C4-1-R).Dai, M.; Zhang, Z.; Giret Boggino, AS.; Salido, MA. (2019). An Enhanced Estimation of Distribution Algorithm for Energy-Efficient Job-Shop Scheduling Problems with Transportation Constraints. Sustainability. 11(11):1-23. https://doi.org/10.3390/su11113085S1231111Wu, X., & Sun, Y. (2018). A green scheduling algorithm for flexible job shop with energy-saving measures. Journal of Cleaner Production, 172, 3249-3264. doi:10.1016/j.jclepro.2017.10.342Wang, Q., Tang, D., Li, S., Yang, J., Salido, M., Giret, A., & Zhu, H. (2019). An Optimization Approach for the Coordinated Low-Carbon Design of Product Family and Remanufactured Products. Sustainability, 11(2), 460. doi:10.3390/su11020460Meng, Y., Yang, Y., Chung, H., Lee, P.-H., & Shao, C. (2018). Enhancing Sustainability and Energy Efficiency in Smart Factories: A Review. Sustainability, 10(12), 4779. doi:10.3390/su10124779Gahm, C., Denz, F., Dirr, M., & Tuma, A. (2016). Energy-efficient scheduling in manufacturing companies: A review and research framework. European Journal of Operational Research, 248(3), 744-757. doi:10.1016/j.ejor.2015.07.017Giret, A., Trentesaux, D., & Prabhu, V. (2015). Sustainability in manufacturing operations scheduling: A state of the art review. Journal of Manufacturing Systems, 37, 126-140. doi:10.1016/j.jmsy.2015.08.002Akbar, M., & Irohara, T. (2018). Scheduling for sustainable manufacturing: A review. Journal of Cleaner Production, 205, 866-883. doi:10.1016/j.jclepro.2018.09.100Che, A., Wu, X., Peng, J., & Yan, P. (2017). Energy-efficient bi-objective single-machine scheduling with power-down mechanism. Computers & Operations Research, 85, 172-183. doi:10.1016/j.cor.2017.04.004Lee, S., Do Chung, B., Jeon, H. W., & Chang, J. (2017). A dynamic control approach for energy-efficient production scheduling on a single machine under time-varying electricity pricing. Journal of Cleaner Production, 165, 552-563. doi:10.1016/j.jclepro.2017.07.102Rubaiee, S., & Yildirim, M. B. (2019). An energy-aware multiobjective ant colony algorithm to minimize total completion time and energy cost on a single-machine preemptive scheduling. Computers & Industrial Engineering, 127, 240-252. doi:10.1016/j.cie.2018.12.020Zhang, M., Yan, J., Zhang, Y., & Yan, S. (2019). Optimization for energy-efficient flexible flow shop scheduling under time of use electricity tariffs. Procedia CIRP, 80, 251-256. doi:10.1016/j.procir.2019.01.062Li, J., Sang, H., Han, Y., Wang, C., & Gao, K. (2018). Efficient multi-objective optimization algorithm for hybrid flow shop scheduling problems with setup energy consumptions. Journal of Cleaner Production, 181, 584-598. doi:10.1016/j.jclepro.2018.02.004Lu, C., Gao, L., Li, X., Pan, Q., & Wang, Q. (2017). Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective backtracking search algorithm. Journal of Cleaner Production, 144, 228-238. doi:10.1016/j.jclepro.2017.01.011Fu, Y., Tian, G., Fathollahi-Fard, A. M., Ahmadi, A., & Zhang, C. (2019). Stochastic multi-objective modelling and optimization of an energy-conscious distributed permutation flow shop scheduling problem with the total tardiness constraint. Journal of Cleaner Production, 226, 515-525. doi:10.1016/j.jclepro.2019.04.046Schulz, S., Neufeld, J. S., & Buscher, U. (2019). A multi-objective iterated local search algorithm for comprehensive energy-aware hybrid flow shop scheduling. Journal of Cleaner Production, 224, 421-434. doi:10.1016/j.jclepro.2019.03.155Liu, Y., Dong, H., Lohse, N., Petrovic, S., & Gindy, N. (2014). An investigation into minimising total energy consumption and total weighted tardiness in job shops. Journal of Cleaner Production, 65, 87-96. doi:10.1016/j.jclepro.2013.07.060Liu, Y., Dong, H., Lohse, N., & Petrovic, S. (2016). A multi-objective genetic algorithm for optimisation of energy consumption and shop floor production performance. International Journal of Production Economics, 179, 259-272. doi:10.1016/j.ijpe.2016.06.019May, G., Stahl, B., Taisch, M., & Prabhu, V. (2015). Multi-objective genetic algorithm for energy-efficient job shop scheduling. International Journal of Production Research, 53(23), 7071-7089. doi:10.1080/00207543.2015.1005248Zhang, R., & Chiong, R. (2016). Solving the energy-efficient job shop scheduling problem: a multi-objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness and total energy consumption. Journal of Cleaner Production, 112, 3361-3375. doi:10.1016/j.jclepro.2015.09.097Salido, M. A., Escamilla, J., Giret, A., & Barber, F. (2015). A genetic algorithm for energy-efficiency in job-shop scheduling. The International Journal of Advanced Manufacturing Technology, 85(5-8), 1303-1314. doi:10.1007/s00170-015-7987-0Masmoudi, O., Delorme, X., & Gianessi, P. (2019). Job-shop scheduling problem with energy consideration. International Journal of Production Economics, 216, 12-22. doi:10.1016/j.ijpe.2019.03.021Mokhtari, H., & Hasani, A. (2017). An energy-efficient multi-objective optimization for flexible job-shop scheduling problem. Computers & Chemical Engineering, 104, 339-352. doi:10.1016/j.compchemeng.2017.05.004Meng, L., Zhang, C., Shao, X., & Ren, Y. (2019). MILP models for energy-aware flexible job shop scheduling problem. Journal of Cleaner Production, 210, 710-723. doi:10.1016/j.jclepro.2018.11.021Dai, M., Tang, D., Giret, A., & Salido, M. A. (2019). Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints. Robotics and Computer-Integrated Manufacturing, 59, 143-157. doi:10.1016/j.rcim.2019.04.006Lacomme, P., Larabi, M., & Tchernev, N. (2013). Job-shop based framework for simultaneous scheduling of machines and automated guided vehicles. International Journal of Production Economics, 143(1), 24-34. doi:10.1016/j.ijpe.2010.07.012Nageswararao, M., Narayanarao, K., & Ranagajanardhana, G. (2014). Simultaneous Scheduling of Machines and AGVs in Flexible Manufacturing System with Minimization of Tardiness Criterion. Procedia Materials Science, 5, 1492-1501. doi:10.1016/j.mspro.2014.07.336Saidi-Mehrabad, M., Dehnavi-Arani, S., Evazabadian, F., & Mahmoodian, V. (2015). An Ant Colony Algorithm (ACA) for solving the new integrated model of job shop scheduling and conflict-free routing of AGVs. Computers & Industrial Engineering, 86, 2-13. doi:10.1016/j.cie.2015.01.003Guo, Z., Zhang, D., Leung, S. Y. S., & Shi, L. (2016). A bi-level evolutionary optimization approach for integrated production and transportation scheduling. Applied Soft Computing, 42, 215-228. doi:10.1016/j.asoc.2016.01.052Karimi, S., Ardalan, Z., Naderi, B., & Mohammadi, M. (2017). Scheduling flexible job-shops with transportation times: Mathematical models and a hybrid imperialist competitive algorithm. Applied Mathematical Modelling, 41, 667-682. doi:10.1016/j.apm.2016.09.022Liu, Z., Guo, S., & Wang, L. (2019). Integrated green scheduling optimization of flexible job shop and crane transportation considering comprehensive energy consumption. Journal of Cleaner Production, 211, 765-786. doi:10.1016/j.jclepro.2018.11.231Tang, D., & Dai, M. (2015). Energy-efficient approach to minimizing the energy consumption in an extended job-shop scheduling problem. Chinese Journal of Mechanical Engineering, 28(5), 1048-1055. doi:10.3901/cjme.2015.0617.082Hao, X., Lin, L., Gen, M., & Ohno, K. (2013). Effective Estimation of Distribution Algorithm for Stochastic Job Shop Scheduling Problem. Procedia Computer Science, 20, 102-107. doi:10.1016/j.procs.2013.09.246Wang, L., Wang, S., Xu, Y., Zhou, G., & Liu, M. (2012). A bi-population based estimation of distribution algorithm for the flexible job-shop scheduling problem. Computers & Industrial Engineering, 62(4), 917-926. doi:10.1016/j.cie.2011.12.014Jarboui, B., Eddaly, M., & Siarry, P. (2009). An estimation of distribution algorithm for minimizing the total flowtime in permutation flowshop scheduling problems. Computers & Operations Research, 36(9), 2638-2646. doi:10.1016/j.cor.2008.11.004Hauschild, M., & Pelikan, M. (2011). An introduction and survey of estimation of distribution algorithms. Swarm and Evolutionary Computation, 1(3), 111-128. doi:10.1016/j.swevo.2011.08.003Liu, F., Xie, J., & Liu, S. (2015). A method for predicting the energy consumption of the main driving system of a machine tool in a machining process. Journal of Cleaner Production, 105, 171-177. doi:10.1016/j.jclepro.2014.09.058Dai, M., Tang, D., Giret, A., Salido, M. A., & Li, W. D. (2013). Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm. Robotics and Computer-Integrated Manufacturing, 29(5), 418-429. doi:10.1016/j.rcim.2013.04.001Beasley, J. E. (1990). OR-Library: Distributing Test Problems by Electronic Mail. Journal of the Operational Research Society, 41(11), 1069-1072. doi:10.1057/jors.1990.166Zhao, F., Shao, Z., Wang, J., & Zhang, C. (2015). A hybrid differential evolution and estimation of distribution algorithm based on neighbourhood search for job shop scheduling problems. International Journal of Production Research, 54(4), 1039-1060. doi:10.1080/00207543.2015.1041575Van Laarhoven, P. J. M., Aarts, E. H. L., & Lenstra, J. K. (1992). Job Shop Scheduling by Simulated Annealing. Operations Research, 40(1), 113-125. doi:10.1287/opre.40.1.113Wang, L., & Zheng, D.-Z. (2001). An effective hybrid optimization strategy for job-shop scheduling problems. Computers & Operations Research, 28(6), 585-596. doi:10.1016/s0305-0548(99)00137-9Dorndorf, U., & Pesch, E. (1995). Evolution based learning in a job shop scheduling environment. Computers & Operations Research, 22(1), 25-40. doi:10.1016/0305-0548(93)e0016-mPark, B. J., Choi, H. R., & Kim, H. S. (2003). A hybrid genetic algorithm for the job shop scheduling problems. Computers & Industrial Engineering, 45(4), 597-613. doi:10.1016/s0360-8352(03)00077-

    Planning and Scheduling Optimization

    Get PDF
    Although planning and scheduling optimization have been explored in the literature for many years now, it still remains a hot topic in the current scientific research. The changing market trends, globalization, technical and technological progress, and sustainability considerations make it necessary to deal with new optimization challenges in modern manufacturing, engineering, and healthcare systems. This book provides an overview of the recent advances in different areas connected with operations research models and other applications of intelligent computing techniques used for planning and scheduling optimization. The wide range of theoretical and practical research findings reported in this book confirms that the planning and scheduling problem is a complex issue that is present in different industrial sectors and organizations and opens promising and dynamic perspectives of research and development

    Holistic, data-driven, service and supply chain optimisation: linked optimisation.

    Get PDF
    The intensity of competition and technological advancements in the business environment has made companies collaborate and cooperate together as a means of survival. This creates a chain of companies and business components with unified business objectives. However, managing the decision-making process (like scheduling, ordering, delivering and allocating) at the various business components and maintaining a holistic objective is a huge business challenge, as these operations are complex and dynamic. This is because the overall chain of business processes is widely distributed across all the supply chain participants; therefore, no individual collaborator has a complete overview of the processes. Increasingly, such decisions are automated and are strongly supported by optimisation algorithms - manufacturing optimisation, B2B ordering, financial trading, transportation scheduling and allocation. However, most of these algorithms do not incorporate the complexity associated with interacting decision-making systems like supply chains. It is well-known that decisions made at one point in supply chains can have significant consequences that ripple through linked production and transportation systems. Recently, global shocks to supply chains (COVID-19, climate change, blockage of the Suez Canal) have demonstrated the importance of these interdependencies, and the need to create supply chains that are more resilient and have significantly reduced impact on the environment. Such interacting decision-making systems need to be considered through an optimisation process. However, the interactions between such decision-making systems are not modelled. We therefore believe that modelling such interactions is an opportunity to provide computational extensions to current optimisation paradigms. This research study aims to develop a general framework for formulating and solving holistic, data-driven optimisation problems in service and supply chains. This research achieved this aim and contributes to scholarship by firstly considering the complexities of supply chain problems from a linked problem perspective. This leads to developing a formalism for characterising linked optimisation problems as a model for supply chains. Secondly, the research adopts a method for creating a linked optimisation problem benchmark by linking existing classical benchmark sets. This involves using a mix of classical optimisation problems, typically relating to supply chain decision problems, to describe different modes of linkages in linked optimisation problems. Thirdly, several techniques for linking supply chain fragmented data have been proposed in the literature to identify data relationships. Therefore, this thesis explores some of these techniques and combines them in specific ways to improve the data discovery process. Lastly, many state-of-the-art algorithms have been explored in the literature and these algorithms have been used to tackle problems relating to supply chain problems. This research therefore investigates the resilient state-of-the-art optimisation algorithms presented in the literature, and then designs suitable algorithmic approaches inspired by the existing algorithms and the nature of problem linkages to address different problem linkages in supply chains. Considering research findings and future perspectives, the study demonstrates the suitability of algorithms to different linked structures involving two sub-problems, which suggests further investigations on issues like the suitability of algorithms on more complex structures, benchmark methodologies, holistic goals and evaluation, processmining, game theory and dependency analysis
    • …
    corecore