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A method is proposed for solving single-period inventory fuzzy probabilistic model (SPIFPM) with fuzzy demand and fuzzy
storage space under a chance constraint. Our objective is to maximize the total profit for both overstock and understock situations,
where the demand 𝐷̃𝑗 for each product 𝑗 in the objective function is considered as a fuzzy random variable (FRV) and with the
available storage space area 𝑊̃, which is also a FRV under normal distribution and exponential distribution. Initially we used
the weighted sum method to consider both overstock and understock situations. Then the fuzziness of the model is removed by
ranking function method and the randomness of the model is removed by chance constrained programming problem, which is a
deterministic nonlinear programming problem (NLPP) model. Finally this NLPP is solved by using LINGO software. To validate
and to demonstrate the results of the proposed model, numerical examples are given.

1. Introduction

One of the special parts of inventory model is single-period
inventory model (SPIM). The objective of this SPIM is to
determine the optimal order quantity, where the order for
each item is only at the beginning of each work period, that
is, for a day, a week, a month, and so forth, to maximize the
expected profit or to minimize the cost. The use of SPIM can
be found in fashion products business, food business, sport-
ing, style goods, newspapers, Christmas trees, and so forth. In
real life situations to estimate the market demand is a main
factor for maximizing the profit or for minimizing the cost.
There are the cases inwhich the probability distribution of the
demand for the new items is completely unknown due to lack
of historical data and sometimes due to technical difficulties
or economic reasons or using the linguistic expression by
the expert for demand forecasting. This deals with situations
where the demandof products is uncertain. For these demand
uncertainties, fuzzy set theory has been applied to inventory
models.

Initially Zadeh [1] introduced a feasible approach to
deal with this kind of fuzzy problem and established a
fuzzy set which is characterized by a membership function

which assigns to each object a grade of membership ranging
between zero and one. Later depending upon different
requirements ofmeasurability, it was developed and extended
by several researchers like Buckley [2], Kwakernaak [3], and
Zimmermann [4] et al. Many researchers have done a lot of
work in this area.

Nanda and Kar [5] discussed the concept of convexity
and logarithmic convexity for fuzzy mappings and some
applications to optimization are introduced. Puri andRalescu
[6] defined the concepts of fuzzy random variable and the
expectation of a fuzzy random variable.

Petrović et al. [7] presented two fuzzy models for the
newsboy problem in an uncertain environment where the
uncertainties appear in demand and in inventory costs.
Multi-item stochastic and fuzzy-stochastic inventory models
are formulated under total budgetary and space constraints
where shortages are allowed but fully backlogged byDas et al.
[8]. Nanda et al. [9] presented a chance constrained pro-
gramming model, where both fuzziness and randomness are
present in the objective function and constraints.

Mahapatra andMaiti [10] developed a multiobjective and
single-objective inventory models of stochastically deterio-
rating items in which demand is a function of inventory
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level and selling price of the commodity. They derived the
results for both without shortages and partially backlogged
shortages. Also objectives for profit maximization for each
item are separately formulated with different goals and com-
promise solutions of themultiobjective production inventory
problems are obtained by goal programming method.

Chang et al. [11] considered the mixture inventory model
involving variable lead time with back orders and lost sales.
They used the centroid method of defuzzification to estimate
total cost in the fuzzy sense and found the optimal solution
for order quantity and lead time in the fuzzy sense such that
the total cost has a minimum value.

Shao and Ji [12] considered the multiproduct newsboy
problem with fuzzy demands under budget constraint. They
developed three types of models under different criteria in
which the objective functions are to maximize the expected
profit of newsboy, the chance of achieving a target profit,
and the profit which satisfies some chance constraints with
at least some given confidence level. A model to help the
decision maker in a newsboy problem to assess the value of
information is presented by Lee [13] for the potential benefits
of demand forecasting to decrease the risk of overstocking or
shortage.

Hayya et al. [14] considered the reorder point, order
quantity inventory model where the demand and the lead
time are independently and identically distributed random
variables. They used a normal approximation to show how
to obtain regression equations for the optimal cost and the
optimal policy parameters in terms of the problem para-
meters. Dash et al. [15] have discussed the deterministic
equivalent of fuzzy chance constraint programming problem
in different scenarios for the fuzzy random variable.

Hu et al. [16] presented fuzzy random models for the
newsboy problem in the decentralized and centralized sys-
tems facing imperfect quality and the optimal policies for the
systems analyzed and derived.

Zhang [17] presented a Lagrangian relaxation approach to
solve the multiproduct newsboy problem as a mixed integer
nonlinear programming model with both supplier quantity
discounts and a budget constraint. The profit for newsboy-
type product is introducing a new capacity index, which is
based on statistical hypothesis testing analyzed by Su et al.
[18].

Kotb and Fergany [19] derived the analytical solution
of the EOQ model of multiple items with both demand-
dependent unit cost and leading time using geometric pro-
gramming approach by considering continuous functions of
demand rate and leading time for the varying purchase and
leading time for crashing costs, respectively. They deduced
the optimal order quantity, the demand rate, and the leading
time as decision variables and also the optimal total cost. Dey
and Chakraborty [20] presented a fuzzy random continuous
review system with the annual customer demand distributed
uniformly and proposed amethodology tominimize the cost.

R. Banerjee and S. Banerjee [21] considered a proba-
bilistic inventory model under probabilistic and imprecise
constraints with uniform lead-time demand and fuzzy cost
components. Nagare and Dutta [22] captured both fuzzy

perception and randomness of customer demand to deter-
mine an unambiguous optimal order quantity from a set of 𝑛
fuzzy observations in a news-vendor inventory setting in the
presence of fuzzy random variable demand.

Jahantigh et al. [23] computed the compromised solution
of a LR fuzzy linear system by the use of ranking fuzzy num-
bers. Karpagam and Sumathi [24] used the ranking function
to find the fuzzy optimal solution of fully fuzzy linear prog-
ramming problems.

Dutta and Kumar [25] determined the optimal total
cost and the optimal order quantity for an inventory model
without shortages in a fuzzy environment. They used signed
distance method to compute economic order quantity. This
model deals with indeterminacy information for multiprod-
uct newsboy problem, which was initially transformed into
deterministic model, and the solution was obtained by classic
integer programming method proposed by Ding [26].

Zolfagharinia and Isotupa [27] pointed out some flaws in
the simulationmodel and some of the formulae for inventory
level and ordering quantity. Majumder et al. [28] formulated
an EPQ model for deteriorating items under partial trade
credit policy with crisp and fuzzy demand. They have used
weighted sum method to convert a multiobjective to a single
objective and the model was solved by Generalized Reduced
Gradient method.

A real-world multiperiod inventory control problem
under budget constraint is investigated and the weighted
linear sum of objectives is applied to generate a single-
objective model for the biobjective problem and a harmony
search algorithm is developed to solve the complex inventory
problem byMousavi et al. [29].The goal is to find the optimal
ordered quantities of products; not only the total inventory
cost but also the required storage space as a fuzzy number to
store the products is minimized.

Soni and Joshi [30] considered a periodic review inven-
tory model in fuzzy-stochastic environment with lead time
and the back order rate as control variables and by applying
the criterion of credibility they determined the expected
shortages.

To capture the uncertainty of demand, Kumar and
Goswami [31] employed the fuzzy expectation, signed dis-
tance, and possibility or necessitymeasure to the fuzzymodel
to transform it into an equivalent deterministic nonlinear
programming problem where the model is restricted to
budget and allowable shortages.

Kazemi et al. [32] developed and extended a fuzzy inven-
tory model of an existing economic order quantity with back
orders in which both demand and lead times are fuzzified
to decrease the total inventory cost. Dash and Sahoo [33]
obtained the optimum order quantity and the expected profit
by using Buckley’s concept of minimization of fuzzy numbers
for a single-period inventory model.

Nagare et al. [34] developed an inventory model to
determine the optimal order quantity and weight factor on
the basis of revised forecasts and the results demonstrate
economic benefits of using revised demand, negative impact
of constraints, and role of demand distribution entropy in
determining the order size and expected profit.
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A fuzzy inventory model for fixed deteriorating items
with shortages under fully backlogged condition is formu-
lated and solved by Raula et al. [35]. They defuzzified the
model by graded unit preference integration method and all
related inventory parameters were assumed to be hexagonal
fuzzy numbers.

Sangal et al. [36] developed an inventory model for
noninstantaneous decaying items under crisp and fuzzy
environment.They have considered stock dependent demand
rate and variable deterioration and defuzzified the total cost
function by signed distance method.

The important feature of the present work is to determine
the optimum order quantity by considering a SPIFPM with
demand as a fuzzy random variable in the objective function
subject to a chance constraint, where the storage space
distributed normally and exponentially, which is different
from the previous studies. Initially we used the weighted sum
method, ranking function to the objective function, and some
theorems have been developed to transform the SPIFPM into
a crisp model.

The remaining part of the paper is organized as follows.
Some basic concepts and results of uncertain theory are given
in Section 2. In Section 3, an analytical model is formulated
for the SPIFPM under a chance constraint. In Section 4, we
present a transformation technique to convert the model to
an equivalent deterministic model. In Section 5, a numerical
example is given for verification. Finally, in Section 6, some
conclusions are listed.

2. Preliminaries

From literature study, here we present some basic concepts
regarding the uncertainty theory.

Definition 1 (fuzzy set [1]). A fuzzy set 𝐴̃ over a universal set𝑋 is defined as a set of ordered pairs 𝐴̃ = {(𝑥, 𝜇𝐴(𝑥)) : 𝑥 ∈ 𝑋}
and is characterized by its membership function 𝜇𝐴(𝑥)where𝜇𝐴(𝑥) : 𝑋 → [0, 1] for each 𝑥 ∈ 𝑋.
Definition 2 (triangular fuzzy number [15]). The triangular
fuzzy number is a fuzzy number denoted as 𝐴̃ = (𝐴1, 𝐴2, 𝐴3)
and is interpreted by its membership function as follows:

𝜇𝐴̃ (𝑥) =
{{{{{{{{{{{{{{{

𝑥 − 𝐴1𝐴2 − 𝐴1 , if 𝐴1 ≤ 𝑥 ≤ 𝐴2
𝐴3 − 𝑥𝐴3 − 𝐴2 , if 𝐴2 ≤ 𝑥 ≤ 𝐴3
0, otherwise.

(1)

Definition 3 (𝛼-cut of a fuzzy number [15]). The 𝛼-cut of the
fuzzy number 𝐴̃ is the set {𝑥 | 𝜇𝐴(𝑥) ≥ 𝛼} for 𝛼 ∈ (0, 1) and
denoted as 𝐴̃[𝛼].

Definition 4 (partial order relation of two fuzzy numbers [9]).
Let 𝐴̃ = (𝐴1, 𝐴2, 𝐴3) and 𝐵̃ = (𝐵1, 𝐵2, 𝐵3) be two fuzzy
numbers with 𝛼-cut 𝐴̃[𝛼] = [𝐴∗, 𝐴∗] and 𝐵̃[𝛼] = [𝐵∗, 𝐵∗],
respectively; then 𝐴̃ ⪯ 𝐵̃ if and only if 𝐴∗ ≤ 𝐵∗ and 𝐴̃ ⪰ 𝐵̃ if
and only if 𝐴∗ ≤ 𝐵∗.
Definition 5 (fuzzy random variable [3, 6]). The random
variables whose parameters like mean, variance, and so forth
are fuzzy numbers are called fuzzy random variables. A fuzzy
random variable 𝑋̃with mean 𝑚̃𝑥 and variance 𝜎̃2𝑥 is denoted
by 𝑋̃(𝑚̃, 𝜎̃2).
Definition 6 (mean of a continuous fuzzy random variable
[6]). Let 𝑈̃ = 𝑎1𝑋̃1 ⊕ 𝑎2𝑋̃2 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑎𝑛𝑋̃𝑛 be a FRV, which
is the linear combination of 𝑛 number of independent fuzzy
random variables 𝑋̃1, 𝑋̃2, . . . , 𝑋̃𝑛, whose means are fuzzy
numbers 𝑚̃𝑋1 , 𝑚̃𝑋2 , . . . , 𝑚̃𝑋𝑛 , respectively. Then 𝑚̃𝑈[𝛼] =∑𝑛𝑗=1 𝑎𝑗𝑚̃𝑋𝑗[𝛼].
Definition 7 (variance of a continuous fuzzy random variable
[6]). Let 𝑈̃ = 𝑎1𝑋̃1 ⊕ 𝑎2𝑋̃2 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑎𝑛𝑋̃𝑛 be the linear
combination of 𝑛 number of independent fuzzy random vari-
ables 𝑋̃1, 𝑋̃2, . . . , 𝑋̃𝑛, whose variances are the fuzzy numbers𝜎̃2𝑋1 , 𝜎̃2𝑋2 , . . . , 𝜎̃2𝑋𝑛 , respectively. Then 𝜎̃2𝑈[𝛼] = ∑𝑛𝑗=1 𝑎2𝑗 𝜎̃2𝑋𝑗[𝛼].
Definition 8 (ranking function [23, 24]). The ranking func-
tion is defined on a set of real numbers (𝑅), which maps each
fuzzy number into the real line, where a natural order exists;
that is,𝑅 : 𝐹(𝑅) → 𝑅, where𝐹(𝑅) is a set of fuzzy numbers. To
calculate the triangular weights, ranking function is effective.
Let 𝑎̃ = (𝑎, 𝑏, 𝑐) be a triangular fuzzy number. We define a
standard ranking function as 𝑅(𝑎̃) = (𝑎 + 2 ∗ 𝑏 + 𝑐)/4.
Definition 9 (weighted sum method [28]). This method can
be interpreted by some positive weights or priority assigned
to the objective criterion by the decision maker. Here we
express the weighted summethod by multiplying the weights
by the users, each supplied in the objective, and the weights
are chosen in a way such that their sum is one; that is,

optimize
𝑛∑
𝑖=1

𝑤𝑖𝑓𝑖 (𝑥) , 𝑤𝑖 ∈ [0, 1] , 𝑥 ∈ 𝑋 (2)

such that ∑𝑛𝑖=1 𝑤𝑖 = 1, where 𝑤𝑖 are the weights of the 𝑖th
objective functions.

Definition 10 (fuzzy normal distribution [15]). A normal
fuzzy random variable 𝑁(𝑚̃, 𝜎̃2) is a normally distributed
random variable with fuzzy mean 𝑚̃ and fuzzy variance 𝜎̃2
as fuzzy parameters. Let 𝑁(𝑚, 𝜎2) denote the crisp normal
random variable with mean 𝑚 and variance 𝜎2 and let𝑓(𝑥,𝑚, 𝜎2) be the density function of the crisp normal
distribution where

𝑓 (𝑥,𝑚, 𝜎2) = 1√2𝜋𝜎𝑒−(𝑥−𝑚)
2/2𝜎2 , 𝜎 > 0, (3)
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so (1/√2𝜋𝜎) ∫∞
−∞

𝑒−(𝑥−𝑚)2/2𝜎2𝑑𝑥 = 1. Now the fuzzy proba-
bility of the FRV 𝑋̃ on the interval [𝑐, 𝑑] is a fuzzy number
whose 𝛼-cut is
𝑃̃ (𝑐 ≤ 𝑋̃ ≤ 𝑑) [𝛼] = { 1√2𝜋𝜎 ∫

𝑑

𝑐
𝑒−(𝑥−𝑚)2/2𝜎2𝑑𝑥 | 𝑚

∈ 𝑚̃ [𝛼] , 𝜎2 ∈ 𝜎̃2 [𝛼]} = { 1√2𝜋 ∫
𝑧2

𝑧1

𝑒−𝑧2/2𝑑𝑧 | 𝑚
∈ 𝑚̃ [𝛼] , 𝜎2 ∈ 𝜎̃2 [𝛼]} ,

(4)

where 𝑧1 = (𝑐 − 𝑚)/𝜎 and 𝑧2 = (𝑑 − 𝑚)/𝜎.
Definition 11 (fuzzy exponential distribution [15]). Let 𝑋̃ be a
exponentially distributed fuzzy random variable with density
function 𝑓(𝑥, 𝜆̃) being a fuzzy set and its 𝛼-cut is

𝑓 (𝑥; 𝜆̃) [𝛼] = {𝜆̃𝑒−𝜆̃𝑥 | 𝜆 ∈ 𝜆̃ (𝛼)} . (5)

Now the fuzzy probability of 𝑋̃ on the interval [𝑐, 𝑑] is a fuzzy
number and denoted by 𝑃̃(𝑐 ≤ 𝑋̃ ≤ 𝑑), where 𝑃∗(𝛼) =
min{∫𝑑

𝑐
𝜆𝑒−𝜆𝑥𝑑𝑥 | 𝜆 ∈ 𝜆̃[𝛼]} and 𝑃∗(𝛼) = max{∫𝑑

𝑐
𝜆𝑒−𝜆𝑥𝑑𝑥 |𝜆 ∈ 𝜆̃[𝛼]}.

Definition 12 (Fuzzy Chance Constrained Programming
problem (FCCP) [26]). A general chance constraint pro-
gramming problem CCP is of the following form:

(CCP): Optimize
𝑘∑
𝑗=1

𝑐𝑗𝑥𝑗
Subject to 𝑃( 𝑘∑

𝑗=1

𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖) ⪰ 𝛾𝑖
𝑘∑
𝑗=1

𝑏𝑙𝑗𝑥𝑗 ≥ ℎ𝑙
𝑥𝑗 ≥ 0,
𝑏𝑙𝑗, ℎ𝑙 ∈ 𝑅,
𝑖 = 1, 2, . . . , 𝑚,
𝑙 = 1, 2, . . . , 𝑛,
0 ≤ 𝛾𝑖 ≤ 1,

(6)

where at least one of 𝑎𝑖𝑗, 𝑐𝑗, and 𝑏𝑖 is treated as random
variable.

So FCCP is a CCP given as above form where at least one
of 𝑎𝑖𝑗, 𝑐𝑗, and 𝑏𝑖 is treated as FRV.

3. Mathematical Formulation

Notations used in the proposed model are presented in
Notations section.

3.1. Assumptions. We imposed the following assumptions to
develop the model.

(i) For all 𝑗, 𝐷̃𝑗 are independent fuzzy random variables
whose mean 𝜇̃𝐷 are triangular fuzzy numbers.

(ii) For all 𝑗, 𝑊̃𝑗 are independent fuzzy random variables
whose mean 𝜇̃𝑊 and variance 𝜎̃2𝑊 are triangular fuzzy
numbers.

(iii) The time period is precise for all 𝑗, that is, single
period.

(iv) The decision maker’s order quantity 𝑄𝑗 is optimal for
all products at the beginning of the period.

(v) At the end of the season the leftover items are
salvaged.

(vi) The lost sales penalty cost is zero.

3.2. Single-Period Inventory Fuzzy Probabilistic Model
(SPIFPM). The profit function𝑍𝑗 associated with each order
quantity 𝑄𝑗 and fuzzy demand 𝐷̃𝑗 is given as follows:

𝑍𝑗 (𝑄𝑗, 𝐷̃𝑗) = 𝑝𝑗min {𝑄𝑗, 𝐷̃𝑗} + 𝑠𝑗max {𝑄𝑗 − 𝐷̃𝑗, 0}
− 𝑐𝑗𝑄𝑗; 𝑗 = 1, 2, . . . , 𝑘. (7)

Here two situations are explored to discuss the profit func-
tion, that is, overstock situation (𝐷̃𝑗 ≤ 𝑄𝑗) and understock
situation (𝐷̃𝑗 ≥ 𝑄𝑗). Then the above equation boils down to
the following form:

𝑍𝑗 (𝑄𝑗, 𝐷̃𝑗)
= {{{{{

𝑍̃𝑗 (𝑄𝑗, 𝐷̃𝑗) = (𝑝𝑗 − 𝑠𝑗) 𝐷̃𝑗 + (𝑠𝑗 − 𝑐𝑗)𝑄𝑗, 𝐷̃𝑗 ≤ 𝑄𝑗
𝑍̃𝑗 (𝑄𝑗, 𝐷̃𝑗) = (𝑝𝑗 − 𝑐𝑗)𝑄𝑗, 𝐷̃𝑗 ≥ 𝑄𝑗,

(8)

where 𝑍𝑗 and 𝑍𝑗 are profit functions for each product in
overstock and understock situations, respectively. Due to
fuzziness of demand 𝐷̃𝑗, we get either a fuzzy overstock profit𝑍̃𝑗(𝑄𝑗, 𝐷̃𝑗) or a fuzzy understock profit 𝑍̃𝑗(𝑄𝑗, 𝐷̃𝑗). Hence
the total expected profit 𝑍̃𝑗(𝑄𝑗, 𝐷̃𝑗) corresponding to both
overstock and understock situations is given as follows:

𝑍̃𝑗 (𝑄𝑗, 𝐷̃𝑗) = 𝑍̃𝑗 (𝑄𝑗, 𝐷̃𝑗) ∪ 𝑍̃𝑗 (𝑄𝑗, 𝐷̃𝑗) . (9)
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Thus a multi-item SPIFPM subject to a storage space chance
constraint with a confidence level 𝛾 can be stated as follows:

(SPIFPM): Maximize 𝑍̃ (𝑄1, 𝑄2, . . . , 𝑄𝑘)
= 𝑘∑
𝑗=1

𝑍̃𝑗 (𝑄𝑗, 𝐷̃𝑗)

subject to 𝑃̃ ( 𝑘̃∑
𝑗=1

𝑎𝑗𝑄𝑗 ≤ 𝑊̃) ⪰ 𝛾̃
𝑄𝑗 ≥ 0
for 𝑗 = 1, 2, . . . , 𝑘.

(10)

In the above model, we consider demand 𝐷̃𝑗 as a FRV
present in the objective function and the total storage space𝑊̃ are independent FRVs present in the constraint distributed
normally and exponentially.

4. Transformation Technique

4.1. Crisp Equivalent of the Fuzzy Objective Function. In
SPIM, the defined resultant profit function is fuzzy, since the
customer demand for each product is imprecise. Now our

objective is to convert the fuzzy model to crisp model. Using
the weighted function to the profit function, we have

𝑍̃𝑗 (𝑄𝑗, 𝐷̃𝑗) = 𝜔𝑍̃𝑗 (𝑄𝑗, 𝐷̃𝑗) + (1 − 𝜔) 𝑍̃𝑗 (𝑄𝑗, 𝐷̃𝑗) 󳨐⇒
𝑍̃𝑗 (𝑄𝑗, 𝐷̃𝑗) = 𝜔[[

𝑘∑
𝑗=1

(𝑝𝑗 − 𝑠𝑗) 𝐷̃𝑗 + (𝑠𝑗 − 𝑐𝑗)𝑄𝑗]]
+ (1 − 𝜔)[[

𝑘∑
𝑗=1

(𝑝𝑗 − 𝑐𝑗)𝑄𝑗]] .
(11)

Here 𝐷̃𝑗 are FRVs whose mean 𝑚𝐷𝑗 are triangular fuzzy
numbers. To make it crisp apply the ranking function as𝑅(𝑚𝐷𝑗) = (𝑚𝐷𝑗 +2𝑚𝐷𝑗 +𝑚𝐷𝑗)/4. So the above profit function
becomes

𝑍̃𝑗 (𝑄𝑗, 𝐷̃𝑗) = 𝜔[[[
𝑘∑
𝑗=1

(𝑝𝑗 − 𝑠𝑗) (𝑚𝐷𝑗 + 2𝑚𝐷𝑗 + 𝑚𝐷𝑗)4

+ (𝑠𝑗 − 𝑐𝑗)𝑄𝑗]]]
+ (1 − 𝜔)[[

𝑘∑
𝑗=1

(𝑝𝑗 − 𝑐𝑗)𝑄𝑗]] .
(12)

Therefore the crisp equivalent of the objective function is as
follows:

Maximize 𝜔[[
[
𝑘∑
𝑗=1

(𝑝𝑗 − 𝑠𝑗) (𝑚𝐷𝑗 + 2𝑚𝐷𝑗 + 𝑚𝐷𝑗)4 + (𝑠𝑗 − 𝑐𝑗)𝑄𝑗]]]
+ (1 − 𝜔)[[

𝑘∑
𝑗=1

(𝑝𝑗 − 𝑐𝑗)𝑄𝑗]] .
(13)

4.2. Crisp Equivalent of the Fuzzy Chance Constraint. The
following results are proved to convert the fuzzy chance
constraint to a deterministic form.

Theorem 13 (Case 1 (𝑊̃ is normally distributed fuzzy random
variable)). If 𝑊̃ is a normally distributed FRV, 𝑎𝑗 ∈ 𝑅
and, with predetermined confidence level 𝛾, the inequality𝑃̃(∑𝑘𝑗=1 𝑎𝑗𝑄𝑗 ≤ 𝑊̃) ⪰ 𝛾̃ is equivalent to

𝑘∑
𝑗=1

𝑎𝑗𝑄𝑗 ≤ 𝜇𝑊∗ (𝛼) + 𝜎𝑊∗ (𝛼) 𝐹−1 (1 − 𝛾∗ (𝛼)) (14)

for 𝛼 ∈ [0, 1] and 𝐹 is the cumulative distribution function of𝑁(0, 1) distribution.
Proof. Let us consider the constraint of the model as follows:

𝑃̃ ( 𝑘∑
𝑗=1

𝑎𝑗𝑄𝑗 ≤ 𝑊̃) ⪰ 𝛾̃, 𝑎𝑗 ∈ 𝑅, (15)

where 𝑊̃ is a normally distributed FRV whose mean and
variance are fuzzy numbers denoted by 𝜇̃𝑊 and 𝜎̃2𝑊 and
their 𝛼-cuts are 𝜇̃𝑊[𝛼] = [𝜇𝑊∗(𝛼), 𝜇∗𝑊(𝛼)] and 𝜎̃2𝑊[𝛼] =[𝜎2𝑊∗(𝛼), 𝜎2𝑊∗(𝛼)], respectively. The 𝛼-cut of 𝛾̃ is 𝛾̃[𝛼] =[𝛾∗(𝛼), 𝛾∗(𝛼)].

Let ∑𝑘𝑗=1 𝑎𝑗𝑄𝑗 = 𝑈. Here 𝑈 is a real number, since 𝑎𝑗,𝑗 = 1, 2, . . . , 𝑘, are real numbers. Then the above inequality
can be written as 𝑃(𝑈 ≤ 𝑊̃) ⪰ 𝛾̃. Here 𝑊̃ is a FRV whose
mean and variance are the fuzzy numbers 𝜇̃𝑊 and 𝜎̃2𝑊, which
can be computed from the crisp random variable𝑊, that is,𝑊 ∈ 𝑊̃[𝛼]. That means 𝜇𝑊 ∈ 𝜇̃𝑊[𝛼] and 𝜎2𝑊 ∈ 𝜎̃2𝑊[𝛼] which
satisfy (1/√2𝜋𝜎𝑊) ∫∞−∞ 𝑒−(𝑊−𝜇𝑊)2/2𝜎2𝑊𝑑𝑊 = 1.

Now the 𝛼-cut of the probability 𝑃̃(∑𝑘𝑗=1 𝑎𝑗𝑄𝑗 ≤ 𝑊̃) is
𝑃̃ ( 𝑘∑
𝑗=1

𝑎𝑗𝑄𝑗 ≤ 𝑊̃) [𝛼] = {𝑃 (𝑈 ≤ 𝑊) | 𝜇𝑊
∈ 𝜇̃𝑊 [𝛼] , 𝜎2𝑊 ∈ 𝜎̃2𝑊 [𝛼]} = {1 − 𝑃 (𝑊 ≤ 𝑈) | 𝜇𝑊
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∈ 𝜇̃𝑊 [𝛼] , 𝜎2𝑊 ∈ 𝜎̃2𝑊 [𝛼]} = {1
− 1√2𝜋𝜎𝑊 ∫

𝑈

−∞
𝑒−(𝑊−𝜇𝑊)2/2𝜎2𝑊𝑑𝑊 | 𝜇𝑊

∈ 𝜇̃𝑊 [𝛼] , 𝜎2𝑊 ∈ 𝜎̃2𝑊 [𝛼]} .
(16)

Let 𝑉 = (𝑊 − 𝜇𝑊)/𝜎𝑊. Then

𝑃̃ ( 𝑘∑
𝑗=1

𝑎𝑗𝑄𝑗 ≤ 𝑊̃) [𝛼] = {1
− 1√2𝜋 ∫

(𝑈−𝜇𝑊)/𝜎𝑊

−∞
𝑒−𝑉2/2𝑑𝑉 | 𝜇𝑊 ∈ 𝜇̃𝑊 [𝛼] , 𝜎2𝑤

∈ 𝜎̃2𝑤 [𝛼]} = {1 − 𝐹(𝑈 − 𝜇𝑊𝜎𝑊 ) | 𝜇𝑊
∈ 𝜇̃𝑊 [𝛼] , 𝜎2𝑊 ∈ 𝜎̃2𝑊 [𝛼]} ,

(17)

where 𝐹 is the cumulative distribution function of 𝑁(0, 1)
distribution which is an increasing function. So

min{1 − 𝐹(𝑈 − 𝜇𝑊𝜎𝑊 ) | 𝜇𝑊 ∈ 𝜇̃𝑊 [𝛼] , 𝜎2𝑊
∈ 𝜎̃2𝑊 [𝛼]} = 1 − 𝐹(𝑈 − 𝜇𝑊∗ (𝛼)𝜎𝑊∗ (𝛼) ) ,

max{1 − 𝐹(𝑈 − 𝜇𝑊𝜎𝑊 ) | 𝜇𝑊 ∈ 𝜇̃𝑊 [𝛼] , 𝜎2𝑊
∈ 𝜎̃2𝑊 [𝛼]} = 1 − 𝐹(𝑈 − 𝜇∗𝑊 (𝛼)𝜎∗𝑊 (𝛼) ) .

(18)

So

𝑃̃ ( 𝑘∑
𝑗=1

𝑎𝑗𝑄𝑗 ≤ 𝑊̃) [𝛼]
= [1 − 𝐹(𝑈 − 𝜇𝑊∗ (𝛼)𝜎𝑊∗ (𝛼) ) , 1 − 𝐹(𝑈 − 𝜇∗𝑊 (𝛼)𝜎∗𝑊 (𝛼) )] .

(19)

Using the Inequality law due toNanda et al. [9], the constraint𝑃̃(∑𝑘𝑗=1 𝑎𝑗𝑄𝑗 ≤ 𝑊̃) ⪰ 𝛾̃ becomes

1 − 𝐹(𝑈 − 𝜇𝑊∗ (𝛼)𝜎𝑊∗ (𝛼) ) ≥ 𝛾∗ (𝛼) 󳨐⇒
𝑘∑
𝑗=1

𝑎𝑗𝑄𝑗 ≤ 𝜇𝑊∗ (𝛼) + 𝜎𝑊∗ (𝛼) 𝐹−1 (1 − 𝛾∗ (𝛼)) .
(20)

Hence the proof is complete.

Therefore, finally the SPIFPM is transformed to an
equivalent single-period inventory crisp model (SPICM) as
follows:

(SPICM): Maximize 𝜔[[
[
𝑘∑
𝑗=1

(𝑝𝑗 − 𝑠𝑗) (𝑚𝐷𝑗 + 2𝑚𝐷𝑗 + 𝑚𝐷𝑗)4 + (𝑠𝑗 − 𝑐𝑗)𝑄𝑗]]]
+ (1 − 𝜔)[[

𝑘∑
𝑗=1

(𝑝𝑗 − 𝑐𝑗)𝑄𝑗]]
Subject to

𝑘∑
𝑗=1

𝑎𝑗𝑄𝑗 ≤ 𝜇𝑊∗ (𝛼) + 𝜎𝑊∗ (𝛼) 𝐹−1 (1 − 𝛾∗ (𝛼))
𝑄𝑗 ≥ 0
for 𝛼 ∈ [0, 1] ,𝑗 = 1, 2, . . . , 𝑘.

(21)

Theorem 14 (Case 2 (𝑊̃ follows fuzzy exponential distribu-
tion)). If 𝑊̃ is an exponentially distributed FRV with fuzzy
parameter 𝜆̃, 𝑎𝑗 ∈ 𝑅, then 𝑃̃(∑𝑘𝑗=1 𝑎𝑗𝑄𝑗 ≤ 𝑊̃) ⪰ 𝛾̃ is equivalent
to 𝑒−𝜆∗(𝛼)𝑈 ≥ 𝛾∗(𝛼) for each 𝛼 ∈ [0, 1], where 𝜆̃[𝛼] =[𝜆∗(𝛼), 𝜆∗(𝛼)].
Proof. The 𝛼-cut of the fuzzy probability 𝑃̃(∑𝑘𝑗=1 𝑎𝑗𝑄𝑗 ≤ 𝑊̃)
is

𝑃̃ ( 𝑘∑
𝑗=1

𝑎𝑗𝑄𝑗 ≤ 𝑊̃) [𝛼] = {𝑃 (𝑈 ≤ 𝑊) | 𝑊 ∈ 𝑊̃ [𝛼]}
= {∫∞
𝑈
𝜆𝑒−𝜆𝑊𝑑𝑊 | 𝜆 ∈ 𝜆̃ [𝛼]}

= {𝑒−𝜆𝑈 | 𝜆∗ (𝛼) ≤ 𝜆 ≤ 𝜆∗ (𝛼)} = [𝑃∗ (𝛼) , 𝑃∗ (𝛼)]
(say) ,

(22)

where 𝑃∗(𝛼) and 𝑃∗(𝛼) are the solutions of the optimization
problems

minimize
𝜆∗(𝛼)≤𝜆≤𝜆

∗(𝛼)
𝑒−𝜆𝑈,

maximize
𝜆∗(𝛼)≤𝜆≤𝜆

∗(𝛼)
𝑒−𝜆𝑈, (23)

respectively.
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Here 𝑒−𝜆𝑈 attains its minimum at 𝜆∗(𝛼) and maximum
at 𝜆∗(𝛼), since 𝑒−𝜆𝑈 is a decreasing function of 𝜆. That is,
min 𝑒−𝜆𝑈 = 𝜆∗(𝛼) and max 𝑒−𝜆𝑈 = 𝜆∗(𝛼).

Hence

𝑃̃ ( 𝑘∑
𝑗=1

𝑎𝑗𝑄𝑗 ≤ 𝑊̃) [𝛼] = [𝑒−𝜆∗(𝛼)𝑈, 𝑒−𝜆∗(𝛼)𝑈] . (24)

Therefore the deterministic equivalent of the fuzzy chance
constraint

𝑃̃ ( 𝑘∑
𝑗=1

𝑎𝑗𝑄𝑗 ≤ 𝑊̃) ⪰ 𝛾̃
becomes 𝑒−𝜆∗(𝛼)𝑈 ≥ 𝛾∗ (𝛼) .

(25)

5. Numerical Example

Let us consider a SPIFPM to illustrate the effectiveness of the
above approach with the following data:

(SPIFPM): Maximize [
[
2∑
𝑗=1

(𝑝𝑗 − 𝑠𝑗) 𝐷̃𝑗 + (𝑠𝑗 − 𝑐𝑗)𝑄𝑗]]
∪ [[
2∑
𝑗=1

(𝑝𝑗 − 𝑐𝑗)𝑄𝑗]]
Subject to 𝑃̃ (4𝑄1 ⊕ 3𝑄2 ≤ 𝑊̃) ⪰ 0̃.5

𝑄1 ≥ 0,
𝑄2 ≥ 0,

(26)

where the other data for multi-items is given in Table 1.
Here 𝐷̃1, 𝐷̃2 are independent normally distributed FRVs

with mean 𝜇̃𝐷1 , 𝜇̃𝐷2 being fuzzy numbers. Also 𝑊̃ are
independent normally distributed FRVs with mean 𝜇̃𝑊 and
variance 𝜎̃2𝑊 as fuzzy numbers and 0̃.5 is also a fuzzy number.
All these fuzzy numbers are assumed to be linear triangular
as follows: 𝜇̃𝐷1 = ⟨200/300/400⟩, 𝜇̃𝐷2 = ⟨700/800/900⟩,𝜇̃𝑊 = ⟨2000/2010/2020⟩, 𝜎̃2𝑊 = ⟨300/400/500⟩, and 0̃.5 =⟨0.4/0.5/0.6⟩.
5.1. Solution. Initially applying the weighted sum method to
the objective function, we can write

Maximize 𝑍̃ (𝑄1, 𝑄2)
= 𝜔[[

2∑
𝑗=1

(𝑝𝑗 − 𝑠𝑗) 𝐷̃𝑗 + (𝑠𝑗 − 𝑐𝑗)𝑄𝑗]]
+ (1 − 𝜔)[[

2∑
𝑗=1

(𝑝𝑗 − 𝑐𝑗)𝑄𝑗]] .
(27)

Table 1

Product name 𝑐𝑗 𝑝𝑗 𝑠𝑗 𝑎𝑗
Product 1 30 34 28 4
Product 2 40 43 35 3

Let 𝜔 = 0.6 and using the above cost data to the above
expression we have

Maximize 𝑍̃ (𝑄1, 𝑄2)
= 0.4𝑄1 − 1.8𝑄2 + 3.6𝐷̃1 + 4.8𝐷̃2. (28)

Here 𝐷̃1, 𝐷̃2 are FRVs whose mean 𝜇̃𝐷1 , 𝜇̃𝐷2 are triangular
fuzzy numbers with the 𝛼-cuts being

𝜇̃𝐷1 [𝛼] = [200 + 100𝛼, 400 − 100𝛼] ,
𝜇̃𝐷2 [𝛼] = [700 + 100𝛼, 900 − 100𝛼] . (29)

Applying the ranking function to the above objective function
we have

Maximize 𝑍̃ (𝑄1, 𝑄2)
= 0.4𝑄1 − 1.8𝑄2 + 3.6𝑅 (𝑚̃𝐷1)
+ 4.8𝑅 (𝑚̃𝐷2) .

(30)

Hence the crisp equivalent of the objective function takes the
following form:

Maximize 0.4𝑄1 − 1.8𝑄2 + 4920. (31)

Now let us consider the constraint 𝑃̃(4𝑄1 + 3𝑄2 ≤ 𝑊̃) ⪰ 0̃.5.
We can convert this constraint to its deterministic form as 𝑊̃
follows normal and exponential distribution.

Case 1 (𝑊̃ is normally distributed fuzzy random variable).
As the mean 𝜇̃𝑊, variance 𝜎̃2𝑊 and 0̃.5 are triangular fuzzy
numbers; their 𝛼-cuts are

𝜇̃𝑊 [𝛼] = [2000 + 10𝛼, 2020 − 10𝛼] ,
𝜎̃2𝑊 = [300 + 100𝛼, 500 − 100𝛼] ,

0̃.5 [𝛼] = [0.4 + 𝛼, 0.6 − 𝛼] .
(32)

Let 4𝑄1 +3𝑄2 = 𝑈. So the constraint is given by 𝑃̃(𝑈 ≤ 𝑊̃) ⪰0̃.5. Using the above theorem result, the 𝛼-cut of 𝑃̃(𝑈 ≤ 𝑊̃)
becomes

𝑃̃ (𝑈 ≤ 𝑊̃) [𝛼]
= [1 − 𝐹(𝑈 − 𝜇𝑊∗ (𝛼)𝜎𝑊∗ (𝛼) ) , 1 − 𝐹(𝑈 − 𝜇∗𝑊 (𝛼)𝜎∗𝑊 (𝛼) )] . (33)

So the crisp conversion of the constraint is

1 − 𝐹(𝑈 − 𝜇𝑊∗ (𝛼)𝜎𝑊∗ (𝛼) ) ≥ 0.6 − 0.1𝛼 (34)
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which can be further simplified as

𝑈 − 𝜇𝑊∗ (𝛼) ≤ 𝜎𝑊∗ (𝛼) 𝐹−1 (0.6 + 0.1𝛼) 󳨐⇒
4𝑄1 + 3𝑄2 ≤ 5 + 𝛼 + (√3 + 𝛼)𝐹−1 (0.4 + 0.1𝛼) . (35)

Hence the crisp equivalent, that is, SPICM of the original
SPIFPM, takes the following form:

(SPICM): Maximize 0.4𝑄1 − 1.8𝑄2 + 4920
Subject to 4𝑄1 + 3𝑄2

≤ 5 + 𝛼
+ (√3 + 𝛼)𝐹−1 (0.4 + 0.1𝛼)

𝑄1 ≥ 0,
𝑄2 ≥ 0.

(36)

Now 𝐹−1(0.4 + 0.1𝛼) can be found from the normal distri-
bution table. For each 𝛼 there exists a solution of the above
problem. For example, if 𝛼 = 0.4, then SPICM reduces to the
following nonlinear programming problem:

(SPICM): Maximize 0.4𝑄1 − 1.8𝑄2 + 4920
Subject to (4𝑄1 + 3𝑄2 − 2004)2

≤ 7.75234
𝑄1 ≥ 0,
𝑄2 ≥ 0.

(37)

Using any optimization software its local solution can be
determined. Here we have solved this by using LINGO and
its solution is𝑄1 = 501.6959 and𝑄2 = 0 and the correspond-
ing objective value is 5120.678. Each value of 𝛼 gives a corres-
ponding solution.

Case 2 (𝑊̃ follows fuzzy exponential distribution). Let 𝑊̃ be
an exponential FRV with the parameter 𝜆̃ = ⟨1000, 1500,2000⟩ having 𝛼-cut as 𝜆̃[𝛼] = [1000+500𝛼, 2000−500𝛼]. Let4𝑄1+3𝑄2 = 𝑈. So the constraint is given by 𝑃̃(𝑈 ≤ 𝑊̃) ⪰ 0̃.5.
Using theorem, the crisp conversion of the constraint is

exp (− (2000 − 500𝛼) (4𝑄1 + 3𝑄2)) ≥ 0.6 − 0.1𝛼. (38)

Hence the crisp equivalent, that is, SPICM of the original
SPIFPM, takes the following form:

(SPICM): Maximize 0.4𝑄1 − 1.8𝑄2 + 4920
Subject to exp (− (2000 − 500𝛼) (4𝑄1 + 3𝑄2))

≥ 0.6 − 0.1𝛼
𝑄1 ≥ 0,
𝑄2 ≥ 0.

(39)

For each 𝛼 there exists a solution of the above problem. For
example, if 𝛼 = 0.4, then SPICM reduces to the following
nonlinear programming problem:

(SPICM): Maximize 0.4𝑄1 − 1.8𝑄2 + 4920
Subject to exp (−1800 (4𝑄1 + 3𝑄2))

≥ 0.56
𝑄1 ≥ 0,
𝑄2 ≥ 0.

(40)

Using any optimization software its local solution can be
determined. Here we have solved this by using LINGO and
its solution is 𝑄1 = 0.8053035𝐸 − 04 and 𝑄2 = 0 and the
corresponding objective value is 4920. Each value of 𝛼 gives
a corresponding solution.

6. Conclusion

This paper presents a solution procedure for solving SPIFPM
in which the the storage space in the constraint is a FRV
considered under two cases, that is, normal distribution
and exponential distribution. Also the demand is a FRV
whose mean and variance are fuzzy numbers in the objective
function of the given model. Initially some theorems are
proposed to transform the fuzzy model into an equivalent
crisp model. Then the resultant model is solved by using the
LINGO software. When the storage space in the constraint
is normally distributed, then the optimal solution is 𝑄1 =501.6959 and 𝑄2 = 0 and the corresponding objective
value is 5120.678 and for exponentially distributed random
variable its solution is 𝑄1 = 0.8053035𝐸 − 04 and 𝑄2 = 0
and the corresponding objective value is 4920 for one value
of 𝛼. However, more approximate solution can be obtained
by taking more numbers of values of 𝛼. For the future
scope of the present work, triangular fuzzy number can be
replaced by other fuzzy numbers and the demand for each
items can be considered as other types of nonindependent
FRVs instead of normally distributed independent FRVs.
A multiconstrained optimization model can be developed
of our present work and our model can be extended to
other mathematical models. To analyze the effect of changes
in the optimal solution with respect to change in various
parameters, sensitivity analysis can be carried out.

Notations

𝑄𝑗: Order quantity for item 𝑗𝐷̃𝑗: Demand as a fuzzy random variable for item 𝑗𝑐𝑗: Purchase cost per unit of item 𝑗𝑝𝑗: Selling price per unit of item 𝑗𝑠𝑗: Salvage value per unit of item 𝑗𝑎𝑗: Area required for each unit of item 𝑗𝑍̃𝑗: Fuzzy profit function for product 𝑗𝑍̃: Fuzzy total profit function for all products𝑊̃: Available storage space, a fuzzy random variable.
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