4,143 research outputs found

    Supply chain finance for ameliorating and deteriorating products: a systematic literature review

    Get PDF
    Ameliorating and deteriorating products, or, more generally, items that change value over time, present a high sensitiveness to the surrounding environment (e.g., temperature, humidity, and light intensity). For this reason, they should be properly stored along the supply chain to guarantee the desired quality to the consumers. Specifically, ameliorating items face an increase in value if there are stored for longer periods, which can lead to higher selling price. At the same time, the costumers’ demand is sensitive to the price (i.e., the higher the selling price the lower the final demand), sensitiveness that is related to the quality of the products (i.e., lower sensitiveness for high-quality products). On the contrary, deteriorating items lose quality and value over time which result in revenue losses due to lost sales or reduced selling price. Since these products need to be properly stored (i.e., usually in temperature- and humidity-controlled warehouses) the holding costs, which comprise also the energy costs, may be particularly relevant impacting on the economic, environmental, and social sustainability of the supply chain. Furthermore, due to the recent economic crisis, companies (especially, small and medium enterprises) face payment difficulties of customers and high volatility of resources prices. This increases the risk of insolvency and on the other hand the financing needs. In this context, supply chain finance emerged as a mean for efficiency by coordinating the financial flow and providing a set of financial schemes aiming at optimizing accounts payable and receivable along the supply chain. The aim of the present study is thus to investigate through a systematic literature review the two main themes presented (i.e., inventory management models for products that change value over time, and financial techniques and strategies to support companies in inventory management) to understand if any financial technique has been studied for supporting the management of this class of products and to verify the existing literature gap

    An optimization of an inventory model of decaying-lot depleted by declining market demand and extended with discretely variable holding costs

    Get PDF
    Inventory management is considered as major concerns of every organization. In inventory holding, many steps are taken by managers that result a cost involved in this row. This cost may not be constant in nature during time horizon in which perishable stock is held. To investigate on such a case, this study proposes an optimization of inventory model where items deteriorate in stock conditions. To generalize the decaying conditions based on location of warehouse and conditions of storing, the rate of deterioration follows the Weibull distribution function. The demand of fresh item is declining with time exponentially (because no item can always sustain top place in the list of consumers’ choice practically e.g. FMCG). Shortages are allowed and backlogged, partially. Conditions for global optimality and uniqueness of the solutions are derived, separately. The results of some numerical instances are analyzed under various conditions

    EOQ inventory model for perishable products under uncertainty

    Get PDF
    Perishable products require accurate inventory control models as their effect on operations management can be critical. This assumption is particularly relevant in highly uncertain and dynamic markets, as for the ones generated by the pandemic era. This paper presents an inventory control model for perishable items with a demand rate variable over time, and dependent on the inventory rate. The model also considers the potential for backlogging and lost sales. Imperfect product quality is included, and deterioration is modelled as a time-dependent variable. The framework envisages the possibility to define variables affected by uncertainty in terms of probability distribution functions, which are then jointly managed via a Monte Carlo simulation. This paper is intended to provide an analytical formulation to deal with uncertainty and time-dependent inventory functions to be used for a variety of perishable products. The formulation is designed to support decision-making for the identification of the optimal order quantity. A numerical example exemplifies the outcomes of the paper and provides a cost-based sensitivity analysis to understand the role of main parameters

    Two Warehouses Inventory Model with Quadratic Demand and Maximum Life Time

    Get PDF
    This paper deals with a two warehouses inventory model with quadratic demand. Due to some seasonal products, all time retailers not fulfill the demand of customers, so to solve this difficulty retailer storage some product for future sales in out of season. Here we consider two warehouses system, Own Warehouse (OW) and Rent Warehouse (RW). This paper considers maximum life time for the products and shortages are not allowed. Mathematical model of this paper is proposed to obtain the total cycle time and minimum inventory cost. A numerical example is give to validate this proposed model

    Sustainable Inventory Management Model for High-Volume Material with Limited Storage Space under Stochastic Demand and Supply

    Get PDF
    Inventory management and control has become an important management function, which is vital in ensuring the efficiency and profitability of a company’s operations. Hence, several research studies attempted to develop models to be used to minimise the quantities of excess inventory, in order to reduce their associated costs without compromising both operational efficiency and customers’ needs. The Economic Order Quantity (EOQ) model is one of the most used of these models; however, this model has a number of limiting assumptions, which led to the development of a number of extensions for this model to increase its applicability to the modern-day business environment. Therefore, in this research study, a sustainable inventory management model is developed based on the EOQ concept to optimise the ordering and storage of large-volume inventory, which deteriorates over time, with limited storage space, such as steel, under stochastic demand, supply and backorders. Two control systems were developed and tested in this research study in order to select the most robust system: an open-loop system, based on direct control through which five different time series for each stochastic variable were generated, before an attempt to optimise the average profit was conducted; and a closed-loop system, which uses a neural network, depicting the different business and economic conditions associated with the steel manufacturing industry, to generate the optimal control parameters for each week across the entire planning horizon. A sensitivity analysis proved that the closed-loop neural network control system was more accurate in depicting real-life business conditions, and more robust in optimising the inventory management process for a large-volume, deteriorating item. Moreover, due to its advantages over other techniques, a meta-heuristic Particle Swarm Optimisation (PSO) algorithm was used to solve this model. This model is implemented throughout the research in the case of a steel manufacturing factory under different operational and extreme economic scenarios. As a result of the case study, the developed model proved its robustness and accuracy in managing the inventory of such a unique industry

    An Epq Model Having Weibull Distribution Deterioration With Exponential Demand and Production With Shortages Under Permissible Delay In Payments

    Get PDF
    In the fundamental production inventory model, in order to solve the economic production quantity (EPQ) we always fix both the demand quantity and the production quantity per day. But, in the real situation, production is usually dependend on demand. This paper derives a production model for the lot-size inventory system with finite production rate, taking into consideration the effect of decay and the condition of permissible delay in payments. Usually no interest is  charged  if the outstanding amount is settled within the permitted fixed settlement period. Therefore, it makes economic sense for the customer to delay the settlement of the replenishment account up to the last moment of the permissible period allowed by the supplier. In this model shortages are permitted and fully backordered . The purpose of this paper is to investigate a computing schema for the EPQ. The model is illustrated with a numerical example. Keywords Economic production quantity, permissible delay, weibull distribution, deterioration

    An inventory model for multiple items assuming time-varying demands and limited storage

    Get PDF
    Producción CientíficaA model for inventory systems with multiple products is studied. Demands of items are time-dependent and follow power patterns. Shortages are allowed and fully back logged. For this inventory system, our findings provide the efficient inventory policy that helps decision-makers to obtain the initial inventory levels and the reorder points that maximize the profit per unit time. Moreover, when it is assumed that the warehouse used for the storage of products has a limited capacity, the optimal inventory policy is also developed. The model presented here extends some inventory systems studied by other authors. Numerical examples are introduced to illustrate the applicability of the theoretical results presented.Ministerio de Ciencia, Innovación y Universidades cofinanciado por la Comunidad Europea (FEDER) (project MTM2017-84150-P)Publicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCL

    A Novel Method for Optimal Solution of Fuzzy Chance Constraint Single-Period Inventory Model

    Get PDF
    A method is proposed for solving single-period inventory fuzzy probabilistic model (SPIFPM) with fuzzy demand and fuzzy storage space under a chance constraint. Our objective is to maximize the total profit for both overstock and understock situations, where the demand D~j for each product j in the objective function is considered as a fuzzy random variable (FRV) and with the available storage space area W~, which is also a FRV under normal distribution and exponential distribution. Initially we used the weighted sum method to consider both overstock and understock situations. Then the fuzziness of the model is removed by ranking function method and the randomness of the model is removed by chance constrained programming problem, which is a deterministic nonlinear programming problem (NLPP) model. Finally this NLPP is solved by using LINGO software. To validate and to demonstrate the results of the proposed model, numerical examples are given
    • …
    corecore