245,657 research outputs found

    Tailoring Plate Thickness of a Helmholtz Resonator for Improved Sound Attenuation

    Get PDF
    A Helmholtz resonator with flexible plate attenuates noise in exhaust ducts, and the transmission loss function quantifies the amount of filtered noise at a desired frequency. In this work the transmission loss is maximized (optimized) by allowing the resonator end plate thickness to vary for two cases: 1) a nonoptimized baseline resonator, and 2) a resonator with a uniform flexible endplate that was previously optimized for transmission loss and resonator size. To accomplish this, receptance coupling techniques were used to couple a finite element model of a varying thickness resonator end plate to a mass-spring-damper model of the vibrating air mass in the resonator. Sequential quadratic programming was employed to complete a gradient based optimization search. By allowing the end plate thickness to vary, the transmission loss of the non-optimized baseline resonator was improved significantly, 28 percent. However, the transmission loss of the previously optimized resonator for transmission loss and resonator size showed minimal improvement

    JIGSAW-GEO (1.0): locally orthogonal staggered unstructured grid generation for general circulation modelling on the sphere

    Full text link
    An algorithm for the generation of non-uniform, locally-orthogonal staggered unstructured spheroidal grids is described. This technique is designed to generate very high-quality staggered Voronoi/Delaunay meshes appropriate for general circulation modelling on the sphere, including applications to atmospheric simulation, ocean-modelling and numerical weather prediction. Using a recently developed Frontal-Delaunay refinement technique, a method for the construction of high-quality unstructured spheroidal Delaunay triangulations is introduced. A locally-orthogonal polygonal grid, derived from the associated Voronoi diagram, is computed as the staggered dual. It is shown that use of the Frontal-Delaunay refinement technique allows for the generation of very high-quality unstructured triangulations, satisfying a-priori bounds on element size and shape. Grid-quality is further improved through the application of hill-climbing type optimisation techniques. Overall, the algorithm is shown to produce grids with very high element quality and smooth grading characteristics, while imposing relatively low computational expense. A selection of uniform and non-uniform spheroidal grids appropriate for high-resolution, multi-scale general circulation modelling are presented. These grids are shown to satisfy the geometric constraints associated with contemporary unstructured C-grid type finite-volume models, including the Model for Prediction Across Scales (MPAS-O). The use of user-defined mesh-spacing functions to generate smoothly graded, non-uniform grids for multi-resolution type studies is discussed in detail.Comment: Final revisions, as per: Engwirda, D.: JIGSAW-GEO (1.0): locally orthogonal staggered unstructured grid generation for general circulation modelling on the sphere, Geosci. Model Dev., 10, 2117-2140, https://doi.org/10.5194/gmd-10-2117-2017, 201

    Perseus: Randomized Point-based Value Iteration for POMDPs

    Full text link
    Partially observable Markov decision processes (POMDPs) form an attractive and principled framework for agent planning under uncertainty. Point-based approximate techniques for POMDPs compute a policy based on a finite set of points collected in advance from the agents belief space. We present a randomized point-based value iteration algorithm called Perseus. The algorithm performs approximate value backup stages, ensuring that in each backup stage the value of each point in the belief set is improved; the key observation is that a single backup may improve the value of many belief points. Contrary to other point-based methods, Perseus backs up only a (randomly selected) subset of points in the belief set, sufficient for improving the value of each belief point in the set. We show how the same idea can be extended to dealing with continuous action spaces. Experimental results show the potential of Perseus in large scale POMDP problems

    Constructing multiple unique input/output sequences using metaheuristic optimisation techniques

    Get PDF
    Multiple unique input/output sequences (UIOs) are often used to generate robust and compact test sequences in finite state machine (FSM) based testing. However, computing UIOs is NP-hard. Metaheuristic optimisation techniques (MOTs) such as genetic algorithms (GAs) and simulated annealing (SA) are effective in providing good solutions for some NP-hard problems. In the paper, the authors investigate the construction of UIOs by using MOTs. They define a fitness function to guide the search for potential UIOs and use sharing techniques to encourage MOTs to locate UIOs that are calculated as local optima in a search domain. They also compare the performance of GA and SA for UIO construction. Experimental results suggest that, after using a sharing technique, both GA and SA can find a majority of UIOs from the models under test

    Isomorph-Free Branch and Bound Search for Finite State Controllers

    Get PDF
    The recent proliferation of smart-phones and other wearable devices has lead to a surge of new mobile applications. Partially observable Markov decision processes provide a natural framework to design applications that continuously make decisions based on noisy sensor measurements. However, given the limited battery life, there is a need to minimize the amount of online computation. This can be achieved by compiling a policy into a finite state controller since there is no need for belief monitoring or online search. In this paper, we propose a new branch and bound technique to search for a good controller. In contrast to many existing algorithms for controllers, our search technique is not subject to local optima. We also show how to reduce the amount of search by avoiding the enumeration of isomorphic controllers and by taking advantage of suitable upper and lower bounds. The approach is demonstrated on several benchmark problems as well as a smart-phone application to assist persons with Alzheimer's to wayfind
    • 

    corecore