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Abstract In practice, the supplier often offers the retail-

ers a trade credit period M and the retailer in turn provides

a trade credit period N to her/his customer to stimulate

sales and reduce inventory. From the retailer’s perspective,

granting trade credit not only increases sales and revenue

but also increases opportunity cost (i.e., the capital op-

portunity loss during credit period) and default risk (i.e.,

the percentage that the customer will not be able to pay off

his/her debt obligations). Hence, how to determine credit

period is increasingly recognized as an important strategy

to increase retailer’s profitability. Also, the selling items

such as fruits, fresh fishes, gasoline, photographic films,

pharmaceuticals and volatile liquids deteriorate con-

tinuously due to evaporation, obsolescence and spoilage. In

this paper, we propose an economic order quantity model

for the retailer where (1) the supplier provides an up-stream

trade credit and the retailer also offers a down-stream trade

credit, (2) the retailer’s down-stream trade credit to the

buyer not only increases sales and revenue but also op-

portunity cost and default risk, and (3) the selling items are

perishable. Under these conditions, we model the retailer’s

inventory system as a profit maximization problem to de-

termine the retailer’s optimal replenishment decisions un-

der the supply chain management. We then show that the

retailer’s optimal credit period and cycle time not only

exist but also are unique. We deduce some previously

published results of other researchers as special cases.

Finally, we use some numerical examples to illustrate the

theoretical results.

Keywords EOQ � Inventory � Deteriorating items � Trade

credit

Introduction

In the classical economic order quantity (EOQ) inventory

model, it was assumed that the retailer must pay for the items

immediately after the items are received. However, in

practice, the retailer usually provides to his/her customer a

permissible delay in payments to attract new customers to

stimulate sales and reduce inventory. During the credit pe-

riod, the retailer can accumulate the revenue on sales and

earn interest on the accumulative revenue via share market

investment or banking business. However, if the customer

cannot pay off the purchase amount during the credit period

then the retailer charges to the customer interest on the un-

paid balance. The permissible delay in payments produces

two benefits to the supplier: (1) it attracts new customers who

consider trade credit policy to be a type of price reduction;

and (2) it may be applied as an alternative to price discount

because it does not provoke competitors to reduce their

prices and thus introduce permanent price reductions.

However, the strategy of granting credit terms adds not only

an additional cost but also an additional dimension of default

risk (i.e., the event in which the buyer will be unable to pay

off its debt obligations) to the supplier.

In this regard, a number of research papers appeared which

deal with the EOQ problem under the condition of permissible

delay in payments. Goyal (1985) is the first person to consider

the economic order quantity (EOQ) inventory model under the

condition of trade credit. Chand and Ward (1987) analyzed
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Goyal’s model under assumptions of the classical economic

order quantity model, obtaining different results. Shinn et al.

(1996) extended Goyal (1985) model and considered quantity

discount for freight cost. Hwang and Shinn (1997) developed

the optimal pricing and lot sizing for the retailer under con-

dition of permissible delay in payments. Chung (1998) pre-

sented the DCF (discounted cash flow) approach for the

analysis of the optimal inventory policy in the presence of

trade credit. Liao et al. (2000) developed an EOQ model for

stock-depend demand rate when a delay in payment is per-

missible. Teng (2002) assumed that the selling price is not

equal to the purchasing price to modify Goyal’s model (1985).

Shinn and Hwang (2003) determined the retailer’s optimal

price and order size simultaneously under the condition of

order-size-dependent delay in payments. They assumed that

the length of the credit period is a function of the retailer’s

order size, and also the demand rate is a function of the selling

price. Chung and Haung (2003) extended this problem within

the economic production quantity (EPQ) framework and de-

veloped an efficient procedure to determine the retailer’s op-

timal ordering policy. Chung and Haung (2003) extended

Goyal’s model (1985) to cash discount policy for early pay-

ment. Salameh et al. (2003) extended this issue to the con-

tinuous review inventory model.

However, the perishability of goods is a realistic phe-

nomenon. In real-life situations, there are certain products

such as volatile liquids, medicines, food stuff, blood bank and

materials in which the rate of deterioration due to vaporiza-

tion, damage, spoilage, dryness, etc. is very large. Therefore,

the loss due to deterioration should not be ignored. Aggarwal

and Jaggi (1995) developed inventory model with an expo-

nential deterioration rate under the condition of permissible

delay in payments. Chu et al. (1998) extended Goyal’s (1985)

model to allow for deteriorating items. Chung et al. (2001)

extended this issue to the varying rate of deterioration. Jamal

et al. (1997) and Chang and Dye (2001) extended this issue

with allowable shortage. Liao et al. (2000) and Sarker et al.

(2000) developed a model to determine an optimal ordering

policy for deteriorating items under inflation, permissible

delay in payments and allowable shortage. Chang et al. (2001)

proposed an EOQ model with varying rate of deterioration and

linear trend demand under permissible delay in payments.

Chang et al. (2003) and Chung and Liao (2004) dealt with the

problem of determining the EOQ for exponentially dete-

riorating items under permissible delay in payments depend-

ing on the ordering quantity. Chang (2004) extended this issue

to inflation and finite time horizon. Huang (2004) investigated

that the unit selling price and the unit purchasing price are not

necessarily equal within the EPQ framework under a suppli-

er’s trade credit policy. Shawky and Abou-el-ata (2001) in-

vestigated the production lot-size model with both restrictions

on the average inventory level and trade credit policy using

geometric programming and Lagrange approaches. Mahata

and Goswami (2006) presented a fuzzy EPQ model for dete-

riorating items when delay in payment is permissible. Mishra

et al. (2013) proposed an inventory model for deteriorating

items with time-dependent demand and time-varying holding

cost under partial backlogging. Teng et al. (2005) developed

the optimal pricing and lot sizing under permissible delay in

payments by considering the difference between the selling

price and the purchase cost and demand is a function of price.

Shah and Shah (1998) developed a probabilistic inventory

model when delay in payment is permissible. They developed

an EOQ model for deteriorating items in which time and de-

terioration of units are treated as continuous variables and

demand is a random variable. There are several interesting and

relevant papers related to trade credit such as Jamal et al.

(2000), Arcelus et al. (2003), Abad and Jaggi (2003), Chang

(2004), Chung et al. (2005), Chung and Liao (2006), Mahata

and Goswami (2007), Chung and Huang (2007) and Huang

(2007a) and their references.

All the above inventory models implicitly assumed one-

level trade credit financing, i.e., it is assumed that the

supplier would offer the retailer a delay period and the

retailer could sell the goods and accumulate revenue and

earn interest within the trade credit period. They implicitly

assumed that the customer would pay for the items as soon

as the items are received from the retailer. That is, they

assumed that the supplier would offer the retailer a delay

period but the retailer would not offer any delay period to

his/her customer. In most business transactions, this as-

sumption is unrealistic. Usually the supplier offers a credit

period to the retailer and the retailer, in turn, passes on this

credit period to his/her customers. Recently Huang (2003)

presented an inventory model assuming that the retailer

also permits a credit period to its customer which is shorter

than the credit period offered by the supplier, to stimulate

the demand. Huang (2006) extended Huang (2003) model

to investigate the retailer’s inventory policy under two

levels of trade credit and limited storage space. Mahata and

Goswami (2007) developed an inventory model to deter-

mine an optimal ordering policy for deteriorating items

under two-level trade credit policy in the fuzzy sense.

Huang (2007b) incorporated Huang (2003) model to in-

vestigate the two-level trade credit policy in the EPQ frame

work. Mahata and Mahata (2011) developed a fuzzy eco-

nomic order quantity model for deteriorating items under

retailer partial trade credit financing in a supply chain.

Mahata (2012) proposed an EPQ model for deteriorating

items under retailer partial trade credit policy. Kreng and

Tan (2010) modify Huang (2003) model by developing

optimal wholesaler’s replenishment decisions in the EOQ

model under two levels of trade credit policy depending on

the order quantity. Min et al. (2010) developed an inven-

tory model for deteriorating items under stock-dependent

demand and two-level trade credit. Ho et al. (2008)
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developed an integrated supplier–buyer inventory model

with the assumption that demand is sensitive to retail price

and the supplier adopts a two-part trade credit policy. Liao

(2008) developed an EOQ model with non-instantaneous

receipt and exponentially deteriorating items under two-

level trade credit financing. Tsao (2009) developed an EOQ

model under advance sales discount and two-echelon trade

credits. Teng and Chang (2009) extended the Huang

(2007a) model by relaxing the assumption N\M. Teng

(2009) provided the optimal ordering policies for a retailer

to deal with bad credit customers as well as good credit

customers. Min et al. (2010) proposed an EPQ model under

stock-dependent demand and two-level trade credit. Later,

Kreng and Tan (2011) obtained the optimal replenishment

decision in an EPQ model with defective items under trade

credit policy. After, Teng et al. (2011) obtained the optimal

ordering policy for stock-dependent demand under pro-

gressive payment scheme. Thangam (2014) developed re-

tailer’s inventory system in a two-level trade credit

financing with selling price discount and partial order

cancelations. Further, Teng et al. (2012) extended the de-

mand pattern from constant to increasing in time. Recently,

Ouyang and Chang (2013) built up an EPQ model with

imperfect production process and complete backlogging.

Chen et al. (2013) established the retailer’s optimal EOQ

when the supplier offers conditionally permissible delay in

payments link to order quantity. In all these articles de-

scribed above, the EOQ/EPQ inventory models are studied

only from the perspective of the buyer whereas in practice

the length of the credit period is set by the seller. So far,

how to determine the optimal length of the credit period for

the seller has received very little attention by the re-

searchers such as Chern et al. (2013), and Teng and Lou

(2012). See Table 1 for contribution of deferent authors.

In this paper, we propose an EOQ model for the retailer

to obtain his/her optimal credit period and cycle time

taking into account the following factors: (1) the supplier

grants to the retailer an up-stream trade credit of M years

while the retailer offers a down-stream trade credit of N

years to the buyer, (2) the retailer’s down-stream trade

credit to the buyer not only increases sales and revenue but

also opportunity cost and default risk, and (3) the selling

items are perishable such as fruits, fresh fishes, gasoline

and photographic films. Under these conditions, we for-

mulate the retailer’s objective functions under different

possible cases. Some theorems are developed to determine

Table 1 Contribution of the different authors

References Single-level trade

credit

Two-level trade

credit

Deteriorating

items

Demand Default

risk

Variable

T Q N S

Goyal (1985)
p

C
p p

Aggarwal and Jaggi (1995)
p p

C
p p

Khouja and Mehrez (1996)
p

C
p p

Sarker et al. (2000)
p

C
p p

Huang (2006)
p

C
p p

Chung (2011)
p

C
p p

Ho (2011)
p

C
p p

Mahata (2012)
p p

C
p p

Teng and Goyal (2007)
p

C
p p

Huang and Hsu (2008)
p

C
p p

Thangam and Uthayakumar

(2009)

p
Dðs;NÞ p p p

Jaggi et al. (2012)
p

DðNÞ p p

Jaggi et al. (2008)
p

DðNÞ p p

Singh et al. (2013)
p

Dðs;NÞ p p

Teng et al. (2013)
p

DðtÞ p p

Chung and Cárdenas-Barrón

(2013)

p p
DðIÞ p

Wu and Chan (2014)
p p

C
p p

Teng (2009)
p

C
p p p

Teng and Lou (2012)
p

DðNÞ p p p

This model
p p

DðNÞ p p p

C constant, N credit period, s price, T cycle time, Q ordering quantity, DðIÞ stock-dependent demand, DðNÞ credit period-dependent demand,

Dðs, NÞ price and credit period-dependent demand
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retailer’s optimal ordering policies. By applying concave

fractional programming, we prove that there exists a unique

global optimal solution to the retailer’s replenishment cycle

time. Similarly, using calculus we show that the retailer’s

optimal down-stream credit period not only exists but also

is unique. Furthermore, we deduce some previously pub-

lished results of other researchers as special cases. Finally,

we use some numerical examples to illustrate the theore-

tical results.

Notation and assumptions

The following notation and assumptions are used in the

paper.

Notation

A ordering cost per order

c unit purchasing cost per item

s unit selling price per item of good quality

with s[ c.

h stock-holding cost per unit per year excluding

interest charges

r annual compound interest paid per dollar per

year.

Ie interest earned per dollar per year.

Ic interest charged per dollar per year.

IðtÞ inventory level in units at time t

h constant deterioration rate, where 0� h\1.

M up-stream credit period in years offered by

the supplier.

N down-stream trade credit period in years

offered by the retailer (a decision variable).

D ¼ DðNÞ the market annual demand rate in units which

is a concave and increasing function of N.

T replenishment cycle time in years (a decision

variable).

Q order quantity.

TPðN; TÞ annual total profit, which is a function of N

and T .

N� optimal down-stream credit period in years.

T� optimal replenishment cycle time in years.

TP� optimal annual total profit in dollars.

Assumptions

The following assumptions are made to establish the

mathematical inventory model.

1. The time to deterioration of a product follows an

exponential distribution with parameter h, i.e., the

deterioration rate is a constant fraction of the on-hand

inventory.

2. Similar to the assumption in Chern et al. (2013) and

Teng and Lou (2012), we assume that the demand rate

DðNÞ is a positive exponential function of the retailer’s

down-stream credit period N as DðNÞ ¼ KeaN , where

K and a are positive constants with 0\a\1. For

convenience, DðNÞ and D will be used

interchangeably.

3. The longer the retailer’s down-stream credit period, the

higher the default risk to the retailer. For simplicity, we

may assume that the rate of default risk giving the

retailer’s down-stream credit period N is assumed as

FðNÞ ¼ 1 � e�bN , where b is the coefficient of the

default risk, which is a positive constant.

4. The retailer offers the buyer a credit period of R.

Hence, the retailer’s net revenue received after default

risk and opportunity cost is:

sDðNÞ½1�FðNÞ�e�rN ¼ sKeaNe�bNe�rN ¼ sKe½a�ðbþrÞ�N :

5. If T �M, then the retailer settles the account at time M

and pays for the interest charges on items in stock with

rate Ic over the interval ½M; T �. If T �M, then the

retailer settles the account at time M and there is no

interest charge in stock during the whole cycle. On the

other hand, if M[N, the retailer can accumulate

revenue and earn interest during the period from N to

M with rate Ie under the up-stream and down-stream

trade credit conditions.

6. Replenishment rate is instantaneous.

7. In today’s time-based competition, we may assume

that shortages are not allowed to occur.

Based on the above assumptions and notation, we are ready

to build up the mathematical model.

Mathematical formulation of the model

Let IðtÞ be the inventory level at any time t ð0� t� TÞ.
Initially, the stock level is Q. During the replenishment

cycle ½0; T �, the inventory level is depleted by demand and

deterioration, and hence governed by the following dif-

ferential equation:

dIðtÞ
dt

þ hIðtÞ ¼ �D; 0� t� T ; ð1Þ

with the boundary conditions Ið0Þ ¼ Q and IðTÞ ¼ 0. The

solution of the differential Eq. (1) with the boundary

condition IðTÞ ¼ 0 is
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IðtÞ ¼ D

h
ehðT�tÞ � 1

� �
; 0� t� T: ð2Þ

Using the boundary condition Ið0Þ ¼ Q, the retailer’s order

quantity is

Q ¼ D

h
ehT � 1
� �

: ð3Þ

The retailer’s holding cost (excluding interest charges) per

cycle, denoted by HC, is

HC ¼ h

Z T

0

IðtÞdt ¼ hD

h2
ehT � 1 � hT
� �

: ð4Þ

From the values of N and M, we have two potential cases:

(1) N�M, and (2) N �M. Let us discuss them separately.

Case 1: N �M

Based on the values of M (i.e., the time at which the

retailer must pay off the purchase amount to the supplier to

avoid interest charge) and T þ N (i.e., the time at which the

retailer receives the payment from the last customer), we

have two possible sub-cases. If T þ N[M (i.e., there is an

interest charge), then the retailer pays off all units sold by

M � N at time M, keeps the profits, and starts paying for the

interest charges on the items sold after M � N, which is

shown in Fig. 1. If T þ N�M (i.e., there is no interest

charge), then the retailer receives the total revenue at time

T þ N, and will pay off the total purchase cost at timeM. The

graphical representation of this case is shown in Fig. 2. Now,

let us discuss the detailed formulation in each sub-case.

Sub-case 1-1: M� T þ N

In this sub-case, the supplier’s up-stream credit period

M is shorter than the customer last payment time T þ N.

Hence, the retailer cannot pay off the purchase amount at

time M, and must finance all items sold after time M � N at

an interest charged Ic per dollar per year. As a result, the

interest charged per cycle is ðc=sÞIc times the area of the

triangle BCD as shown in Fig. 1. Notice that (1) the vertical

axis in Figs. 1, 2, 3 represents the cumulative revenue, not

cumulative sale volume, and (2) the slope of the increasing

line in Figs. 1, 2, 3 is sD. Therefore, the interest charged

per year is given by cIcD
2T

ðT þ N �MÞ2
, which is similar to

Eq. (3) in Teng and Lou (2012).

On the other hand, the retailer sells deteriorating items at

time 0, but receives the money at time N. Thus, the retailer

accumulates revenue in an account that earns Ie per dollar per

year from N through M. Therefore, the interest earned per

cycle is Ie multiplied by the area of the triangle NMB as shown

in Fig. 1. Hence, the interest earned per year is similar to

Eq. (4) of Teng and Lou (2012) as sIeD
2T

ðM � NÞ2
.

The retailer’s ordering cost per cycle is A dollars, and

the purchase cost per cycle is cQ dollars. Hence, the re-

tailer’s annual total profit can be expressed as follows:

TP1ðN; TÞ ¼ net annual revenue after default risk and

opportunity cost � annual purchase cost � annual ordering

cost � annual holding cost excluding interest cost � in-

terest charged þ interest earned, i.e.,

TP1ðN; TÞ ¼ sKe½a�ðbþrÞ�N � c
KeaN

hT
ðehT � 1Þ

� A

T
� h

h2T
KeaNðehT � 1 � hTÞ

� cIc

2T
KeaNðT þ N �MÞ2

þ sIe

2T
KeaNðM � NÞ2:

ð5Þ

Next, we discuss the other sub-case in which M� T þ N.

Sub-case 1.2: M� T þ N

In this sub-case, the retailer receives the total revenue at

time T þ N, and is able to pay off the total purchase cost at

Fig. 1 N\M and M� T þ N

Fig. 2 N\M and M[T þ N

Fig. 3 N �M
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time M. Hence, there is no interest charge while the interest

earned per cycle is Ie multiplied by the area of the trapezoid

on the interval ½N;M� as shown in Fig. 2. Consequently, the

retailer’s annual interest earned is

sIeDT
2

2T
þ sIeDTðM � T � NÞ

T
¼ sIeKeaN

�
M � N � T

2

�
:

ð6Þ

Hence, similar to (5), we know that the retailer’s annual total

profit is

TP2ðN; TÞ ¼ sKe½a�ðbþrÞ�N � c
KeaN

hT
ðehT � 1Þ � A

T

� h

h2T
KeaNðehT � 1 � hTÞ

þ sIeKeaN
�
M � N � T

2

�
: ð7Þ

We know from (5) and (7) that

TP1ðN;M � NÞ ¼ TP2ðN;M � NÞ: ð8Þ

Finally, we formulate the retailer’s annual total profit for

the case of N �M below.

Case 2.: N �M

Since N�M, there is no interest earned for the retailer. In

addition, the retailer must finance the entire purchase cost at

time M, and pay off the loan from time N to time T þ N.

Consequently, the interest charged per cycle is ðc=sÞIc multi-

plied by the area of the trapezoid on the interval ½M; T þ N�, as

shown in Fig. 3. Thus, the interest charged per year is given by

cIcD

2
½2ðN �MÞ þ T�: ð9Þ

Hence the retailer’s annual total profit is

TP3ðN; TÞ ¼ sKe½a�ðbþrÞ�N � c
KeaN

hT
ðehT � 1Þ

� A

T
� h

h2T
KeaNðehT � 1 � hTÞ

� cIcKeaN
�
N �M þ T

2

�
: ð10Þ

Therefore, the retailer’s objective is to determine the op-

timal credit period N� and cycle time T� such that the

annual total profit TPiðN; TÞ for i ¼ 1; 2 and 3 is max-

imized. In the next section, we characterize the retailer’s

optimal credit period and cycle time in each case, and then

obtain the conditions in which the optimal T� is in either

T þ N �M or T þ N�M.

Theoretical results and optimal solution

To solve the problem, we apply the existing theoretical

results in concave fractional programming. We know from

Cambini and Martein (2009) that the real value function

hðxÞ ¼ f ðxÞ
gðxÞ ð11Þ

is (strictly) pseudo-concave, if f ðxÞ is non-negative, dif-

ferentiable and (strictly) concave, and gðxÞ is positive,

differential and convex. For any given N, by applying (11),

we can prove that the retailer’s annual total profit

TPiðN; TÞ for i ¼ 1; 2 and 3 is strictly pseudo-concave in T .

As a result, for any given N, there exists a unique global

optimal solution T�
i such that TPiðN; TÞ is maximized.

Similar to Sect. 3, we discuss the case of N�M first, and

then the case of N �M.

Optimal solution for the case of N £ M

By applying the concave fractional programming as in

(11), we can prove that the retailer’s annual total profit

TPiðN; TÞ for i ¼ 1, and 2 is strictly pseudo-concave in T .

Consequently, we have the following theoretical results.

Theorem 1 For any given N,

(a) TP1ðN; TÞ is a strictly pseudo-concave function in T ,

and hence exists a unique maximum solution T�
1 .

(b) If M� T�
1 þ N, then TP1ðN; TÞ is maximized at T�

1 .

(c) If M� T�
1 þ N, then TP1ðN; TÞ is maximized at

M � N.

Proof Let us use (5) to define

f1ðTÞ ¼ sKTe½a�ðbþrÞ�N � c
KeaN

h
ðehT � 1Þ � A

� h

h2
KeaNðehT � 1 � hTÞ

� cIc

2
KeaNðT þ N �MÞ2 þ sIe

2
KeaNðM � NÞ2:

ð12Þ

and

g1ðTÞ ¼ T : ð13Þ

Taking the first-order and second-order derivatives of

f1ðTÞ, we have

df1ðTÞ
dT

¼ sKe½a�ðbþrÞ�N � cKeaNehT � h

h
KeaNðehT � 1Þ

� cIcKeaNðT þ N �MÞ: ð14Þ

and

d2f1ðTÞ
dT2

¼ �
h
ðhþ hcÞehT þ cIc

i
KeaN\0 ð15Þ

Therefore, TP1ðN; TÞ ¼ f1ðTÞ
g1ðTÞ is a strictly pseudo-concave

function in T , which completes the proof of Part (a) of

Theorem 1. The proof of Parts (b) and (c) immediately
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follows from Part (a) of Theorem 1. This completes the

proof of Theorem 1.

To find T�
1 , taking the first-order partial derivative of

TP1ðN; TÞ, setting the result to zero, and re-arranging

terms, we get

oTP1ðN; TÞ
oT

¼ 1

T2

h
Aþ Kðhþ hcÞ

h2
eaN

�
ehT � 1 � hTehT

�

þ cIc

2
KeaNTðN �MÞ þ 1

2
KeaNðcIc � sIeÞðM � NÞ2

i
:

ð16Þ

For any given T , taking the first-order partial derivative of

TP1ðN; TÞ with respect to N, setting the result to zero, and

re-arranging terms, we have

oTP1ðN;TÞ
oN

¼ ½a� ðbþ rÞ�sKe½a�ðbþrÞ�N � ac

hT
KeaNðehT � 1Þ

� ah

h2T
KeaNðehT � 1 � hTÞ

� a

2T
KeaN

n
cIcðT þ N �MÞ2 � sIeðM � NÞ2

o

� K

T
eaN

n
cIcðT þ N �MÞ þ sIeðM � NÞ

o
¼ 0:

ð17Þ

Taking the second-order partial derivative of TP1ðN;TÞ
with respect to N, and re-arranging terms, we obtain

o2TP1ðN;TÞ
oN2

¼½a�ðbþrÞ�2sKe½a�ðbþrÞ�N

�a2c

hT
KeaNðehT�1Þ

� a2h

h2T
KeaNðehT�1�hTÞ

� a2

2T
KeaN

n
cIcðTþN�MÞ2�sIeðM�NÞ2

o

�2aK

T
eaN

n
cIcðTþN�MÞþsIeðM�NÞ

o

�K

T
eaNðcIc�sIeÞ: ð18Þ

To identify whether N�
1 is 0 or positive, let us use (17) to

define the discrimination term

DN1
¼ ½a� ðbþ rÞ�s� ac

hT
ðehT � 1Þ � ah

h2T
ðehT � 1 � hTÞ

� a

2T

n
cIcðT þ N �MÞ2 � sIeðM � NÞ2

o

� 1

T

n
cIcðT þ N �MÞ þ sIeðM � NÞ

o
: ð19Þ

Theorem 2 For any given T [ 0, if

½a� ðbþ rÞ�2s� a2c� 0, and cIc

hn
aðT þ N �MÞ þ 2

o2

�2
i
� sIe

h
2 �

n
2 � aðM � NÞ

o2i
� 0, then we obtain

(a) TP1ðN; TÞ is a strictly concave function in N, and

hence exists a unique maximum solution N�
1 .

(b) If DN1
� 0, then TP1ðN; TÞ is maximized at N�

1 ¼ 0.

(c) If DN1
[ 0, then there exists a unique solution

N�
1 [ 0 such that TP1ðN; TÞ is maximized.

Proof From (17), let us define

BðNÞ ¼ ½a� ðbþ rÞ�sKe½a�ðbþrÞ�N � ac

hT
KeaNðehT � 1Þ

� ah

h2T
KeaNðehT � 1 � hTÞ

� a

2T
KeaN

n
cIcðT þ N �MÞ2 � sIeðM � NÞ2

o

� K

T
eaN

n
cIcðT þ N �MÞ þ sIeðM � NÞ

o
:

ð20Þ

Applying (19) and simplifying (17), we obtain

Bð0Þ ¼ KDN1
ð21Þ

and

lim
N!1

BðNÞ ¼ lim
N!1

KeaN
h
½a� ðbþ rÞ�se�ðbþrÞN

� ac

hT
ðehT � 1Þ � ah

h2T
ðehT � 1 � hTÞ

� sIe

2T
ðM � NÞf2 � aðM � NÞg

� cIc

2T
ðT þ N �MÞf2 � ðT þ N �MÞg

i
:

ð22Þ

Notice that in general both up-stream and down-stream

credit periods are less than a year. Hence, we may assume

without loss of generality that 1 � ðM � N � 1Þ2 � 0.

The fact that T þ N �M, we have

dBðNÞ
dN

¼½a� ðbþ rÞ�2sKe½a�ðbþrÞ�N � a2c

hT
KeaNðehT � 1Þ

� a2h

h2T
KeaNðehT � 1 � hTÞ

� a2

2T
KeaN

n
cIcðT þ N �MÞ2 � sIeðM � NÞ2

o

� 2aK

T
eaN

n
cIcðT þ N �MÞ þ sIeðM � NÞ

o

� K

T
eaNðcIc � sIeÞ: ð23Þ

dBðRÞ
dR

\½a� ðbþ rÞ�2sKeaN � 0, if ½a� ðbþ rÞ�2s� ac � 0

and cIc

hn
aðT þ N �MÞ þ 2

o2

� 2
i
� sIe

h
2 �

n
2�

aðM � NÞ
o2i

� 0.

This completes the proof of Part (a) of Theorem 2.
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If DN1
� 0, then Bð0Þ� 0, BðNÞ\0 for all N[ 0, and

TP1ðN; TÞ is a decreasing function in N. Hence, the

retailer’s optimal down-stream credit period is N�
1 ¼ 0,

which completes the proof of Part (b).

Finally, if DN1
[ 0, then Bð0Þ[ 0, and

limN!1 BðNÞ ¼ �1. By applying the Mean-value Theo-

rem and Part (a) of Theorem 2, we know that there exists a

unique N�
1 [ 0 such that BðN�

1Þ ¼ 0. Consequently,

TP1ðN; TÞ is maximized at the unique point N�
1 [ 0, which

satisfies (17). This completes the proof of Part (c) of

Theorem 2.

Likewise, applying the concave fractional programming

to TP2ðN; TÞ, we obtain the following results:

Theorem 3 For any given N,

(a) TP2ðN; TÞ is a strictly pseudo-concave function in T ,

and hence exists a unique maximum solution T�
2 .

(b) If M� T�
2 þ N, then TP2ðN; TÞ is maximized at T�

2 .

(c) If M� T�
2 þ N, then TP2ðN; TÞ is maximized at

M � N.

Proof Let us use (7) to define

f2ðTÞ ¼ sKTe½a�ðbþrÞ�N � c
KeaN

h
ðehT � 1Þ

� A� h

h2
KeaNðehT � 1 � hTÞ

þ sIeKeaN
�
MT � NT � T2

2

�
: ð24Þ

and

g2ðTÞ ¼ T : ð25Þ

Taking the first-order and second-order derivatives of

f2ðTÞ, we have

df2ðTÞ
dT

¼sKe½a�ðbþrÞ�N � cKeaNehT � h

h
KeaNðehT � 1Þ

þ sIeKeaNðM � N � TÞ
ð26Þ

and

d2f2ðTÞ
dT2

¼ �
h
ðhþ hcÞehT þ sIe

i
KeaN\0: ð27Þ

Therefore, TP2ðN; TÞ ¼ f2ðTÞ
g2ðTÞ is a strictly pseudo-concave

function in T , which completes the proof of Part (a) of

Theorem 3. The proof of Parts (b) and (c) immediately

follows from Part (a) of Theorem 3. This completes the

proof of Theorem 3.

To find T�
2 , taking the first-order partial derivative of

TP2ðN; TÞ, setting the result to zero, and re-arranging

terms, we get

oTP2ðN; TÞ
oT

¼ 1

T2

h
Aþ Kðhþ hcÞ

h2
eaN

�
ehT � 1 � hTehT

�

� sIeT
2

2
KeaN

i
¼ 0:

ð28Þ

To identify which one is the optimal solution (i.e., either T�
1

or T�
2 ), let us define the discrimination term

DT ¼ þKðhþ hcÞ
h2

eaN
�

ehðM�NÞ � 1 � hðM � NÞehðM�NÞ
�

� sIeðM � NÞ2

2
KeaN :

ð29Þ

combining Theorems 1 and 3, and Eq. (8), we can prove

the following theoretical results:

Theorem 4 For any given N,

(a) If DT [ 0, then the retailer’s optimal cycle time is

T�
2 .

(b) If DT ¼ 0, then the retailer’s optimal cycle time is

M � N.

(c) If DT\0, then the retailer’s optimal cycle time is T�
1 .

Proof From (28), let us define

GðTÞ ¼ oTP2ðN; TÞ
oT

¼ 1

T2

h
Aþ Kðhþ hcÞ

h2
eaN

ðehT � 1 � hTehT
�
� sIeT

2

2
KeaN

i
:

ð30Þ

Then we have from (29) that

GðM � NÞ ¼ DT

ðM � NÞ2
: ð31Þ

We have

lim
T!0

GðTÞ ¼ lim
T!0

1

T2

h
Aþ Kðhþ hcÞ

h2
eaN

�
ehT � 1 � hTehT

�

� sIeT
2

2
KeaN

i
¼ 1:

ð32Þ

If DT\0, then GðM � NÞ ¼ DT

ðM�NÞ2 \0. By applying the

Mean-value Theorem and Theorem 2, we know that there

exists a unique T�
2 2 ð0;M � NÞ such that GðT�

2 Þ ¼ 0.

TP2ðTÞ is maximized at the unique point T�
2 , which

satisfies (28).

Let us use (16) to define

JðTÞ ¼ oTP1ðN; TÞ
oT

¼ 1

T2

h
Aþ Kðhþ hcÞ

h2
eaN

�
ehT � 1 � hTehT

�

þ cIc

2
KeaNTðN �MÞ þ 1

2
KeaNðcIc � sIeÞðM � NÞ2

i
:

ð33Þ
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From (29) we get

JðM � NÞ ¼ DT

ðM � NÞ2
\0; if DT\0: ð34Þ

From Theorem 1 and (34), we know that JðTÞ\0 for all

T �M � N. Hence for all T �M � N, TP1ðTÞ is decreas-

ing and maximized at M � N. Using (8), we obtain that if

DT\0, then

TP2ðT�
2 Þ�TP2ðM � NÞ ¼ TP1ðM � NÞ�TP1ðTÞ;

for all T �M � N:
ð35Þ

As a result, if DT\0, then TP2ðN; TÞ is maximized at T�
2 .

Thus, we complete the proof of Part (a) of Theorem 4.

Using the analogous argument, one can prove the rest of

Theorem 3. This completes the proof of Theorem 4.

Next, we discuss the optimal trade credit for TP2ðN; TÞ.
For any given T , taking the first-order partial derivative of

TP2ðN; TÞ with respect to N, setting the result to zero, and

re-arranging terms, we have

oTP2ðN; TÞ
oN

¼ ½a� ðbþ rÞ�sKe½a�ðbþrÞ�N � ac

hT
KeaNðehT � 1Þ

� ah

h2T
KeaNðehT � 1 � hTÞ

þ sIeaKeaN
�
M � N � T

2

�
� sIeKeaN ¼ 0:

ð36Þ

Taking the second-order partial derivative of TP2ðN;TÞ
with respect to N, and re-arranging terms, we obtain

o2TP2ðN; TÞ
oN2

¼ ½a� ðbþ rÞ�2sKe½a�ðbþrÞ�N � a2c

hT
KeaNðehT � 1Þ

� a2h

h2T
KeaNðehT � 1 � hTÞ

þ a2sIeKeaN
�
M � N � T

2

�
� 2asIeKeaN :

ð37Þ

To identify whether N�
2 is 0 or positive, let us use (36) to

define the discrimination term

DN2
¼ ½a� ðbþ rÞ�s� ac

hT
ðehT � 1Þ � ah

h2T
ðehT � 1 � hTÞ

þ sIea
�
M � N � T

2

�
� sIe: ð38Þ

We have the following result.

Theorem 5 For any given T [ 0, if

½a� ðbþ rÞ�2s� a2c� 0, and s
�
M � N � T

2

�
� 2, then we

obtain

(a) TP2ðN; TÞ is a strictly concave function in N, and

hence exists a unique maximum solution N�
2 .

(b) If DN2
� 0, then TP2ðN; TÞ is maximized at N�

2 ¼ 0.

(c) If DN2
[ 0, then there exists a unique solution

N�
2 [ 0 such that TP2ðN; TÞ is maximized.

Proof Using (36) we define

EðNÞ ¼ ½a� ðbþ rÞ�sKe½a�ðbþrÞ�N � ac

hT
KeaNðehT � 1Þ

� ah

h2T
KeaNðehT � 1 � hTÞ

þ sIeaKeaN
�
M � N � T

2

�
� sIeKeaN : ð39Þ

Applying (38) and simplifying (36), we get

Eð0Þ ¼ KDN2
ð40Þ

and

lim
N!1

EðNÞ ¼ lim
N!1

KeaN
h
½a� ðbþ rÞ�sKe�ðbþrÞN

� ac

hT
ðehT � 1Þ � ah

h2T
ðehT � 1 � hTÞ

þ sIea
�
M � N � T

2

�
� sIe

i
¼ �1 ð41Þ

Notice that in general both up-stream and down-stream

credit periods are less than a year. Hence, we may assume

without loss of generality that 1 � aðM � N � T=2Þ� 0.

Re-arranging (37), and the fact that T þ N�M, we have

dEðNÞ
dN

¼ ½a� ðbþ rÞ�2sKe½a�ðbþrÞ�N

� a2c

hT
KeaNðehT � 1Þ � a2h

h2T
KeaNðehT � 1 � hTÞ

� asIeKeaN
h
2 � a

�
M � N � T

2

�i
: ð42Þ

dEðNÞ
dN

\½a� ðbþ rÞ�2sKeaN � a2cKeaN � 0;

if ½a� ðbþ rÞ�2s� a2c� 0:

ð43Þ

This completes the proof of Part (a) of Theorem 5.

If DN2
� 0, then Eð0Þ� 0, EðNÞ\0 for all N[ 0, and

TP2ðN; TÞ is a decreasing function in N. Hence, the

retailer’s optimal down-stream credit period is N�
2 ¼ 0,

which completes the proof of Part(b).

Finally, if DN2
[ 0, then Eð0Þ[ 0, and

limN!1 EðNÞ ¼ �1. By applying the Mean-value Theo-

rem and Part(a) of Theorem 5, we know that there exists a

unique N�
2 [ 0 such that EðN�

1 Þ ¼ 0. Consequently,

TP2ðN; TÞ is maximized at the unique point N�
2 [ 0, which

satisfies (36). This completes the proof of Part(c) of

Theorem 5.

Optimal solution for the case of N ‡ M

Again, applying the concave fractional programming, one

can obtain that the retailer’s annual total profit TP3ðN; TÞ is
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strictly pseudo-concave in T . Consequently, we have the

following theoretical results.

Theorem 6 For any given N, TP3ðN; TÞ is a strictly

pseudo-concave function in T , and hence exists a unique

maximum solution T�
3 .

Proof From (10), let us define

f3ðTÞ ¼ sKTe½a�ðbþrÞ�N � c
KeaN

h
ðehT � 1Þ � A

� h

h2
KeaNðehT � 1 � hTÞ

� cIcKeaN
�
NT �MT þ T2

2

�
ð44Þ

and

g3ðTÞ ¼ T : ð45Þ

Taking the first-order and second-order derivatives of

f3ðTÞ, we have

df3ðTÞ
dT

¼sKe½a�ðbþrÞ�N � cKeaNehT � h

h
KeaNðehT � 1Þ

� cIcKeaNðN �M þ TÞ
ð46Þ

and

d2f3ðTÞ
dT2

¼ �
h
ðhþ hcÞehT þ cIc

i
KeaN\0: ð47Þ

Therefore, TP3ðN; TÞ ¼ f3ðTÞ
g3ðTÞ is strictly pseudo-concave

function in T , which completes the proof of Theorem 6.

To find T�
3 , taking the first-order partial derivative of

TP3ðN; TÞ with respect to T , setting the result to zero, and

re-arranging terms, we get

oTP3ðN; TÞ
oT

¼ 1

T2

h
Aþ Kðhþ hcÞ

h2
eaN

�
ehT � 1 � hTehT

�i

� cIc

2
KeaN ¼ 0:

ð48Þ

For any given T , taking the first-order partial derivative of

TP3ðN; TÞ with respect to N, setting the result to zero, and

re-arranging terms, we yield

oTP3ðN; TÞ
oN

¼½a� ðbþ rÞ�sKe½a�ðbþrÞ�N

� ac

hT
KeaNðehT � 1Þ � ah

h2T
KeaNðehT � 1 � hTÞ

� cIcKeaN
h
a
�
N �M þ T

2

�
þ 1

i
¼ 0:

ð49Þ

Taking the second-order partial derivative of TP3ðN;TÞ
with respect to N, and re-arranging terms, we obtain

o2TP3ðN; TÞ
oN2

¼ ½a� ðbþ rÞ�2sKe½a�ðbþrÞ�N

� a2c

hT
KeaNðehT � 1Þ � a2h

h2T
KeaNðehT � 1 � hTÞ

� a2cIcKeaN
�
N �M þ T

2

�
� 2acIcKeaN :

ð50Þ

For simplicity, let us define another discrimination term

DN3
¼½a� ðbþ rÞ�s� ac

hT
ðehT � 1Þ

� ah

h2T
ðehT � 1 � hTÞ � cIc

� aT

2
þ 1

�
:

ð51Þ

Theorem 7 For any given T [ 0, if

½a� ðbþ rÞ�2s� a2c� 0, then we get

(a) TP3ðN; TÞ is a strictly concave function in N, and

hence exists a unique maximum solution N�
3 .

(b) If DN3
� 0, then TP3ðN; TÞ is maximized at N�

3 ¼ 0.

(c) If DN3
[ 0, then there exists a unique solution

N�
3 [ 0 such that TP3ðN; TÞ is maximized.

Proof From (49) let us define

ZðNÞ ¼ ½a� ðbþ rÞ�sKe½a�ðbþrÞ�N � ac

hT
KeaNðehT � 1Þ

� ah

h2T
KeaNðehT � 1 � hTÞ

� cIcKe
aN
h
a
�
N �M þ T

2

�
þ 1

i
: ð52Þ

Using (51), we get

Zð0Þ ¼ KDN3
ð53Þ

and

lim
N!1

ZðNÞ ¼ lim
N!1

KeaN

"
½a� ðbþ rÞ�se�ðbþrÞN

� ac

hT
ðehT � 1Þ � ah

h2T
ðehT � 1 � hTÞ

� cIc

h
a
�
N �M þ T

2

�
þ 1

i#
¼ �1: ð54Þ

Re-arranging (50), and the fact that N�M, we have

dZðNÞ
dN

¼½a� ðbþ rÞ�2sKe½a�ðbþrÞ�N � a2c

hT
KeaNðehT � 1Þ

� a2c

h2T
KeaNðehT � 1 � hTÞ � acIcKe

aN

h
a
�
N �M þ T

2

�
þ 2

i

\KeaN
n
½a� ðbþ rÞ�2s� a2c

o
� 0;

if ½a� ðbþ rÞ�2s� a2c� 0: ð55Þ
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This completes the proof of Part(a) of Theorem 7.

If DN3
� 0, then Zð0Þ� 0, ZðNÞ\0 for all N[ 0, and

TP3ðN; TÞ is a decreasing function in N. Hence, the

retailer’s optimal down-stream credit period is N�
3 ¼ 0,

which completes the proof of Part(b).

Finally, if DN3
[ 0, then Zð0Þ[ 0, and

limN!1 ZðNÞ ¼ �1. By applying the Mean-value Theorem

and Part(a) of Theorem 7, we know that there exists a unique

N�
3 [ 0 such that ZðN�

1Þ ¼ 0. Consequently, TP3ðN; TÞ is

maximized at the unique point N�
3 , which satisfies (49). This

completes the proof of Part(c) of Theorem 7.

Special cases

In this section, we obtain some previously published results

of other authors as special cases.

Firstly, if there is no deterioration (i.e., the deterioration

rate is approaching to zero), then the proposed model be-

comes for non-deteriorating items. From calculus, we get

lim
h!0

D

h

�
ehT � 1

�
¼ DT : ð56Þ

Consequently, the retailer’s order quantity per cycle in (3)

becomes

Q ¼ Ið0Þ ¼ D

h

�
ehT � 1

�
¼ DT when h ! 0: ð57Þ

Similarly, we can obtain

lim
h!0

D

h2

�
ehT � 1 � hT

�
¼ T2

2
: ð58Þ

As a result, we know that the retailer’s holding cost ex-

cluding interest charge per cycle in (4) is simplified to hDT2

2
.

Hence the retailer’s annual total profit in (5) is reduced to

TP1ðN; TÞ ¼ sKe½a�ðbþrÞ�N � cKeaN � A

T
� h

2
KeaNT

� cIc

2T
KeaNðT þ N �MÞ2

þ sIe

2T
KeaNðM � NÞ2: ð59Þ

Similarly, if there is no deterioration, then we get

TP2ðN; TÞ ¼sKe½a�ðbþrÞ�N � cKeaN � A

T
� h

2
KeaNT

þ sIeKeaN
�
M � N � T

2

�
;

ð60Þ

and

TP3ðN; TÞ ¼ sKe½a�ðbþrÞ�N � cKeaN � A

T
� h

2
KeaNT

� cIcKeaN
�
N �M þ T

2

�
:

ð61Þ

This simplified problem with r ¼ 0 has been solved by

Teng and Lou (2012).

In fact, several previous models are indeed special cases

of the proposed inventory model here.

(i) When h ! 0 and r ¼ 0, then the proposed model

is reduced to that in Teng and Lou (2012)

(ii) When h ! 0, M ¼ 0 and r ¼ 0, then the proposed

model is the same as that in Lou and Wang (2013).

(iii) When h ! 0, a ¼ 0, b ¼ 0 and r ¼ 0, then the

proposed model is simplified to that in Teng and

Goyal (2007).

(iv) When h ! 0, N ¼ 0, a ¼ 0, b ¼ 0 and r ¼ 0, then

the proposed model is similar to that in Teng

(2002).

(v) When h ! 0, N ¼ 0, s ¼ c, a ¼ 0, b ¼ 0 and

r ¼ 0, then the proposed model is reduced to that

in Goyal (1985).

Numerical examples

To illustrate the results, let us apply the proposed method

to solve the following numerical examples.

Example 1 Let us assume a ¼ 2/year, b ¼ 1/year,

r ¼ 0:05/year, K ¼ 3600 units/year, s ¼ $2:4/unit, c ¼ $1/

unit, A ¼ $15/order, h ¼ $0:5/unit/year, M ¼ 60 days (i.e.,

M ¼ 2=12 ¼ 1=6 years), h ¼ 0:05, Ic ¼ $0:06=$=year,

Ie ¼ $0:05=$=year. We check the following common

condition first: ½a� ðbþ rÞ�2s� a2c ¼ �1:834\0. Using

software LINGO 12.0, we have the maximum solution to

TPiðN; TÞ for i ¼ 1; 2, and 3 as follows: {N�
1 ¼ 0:05803522

years, T�
1 ¼ 0:1086314 years, and TP�

1 ¼ $4853:930};

{N�
2 ¼ 0:05012718 years, T�

2 ¼ 0:1059186 years, and

TP�
2 ¼ $4854:393}; and {N�

3 ¼ 0:1666667 years, T�
3 ¼

0:09879093 years, and TP�
3 ¼ $4794:598}.

Consequently, the retailer’s optimal solution is:

N� ¼0:05012718 years; T� ¼ 0:1059186 years;

and TP� ¼ $4854:393:

Example 2 Using the same data as those in Example 1

except M ¼ 40 days (i.e., M ¼ 40=365 years), we obtain

the following results: {N�
1 ¼ 0:05691158 years, T�

1 ¼
0:1089933 years, and TP�

1 ¼ $4829:881};

{N�
2 ¼ 0:01181305 years, T�

2 ¼ 0:09777599 years, and

TP�
2 ¼ $4820:379}; and {N�

3 ¼ 0:109589 years, T�
3 ¼

0:1045846 years, and TP�
3 ¼ $4819:184}.

Consequently, the retailer’s optimal solution is:

N� ¼0:05691158 years; T� ¼ 0:1089933 years;

and TP� ¼ $4829:881:
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Example 3 Using the same data as those in Example 1

except b ¼ 0:7/year, and M ¼ 20 days (i.e., M ¼ 20=365

years), we obtain the following results: {N�
1 ¼ 0:05479452

years, T�
1 ¼ 0:1104654 years, and TP�

1 ¼ $4964:215};

{N�
2 ¼ 0 years, T�

2 ¼ 0:05479452 years, and

TP�
2 ¼ $4723:789}; and {N�

3 ¼ 0:4427386 years, T�
3 ¼

0:07498528 years, and TP�
3 ¼ $5696:765}.

Consequently, the retailer’s optimal solution is:

N� ¼0:4427386 years; T� ¼ 0:07498528 years; and

TP� ¼ $5696:765:

Conclusions

In this paper, we have developed an EOQ model for the

retailer to obtain its optimal credit period and cycle time in

a supply chain in which reflecting the following facts:

(a) the supplier provides an up-stream trade credit and the

retailer also offers a down-stream trade credit, (b) the

selling items are perishable such as fruits, fresh fishes,

gasoline and photographic films and (c) down-stream credit

period increases not only demand but also opportunity cost

and default risk. Then we have proved that the optimal

trade credit and cycle time exist uniquely. Moreover, we

have shown that the proposed model is a generalized case

for non-deteriorating items and several previous EOQ

models. In fact, the proposed inventory model forms a

general framework that includes many previous models as

special cases such as Goyal (1985), Teng (2002), Teng and

Goyal (2007), Teng and Lou (2012), Lou and Wang (2013)

and others. Finally, numerical examples are given to il-

lustrate the proposed method.

For future research, we can extend the inventory model

in several ways. For example, one immediate possible

extension could be allowable shortages, cash discounts, etc.

We can also extend the fully trade credit policy to the

partial trade credit policy in which a seller requests its

credit-risk customers to pay a fraction of the purchase

amount at the time of placing an order as a collateral de-

posit, and then grants a permissible delay on the rest of the

purchase amount. Finally, we could consider the effect of

inflation rates on the economic order quantity.
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